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ABSTRACT

The aim of this paper is essentially twofold: first, to describe the use of spherical nonparametric estimators
for determining statistical diagnostic fields from ensembles of feature tracks on a global domain, and second, to
report the application of these techniques to data derived from a modern general circulation model. New spherical
kernel functions are introduced that are more efficiently computed than the traditional exponential kernels. The
data-driven techniques of cross-validation to determine the amount of smoothing objectively, and adaptive
smoothing to vary the smoothing locally, are also considered. Also introduced are techniques for combining
seasonal statistical distributions to produce longer-term statistical distributions. Although all calculations are
performed globally, only the results for the Northern Hemisphere winter (December, January, February) and
Southern Hemisphere winter (June, July, August) cyclonic activity are presented, discussed, and compared with
previous studies. Overall, results for the two hemispheric winters are in good agreement with previous studies,

both for model-based studies and observational studies.

1. Introduction

It is important from the point of view of improving
the physical parameterizations used in general circu-
lation models (GCMs), and increasing our confidence
in the predictions of future climate obtained using
GCMs, that these models be validated against the cur-
rent climate. Current climate models are capable of rep-
resenting the mean state of the atmosphere fairly well
and are also beginning to reproduce the variability ob-
served in the atmosphere. It is therefore important to
explore this variability in more depth and to compare
with observation.

One approach to this problem is to identify and track
interesting features and then to analyze the ensemble
of tracks statistically. Early attempts at this type of
analysis were performed by identifying features on syn-
optic charts and tracking the features manually. How-
ever, several automatic objective approaches have re-
cently been developed, including those of Murray and
Simmonds (1991a) and Konig et al. (1993). For this
study, the techniques of Hodges (1994, 1995) are used,
which allow features to be identified and tracked on a
spherical domain and hence allow global studies to be
performed. The tracking of features and their display
on maps is a useful visualization tool both for real data
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and for model data; however, it is only when these
tracks are analyzed in a quantitative way that they be-
come useful for climatological studies and in particular,
for the validation of climate models. The approach is
to determine (estimate) a statistic on some grid, then
the statistic can be contoured and further analyzed and
compared with other climatologies.

The use of statistics to summarize and analyze cli-
mate data has been in use for some time. Several hemi-
spheric studies, in particular of the Northern Hemi-
sphere (NH), have been conducted since the early part
of this century (e.g., Klein 1957). These early studies
all relied on the manual tracking of features. More re-
cently, statistical methods have been applied to tracks
derived from model data. For example, Akyildiz
(1984) computed cyclone tracks using data from the
European Centre for Medium-Range Weather Fore-
casts (ECMWF) forecast data for the 1981/82 winter
for the North Atlantic and constructed statistics of cy-
clone speed, central pressure, geographical size, and
life span. Murray and Simmonds (1991b) applied sta-
tistical techniques to cyclone tracks determined from
mean sea level pressure (MSLP) data from the Mel-
bourne University GCM and produced statistics of cy-
clone frequency, cyclogenesis, cyclolysis, and track
flux (mean number of tracks within unit distance of an
estimation point per unit time) for the SH. The tech-
niques of Murray and Simmonds have been used in
several other studies of cyclone—anticyclone climatol-
ogies, using MSLP (Murray and Simmonds 1995;
Jones and Simmonds 1994), and also in the study of
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Sinclair (1994), who determined a Southern Hemi-
sphere (SH) cyclone climatology using the geostrophic
relative vorticity, computed as the Laplacian of the
1000-mb geopotential. Konig et al. (1993) have also
used the 1000-mb geopotential for their global study,
based on tracks of relative minima in the field. There
have also been several observational studies, particu-
larly in the high SH latitudes, for example, Streten and
Troup (1973), who used satellite imagery, and Tal-
jaard (1967), who used surface maps and 500-mb
maps from the International Geophysical Year (IGY).

The Universities Global Atmospheric Modelling
Program (UGAMP) model used for this study has been
documented by Slingo et al. (1994). It is a 19-level
spectral model based on the ECMWF model, cycle 27.
New physical parameterizations have been imple-
mented within the model since its initial release, by
both ECMWF and UGAMP. These inciude the radija-
tion scheme of Morcrette (1990), an improved treat-
ment of surface fluxes, the flux-limited vertical advec-
tion scheme of Thuburn (1993), and the convective
parameterization of Betts and Miller (1993) [as an al-
ternative to the Kuo scheme (Kuo 1974) originally
used; either can be used, but the Betts and Miller
scheme has been used for AMIP]. The model has been
run at resolution T42 for the Atmospheric Model In-
tercomparison Project (AMIP) with monthly mean ob-
served sea surface temperatures (SST) and sea-ice dis-
tributions for the decadal period of 1979-88.

In this paper the 850-mb relative vorticity field is
used to determine the distribution of the cyclonic ac-
tivity in the 10-year integration of the model. However,
the term cyclone as normally understood (a closed low
pressure center) is not necessarily synomynous with
the vorticity centers so that in this paper the term cy-
clonic activity is preferred (cyclonic vorticity center is
a center of cyclonic activity). A further reason for us-
ing vorticity is that the Tropics can also be explored,
so that a truly global study can be performed on GCM
data, although results for the Tropics are not presented
here. Sinclair (1994) has outlined several reasons for
preferring the vorticity to the MSLP or 1000-mb geo-
potential field. These are that the center of rotation is
better related to vorticity than the pressure minima or
maxima and that cyclones do not appear as a pressure
minima until after considerable development has oc-
curred. The second point results in many more features
to track appearing earlier in their life cycle when vor-
ticity is used.

The statistics produced in previous studies have been
predominately computed on some projection, with the
distribution of features presented as a frequency. Fre-
quency distributions are often area normalized with
some correction for the distortion introduced by the
projection. Another aspect is the use by several authors
of some form of smoothing of their distributions using
subjective ad hoc techniques. In this paper it is shown
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how the statistics can be computed directly on the
sphere, so avoiding the use of projections except for
presentation of results. It will also be shown how an
objective choice of the smoothing parameters can be
determined along with the use of adaptive smoothing
of the distributions. Adaptive smoothing is important
as it helps resolve some of the problems with the ob-
jective determination of the smoothing parameters and
also makes the estimators more responsive to the data
distribution, so that detail can be retained in high-data-
density regions and spurious detail in low-data-density
regions can be suppressed. Here, instead of area-nor-
malized frequencies, probability density functions are
computed for the distribution of features. The reasons
for this will be made clear in the following discussion
on statistical estimation. However, the main reasons
can be summarized as simplicity and efficiency of com-
putation with minimal systematic bias.

2. Statistical estimation for spherical data
a. General background

In many of the early climatological studies of NH
and SH cyclonic activity, statistical estimates were per-
formed by counting the number of occurrences of cy-
clones within latitude—longitude boxes—for example,
cyclone frequency (ratio of the number of events in a
box to the number of time steps analyzed) and cyclone
density (number of centers per unit area)—or by
counting features that crossed latitude—longitude
boxes—for example, track frequency/density and
track flux. In fact, confusion reigns in these terms as
some authors consider cyclone frequency (and its area
normalized counterpart) as the number of occurrences
(a cyclone is counted »n times if it appears »n times in
the box) within a box normalized by time (and area)
(Konig et al. 1993; Lambert 1988; Le Treut and Kalnay
1990), while others consider it to be the number of
cyclones crossing a box normalized for time (and/or
area) (Hayden 1981; Zishka and Smith 1980; Bell and
Bosart 1989). For other diagnostics of cyclone activity,
namely cyclogenesis and cyclolysis, it is perhaps a little
clearer as these are discrete events in time and are gen-
erally computed as frequencies or densities by counting
the total number of events within a grid box. In this
study we try to avoid these problems of interpretation
by considering probability density distributions, for
feature density, genesis density, and lysis density. The
probability that an event occurs within a small area dA
centered on a point X in a domain of interest, in the
time period considered, is P(X)dA [where P(X) is
the probability density function at X ]. Also considered
is the track density, which is not strictly a probability
density due to the way it is computed, but we will leave
discussion of this until later.

Virtually all previous studies have been performed
on some projection, which until recently relied on rect-
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angular sampling boxes distributed uniformally on a
projection. However, this leads to gross shape distor-
tion of the sampling areas on the sphere (unless the
sampling areas are relatively small and at the center of
the projection) with the resultant introduction of a lat-
itudinal bias for raw frequencies. To correct for this
bias, latitude-dependent area normalization is often in-
troduced. Unfortunately this may also lead to bias.
Hayden (1981) has compared the use of area normal-
ization and raw frequencies for latitude—longitude cells
and found that area normalization leads to systematic
bias in the analyses of cyclone frequencies. For the case
where cyclone frequency is determined by the number
of cyclones passing through a grid box, Taylor (1986)
has found that the orientation of the tracks is also im-
portant. He found biases due to poleward decrease in
grid-box size and due to track orientation of up to 14%
(higher values may be possible). To avoid the intro-
duction of bias due to area normalization, several au-
thors have proposed using equal-area grids (Ballen-
zweig 1959). However, they have not been used to any
great degree, and in any case if used on a projection
will still introduce some systematic bias, due to the
change of shape of the sampling area on the sphere with
latitude to maintain the equality of sampling area (con-
formality and area cannot be jointly preserved on a pro-
jection).

The way to eliminate the bias due to area normaliza-
tion using rectangular grid cells has been known for
some time, this is to use equal-area circular cells (Kel-
sey 1925), in other words, to count within some radial
distance of a point rather than within a rectangular area.
Changnon et al. (1995) have explored the use of non-
overlapping equal-area circles. The nonoverlapping
prevents the double counting of cyclones passing
through the circles, at the expense that cyclones may
pass between circles and thus not be included in the
estimate. Consequently, some corrections still need to
be applied to allow comparisons between latitudes.
However, if the counting is performed usinga projec-
tion, systematic bias may still be introduced (a circle
on a projection is not necessarily a circle on the
sphere). Another option that would reduce some of the
problems endemic in using projections for the calcu-
lation of cyclone statistics is to use circular cells on the
sphere, that is, to count within some arc radius of a
point on the sphere. However, this does not appear to
have gained much favor in the literature, perhaps be-
cause many studies are regional in character rather than
global.

The problems discussed above, together with the ap-
parent fact that different authors tend to subjectively
choose different grid cell/circle dimensions and use
different projections, makes quantitative comparisons
difficult. The level of bias introduced, as discussed
above, is probably insufficient to change the general
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conclusions of these studies, but it is as well to be aware
of their shortcomings.

Effectively all of the approaches mentioned above
are nonparametric histogram estimates of the frequency
or density, or are regressogram estimates of means. The
term nonparametric is used in statistics to imply that no
assumptions have been made concerning the distribu-
tion of the data; thus, histogram techniques are the sim-
plest type of nonparametric estimator, more sophisti-
cated estimators will be discussed shortly. Regression,
as used in this context, is not the act of finding a para-
metric curve or surface, but the process of estimating
pointwise values of some underlying surface associated
with the spatial data points. The smoothness of histo-
gram estimates depends on the bin width (radius);
hence, authors who use different bin widths are apply-
ing differing amounts of smoothing. Another, problem
with histogram techniques is that the distribution can
also be dependent on the bin positions (Silverman

1986). Even so a histogram-type technique leads to an

estimate with jumps and zero derivative for a; function
that typically will be continuous and dlfferenllable

A statistic can of course be smoothed as 11‘ is accu-
mulated from the data by the use of weighted sums,
where the weights depend on the separation dlstance of
the data from a grid of estimation points (pomts at
which a statistical estimate is computed ). This will lead
to a much smoother statistic, but the question of how
much smoothness to use arises.

Other techniques of smoothing data on a spherical
domain have been used for meteorological data. In par-
ticular, physical quantities derived from spectr:al GCMs
are expressed as truncated series of spherical harmon-
ics. Truncation of the series or tapering the series with
a sequence of weights provides the smooth«"ng This
approach could also be used as a statistical estlmator
however, for large datasets in which the datlI | are ran-
domly distributed in the spherical domain this may be
computationally expensive, due to the number of times
the associated Legendre polynomials need to be com-
puted. !

Techniques of more general apphcablhty for esti-
mating spatial statistics nonparametrically have been in
existence for the past decade. In particular, |nonpara-
metric kernel estimators for density estimation (Silver-
man 1986; Scott 1992) and regression estimation (Hér-
dle 1990) have been studied. These are essentially es-
timators where each data point is assigned 2 weight,
where the weights are usually probability density func-
tions (this is not necessarily the case for density esti-
mation), often termed kernel functions, with, the max-
imum centered on each data point. The kernel'functions
are functions of the scaled distance from the {lata point
for isotropic kernels and also radial d1rect10ﬂ for non-
isotropic kernels. Thus, the influence of a data point
can be adjusted by changing the scaling. Il fact, the
statistical estimators used by Murray and f%'iimmonds

é
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(1991b) are of this form, although they do not nor-
malize their weighting function (it is not a probability
density function) and it is specifically designed for the
projection that they have used for their calculations.
They have used a rather complicated isotropic weight
function dependant on two parameters chosen subjec-
tively to produce a not too noisy plot (low variance)
for their statistical estimates on a polar stereographic
projection for the SH. The statistics still need to be
corrected for the areal distortion, due to using a pro-
jection for their calculations.

b. Kernel estimation

Kernel estimators were developed to obviate some
of the problems that arise with histogram type methods,
namely the discontinuous nature of the estimate and the
dependence on the bin positions. The parameters of the
kernel function will control its shape and the amount
of smoothing applied. These techniques have been
mostly applied to data in a Cartesian domain (using
Euclidean distance measures). The result of applying
a kernel estimator is an estimate at the chosen estima-
tion points, which represents a continuous function (for
any nonconstant kernel; the estimate has all the conti-
nuity and differentiability properties of the kernel).

For kernel estimators the kernel function is usually
defined as a probability density function for the spatial
domain D and thus will satisfy the following conditions
for any kernel K(X, X;, C,, *-*):

f KX, X;, C,, --)dA =1, (1)
D

K(X’ Xiv Cﬂ’ )>Ov VX, Xi €D9 (2)

where X is the position vector of an estimation point,
X; is the position vector of a data point, and C, is a
scaling parameter. The scaling parameter is often called
the smoothing parameter, and may be dependant on the
size of the dataset n and also the distribution of the data
so that the smoothing can be locally varied (see later).
The definitions of the various estimators used in this
study now follow.

The general definition of the kernel density estimator
at a point X for an isotropic kernel (single smoothing
parameter) is given by

FX) =2 ¥ KX, X, C,). (3)
i=1
Throughout this paper a circumflex () is used to denote
a statistical estimate of some quantity. Notice that if the
kernel function is a probability density function, then
the kernel density estimate will be also.

Expression (3) represents the Rosenblatt—Parzen
kernel density estimator. The regression estimator may
be defined for both scalar and vector field data; for
vector field data Y,, it is defined as
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. 1 K(X,X;, C,)
Y=, Z YT

n

2 Y. KX, X;,C)
=1

== : (4)
2 KX, X, C)
This is often simplified to
Y(X):%é Wi (X)Y;, (5)
where
e (6)

are the Nadaraya—Watson weights with the property
that n~' 37, W,(X) = 1 [thus Y (X) is an unbiased
estimator].

Similarly the variance of the field data is estimated as

6*(X) = ;11_ LY - Y(X)PWi(X),
i=1
where 62(X) = [63(X), 63(X), - - -]T for vectorial
field data.

For data distributed in a Cartesian domain with no
surface restrictions, an isotropic kernel function is typ-
ically a function of the scaled Euclidean distance from
the estimation point to the data point; that is,

1 X - Xi|
(Cn)qF< Gy ) ®)

(N

K(X’ Xi, Cn) =

for some function F( ), where q is the dimensionality.
Here, C,, the smoothing parameter, is also called the
bandwidth or window width. Thus, C, determines the
spread of the kernel function and range of influence of
the data point. It is called a smoothing parameter be-
cause as C, tends to zero the estimates reproduce the
data, while as C, becomes large the estimates smooth
out the detail. However, in general, this form of the
kernel function is not suitable for estimation on a spher-
ical domain since the separation of points on the sphere
are best represented by an angle (or function of an an-
gle). In the next section it will be shown how the idea
of kernel estimation can be applied to the sphere.

c. Spherical kernel estimation

For spherical data the unit sphere is taken as the do-
main, so any attribute/field value is assumed to be al-
ready scaled to the requisite units. On the unit sphere
a point is specified by the unit vector X originating at
the center of the sphere. The distance between two
points on the sphere can now be measured as the an-
gular distance i; = arccos(X -X;). However, comput-
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ing the inverse cosine every time a kernel needs eval-
uation is inconvenient; hence, the functional depen-
dence of the kernel is usually in terms of the cosine of
the angle (the dot product). The result of this is that
new types of kernels are required, which reflect the new
measure of distance. The smoothing parameter C, will
also require reinterpretation. Typically for our purposes
the spherical kernel will be isotropic and unimodal
about its polar (mean) direction, and so there will be
only the single parameter, C,.

Some work has been already done on the sphere us-
ing spherical kernel functions (Diggle and Fisher 1985;
Watson 1983; Hall et al. 1987). Most of this earlier
work has been directed at density estimation. For ex-
ample, Diggle and Fisher (1985) used the Fisher den-
sity function defined as

K(X9 Xiy Cn)

exp(C,X-X;); C,€(0,%) (9)

47 sinh(C,)
to compute probability densities for geophysical data.
The Fisher density function is a special case of a more
general class of spherical kernel functions (Kent 1982)
based on an exponential functionality. Figure 1a illus-
trates the effect of the smoothing parameter on the
Fisher density. For small values of C, the distribution
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interpretation of the smoothing parameter and by anal-
ogy to filter design, we define an arc bandwidth r,
(ABW) of the Fisher density to be the geodesic dis-
tance from X; to the half-power point. Thus,

|

Hence, as C, — o, then r, = 0 and K(X ‘X, C,) —
6(¥;), where 8(¢r;) is the Dirac delta function [note:
S(P)=6(1-XX;)]. As C,— 0, r, is indeterminate,
since K(X-X;, C,) = U, where U, is the uniform dis-
tribution on the sphere. In effect then by analogy with
Cartesian kernels the parameter C, behaves like a re-
ciprocal bandwidth, with r, a measure of the radial
spread of the function on the sphere.

The drawback to distribution functions dependant on
exponentials is their computational expense, particu-
larly if the dataset is large. Notice also that these types
of distribution are nonlocal in that they are defined on
the whole of the sphere so that the influence of a data
point covers the whole of the sphere, albeit controlled
by the smoothing parameter. ’

- To improve the computational efficiency oI kernel
estimation on the sphere, a new set of kc,rnel<I are in-
troduced in this paper. These are much easier and faster
to compute since they do not rely on any transceéndental

1 .
1- Eln(2) (10)

n

rp, = arccos[

is spread more uniformly on the sphere than for larger functions. They are also defined locally so that the in-
values where the distribution is more strongly peaked fluence of a data point is restricted to a local r«i:gion.
about its mean direction. To relate this to the Cartesian They are given by the following expressions.
1) Power:
+ 1)C, I ~
) (’"—)m;(cxex;.—l)"*, XX, == and C,>1
K(X-X;, Gy =1 2™~ D) € (11)
0, otherwise
for some integer index m = 0. |
2) Quadratic: |
30~ 1 . |
3 (CX-XH)2—1], XX, == and C,>1 :
0, otherwise.
3) Biweight: ;
156 1 .
. [(CX X)?-11), X X;=z2z= and C,>1
~ _ 2
0, otherwise.

Note the two special cases of the power kernel, m
= 0 a constant spherical cap (estimates will have no
continuity, analogous to a histogram) and m = 1 (the

linear case, continuous but not differentiable )' which
has been used to produce the results desc rlbed later in
this paper.
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(a) Fisher

pa
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(b) Power (m=0)

FiG. 1. Plots of the cross section of kernels with respect to the unit sphere for two different values of the smoothing parameter
C,, together with a 3D view for a single value of C, = 20 also with respect to the unit sphere, and with the mean direction aligned

with the geographical north pole.

A tilde () is put on the smoothing parameter symbol
for these new kernels to indicate that it is not the same
parameter in terms of the limiting behavior of the ker-
nels as that of the Fisher density smoothing parameter.
Note that the asymptotic properties for all these new
kernels are the same. Namely, that as C, — o the kernel
encompasses a whole hemisphere centered on its mean
direction (this is maximum smoothing), and as C, -1
then K(X-X;, C,) = 6(¢;). To make the smoothing
parameter of these new kernels consistent with that of
exponential kernels, we rewrite it as

C, =1+ <i> ; C, € (0, ®). (14)

C,
An arc bandwidth r, (ABW) is also defined as

C, 1
Tp = rccos<1 " Cn> = mccos(CTn) . (15

Now, as with the Fisher density, C, behaves as an in-
verse bandwidth. The limiting behavior with respect to
C,isnow C,~ 1, K(X"X;, C,) = 6(;),and r, > 0
as C, — o and that €, - = and r, = 90° as C, = 0. The
ABW now acts as a measure of the radial extent of
these new kernel functions on the sphere.

The transformation, (14), also makes the discussion
that follows on determining suitable values for C, con-
sistent across all the spherical kernels so far mentioned.
The new kernels are displayed in cross section for two
values of C, and in 3D for a single value of C, in Fig.
1. Note that, for small values of C,, the quadratic and
biweight kernels are very similar to the power kernel
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with m = 1 and m = 2, respectively, and so are not
plotted. Differences occur for larger values of C, than
those used in Fig. 1.

These functions still require some statistical analysis
to allow some quantitative assessment of which kernel
is best to use. This would entail an in-depth analysis
(analytically or numerically) of such statistical quan-
tities as mean integrated square error. This is an in-
volved process and is not presented here. In practical
statistical estimation the choice of the kernel is usually
based on the type of continuity required and the ease
and speed of computation.

Now that a computationally efficient set of kernel
functions have been defined it remains to determine,
objectively, a suitable value for the smoothing param-
eter C,,.

d. Choosing the smoothing parameter

Although a subjective choice of smoothing param-
eter may be made, it is not sensible to choose a value
blindly, since an undersmoothed (high variance) or
oversmoothed (high bias) estimate may result with no
quantification of how good or bad the estimate is. An
automatic choice that satisfies some optimal condition
is essential to ensure that our estimates are objective; a
subjective choice within some interval around the op-
timum can then be explored. Choosing an optimal
smoothing parameter automatically has been exten-
sively studied in the Cartesian domain. Much less has
been done in the spherical domain, although Hall et al.
(1987) have explored the use of cross-validation for
spherical density estimation.

The approach taken in this paper to choosing the
smoothing parameter is based on cross-validation. This
is a technique that is of general applicability in statis-
tical prediction (Stone 1974) and is applied in both
density and regression estimation to determine the
smoothing parameter automatically. The idea is to have
some statistical predictor, a cross-validation function,
that can be optimized with respect to the smoothing
parameter.

The use of maximum-likelihood estimation of the
smoothing parameter for density estimation is consid-
ered first. The cross-validation function is very easy to
compute, although there are several drawbacks to its
use. Thus, the likelihood is generally expressed in
terms of the natural logarithm (log-likelihood) as

reec,) = %Z log[f(X;, C)], (16)
where f (X;, C,) is an estimate of the density at the data
point X; and is dependant on the smoothing parameter
C,.. Thus, maximizing the likelihood with respect to C,
should lead to the best value of C, to use in estimating
the density. However, expression (16) is a monotoni-
cally increasing function of C, and if this is used as the
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cross-validation function for the density, and is maxi-
mized to produce the maximum-likelihood estimate of
the smoothing parameter C,, the likelihood would be
found to be infinite (a biased estimate of C,). The rea-
son for this stems from the self-contribution of a data
point to the density estimate at that point. There are
essentially two ways around this problem. The first ap-
proach is to remove the self-contribution, the so-called
leave-one-out approach, the second approach is to use
penalty functions. The leave-one-out approa( h has
been used by Diggle and Fisher (1985) in their esti-
mation of densities on the sphere using the Fisher den-
sity function, it is the main technique used here for any
of the kernel functions mentioned above. The use of
penalty function techniques are not discussed further in
this paper. The cross-validation function is still the log-
likelihood function, but the estimated densities at each
of the data points are computed leavmg the self -con-
tributions .out; thus,

r“(c,) = ;i— 2 log.[f-(X;, )1, | (1)
where
f;,.(x,-,\cn) = anl 2 K(X; X, C,). | (18)
i
The expression (17) is then maximized with respect

to the smoothing parameter C,. Any efficient 1I) max-
imization routine that does not require derivatives can
be used, for example, the golden search or parabolic
interpolation techniques (Press et al. 1988). {

The main drawbacks to cross-validated kern~ 2] den-
sity estimation with fixed smoothing pa1amet~::rs are
that the density estimate can be d1sproport10nal]ely in-
fluenced by outlying data points (leading tc over-
smoothing as the cross validation attempts to édccom-
modate the outlying data), and it can also be dispro-
portionately influenced by small dense clusters of
points (leading to undersmoothing). Chow jet al.
(1982) have suggested that kernels with ShO}'t tails
(zero probability outside of some local n,glon)—for
example, our locally defined new spherical ker, nels—
lead to oversmoothing of densities with long tall] (non-
zero probability outside of the main region of activity),
and vice versa. The influence of the tails of the kernels
on the density estimate can be reduced by usfing an
adaptive smoothing parameter. This will be discussed
shortly in the context of both density and reglesswn
estimation. .

For regression estimation least squares crogs-vali-
dation is used, the aim being as with density estimation
to determine a value of the smoothing parameter au-
tomatically. As with the likelihood cross-validation
function for density estimation a leave-one-cut ap-
proach is used, so the cross-validation function iis

i
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=

r(C,) = -
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ILY: — Y_.(X)11%,
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(19)

where

Yo(X) = —— 3 WX)Y,.

n-~1 20

Y E]

Maximizing expression (19) should provide a suit-
able choice for the smoothing parameter.

The next section explains how the smoothing can be
varied adaptively, so that the parameter C, can be ad-
justed to reflect the distribution of the data. This is use-
ful not only in the context of cross-validation as men-
tioned above, but intuitively, where the data density is
high, we want only the nearest data points to contribute
significantly to the estimate so that the detailed struc-
ture is reproduced. On the other hand, where the data
density is low, and if the value of C, is too large (small
amount of smoothing), then spurious bumps will be
present. If C, is changed to smooth the bumps in the
low density regions, detail will be lost from the high-
density regions.

e. Adaptive smoothing

Adaptive smoothing has been implemented to make
the smoothing more responsive to the density of the
spherical data for both density and regression estima-
tion. Recall that using a global smoothing parameter
C., which is only dependant on the data size, can lead
to undersmoothing or oversmoothing. To make the
smoothing more responsive to the data distribution, the
algorithm of Silverman (1986) is easily adapted to the
spherical domain. This basically adapts the smoothing
parameter according to the local density, the smaller
the density the more a data points influence is spread
and vice versa (Jones 1990). The algorithm begins by
first computing a pilot estimate of the density function
at the data points X;. Experience suggests (Silverman
1986) that the final estimate, at least for density esti-
mation, is relatively insensitive to the choice of pilot
estimate. Hence, a pilot estimate constructed using a
straightforward subjective choice for the smoothing pa-
rameter can be used. However, a little care is required
to not choose a pilot estimate with gross oversmoothing
or undersmoothing. Using a cross-validation calcula-
tion for the pilot estimate is not computationally sen-
sible at this stage. In practice, a somewhat over-
smoothed pilot estimate is found to give the best results.

The local smoothing parameters are defined by

7 yij
qmn=dﬂﬂfﬂ, 1)

where C{# is a global smoothing parameter that is lo-
cally adapted by the term in brackets. The normaliza-
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tion factor g is the geometric mean of the pilot densities
(f»); that s,

S [

log.g = = X log.[£(X)]. (22)
i=1

The kernel functions are now defined in terms of the
local smoothing parameters as

K(X-X;,C,) =KX X, C,(X)]. (23)

The exponent, 8 € [0, 1], is a sensitivity parameter
that determines the sensitivity of the smoothing to the
underlying density, so that for 8 = 0 [C.(X))
= C{#’] global smoothing is applied with no local adap-
tivity. Notice that there is still a global smoothing pa-
rameter C ¥’ to determine. This is achieved within the
cross-validation framework previously discussed keep-
ing the pilot estimate unchanged during the maximi-
zation procedure as suggested by Silverman (1986).
The choice of § is more problematic. In the Cartesian
domain there is some evidence to suggest that 8 = 0.5
is a suitable value (Silverman 1986), at least in the
context of density estimation. The value that has been
used for this paper was chosen subjectively as 5 = 0.6.

[ Seasonal statistics: Combining distributions

Climatologists are often interested in long-term sea-
sonal statistics, in other words, the statistics for indi-
vidual seasons over many years, for example, taking
all the DJF (December, January, February) seasons.
Also, comparisons are often made between different
climatological regimes, for example, El Nifio—South-
ern Oscillation (ENSO) and La Nifia, so we might re-
quire the statistics for all the El Nifio occurrences in a
10-year period say.

To pool the data for several long time periods and
use the techniques discussed above would almost cer-
tainly be computationally prohibitive even using local
kernal functions; hence, means to combine the statis-
tical distributions of the individual seasons have been
devised.

Distributions can be combined using generalizations
of well-known formulas for this purpose. Thus, for k
sets of statistical diagnostics, computed on identical es-
timation grids, the composite distributions are com-
puted using the following formulas:

k
S n fi(X)
fX) == (24)
2 n
i=1
k
S m £ (X)Y(X)
Y (X)==5 (25)
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(X)) ==
S nfi(X)
k k
D>
i=1 j=1 n n . R
1 = i XOO LY (X) — Y(X))*
2 ko ’
[Z nfi (X))
(26)

These formulas can be evaluated iteratively for con-
venience and efficiency. Notice that for a fixed smooth-
ing parameter these formulas are exact. However, if
differing global smoothing parameters have been used
for each individual season or adaptive smoothing has
been used, then these combined statistics may not be
identical to those obtained by pooling the data for a
season over a number of years. To determine if sub-
stantial differences occur, the combined DJF statistics
for two years of the AMIP integration (each seasonal
statistic computed using the same global smoothing pa-
rameter and adaptive smoothing) were computed using
the above formulas. A second calculation was per-
formed using the pooled data for the DJF’s of both
years and recomputing the statistics using the same
global smoothing parameter and adaptive smoothing.
By eyeball comparison of the contoured distributions,
the differences between the two sets of distributions
were deemed negligible for each of the statistical di-
agnostic fields.

3. Application to the UGAMP AMIP integration

The dataset used for this study is the field of the
vertical component of the relative vorticity at 850 mb.
The time step between scenes is 6 h and the data is
defined on a T42 Gaussian grid (longitude-Ilatitude
grid of size 128 X 64 grid points). The tracking and
statistical analysis are performed globally, for the full
10-year period, on the seasonal periods of December,
January, February (DJF); March, April, May (MAM);
June, July, August (JJA); and September, October,
November (SON) for both the positive and negative
vorticities. However, only the selected results for the
cyclonic activity for the NH DJF (positive) and SH JJA
(negative) are presented here.

Before any statistics are computed the track data are
filtered to remove tracks that have a lifetime less than
a day. The following statistics are considered: feature
density, genesis density (cyclogenesis is first appear-
ance of a cyclonic center, provided it does not coincide
with the beginning of the data sequence), lysis density
(cyclolysis is last appearance of a cyclonic center, pro-
vided it does not coincide with the end of the data se-
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quence), track density, mean strength (vorticity in this
case), standard deviation of strength, mean speed, stan-
dard deviation of speed, mean lifetime, and mean ve-
locity. All the densities are probability densities except
for the track density. This is because of the way the
track density is computed; it is a function not only of
the distribution of the data but also a function of the
distribution of the estimation points. The reason for this
is that the data that are used to compute the track den-
sity (and mean lifetime) are the points that correspond
to the minimum distance from an estimation point to
the set of tracks; thus, the data are different for each
estimation point. In principle the distribution can be
renormalized by integration of the distribution of the
sphere to produce the probability density distribution
for tracks passing through a region, but we do not at-
tempt this here. The mean lifetime is interpreted as the
mean lifetime of tracks passing through a region. For
both the track density and mean lifetime cross-valida-
tion is not attempted as this would mean performing a
cross-validation calculation for each estimation point.
In principle it can be done and the value of C{* could
be computed as the average of those values obtained
for each estimation point. It has been pointed | out that
the mean lifetime statistic can be misleading if ‘1t is not
clearly understood what it represents. This statistic rep-
resents the mean lifetime of tracks passing through
some local region, as if an observer positioned at some
point notes all the systems passing within some dis-
tance of him. If someone later tells him the cpmplete
history of his observed systems, he can then compute
the mean lifetime of those systems for that particular
observation station. This is effectively what is done for
each grid point.

The statistics are computed using adaptive smooth-
ing with the power kernel, with m = 1 (linear ]w and a
subjective choice of the global smoothing parameter.
The sensitivity parameter for adaptive smoothing was
subjectively chosen to be 0.6. A guide to the choice of
the global smoothing parameter is obtained by funning
the adaptive cross-validation procedures on 4 single
sample of the track data for a single season. Ajsubjec-
tive choice is then made, based on the cross-validation
values, which are then kept constant for all fulth[er anal-
yses; thus, the global amount of smoothing is the same
between different analyses although locally the
smoothing will vary with the local density of the data.
This seems a reasonable approach for the large amounts
of data for each three-monthly analysis. The subjective
choice is generally a smaller value of C# ){ (more
smoothing) than the cross-validation values due to the
propensity of the cross-validation to lead to! under-
smoothing, particularly for the feature density. It is
thought that this may be due to some regions hiaving a
large number of relatively short-lived semistationary
features resulting in high density clusters of points. Fil-
tering the tracks at longer lifetimes and/or aci:ording
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to their displacement distance partly remedies this
problem, although for this paper all the tracks with life-
times longer than a day have been retained. However,
from what we have seen so far a judicious choice of
the global smoothing parameter for use with the adap-
tive smoothing technique on our large datasets seems
to provide a relatively efficient and visually satisfying
means of determining the statistics.

The values used for the global smoothing param-
eter for each statistic are shown in Table 1 along with
the cross-validation values (CV) and the values of
the ABW.

One further point should be noted before a discus-
sion of the results is given; the plots of mean physical
attributes—for example, strength, speed, etc.—should
not be considered in isolation, but in conjunction with
the feature density. Thus, where the feature density is
high, our confidence in the estimated local mean value
of a physical attribute will be high; whereas, where the
feature density is low, our confidence in the estimated
mean attribute will be low. Confidence maps can be
computed but are not presented here.

4. Results

The results of applying the techniques described
above to the tracks determined from the AMIP integra-
tion are now presented and discussed for each hemi-
spheric winter. The standard deviation plots, aithough
mentioned, are not presented to save space and in any
case provide only subsidiary information to the main
plots of strength and speed.

a. Northern Hemisphere DJF, 1979-88

The results for this period are shown in Fig. 2. The
plots in Fig. 2a of the feature density and in Fig. 2b of
the track density show, overall, a very similar distri-
bution of cyclonic activity, although they are different
in their detail. There are two well-developed storm
tracks (baroclinic waveguides, seen more prominently
in the track density) in the Pacific and Atlantic with the
feature density showing locally high regions of activity
within the storm tracks, while the track density is higher
in the southern parts of the storm tracks. This difference
can be accounted for by the greater speeds in the south-
ern parts of the storm tracks (see Fig. 2d) so that al-
though there are more tracks there are fewer features
per unit length of track. Figure 2g shows that the mean
direction is west to east with the Atlantic storm track
splitting in two over Europe. Mean lifetimes (Fig. 2h)
for systems passing through a region are 2-5 days in
the Pacific with longer mean lifetimes in the western
Pacific. In the Atlantic the mean lifetimes are somewhat
less, at 2—3.5 days. The reason lifetimes are greater in
the western oceans than the eastern oceans is in part
attributable to the generation of secondary cyclonic
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TaBLE 1. Values for the global smoothing parameter C# found by
cross-validation for each statistical diagnostic and the values chosen
subjectively and used to compute the statistics. The ABW for each
value of C%® are given in parentheses.

Diagnostic Ccv c® Subjective C®
Mean and STD of strength 722.8 (3.0) 300.0 (4.67)
Mean and STD of speed 886.4 (2.72) 300.0 (4.67)
Feature density 1624.6 (2.0) 300.0 (4.67)
Genesis density 300.9 (4.66) 100.0 (8.07)
Lysis density 328.45 (4.46) 100.0 (8.07)
Mean velocity 6419 (3.19) 100.0 (8.07)
Track density too expensive 200.0 (5.72)
Mean lifetime too expensive 200.0 (5.72)

events associated with the more mature systems. This
can be observed both from track histories [e.g., those
shown in Hodges (1995)] and in animations of the time
series. These secondary systems will generally be much
shorter lived due to being spawned from the more ma-
ture systems and thus will act to reduce the mean life-
time in the eastern oceans. Mean speeds (Fig. 2d) in
the storm tracks are 40-70 km h™! (11-20 ms™') in
the Pacific, and 40-60 km h~' (11-17 ms™') in the
Atlantic. The standard deviation of the strength (not
shown) indicates that the greatest variation of the
strength to be in the western Pacific and Atlantic where
the intensification of systems is greatest, while the
strongest systems (Fig. 2c) are in the eastern Pacific
and Atlantic and are more mature systems.

The study of Lambert (1988) has compared cyclone
densities (cyclones identified by lows in the 1000-mb
height field from data sampled once per day) for the
Canadian Climate GCM and ECMWF/WMO analyses
for the period 1980-84 for both the SH and the NH.
The distribution of cyclonic activity obtained for the
ECMWF/WMO was compared favorably to that of
Klein (1957). The distribution shown in Fig. 2a shows
many similarities to Lambert’s and Klein’s results for
the NH. The various local highs of cyclonic activity
seem to correspond relatively well. For the Pacific
storm track Lambert’s distribution of cyclone density
(ECMWF/WMO) shows several maxima, in the Gulf
of Alaska, the Sea of Okhotsk, and to the east of south-
ern Japan with several weaker maxima at the southern
end of Japan and the landward side of the Yellow Sea.
Figure 2a shows a somewhat more elongated maxima
in the Gulf of Alaska that bears more similarity to
Klein’s cyclone frequencies for December and January
(Klein’s southern part is weaker in February). There
is also a maxima over Alaska and the Bering Strait,
which does not seem to appear in other studies. A max-
ima that extends from the Sea of Okhotsk and northern
end of the Sea of Japan to the south of Kamchatka, a
very intense maxima in Mongolia and northeast China,
and several weaker maxima in the Yellow Sea and
southern China are also present in Fig. 2a. The first of
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(a) Feature Density

(c) Mean Strength

FiG. 2. Cyclonic statistical diagnostic fields for NH DJF, 1979—-88: (a) feature density, (b) track density,
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(d) Mean Speed

(c) mean strength (107% s7'), (d) mean speed (km h™"),

these areas, the Gulf of Alaska and Alaska itself are
also regions of cyclolysis (Fig. 2f), while the later are
all regions of cyclogenesis (Fig. 2e). The good agree-
ment in the Gulf of Alaska with Lambert and more
particularly Klein is undoubtedly due to the fact that
systems in the region are mature (see Fig. 2¢) and also
moving relatively slowly (Fig. 2d), thus making iden-
tification and tracking as easy for relative vorticity as

it is for MSLP and 1000-mb geopotential xhelght
Alaska as a cyclolysis region does not seem 110 have
been previously discussed in the literature, observation
of the tracks (e.g., those of Hodges 1995) and the mean
velocity (F1g 2g) indicates that some systems tecurve
from the main storm track over Alaska and the Bering
Strait before disappearing. There is also some jindica-
tion of the generation of cyclonic activity, Whi{:h may
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(e) Genesis Density
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FiG. 2. (Continued) (e) genesis density, (f) lysis density, (g) mean velocity, (h) mean lifetime (days).
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(g) Mean Velocity
be due to secondary cyclonic centers associated with

the more mature systems.

For the cyclogenetic regions, the maxima in Mon-
golia and northeast China (also a region of cyclolysis)
does not appear in Klein’s distribution (using MSLP)
and only appears weakly in Lambert’s (using 1000-mb
geopotential height). This can be partly associated with
the methods of counting, Klein counts only migratory

systems; thus, slow-moving systems that remain local
to a region and stationary systems are not counted.
Whereas Lambert associates the weak activity in his
cyclone distribution to poor reduction to pressure levels
resulting in extrapolation below the land surface. The
fact that the distributions for genesis and lysis shown
here have coincident maxima in this region and that the
strengths are relatively weak indicates that many of the
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systems (not all) are relatively weak, short lived (~2
days), and fairly immobile (some systems do manage
to migrate out of this region into the feature maxima in
the Sea of Japan where further development is possible
(see track plots of Hodges 1995). However, Boyle and
Chen (1992) show some results for this region from a
study of Whittaker and Horn (1982), which do show
some similarities to the distributions shown here for
genesis and feature density in this region. The study of
Whittaker and Horn may be more reliable than Klein
here due to better and more frequent observational data.
Boyle and Chen (1992) discuss this behavior noting
that cyclogenesis is different in character in northeast
China and Mongolia to that in southern China. For
northeast China and Mongolia, they noted that cyclones
generally form as secondary cyclones on the trailing
cold fronts of occluded lows in western Siberia and that
these systems rarely gain any great intensity. If this was
a spurious topographic effect, as suggested by Lambert,
then it should be expected that similar spurious maxima
would occur in other regions of high topography, but
this is not the case. Thus, these weak systems may ac-
tually be due to the model trying to simulate some real
atmospheric phenomenon (and possibly overdoing it).
. The other regions of feature density and cyclogenesis
maxima (Sakhalin—Kamchatka, Yellow Sea, and
southern China) are displaced southwestward in rela-
tion to Klein’s and Lambert’s distributions. Boyle and
Chen (1992) note that in southern China many cyclonic
systems originate as shallow lows or inverted troughs.
These intensify (deepen), rapidly so in many cases, as
they move offshore and the cold dry air triggers large
heat fluxes from the warm ocean currents. This and the
baroclinicity of the region lead to cyclogenesis maxima
over the East China Sea and to the east of Japan. The
warm ocean currents that penetrate the Yellow Sea and
Sea of Japan probably have a similar effect for those

systems that originate inland. This has led many au--

thors to not count the cyclonic activity until consider-
able development has occurred, since they do not count
weak or open systems; hence, their regions of genesis
are translated northeastward compared to those shown
here. Using vorticity allows the cyclonic activity to be
detected earlier in the life cycle; hence, the cyclogen-
esis distribution shown here more closely identifies the
source regions. In contrast, previous studies using
MSLP or geopotential height with features identified as
closed systems identify only regions where the inten-
sification is strong and not the initiation.

The discrepancies between counting systems at ini-
tiation or intensification was discussed by Chung et al.
(1976). They have used observational data from the
IGY to determine the lee cyclogenesis, as initiation
events, in the Canadian Rockies and East Asian moun-
tains. Their distribution of cyclogenesis for the East
Asia sampling region (albeit for one year only, and for
the whole year, and not extending as far north as Kam-
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chatka) is very similar to that shown in Fig. 2e. They
indicate that sampling strategies may also lead to dis-
crepancies between studies, due to different lengths of
study, different data densities (some regions are: insuf-
ficiently sampled due to lack of observational sites, par-
ticularly the early studies), and insufficient temporal
sampling (e.g., daily) so that weak cyclones in data
sparse regions are not easily identified until they have
intensified sufficiently.

The general eastward and northeastward motion of
the cyclonic features following genesis in East Asia is
in marked contrast to the behavior on the North Amer-
ican continent where weak lee cyclonic features move
southeastward before recurving northeastward (Fig.
2g). This has been attributed to the East Asian cyclonic
systems being controlled by upper flows moving
around the Himalayas, which prevents a southerly com-
ponent developing (Chung et al. 1976). .

For North America Figs. 2a and 2e show maxima in
the feature density and the genesis density, respec-
tlvely, to the east of the Canadian Rocky and M acken-
zie Mountains (in the lee). This compares we {1 with
the results of Lambert (1988), Klein (1957), ,Chung
et'al. (1976), and also Zishka and Smith (1980), who
used NOAA track maps for January 1950- 77 Cy-
clonic systems originating in this region 1mt1allv move
in a southeastward direction before recurvmg north-
eastward (Fig. 2g), indicating that the orography has
a large influence on the weak lee cyclonic systems
(Chung et al. 1976).

However, the maxima in cyclone density identified
by Lambert, stretching from the Great Lakes to Hudson
Bay is not as prominent in the cyclone density}shown
here (Fig. 2a). There is cyclonic activity over the great
lakes but not to the extent observed by Lamberl in the
ECMWF/WMO data. However, in Klein’s dlstrxbu—
tions the Great Lake maxima is present but the I;Iudson
Bay maxima is not, this is also the case for Zishka and
Smith (1980). The model used here does resolve the
Great Lakes as a couple of grid points, which mz‘yiy pro-
vide some surface forcing, but this may be insufficient
to produce enough surface heating to aid the dclvelop—
ment of cyclones and produce the extended cyclone
maxima that Lambert found with the ECMWF data.

]

There are also maxima of feature density and genesis
density in the lee of the southern Rocky Mou‘.:ntains,
systems from this region move northwestward (Fig.
2g) some up through the Great Lakes, others toward
the American east coast, to join up with the Atlantic
storm track. This appears to agree relatively well with
other studies (e.g., Zishka and Smith (1980). !

Lambert (1988) discusses the penetration bf cy-
clonic events into the Canadian Rocky Mountairis from
the Gulf of Alaska. Figures 2a and 2b indicate a ‘)nmlar
behavior, but this is weak as is the behavior in Lam-
bert’s results for the ECMWE/WMO data. This behav-
ior is not apparent in other studies and once again may
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be due to the definition of a cyclone (closed systems
versus open systems ). This indicates that the Canadian
Rocky Mountains act as a substantial barrier to the
movement of Pacific cyclonic activity into the North
American continent. Lambert (1988) also comments
on some spurious activity of the coast of Baja Califor-
nia, attributing this to the surface reflection of upper
cold lows, which are present during the winter. Figure
2a also shows this type of activity, presumably for the
same reason.

In the Atlantic (Fig. 2a), there are several regions of
cyclonic activity maxima; Baffin Bay and Davis Strait
off the western coast of Greenland; Denmark Strait off
the east coast of Greenland, stretching in a weaker band
over to the British Isles; the Norwegian Sea; the Baltic
Sea as a continuation of the Atlantic storm track. This
appears to be in reasonable agreement with both Lam-
bert (1988) and Klein (1957). Figure 2f indicates that
feature maxima around Greenland (Baffin Bay and
Denmark Strait) are also regions of cyclolysis, with the
southern end of the Denmark Strait also a region of
cyclogenesis. This has been commented on by Murray
and Simmonds (1995), who suggest the coincidence
of feature density and genesis density and lysis density
may be due to tracking errors due to the coarseness of
their model resolution. The data used here is at a higher
resolution, but tracking errors cannot be ruled out com-
pletely. However, in situ development of cyclonic sys-
tems is expected in these regions so that previous stud-
ies may not have counted them due to their semista-
tionary nature (Murray and Simmonds 1995). The
semistationary nature of systems in these regions
around Greenland is indicated by the slow speeds, ap-
proximately 10 km h™' (3 m s™') and for Baffin Bay
(a lysis region) the weak strengths (Fig. 2c).

The Atlantic storm track stretches into Europe where
the mean speed (Fig. 2d) and strength (Fig. 2c) of
systems reduces substantially over the land. Also ap-
parent (Figs. 2a and 2g) is the split in the storm track
with one branch directed toward southern Europe and
eastward toward the Black Sea and the other directed
northeastward into northern Europe and Scandinavia.
This behavior is also apparent in the principal tracks of
Klein (1957). In southern Europe the lee of the Alpes
appears as a cyclogenetic region (Fig. 2e) with the cy-
clonic activity stretching south through Italy into the
Mediterranean, in agreement with both Lambert
(1988) and Klein (1957).

b. Southern Hemisphere JJA, 197988

The results for this period are shown in Fig. 3.

There has been much interest recently in the identi-
fication of SH cyclonic activity using objective tech-
niques on model analyses, and its synthesis into statis-
tical diagnostic fields (Murray and Simmonds 1991a,b;
Sinclair 1994, 1995). The results of these studies have
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invariably been compared to the manual observational
studies of Taljaard (1967), who used MSLP and 500-
mb maps for the IGY, and Streten and Troup (1973),
who identified cloud vortices from satellite imagery of
the SH.

The results shown here for feature density and track
density (Figs. 3a and 3b) show a broad band of cy-
clonic activity from about 35°S to the Antarctic coast
but with some lower-level activity from about 20°S.
The mean direction of systems within this band (Fig.
3g) is west to east with the highest speeds attained in
a band from 45°-55°S to 20°W-160°E with values of
60-70 km h~! (17-20 m s ~!). Within the main band
the greatest amount of activity lies close to the Antarc-
tic coast but with a secondary band of enhanced activity
at about 50°S south of Australia. The embayment
regions of Antarctica (Weddell Sea, Ross Ice Shelf)
show several maxima in the feature density. There are
also several maxima in the high feature density close
to the Antarctic coast, namely the Bellinghausen Sea,
north of Novolazarevskaya (10°E), north of Molod-
ezhnaya (45°E), north of Prydz Bay (75°E) and a com-
plicated region stretching from about 90° to 150°E.

Outside of the main band of cyclonic activity in the
lower feature density regions of the Pacific, Atlantic,
and Indian Oceans (north of 35°S), the activity appears
to be associated with relatively strong systems (Figure
3c), moving fairly slowly in a southeastward direction
(Figs. 3d and 3g) eventually joining up with the main
storm track. In the Atlantic these systems originate over
Brazil (Fig. 3e), while in the Indian Ocean they orig-
inate over the southern end of South Africa. In the Pa-
cific these systems are generated as initially weak sys-
tems in the South Pacific convergence zone (SPCZ),
but they can be very long lived (Fig. 3h), intensifying
as they move southeastward into the storm track.

The regions of strongest cyclogenesis (Fig. 3e) are
close to the Antarctic coast and almost coincident with
some of the feature density maxima. There are also
weaker maxima over the coastal region of Argentina
and South Africa. For the cyclolysis (Fig. 3f), maxima
in the distribution also occur close to the Antarctic
coast and are also coincident with maxima in the fea-
ture density. The coast of Chile also has a lysis maxima
due to the Andes providing a barrier to the propagation
of systems across South America from the Pacific.

These results are in broad agreement with several
previous studies, including those of Lambert (1988)
using ECMWF/WMO analyses; Sinclair (1994 ) using
the 1000-mb geopotential height of the twice-daily
ECMWEF analyses; Murray and Simmonds (1991) us-
ing MSLP from the Melbourne University GCM; Tal-
jaard (1967) using surface maps and 500-mb maps for
the IGY, and Streten and Troup (1973), using satellite
imagery. The observation that many of the maxima in
cyclonic activity close to the Antarctic coast coincide
with embayments and that breaks in the high density
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(a) Feature Density

(c) Mean Strength

(c) mean strength (10~

coincide with promontories has been made by several
authors (Taljaard 1967; Sinclair 1994). The mean
speeds in the high-density regions close to the Antarctic
coast are very low in comparison with the central storm
track, about 20—40 km h™' (5.5-11 m s™") with the
lower values closest to the coast. This, together with
the fact that many of the embayment maxima coincide
with genesis and lysis maxima, suggests that many of
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(b) Track Density
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FIG. 3. Cyclonic statistical diagnostic fields for SH JJA, 1979-88: (a) feature density, (b) track density,

357", (d) mean speed (km h™'),

the systems that contribute to these maxima are sta-
tionary or semistationary systems generated locally due
to orographic effects, such as the locally strorig kata-
batic winds, as suggested by Sinclair (1994). However,
not all the maxima in the feature density can be attrib-
uted to this. Mechoso (1980) points out that‘moblle
cyclonic centers are constrained to the Antarct ic coast
where they can enhance the baroclinicity, generatmg
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(e) Genesis Density
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(f) Lysis Density

(h) Mean Lifetime

FIG. 3. (Continued) (e) genesis density, (f) lysis density, (g) mean velocity, (h) mean lifetime (days).

strong westerlies over the Antarctic slopes; instabilities
then lead to cyclogenesis. The maxima in the lysis den-
sity in the Bellingshausen Sea are much stronger than
the genesis maxima indicating that this is a region
where mobile cyclonic systems coming from midlati-
tudes die. Some of the other lysis maxima are some-
what stronger than the genesis indicating that not all
systems were generated in situ. The Antarctic coast as

a graveyard of mobile midlatitude cyclonic activity has
been known for some time (Taljaard 1967).

To study only the mobile cyclonic activity, Sinclair
(1994) filtered his tracks according to displacement
distance and found that the maxima around Antarctica
were much reduced. This is not done here, but future
studies undoubtedly should discriminate between mo-
bile and nonmobile features. Sinclair (1995) has also
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studied in some detail the genesis and lysis in the SH,
and which events should contribute to their statistics.
Studying only mobile systems he found that the ma-
jority of the genesis occurred at midlatitudes rather than
on the Antarctic coast, in contrast to the results shown

" here and those of the majority of other studies previ-
ously mentioned. However, the results shown here do
show the cyclogenetic regions at midlatitudes, although
these are weak compared to those of the Antarctic
coast. This reinforces the conjecture that much of the
Antarctic activity is related to in situ generation for the
reasons already mentioned.

5. Conclusions and further work

Techniques for estimating statistical properties from

feature track data determined objectively have been in-

troduced for a spherical domain. The use of kernel es-
timators allows the construction of probability distri-
butions with all the continuity properties of the kernel
functions and without the problems inherent when his-
togram-type techniques are used on projections. An ob-
jective and adaptive meéans of smoothing the statistical
diagnostic fields has been described based on cross-
validation. The adaptivity is useful in relation to the
cross-validation, reducing the propensity to under-
smooth, and also for reducing spurious detail in the
distributions. However, undersmoothing is still deemed
to occur to a certain degree, so that a subjective choice
of the global smoothing parameters have to be chosen
here based on the cross-validated values. In the future
the use of penalty functions will be explored to improve
the cross-validation calculations. Another area of in-
terest is adaptive nonisotropic spherical kernels, these
may be useful where an ensemble of tracks have a pre-
ferred direction in a tightly constrained region, for ex-
ample, in the ITCZ. These types of spherical kernel
functions are currently being explored.

The statistical techniques have been applied to track
ensembles produced from.the UGAMP AMIP integra-
tion. The track ensembles are for the whole globe, and
for seasonal time periods, for the whole 10 years rela-
tive vorticity data; but, only the NH and SH winter
cyclonic activity has been discussed. A variety of di-
agnostic fields have been computed for the 10 NH and
SH winters and these have been combined using gen-
eral formulas to produce a 10-year winter climatology
for the two hemispheres. Tropical activity is not dis-
cussed, though results are available.

The methodology described for determining the sta-
tistics obviates many of the problems that occur with
the methodologies used in previous studies. In partic-
ular, by working directly on the sphere the introduction
of systematic bias can be reduced and the need for lat-
itude-dependent normalization/corrections are made
irrelevant. Further, the smoothing is built into the meth-
odology thus obviating the need for ad hoc smoothing
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techniques. This, together with the use of objective
techniques for determining the amount of smoothing
and adaptive smoothing, allows much more reliable
distributions to be computed. However, the resultant
distributions will reflect only the distribution of the in-
put data, so while the statistical estimators are improve-
ments on previous techniques, the resultant distribu-
tions are dependant on the method used to produce the
cyclone tracks. In this case the tracks are determined
on the spherical domain as described by Hodges
(1995), this will prevent the introduction of latitudinal
bias into the tracking. The only remaining comment on
the tracking that could have an impact on the statistics
is that the cyclone tracks were produced using quite
strict tracking parameters. This did not appear to be a
problem using data from a relatively coarse resolution
free running model, where physical fields have been
smoothed and the motion is relatively smooth and co-
herent (as seen in animations). Tracking, of cyclones
using data from other sources, e.g., forecast models,
may require a coarser set of tracking as the m(}tion is
hkely to be less smooth and coherent due to vauatlons
in the data assimilation.

Overall, the results are in good agreement wi th pre-
vious studies of observational and GCM analysis data;
this is, even though different techniques have been used
both for the tracklng and statistical analysis. Onl y qual-
itative comparisons can be made due to the use by other
authors of different statistical diagnostics and! meth-
odologies. Some of the discrepancies between the re-
sults presented here and previous studies can partly be
attributed to differences of definition and sampling
strategies. In particular, the differentiation of cyclonic
activity into that due to mobile and nonmobile systems
is important and seems to be the reason for some of the
large differences in the SH between various studies. In
the future, a better differentiation of mobile and non-
mobile systems will be implemented, at the moment
the only filtering of tracks is by lifetime, but ﬁlltermg
by displacement distance would help in sorting the mo-
bile from the nonmobile systems. Another area tllat can
lead to differences between studies is the use of differ-
ent criteria for locating cyclones; the use of d](fferent
prognostic fields—for example, vorticity, MSLIP, and
geopotential height; and the pressure level at which an
analysis is performed. Using vorticity, a cy(,lomc[ center
can be identified much earlier than a closed presiure or
geopotentlal height center, also, if a 500-mb pro'[rnostlc
field is used (e.g., Bell and Bosart 1989) a cyclonic
system will only appear after significant develd »pment
has taken place compared with a lower level—for ex-
ample, 850 mb. Differences between mode][ -based
studies and observational studies may also be the result
of deficiencies in the quality and quantity of the'obser-
vational data. In many of the earlier observational stud-
ies only daily data was used and data coverage may
have been of poor quality in many geographical



DECEMBER 1996

regions, for example, the oceans and in particular the
SH oceans.

But, perhaps the biggest reason for differences be-
tween the results of analyzing different models and ob-
servational data are differences between model reso-
lutions and model physical parameterizations. A dif-
ference in model resolution may be the reason for the
difference in cyclone activity over the Great Lakes and
Hudson Bay, in Lambert’s NH cyclone distribution and
the NH feature density presented here. Increasing the
model resolution will also result in the introduction of
smaller-scale features with the possibility of increasing
the number of secondary systems. Thus, the sensitivity
of these types of studies to model resolution needs to
be explored further using a model with consistent phys-
ical parameterizations.

The physical parameterizations can have a signifi-
cant impact on the model behavior of cyclonic systems.
For example, the convective parameterization and its
effect on the tropical circulation can have a significant
impact on the extratropics via large-scale teleconnec-
tions and also via shorter-scale activity in the form of
the poleward migration of tropical cyclones into the
storm tracks. Early versions of the ECMWF model
used the Kuo convective scheme, while the model in-
tegration used here used the Betts—Miller scheme. The
Betts—Miller scheme has been shown to be an improve-
ment on the Kuo scheme (Slingo et al. 1994), with
respect to the transient characteristics. Using the Kuo
scheme results in weak, incoherent disturbances with
little poleward migration of tropical systems into the
extratropics, while using the Betts—Miller scheme has
been shown to result in the poleward migration of trop-
ical systems into the storm track, at least in the western
Pacific for a NH winter (Slingo et al. 1994; Hodges
1995). Also, of relevance to the convective parame-
terization is the possibility of a response in the extra-
tropics to intraseasonal variations in the warm pool of
the western Pacific, with a resulting impact on blocking
events and the passage of migratory cyclones. The im-
proved radiation scheme in the UGAMP model may
also lead to differences due to an improvement in the
energetics of midlatitude baroclinic systems (Morcrette
1990). Changes to the vertical diffusion scheme im-
plemented in the ECMWF model in 1988 and the
UGAMP model may also affect the blocking frequency
for the NH winter (Palmer et al. 1990).

Overall, the comparison with other studies has
shown that, at least for the NH and SH winters, GCM
models are beginning to produce consistent results for
the extratropical climatology, which compares favora-
bly with observation. Thus, modern GCM’s with im-
proved parameterizations are beginning to simulate the
NH and SH climates reasonably well. While some of
the differences between these studies can be attributed
to the methodologies used, it is more likely that many
of the differences between model-based studies and ob-
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servation that occur will be the result of different model
resolution and parameterization and the quality and
quantity of the observational data. Thus, further studies
are required to explore the effects on the climatology
of changing the resolution at which models are run and
changing and improving model parameterizations. Fur-
ther studies are also required using the large amounts
of observational data now available from both geosta-
tionary and polar-orbiting satellites. It is only when
consistent techniques are used to construct statistics
from these diverse data sources that quantitative vali-
dation of the models can be carried out.
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