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Abstract

Genetic variations within the Lipoprotein Lipase (LPL) gene have been shown to
influence the risk of cardiometabolic diseases. However, their associations with
cardiometabolic disease-related markers remain underexplored in Arab Qatari pop-
ulations. Hence, we examined the association between a genetic risk score (GRS)
based on three LPL single nucleotide polymorphisms (SNPs) and cardiometabolic
indicators in a healthy Qatari population. A cross-sectional genetic association study
was conducted using data from the Qatar Biobank population-based cohort, involv-
ing a sample of metabolically healthy Qatari adults (n=6,919). The LPL-GRS was
computed as the unweighted sum of risk alleles from three LPL SNPs: rs295 (C/A),
rs301 (C/T), and rs320 (G/T). Associations between the GRS and metabolic markers
were assessed using a generalized linear model, adjusting for age, sex, and body
mass index. Individuals with high GRS (>5 risk alleles) showed a significant asso-
ciation with lower fat-free mass index values (f=-0.064, p=0.029). In addition, a
positive association was observed between GRS and fasting insulin levels (=0.035,
p=0.016). In addition, high GRS was significantly associated with lower high-density
lipoprotein cholesterol (3=-0.025, p=0.001) and higher triacylglycerol concentrations
(B=0.027, p=0.0003) and systolic blood pressure (3=0.007, p=0.002), respectively.
Our study shows that the LPL-GRS is associated with key cardiometabolic risk
factors in this self-reported healthy Qatari population. These findings highlight the
need for additional research to replicate these findings in independent and ethnically
diverse cohorts, as well as the use of longitudinal studies to evaluate the predictive
value of the GRS for future metabolic outcomes.
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Introduction

Cardiometabolic diseases are a group of interconnected conditions that include
cardiovascular diseases and metabolic disorders such as type 2 diabetes (T2D) and
obesity [1,2]. They share underlying mechanisms like chronic inflammation, endothe-
lial dysfunction, impaired glucose and lipid metabolism, increased oxidative stress,
and ectopic fat deposition [3—6]. Notably, obesity is the key modifiable risk factor that
predisposes individuals to a range of metabolic and cardiovascular complications,
including insulin resistance and T2D [7,8], dyslipidemia [9], hypertension [10], and
cardiovascular diseases (CVDs) [11,12]. Remarkably, the prevalence of obesity in
Gulf Cooperation Council (GCC) countries is more than double the global average
[13], ranking them second worldwide [14]. The escalating obesity epidemic has been
paralleled by a marked rise in T2D, with a reported prevalence in GCC countries
ranging between 8% and 22% [15]. Similarly, among GCC countries, the interrelation-
ship between obesity and CVD is particularly concerning, as a 1% increase in obesity
prevalence is associated with an average increase of 2.7 CVD deaths per 100,000
population [16], alongside a growing incidence of stroke in the region [17]. In Qatar,
recent reports showed that approximately 46% of adult women and 36% of adult
men are obese [18]. The prevalence of T2D was estimated at 17% in 2021 and was
projected to reach 29% by 2025 [19]. Evidently, between 50-70% of CVD cases in
the Qatari population are observed among individuals with T2D [20]. CVDs continue
to remain the leading cause of mortality in the country, accounting for approximately
26% of all deaths [21], with ischemic heart disease alone contributing to 21% of total
mortality, thus ranking as the primary cause of death nationwide [22].

In light of the rise in obesity, T2D, and CVD, it is crucial to explore the underlying
cardiometabolic risk factors contributing to these trends [23]. These include both
non-modifiable elements, such as genetic predisposition, and modifiable environ-
mental and lifestyle determinants, which often interact in complex and emergent
ways to influence disease development and progression [24]. Among the key genetic
contributors to cardiometabolic risk is the lipoprotein lipase (LPL) gene, which plays
a central role in lipid metabolism by hydrolyzing circulating triacylglycerol (TG) into
free fatty acids for tissue uptake [25]. In addition to its lipid-clearing function, LPL
may exert broader protective effects through regulatory roles in glucose homeosta-
sis, insulin sensitivity, and blood pressure control [26]. Disruption in LPL locus due
to genetic variation has been shown to contribute to dyslipidemia and a range of
metabolic phenotypes [27].

Given the critical role of LPL in lipid and metabolic regulation, numerous studies
have investigated different LPL single nucleotide polymorphisms (SNPs) and their
associations with adiposity [28,29], glycemic dysregulation [30,31], and dyslipidemia
and cardiovascular disease risk in different populations [26,32]. Extensive research
has shown that single SNP associations often explain only a small fraction of the
variance in complex traits such as cardiometabolic diseases [33,34]. In contrast,
aggregating multiple SNPs into a genetic risk score (GRS) captures the cumulative
effect of risk alleles, offering a more robust estimate of polygenic susceptibility [35].
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In this study, we examine LPL gene variants using a GRS approach to assess their association with obesity, T2D, and
CVD risks in a healthy Qatari population. This approach enables the evaluation of polygenic risk burden in the context of a
homogenous Arab Qatari cohort, offering insights into the role of LPL variation in shaping metabolic health in the absence
of clinical disease.

Methods
Study population

The data were derived from the Qatar Biobank (QBB) Study, a population-based prospective cohort established by
the Qatar Precision Health Institute (QPHI). Initiated in 2012, the QBB Study aims to recruit 60,000 participants,
comprising Qatari nationals and long-term residents, following informed consent. Comprehensive details regarding
the study design have been documented in prior publications [36,37]. Individuals with known metabolic disorders,
such as T2D, hypertension, hypercholesterolemia, and CVDs, as well as pregnant women, were excluded from the
analysis. The initial cohort comprised 14,669 Qatari participants. After excluding individuals with missing dietary
intake data (n=6) and those who reported pregnancy (n=20), the sample was reduced to 14,643. Subsequently,
participants who were not fasting at the time of blood sample collection (n=5,440) and those diagnosed with any
metabolic condition (n=2,012) were also excluded. An additional 272 individuals were excluded due to missing age
information. After applying all exclusion criteria, the final analytic sample included 6,919 metabolically healthy Qatari
individuals (Fig 1).

Ethical approval was obtained in 2023 through QBB’s institutional review board (IRB: QF-QBB-RES-ACC-00085).
Data access was granted in May 2022 and accessed on June 1st, 2022. Two subsequent IRB renewals were approved,
extending approval until May 19th, 2025. All participant data were fully de-identified; no personal identifiers were available
to the research team, as each participant was assigned a dummy ID.

Genotyping and SNP selection

Whole-genome sequencing of Qatar Genome Program (QGP) participants was conducted using lllumina HiSeq X with
30x coverage. Standard quality control, alignment, variant calling, and annotation were performed using established pipe-
lines (Sentieon, VEP), focusing on rare variants (<2% MAF) in 78 ACMG-recommended genes. This process, conducted
by QPHI-QGP, was previously described in detail [38].

In this study, the LPL gene was selected due to its well-established role in lipid metabolism [27]. Variants in the LPL
gene have been consistently associated with dyslipidemia and cardiovascular disease risks, particularly high-density
lipoprotein cholesterol and TG, across different genome-wide association studies (GWAS) and meta-analysis, including
rs295(C/A) [39], rs301(C/T) [39], rs320(G/T) (Hindlll) [40]. Frequencies of the SNPs were obtained from the population
multi-sample VCF file using BCFtools [41] and the GATK VariantsToTable tools [42]. Only LPL gene SNPs with a minor
allele frequency (MAF) of at least 5% and at Hardy-Weinberg Equilibrium (HWE) (P = 0.05) were considered for the pres-
ent study.

Cardiometabolic phenotypic markers

Phenotypic data were derived from physical and clinical assessments and categorized into the following three domains:

Obesity-related markers. All anthropometric measurements were obtained using standardized protocols by trained
nursing staff. Sitting and standing height, weight, and waist and hip circumferences, as well as body composition, were
assessed using a Seca stadiometer and Seca Bioelectrical Impedance Analysis device (Seca GmbH & Co. KG, Hamburg,
Germany). Additionally, a full-body dual-energy X-ray absorptiometry (iDXA; General Electric Company, Madison,
Wisconsin) scan was performed to assess body composition [37].
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Fig 1. Flowchart of participant selection from the Qatar Biobank dataset. A total of 14,669 Qatari adults were initially considered. After excluding
ineligible participants (n=26; 20 pregnant women and 6 with missing dietary intake), 14,643 participants remained. Further exclusions were applied for
non-fasting blood samples (n=5,440), diagnosed metabolic conditions (n=2,012), and missing age data (n=272); the final analytic sample included
6,919 individuals.

https://doi.org/10.1371/journal.pone.0341641.9001

The obesity indicators included were: body mass index (BMI), waist-to-hip ratio (WHR), waist circumference (WC), and
fat-free mass index (FFMI).

Type 2 diabetes markers. Whole blood samples were collected during clinic visits and processed at the Hamad
Medical Corporation laboratories, with results returned to QBB [36]. This study focused on four glycemic control markers:
glycated hemoglobin A1c (HbA1c), fasting blood glucose (FBG), fasting insulin, and fasting C-peptide.

Cardiovascular disease markers. From the same set of biological samples, cardiovascular health was evaluated
using key clinical markers. Blood pressure was measured in a sitting position using an Omron 705IT automated
sphygmomanometer (Omron Corporation, Kyoto, Japan). Two systolic and diastolic blood pressure readings were taken
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at five-minute intervals, and if the measurements differed by five mmHg or more, a third reading was obtained. The
average of the final readings was used for analysis [37]. In this study, six lipid profile components were included: low-
density lipoprotein (LDL), high-density lipoprotein (HDL), total cholesterol (TC), and triacylglycerol (TG), systolic and
diastolic blood pressure (BP).

Statistical analysis

All statistical analyses were performed using StataNow/SE version 18.5 for Windows (StataCorp LLC, College Sta-
tion, TX, USA). The Chi-square test for goodness-of-fit was used to assess whether the selected SNPs conformed to
HWE (S1 Table). Descriptive characteristics of the study population were presented as means and standard deviations
(SD) for continuous variables, and in frequencies and percentages (%) for categorical variables. Group comparisons were
conducted using independent samples t-tests for continuous variables and Chi-square tests for categorical variables. The
Shapiro—Wilk test was employed to assess the normality of all continuous variables including, the evaluation of skewness
and kurtosis. Log transformation was applied to non-normally distributed continuous variables including, BMI, WC, FFMI,
insulin, C-peptide, HbA1c, HDL, LDL, TC, TG, and SBP. Generalized Linear Models (GLM) with a Gaussian family and
identity link function were used to assess associations between the LPL-GRS and cardiometabolic markers. Covariate
adjustments were made for age, sex, and BMI (or WC when BMI was the independent variable). Post-estimation Wald
tests were performed to evaluate the overall effect of GRS in each model. Bonferroni correction was applied to adjust for
multiple testing (P <0.0035) based on P <0.05/ 14 outcome variables. Descriptive statistics were used to compare meta-
bolic indicators across low- and high-GRS groups.

Risk alleles for all SNPs were determined based on their associations with lipid traits, including HDL, LDL, TG, and TC
within the study population (n=14,643). Alleles that were linked to elevated LDL, TG, or TC levels or reduced HDL con-
centrations were designated as risk alleles. Details on the selected risk alleles, their corresponding minor alleles, and the
association results in both the study cohort and the dbSNP database are summarized in S2 Table.

An unweighted LPL-GRS was generated by summing the number of risk alleles across the three selected SNPs. For
each SNP, individuals were assigned a score of 0, 1, or 2 corresponding to the number of risk alleles present. These
individual scores were then aggregated to obtain a cumulative risk allele count. The LPL-GRS was subsequently divided
into “low” and “high” genetic risk groups, using the median value as the cutoff point, with the “low-GRS group” comprising
individuals with < 5 risk alleles (n=3,675) and the “high-GRS group” comprising individuals with >5 risk alleles (n=3,516).

Results
Characteristics of participants

Participant characteristics are summarized in Table 1. Among the 6,919 individuals analyzed, 43.5% were men and 56.5%
were women. When stratified by sex, BMI was significantly higher in women compared to men (p=0.0001), with both
averages falling within the overweight range. However, distinct differences emerged in body composition. Men exhibited
significantly higher WC (p=5.1x10-"%°), WHR (p=5.1x10"), and FFMI (p < 1x10-%%). In addition, men showed significantly
higher FBG, and C-peptide levels than women. More pronounced differences were seen in CVD markers, with men exhib-
iting higher TG, LDL cholesterol, and both systolic and diastolic BP, while women had significantly higher HDL cholesterol
levels (Table 1).

Genetic associations
Association of GRS with obesity-related traits. The GRS was not significantly associated with BMI (p=0.221), WC

(p=0.349), and WHR (p=0.075). However, an association was observed between GRS and FFMI (p=0.029), where high
GRS was significantly associated with lower FFMI values (3 =-0.0644, P=0.029) (Fig 2).
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Table 1. Clinical Characteristics of the Study Participants.

Total Men Women P value

Mean* SD N Meant SD N Mean* SD N
Variables
Age (years) 34.6+11.00 6,919 34.8+10.8 3006 34.5+11.1 3,913 0.359
BMI (Kg/ m?) 28.4+6.1 6,912 28.02+5.7 2,999 28.60+6.4 3,913 0.0001
WC (cm) 85.3+13.9 6,905 90.7+13.5 2,994 81.1+£12.8 3,911 5.1 x10-1%
WHR 0.81+0.1 6,905 0.87+0.1 2,994 0.67+0.01 3,91 5.1x 107"
FFMI (kg/m?) 17.5+2.4 4,255 19.33+£2.04 1,610 16.38+1.9 2,645 P<1x104%
FBG (mmol/L) 5.03+0.88 4,252 5.12+1.0 1,681 4.98+0.79 2,571 6.94x10®
Fasting Insulin (mcunit/ mL) 10.61+7.00 4,227 11.01+£8.2 1,668 10.36+6.1 2,559 0.0051
Fasting C-peptide (ng/mL) 2.01£0.92 4,222 2.10%1.01 1,660 1.95+0.8 2,562 0.0029
HbA1c (%) 5.32+0.63 6,825 5.38+0.7 2,970 5.28+0.6 3,855 1.14x101°
HDL (mmol/L) 1.42+0.51 6,892 1.23+0.4 2,990 1.57+0.5 3,902 2.5x10"7®
LDL (mmol/L) 2.84+0.83 6,878 3.00£0.9 2,981 2.72+0.8 3,897 3.4x104
TG (mmol/L) 1.28+0.65 6,654 1.40+0.8 2,910 1.18+0.5 3,744 3.3x10%
TC (mmol/L) 4.81+0.91 6,898 4.86+0.97 2,996 4.77+0.9 3,902 0.0001
Systolic BP (mmHg) 110.00£12.0 6,912 113.85+11.2 3,001 107.1£12.6 3,911 2.8x10"5
Diastolic BP (mmHg) 66.00+£10.0 6,912 68.98+9.7 3,001 63.76+8.90 3,91 1.5x10™

BMI: Body Mass Index; WC: Waist Circumference; WHR: Waist-to-Hip Ratio; FFMI: Fat-Free Mass Index; FBG: Fasting Blood Glucose; HbA1c:
Hemoglobin A1c; HDL: High-Density Lipoprotein; LDL: Low-Density Lipoprotein; TG: Triacylglycerol; TC: Total Cholesterol; Systolic BP: Systolic Blood

Pressure; Diastolic BP: Diastolic Blood Pressure; P value: results from independent t-test.

https://doi.org/10.1371/journa.pone.0341641.t001

Overall P ssociation= 0.029

17.7 ~

17.6 1

B= -0.064
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Log Teansformed Fat Free Mass

17.1
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Low GRS <5 (N= 2,189)

High GRS > 5 (N=2,066)

Fig 2. Association between LPL-GRS and Fat-Free Mass Index (FFMI) in the Qatar Biobank participants. The bar plot shows the adjusted mean
(x SE) of log-transformed FFMI across low (<5 risk alleles) and high (>5 risk alleles) LPL genetic risk score groups. The model was adjusted for age,
sex, and BMI. The high GRS was significantly associated with lower FFMI (3=-0.064, p=0.029).

https://doi.org/10.1371/journal.pone.0341641.9002
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Although this inverse relationship between GRS and FFMI suggests a potential genetic contribution to lean mass regu-
lation, the association did not withstand correction for multiple testing comparisons.

Association of GRS with type 2 diabetes- related traits. The fasted insulin levels were significantly
associated with GRS (p=0.016), where individuals with high GRS had significantly higher fasting insulin
concentrations ($=0.0353) (Fig 3). However, following the Bonferroni correction, this association did not retain
statistical significance. While a positive trend was observed between GRS and fasting C-peptide (3 =0.0228), this
association also did not reach statistical significance (p =0.059). None of the other associations were statistically
significant (FBG, p=0.760; HbA1c, p=0.911).

Cardiovascular disease associations. The association analysis between GRS and CVD markers revealed significant
findings. GRS was significantly associated with HDL levels (p=0.001), TG concentrations (p=0.0003), and systolic BP
(p=0.002). Individuals with high GRS exhibited lower HDL concentrations compared to those with low GRS (3 =-0.0250,
p=0.001) (Fig 4). TG levels were positively associated with GRS, with significantly higher levels observed among
individuals in the high GRS group (=0.0274, p=0.0003) (Fig 5). Systolic BP was also significantly higher in participants
with high GRS (3=0.0067, p=0.002) (Fig 6). The association of GRS with HDL, TG, and systolic BP remained statistically
significant even after Bonferroni correction for multiple testing comparisons. No significant associations were observed
between the LPL-GRS and LDL (= -0.0022, p=0.756) or TC (= —0.0040, p=0.352). Similarly, no significant association
was detected with DBP (3=0.0058, p=0.071).

Discussion

The current study investigated the association between an unweighted GRS comprising three LPL variants (rs295, rs301,
and rs320) and various cardiometabolic risk indicators in a self-reported healthy Qatari population. The findings revealed
that individuals with high LPL-GRS exhibited lower FFMI and HDL levels and elevated TG concentrations, systolic BP,
and fasting insulin levels. These associations with CVD markers remained statistically significant after applying correction
for multiple testing, underscoring the robustness of these results. These findings are particularly relevant in Qatar, where
CVD is the leading cause of mortality [21]. Importantly, the risk alleles identified in our study are all common alleles in this
population, which may contribute to the broader cardiometabolic disease burden. Collectively, these results demonstrate

overall P, iation= 0.016

B=0.035

£ 230 -
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£
_‘é" 2.25 -
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i
T 2.20 4 T
E T
o
2 215 o
i
[
-1}
S 210

Low GRS < 5 (N= 2,189) High GRS > 5 (N=2,039)

Fig 3. Association between LPL-GRS and Fasting Insulin in the Qatar Biobank participants. Adjusted mean (+ SE) fasting insulin levels are shown
by LPL-GRS category. Linear regression was adjusted for age, sex, and BMI. A positive association was observed between the high GRS and fasting
insulin (3=0.035, p=0.016).

https://doi.org/10.137 1/journal.pone.0341641.9003
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Fig 4. Association between LPL-GRS and High-Density Lipoprotein (HDL) in the Qatar Biobank participants. The bar plot displays the adjusted

mean (+ SE) of log-transformed HDL levels by the LPL-GRS group. The high GRS was significantly associated with lower HDL concentrations
(B=-0.025, p=0.001) after adjustment for age, sex, and BMI.

https://doi.org/10.1371/journal.pone.0341641.9004

Overall P, iation= 0-0003

B=0.027
2 028 -
(7]
(]
=
@ 0.26 -
o
=
0o
. 1
[ |
S 024 T
Q
£
€ 022 -
c
o
[
% 0.20
= Low GRS < 5 (N= 3,407) High GRS > 5 (N=3,247)

Fig 5. Association between LPL-GRS and Triacylglycerol (TG) in the Qatar Biobank participants. Adjusted (mean + SE) log-transformed TG con-
centrations are presented across low and high GRS groups. The LPL-GRS was associated with increased log-transformed TG concentrations (3=0.027,
p=0.0003) after adjusting for age, sex, and BMI.

https://doi.org/10.1371/journal.pone.0341641.9005

the importance of utilizing genetic association and epidemiological findings of LPL variants to better understand
population-level risk and inform precision health efforts. Notably, clinical CAD outcomes were not directly assessed in this
study; therefore, the observed associations should be interpreted as relationships with cardiometabolic risk markers linked
to CAD. Consequently, the findings reflect associations with established cardiometabolic risk markers in healthy adults
rather than independent prediction of CAD.
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Fig 6. Association between LPL-GRS and Systolic Blood Pressure (SBP) in the Qatar Biobank participants. The bar plot presents adjusted mean
(+ SE) SBP by GRS category. A significant association was found between higher GRS and increased SBP (3=0.007, p=0.002), after adjusting for age,
sex, and BMI.

https://doi.org/10.1371/journal.pone.0341641.9006

The current finding that LPL-GRS is associated with CVD-related markers in healthy Qatari adults is supported by
prior studies on LPL SNPs in Arab populations. However, this is the first study to focus on a GRS using LPL SNPs in
a Qatari population. In a Kuwaiti case-control study (n=494), the minor “C” allele of the SNP rs295 was more common
among individuals without coronary heart disease, suggesting a protective role of this single SNP against cardiovascular
disease [43]. Another study in Kuwaiti adults (n=729) found an association between the “C” allele and increased BMI but
not with lipid traits [44]. The lack of association with BMI in our study may be attributed to differences in sample size and
population characteristics, as our cohort consisted only of metabolically healthy individuals, whereas the Kuwaiti studies
focused on comparing both healthy and diseased populations. In addition to the evidence from rs295, similar associations
involving the SNP rs320 further strengthen the link between LPL variants and dyslipidemia across Arab populations. In a
Tunisian population, individuals with the “TT” genotype of the SNP rs320 had a higher prevalence of significant coronary
stenosis and nearly a threefold increased risk compared to those with the “GG” genotype. Carriers of the “T” allele also
exhibited elevated TG levels and reduced HDL concentrations [45]. Similarly, in a case-control study among Iraqi individ-
uals, the “T” allele was more common among obese participants and was associated with an increased risk of dyslipid-
emia [46]. Supporting evidence from Egyptian populations also links SNP rs320 to adverse metabolic outcomes, where
one study (n=100) found a significantly higher frequency of the “T” allele among diabetic individuals with dyslipidemia
compared to those without [47]. Another Egyptian study (n=200) reported that carriers of the “AT” and “TT” genotypes
had higher BMI, waist circumference, fasting blood glucose, and HbA1c levels, along with reduced HDL and elevated TG,
where the effects were more pronounced in diabetic participants [48]. Collectively, these findings reinforce the observed
association between LPL-GRS and lipid abnormalities in the current study.

Evidence from large-scale non-Arab studies and meta-analyses reinforces the role of LPL polymorphisms in cardiomet-
abolic health, supporting our findings in the Qatari population. A genome-wide association study of 22,161 participants
across seven European cohorts identified the minor “A” allele of the SNP rs295 as a risk factor for metabolic syndrome,
while the “C” allele of the SNP rs301 was linked to beneficial traits such as higher HDL and lower waist circumference
[39]. A meta-analysis including 10,345 individuals from Asian and Caucasian populations also found that the minor “G”
allele of rs301 was associated with a reduced risk of coronary artery disease, though this effect was limited to Caucasians
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[49]. In a separate meta-analysis of 89 studies (n=22,734), the “G” allele of the SNP rs320 was associated with increased
HDL (+3%), reduced TG levels (-6%), and a modest decrease in coronary heart disease risk (OR = 0.89; 95% CI: 0.81—
0.98) [40]. Similarly, in Asian populations, the SNP rs320 was linked to a lower risk of ischemic stroke under both additive
and dominant genetic models [50], and a review covering five studies (n=4,996) highlighted the rs320 “G” allele as a
lipid-beneficial variant associated with lower risk of metabolic syndrome and CAD [51]. Together, these findings across
diverse populations validate our results and confirm the relevance of LPL polymorphisms in lipid metabolism. The align-
ment with large-scale studies further supports the robustness of our findings in the Qatari population.

The observed associations between the LPL-GRS and CVD markers in our Qatari cohort; together with the lack of
significant associations with LDL and TC, may be explained by the physiological role of LPL in lipid metabolism. The LPL
enzyme plays a central role in lipid metabolism by hydrolyzing TG in chylomicrons and VLDL, releasing free fatty acids for
tissue uptake and contributing to HDL formation [52]. Through this upstream role in TG-rich lipoprotein catabolism, lipo-
protein lipase indirectly influences the generation and composition of downstream lipoproteins; however, circulating LDL
levels are primarily regulated by hepatic remodeling and LDL receptor-mediated clearance rather than by LPL-dependent
lipolysis [53]. Genetic variants in LPL can impair enzyme function, reduce post-heparin LPL activity, and delay the clear-
ance of TG-rich lipoproteins, resulting in elevated plasma TG [54,55]. These disruptions also hinder the supply of lipids
and apolipoproteins needed for HDL synthesis and remodeling, thereby lowering HDL concentrations [55,56]. Importantly,
genetic variation in LPL does not fully reflect functional lipoprotein lipase activity, which is extensively regulated at the
post-translational level [55]. After synthesis in parenchymal cells, LPL requires proper folding and translocation to the vas-
cular lumen via glycosylphosphatidylinositol-anchored high-density lipoprotein—binding protein 1 (GPIHBP1), and its activ-
ity is further modulated by circulating regulators including apolipoprotein C-II, apolipoprotein C-IIl, and angiopoietin-like
proteins [55]. These post-translational mechanisms are highly sensitive to nutritional and hormonal states and may atten-
uate genotype—phenotype associations in observational studies [55]. A recent study has shown that disruptions in LPL’s
ability to bind to endothelial heparan sulfate proteoglycans (HSPGs) impair its stabilization and transport to the capillary
lumen, which reduces its enzymatic activity [57] and limits the availability of lipid substrates and apolipoproteins neces-
sary for HDL particle formation and remodeling [58]. Beyond its established role in lipid metabolism, LPL also contributes
to vascular function. Disrupted lipid handling at the endothelial level can result in lipid accumulation, which impairs nitric
oxide production and promotes endothelial dysfunction. This process reduces vascular tone and elasticity [5]. Experimen-
tal studies further indicate that reduced LPL expression is associated with increased arterial stiffness, a key contributor to
elevated systolic blood pressure [59]. In addition, LPL deficiency limits fatty acid uptake and impairs nitric oxide-mediated
vasodilation, which compromises vascular responsiveness [60]. These mechanisms provide a plausible biological expla-
nation for the observed associations between LPL-GRS and elevated TG, reduced HDL, and increased systolic blood
pressure in our Qatari cohort. Although impaired LPL function has been linked to insulin resistance in certain populations,
these associations are often modest, context-dependent, or mediated through changes in lipid metabolism, making them
less consistently detectable, particularly in a healthy cohort without overt metabolic disease [61,62]. In our study, the lack
of significant associations with BMI, WHR, WC, FBG, and HbA1c, as well as the failure of associations with fasting insulin
and FFMI to remain significant after Bonferroni correction, reflects the greater complexity and polygenic nature of obesity
and T2D. These conditions involve multiple genes and biological pathways beyond lipid metabolism, including insulin
signaling, adipogenesis, inflammation, and energy balance [63—65]. Together, these findings support the interpretation that
the metabolic effects of LPL genetic variation are likely confined to lipid-related and vascular traits rather than glycemic
control or general adiposity.

The current study presents several notable strengths that enhance the robustness and relevance of its findings. First,
the use of a large and well-characterized sample of 6,919 healthy Qatari adults allows for precise estimations and mean-
ingful stratified analyses across various demographic and clinical parameters. Second, by focusing on the Arab Qatari
population, the study contributes valuable data to a region underrepresented in genetic epidemiology, thereby addressing
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a significant gap in global health research. Third, the adoption of a GRS approach to assess the cumulative effects of
three LPL variants provides a broader understanding of polygenic influences, as opposed to the single SNP analyses
commonly used in previous studies. Finally, rigorous statistical adjustment for key covariates (age, sex, and BMI/ WC)
and the application of the Bonferroni correction reduced the risk of confounding and false positives, thereby strengthen-
ing the credibility of the associations observed. Despite these strengths, several limitations must be acknowledged. Most
notably, the cross-sectional design precludes causal inference and limits the ability to assess how genetic predispositions
influence disease progression over time. Additionally, direct measures of enzyme activity, including post-heparin LPL
activity, were not available. The unweighted nature of the GRS may also oversimplify the relative contributions of individ-
ual variants, potentially masking the impact of stronger effect alleles. Moreover, in the population-specific nature of the
finding, the allele frequencies and linkage disequilibrium patterns observed may not be generalizable beyond the Qatari or
broader Arab populations. Lastly, the study focused solely on three SNPs and did not explore the role of other common,
rare, or structural variants in LPL, which may also contribute significantly to inter-individual variability in lipid metabolism
and lean mass regulation. Future research addressing these limitations, particularly through longitudinal designs and
inclusion of gene-environment interactions, will be essential to fully elucidate the genetic architecture of cardiometabolic
risk.

Conclusions

In summary, our study highlights that LPL-GRS is significantly associated with adverse cardiometabolic profiles in a
healthy Qatari population. Specifically, individuals with high GRS exhibited lower HDL levels, elevated TG, and increased
systolic BP, indicating increased cardiometabolic risk. However, no significant associations were observed after correction
for multiple testing, with general adiposity measures and T2D markers, suggesting that the influence of these LPL gene
variants may be more pronounced on lipid metabolism and vascular function rather than overall fat accumulation and
insulin regulation. Importantly, cardiometabolic disease risk is multifactorial and reflects the combined influence of genetic
susceptibility and environmental and lifestyle factors; therefore, LPL genetic variation represents one component of a
broader cardiometabolic risk profile. Future research should focus on longitudinal studies to assess how LPL GRS pre-
dicts disease progression and explore gene-environment interactions with lifestyle factors. Replication in other populations
and functional studies on SNP effects are also needed to support personalized prevention strategies.
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