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Abstract

Low–energy and photoemission electron microscopy (LEEM/PEEM) enables the determination

of facet planes of polycrystalline surfaces and the study of their chemical composition at the sub–

µm scale. Using these techniques the early oxidation stages of nickel were studied. After exposing

the surface to 20 L of oxygen at 373 K a uniform layer of chemisorbed oxygen was found on all

facets. After oxygen exposure at 473 – 673 K, small NiO crystallites are formed on all facets but

not in vicinity of all grain boundaries. The crystallites are separated by areas of bare Ni without

significant oxygen coverage.
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I. INTRODUCTION

Recent advances in photoemission and low–energy electron microscopy

(PEEM and LEEM) [1, 2]) make it possible to apply electron spectroscopy

and diffraction techniques to surface features of only a few µm in diameter.

Therefore, well established surface science techniques, such as X–ray pho-

toelectron spectroscopy (XPS), near–edge X–ray absorption fine structure

(NEXAFS) spectroscopy, or low–energy electron diffraction (LEED), can be

applied to individual crystallites of polycrystalline materials in order to re-

trieve structural and quantitative chemical information at a level that was

so far only possible in single crystal studies. Here we present a study of

the early oxidation stages of polycrystalline nickel. The use of PEEM and

LEEM enables the simultaneous characterization of several surface facets un-

der identical conditions and provides new insight in the growth mechanism

of the oxide layer.

NiO is the most common anti–ferromagnetic component in anti-

ferromagnetic/ferromagnetic compound materials [3, 4], where the film ho-

mogeneity is of extreme importance. The oxidation of Ni has, therefore, been

studied over many years both on single crystal and polycrystalline samples

[5–23]. In order to describe the early stages a three–step mechanism has been

proposed by Holloway and Hudson [9, 10] for Ni{111} and {100}: the first

step involves fast dissociative chemisorption of oxygen; secondly, NiO clus-

ters nucleate and grow forming a thin NiO film; the last step involves slow

thickening of the NiO film, which is limited by the diffusion of nickel cations

through the oxide film [11]. Later XPS and scanning tunnelling microscopy
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(STM) studies support this mechanism. A single metallic Ni 2p3/2 photoe-

mission peak of Ni{111} indicates that oxygen only chemisorbs for exposures

up to 10 L (1 L = 10−6 Torr·s) at room temperature, whereas for higher ex-

posures additional XPS peaks indicate the formation of NiO [12, 13]. STM

images reveal that the oxide layer on Ni{111} and Ni{100} nucleates at step

edges and grows into the terraces [14–16]. Chen et al. [5, 17] identified two

distinct temperature regimes, below 500–600 K a 2–3 layers thick oxide film

is formed, which wets and passivates the Ni surface; at higher temperatures

the oxide film breaks up into three–dimensional crystallites. Similar effects

have been reported recently for polycrystalline Ni samples [8], however no

microscopic information is available about island size and distribution or the

involvement of grain boundaries in the latter case.

In this study PEEM and LEEM were used for real time imaging with a

lateral resolution in the nm range enabling the study of the growth kinetics

of oxide formation for several facets and their boundaries simultaneously

[18]. In addition, the observed features can be characterized structurally and

chemically using LEED and NEXAFS, respectively. The latter clearly shows

that oxygen is homogeneously chemisorbed in the low-temperature regime

whereas at high temperatures phase separation occurs into NiO clusters,

which are separated by bare Ni without significant oxygen coverage.

II. EXPERIMENTAL PROCEDURES

The experiments were carried out at the nanoscience beamline I06 of Dia-

mond Light Source, UK, which provides soft X–ray radiation of variable po-

larization and is equipped with an Elmitec energy–dispersive LEEM/PEEM
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instrument with a maximum lateral resolution of 20 nm and an energy reso-

lution of 0.3 eV [1, 2]. The instrument was used in several different modes:

PEEM, spatially resolved (230 nm at 40 µm field of view) detection of photo

or secondary electrons; LEEM, spatially resolved (>40 nm) detection of re-

flected electrons emitted from an internal electron gun; micro–spot LEED

and XPS, diffraction pattern or photoemission, respectively, from a selected

area (typically 2 µm). LEEM images were recorded in the mirror electron

microscopy (MEM) mode, using electrons with negative kinetic energies in

the range 0 to -2 eV. The contrast in this mode is due to local workfunction

differences.

Spatially resolved NEXAFS spectra at the oxygen K edge were measured

by recording PEEM images of low kinetic–energy secondary electrons (0–

3 eV) while the photon energy was scanned in steps of 0.1 eV between 520

and 550 eV. Circularly polarized synchrotron radiation – averaging over po-

larization directions parallel and perpendicular to the surface – was used in

order to minimize orientation–related effects. In order to ensure homo-

geneous illumination of large field of view images (40 or 80 µm)

the center of the synchrotron radiation beam was moved outside

the field of view so that the image area was illuminated by stray

light. The integrated pixel intensities of morphological features

were extracted from each image, normalized with respect to the

photon flux, I0, and plotted vs photon energy. Lateral drifts of

the beam caused small artificial features in the NEXAFS spectra

despite normalization with respect to I0.

The polycrystalline nickel sample (purity 99.99%) was polished with abra-
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sive paper and diamond paste down to 1 – 2 µm followed by electro–polishing.

The sample was cleaned in ultra–high vacuum by Ar ion sputtering and an-

nealing to 1200 K several times. No change in the shapes of individual

grains could be detected during the course of the experiments. The tem-

perature was measured through a K–type thermocouple attached

to the sample. Micro–spot C 1s XPS spectra were recorded on a regular

basis to check carbonacious contamination of the sample surface.

III. RESULTS AND DISCUSSION

Most of the experiments presented here concentrated on a rep-

resentative surface area of about 500×750 µm2. Figure 1(a) shows a

map compiled from overlapping LEEM images(field of view 80 µm).

The map shows the boundaries between five different grains (Ni

crystallites), as indicated in Figure 1(b), and other surface fea-

tures greater than about 50 nm, such as scratch marks from pol-

ishing. Typical grain diameters were in the region of 100–500 µm

throughout the surface. For each of the grains shown in Figure 1(a),

micro–spot LEED was used to determine the surface orientation.

Examples of the diffraction patterns are also shown in Figure 1(b);

distortions and weak extra features are due to small tilts of the

facets with respect the macroscopic surface normal and residual gas

adsorption, respectively. The facet terminations are {111}, {100},

{110}, and a more complicated stepped surface whose termination

could not be determined unambiguously. Elongated and/or split

diffraction spots indicate that the step density on most grain sur-
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faces is higher than on carefully orientated single crystals, i.e. they

are closely vicinal rather than perfect low–index surfaces. Spatially

resolved NEXAFS focussed on two regions with three different ad-

jacent facets each, which are indicated by circles in Figure 1(b).

This way, the oxidation of several facets could be monitored simul-

taneously.

Changes in the surface morphology during oxygen adsorption were moni-

tored with LEEM and PEEM for constant temperatures between 373 K and

673 K while the sample was exposed to several L at 1×10−8 mbar. At 373 K

a homogeneous increase in the workfunction on each facet was observed in

LEEM indicating the formation of a uniform oxide layer. During oxygen

exposure at temperatures between 473 K and 673 K spots appear in the im-

ages, which are of variable size and density, depending on the temperature

and facet termination. The X–PEEM images in Figure 2(b) (20 L at 373K)

and 3(b) (30 L at 673 K) show typical examples of the two phases in region

1 containing adjacent stepped, {110} and {100} facets (see Figure 1).

After oxygen adsorption at 373 K the spatially resolved NEXAFS spectra

from all facets, Figure 2(a), show very similar features at 529 and around

536 eV, which are typical for chemisorbed oxygen on Ni single crystal sur-

faces [19–21]. Unlike in the earlier studies all resonances are present in these

spectra because circularly polarized radiation is used. The bright spots seen

in the X–PEEM images Figure 3(b) and (c) after exposing the surface to

30 L of oxygen at 673 K indicate the growth of NiO crystallites. The cor-

responding NEXAFS spectra for the crystallite spots and the areas between

the crystallites on each facet are shown in Figure 3(a). They are very simi-
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lar to spectra obtained from bulk NiO or oxidized single crystal Ni surfaces

[19, 20, 22] with pronounced 3eg and 3a1g single electron excitations at 531 eV

and 539.5 eV, respectively, and a peak due to multi-electron configuration in-

teractions around 536 eV . The interstitial areas between the crystallites, on

the other hand, show only weak features caused by drifts of the synchrotron

beam but no signal associated with NiO. The oxygen signal in these spec-

tra is near the noise level (equivalent to less than 0.05 ML O). They can,

therefore, be used to normalize the spectra of nearby crystallites in order

to remove features due to beam drift. After this extra normalization step

the spectra of crystallites on the same facet show the same intensity ratios.

There are, however, characteristic differences in the relative heights of the

spectral features between different facets. On the {111} and {100} facets the

ratio between the 3eg and the 3a1g resonance peaks is almost 1 : 2 whereas

it is close to 1 : 1 on the {110} facet. This is most likely caused by different

crystallite orientations and, hence, different cross sections for the NEXAFS

excitations. Because of the grazing incidence geometry circular polarization

does not average out different azimuthal orientations.

There are also characteristic differences in the average size and density of

crystallites on different facets. E.g., on the stepped facet the crystallites are

on average about twice as large (≈ 1 µm in diameter) as on the {111}
facet. Note, that the X–PEEM images from region 1, Figure 3(b),

were recorded several hours after those from region 2, Figure 3(c).

During this time ripening of the crystallites has occurred which

accounts for the larger crystallite size on all facets in Figure 3(b).

Fast diffusion of individual oxygen atoms across the bare Ni re-
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gions, which is necessary for this ripening process, would not lead

to a signal above the detection limit of our experiment (0.05 ML).

Earlier STM work found that the crystallites nucleate on step edges [16] but

the step densities (typically > 10µm−1) are much higher than the crystallite

density (typically < 0.5µm−1). Therefore this cannot be used to explain dif-

ferences between facets. A more likely explanation is that this is caused by

differences in the diffusion of oxygen atoms.

Figure 4 shows MEM–LEEM images of a sample area outside

the map of Figure 1, which were recorded during exposure to oxy-

gen at 1×10−8 mbar at 573 K and 673 K. NiO appears dark because

of its higher workfunction compared to metallic Ni. The images

clearly show fewer NiO crystallites with larger diameters for the

higher temperature on all three facets seen in the images (the ori-

entations of these facets were not identified by micro-spot LEED).

This is a strong indication that ripening is indeed an important

feature of the growth process. The MEM imaging mode has the

advantage of fast data acquisition and high contrast, however small

features appear bigger that their actual size. Therefore, the appar-

ent crystallite size is only a qualitative measure.

The fact that the NiO crystallites develop at higher temperatures on all

facets indicates that this is the thermodynamically favored surface configu-

ration of oxygen on Ni. Chemisorbed oxygen is a metastable configuration,

which is kinetically hindered, most likely by the slow diffusion of Ni ions

at lower temperatures. An earlier study by Wang et al. has shown that

NiO begins to form at 350 K after longer exposures of 80 L [23]. It is
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surprising though that the area between the crystallites does not show any

significant oxygen coverage. Obviously, a surface consisting of clean Ni and

NiO crystallites is lower in energy than coexisting chemisorbed oxygen and

NiO, which is observed at lower temperatures [16]. Previous research showed

that oxidation proceeds faster on polycrystalline than on single crystal Ni

surfaces. This was attributed to the grain boundaries facilitating the trans-

port of Ni cations [8]. Our data show that this is not generally true. The

grain boundaries running between the stepped and the {110} facet and be-

tween the stepped and the {100} facet contain no oxide crystallites. Even the

regions directly adjacent to these facet boundaries appear devoid of crystal-

lites, particularly the {110} facet where no oxide islands are present within

4 µm of the grain boundary. Oxide crystallites are observed, however, on the

grain boundary between the {110} and {100} facets. A likely reason is that

different types of stress–induced lattice distortions cause unfavorably high

lattice mismatches at certain types of grain boundaries. Closer inspection

of Figure 4 shows that the growth on or near grain boundaries

also strongly depends on the temperature. The boundary between

facets 2 and 3 in Figure 4 is only significantly decorated after ex-

posure at 673 K and the near-boundary region of facet 3 shows a

very low crystallite density. At 573 K, however, no depletion of

crystallites is seen near this boundary and only a small number

of crystallites grows on the boundary. In general, the depletion of

near-boundary regions seems to occur only at higher temperatures.

At lower temperatures, the nucleation and growth of crystallites

takes place in these regions despite being thermodynamically un-
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favourable because diffusion is too slow.

IV. SUMMARY

In summary, we used PEEM and LEEM to identify the surface facets of

polycrystalline Ni and to study the early stages of NiO growth on several

facets simultaneously. For oxygen exposure at 473 K and higher, spatially

resolved NEXAFS spectra clearly identify NiO crystallites with diameters in

the 1µm range and areas of clean Ni surface between them. For lower tem-

peratures a uniform chemisorbed oxygen layer with a different spectroscopic

signature is formed.
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(a)

(b)

FIG. 1: (a) Surface map (area 500 × 750 µm2) compiled from LEEM (MEM) images of 80 µm

field of view showing five adjacent facets. (The distorted image boundaries are due to the

profile of the electron beam.) The boundaries between the facets are indicated in the schematic

drawing in the center (b); the additional lines seen in the map of (a) on the stepped facet in are

scratch marks; micro-spot LEED patterns of each facet are also shown in (b).
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FIG. 2: (color online) (a) NEXAFS spectra from the three facets observed in region 1 after exposure

to 20 L of oxygen at 373 K; (b) X–PEEM image of region 1 (photon energy 529 eV).
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FIG. 3: (color online) (a) Normalized NEXAFS spectra from four facets of the polycrystalline

Ni surface and raw NEXAFS spectra from a stepped surface after exposure to 30 L of oxygen at

673 K. X–PEEM images of regions 1 (b) and 2 (c) at photon energy 539.5 eV.
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FIG. 4: LEEM images (MEM mode) recorded during the oxidation of polycrystalline

Ni at 1×10−8 mbar of oxygen. Left column: exposure at 573 K to 5, 15, and 25 L; right

column: exposure at g73 K to 5, 15, and 25 L. The region shown here is outside the

area mapped in Figure 1; the orientations of the three facets (1), (2), (3), indicated

in the top right image, have not been identified by micro-spot LEED.
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