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ABSTRACT

Recent interest in the validation of general circulation models ( GCMs ) has been devoted to objective methods.
A small number of authors have used the direct synoptic identification of phenomena together with a statistical
analysis to perform the objective comparison between various datasets. This paper describes a general method
for performing the synoptic identification of phenomena that can be used for an objective analysis of atmospheric,
or oceanographic, datasets obtained from numerical models and remote sensing. Methods usually associated
with image processing have been used to segment the scene and to identify suitable feature points to represent
the phenomena of interest. This is performed for each time level. A technique from dynamic scene analysis is
then used to link the feature points to form trajectories. The method is fully automatic and should be applicable
to a wide range of geophysical fields. An example will be shown of results obtained from this method using
data obtained from a run of the Universitics Global Atmospheric Modelling Project GCM.

1. Introduction

Climate prediction relies largely on parameterized
general circulation models (GCMs). The models must
be able to represent the current climate as accurately as
possible to enable predictions about future climate to
be made with confidence. Thus, means of analyzing the
error between the simulated and observed climates are
required.

Since the local climate at any particular place on the
earth is an ensemble average of the phenomena affect-
ing that region, the phenomena must be represented
within the GCM as accurately as possible for the errors
between the model climate and the current climate to
be minimized; hence, the observed variability on a
range of temporal and spatial scales must be accurately
represented in the model. Not all scales of disturbance
in the atmosphere, oceans, or land surface phenomena
can be represented explicitly in a GCM, and so param-
eterizations are introduced to model phenomena on
scales below which the GCMs can resolve.

The variability predicted by GCMs and, hence, the
climatology are usually quite sensitive to these param-
eterizations. So, it is important to be able to measure
the response of GCMs to various parameterizations and
compare these with ‘‘real”” data. This will indicate the
parameterizations that provide the best representation
of the current climate.
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The traditional method of comparing data, makes use
of temporal and/or spatial averages (for example,
Gates 1992). However, the analysis of the transient
characteristics may give more insight into the behavior
of the atmosphere and the response of models to dif-
ferent parameterizations. An example of this type of
analysis is given in Slingo et al. (1992). Their tech-
nique uses bandpass filtering of the variance to explore
the spectral characteristics of data on the intradiurnal,
synoptic, and intraseasonal time scales. A complemen-
tary method of analyzing the variability and performing
comparisons may be achieved by using a synoptic ob-
jective analysis method. This is the approach that will
be described in this paper. This will enable synoptic
climatologies to be constructed and compared effi-
ciently for different models and satellite data. The fact
that the technique is fully automatic will provide
greater confidence in performing comparisons between
climatologies than a manual subjective approach.

It has only been in the past few years that semi- and
fully automated methods have been used for the direct
identification of phenomena for the objective validation
of models and for comparisons with the plethora of
satellite data that are available. The main application
area has been in meteorology, although there is no rea-
son why similar techniques cannot be used in ocean-
ography. Several authors have attempted this difficult
task. Konig et al. (1992) have attempted the objective
identification of cyclones by searching for correlations
between the relative minima in the 1000-mb geopoten-
tial height field and maxima in the 850-mb vorticity
field for data from several GCMs. Also, Lambert
(1988) used an automated method of determining cy-
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clone densities to explore cyclone distributions in the
Northern and Southern Hemispheres from GCM data.
Both sets of these authors used the method of counting
lows within a unit area in a specified time period.

A better means of exploring the variability is to track
interesting phenomena as they develop and to examine
their growth and decay and their spatial distribution.
This approach to exploring the variability of the at-
mosphere is not new, with early attempts being per-
formed manually by Streten and Troup (1973), for ex-
ample. More recently, several authors have used track-
ing techniques to analyze the synoptic variability in the
Tropics and extratropics. Akyildiz (1984 ) performed a
tracking analysis of cyclones using European Centre
for Medium-Range Weather Forecasts (ECMWF)
forecast data for the 1981/82 winter for the North At-
lantic and constructed statistics of cyclone speed, cen-
tral pressure, geographical size, and life span. A similar
study has been performed by Reed et al. (1986) using
ECMWF analyses for the Tropics that identified and
tracked African easterly waves. However, the identifi-
cation and tracking has apparently still been performed
manually in these studies. Also, the geographical
regions explored and the number of phenomena fol-
lowed tend to be limited.

With the advent of high-speed computers, automated
methods have been developed to perform objective
analyses using tracking. Indeed, cloud tracking from
satellite data to determine cloud-motion winds for use
in operational forecasting was one of the earliest au-
tomated applications of tracking in meteorology. A va-
riety of methods has been used. Endlich et al. (1971)
tracked brightness centers. Their method found these
centers objectively using a pattern recognition tech-
nique and tracked them using a matching technique.
Leese and Novak (1971) used a cross-correlation tech-
nique to determine cloud motion characteristics for op-
erational purposes. Both of these methods had some
success in determining the velocity of cloud clusters,
although problems were encountered due to occlusion
of one cloud layer by another. (The term occlusion is
used in dynamic scene analysis to mean the total or
partial disappearance of an object in part of the frame
sequence due either to poor detection or variable light-
ing or because of concealment by another object).

An automated detection and tracking method for cy-
clones has been developed by Williamson (1981). This
technique identified anomalies in the 500-mb geopo-
tential height field of ECMWF forecasts and National
Meteorological Center (NMC) analyses for the
Northern Hemisphere. The tracking was performed by
minimizing a function of 6n variables, where 7 is the
number of detected features. However, this technique
together with the techniques of Akyildiz (1984) and
Reed et al. (1986) are essentially forecast validation
tools rather than global climate analysis tools.
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More recently, Le Treut and Kalnay ( 1990) used an
ad hoc method of finding and tracking cyclones in pres-
sure data from the ECMWF, while Murray and Sim-
monds (1991) used a sophisticated automated method
that extracts low pressure centers (feature points) from
interpolated GCM data using a local optimization
scheme. These feature points are formed into tracks by
calculating the probability of association (correspon-
dence problem) between the feature points. Both of
these studies used the pressure field to determine the
occurrence and position of cyclonic activity. Their
methods worked well for the extratropics where cy-
clonic activity can be associated with strong variations
in the pressure field. They managed to track the cy-
clones reasonably well and to derive statistics for the
cyclogenesis, cyclolysis, and distribution of cyclones.

The motivation for the development of the technique
described here is to aid the analysis of data obtained
from the UGAMP GCM and to assist in the validation
of the model and parameterizations. It was thus decided
that a general, fully automated, technique was required
that would be applicable to a wide range of datasets.
The method described in this paper makes use of tzch-
niques usually associated with image processing and
dynamic scene analysis. Although some image proc-
essing techniques have found their way into meteoro-
logical problems before, the techniques used here are
more up-to-date and aliow a more general method to
be developed.

2. Overview of the method

The basis of the method presented here is the iden-
tification of objects in suitable meteorological images
and/or fields. These objects might be regions around
extrema in a vorticity or pressure field for model data,
or clouds identified by their brightness or by regions
around minima in the outgoing longwave radiation
(OLR) for remotely sensed data. The objects can be
extracted from time sequences of the field by scene
segmentation. This entails the thresholding of the data
into object and ‘ ‘background’’ points or pixels and then
the partitioning of the object points into distinct objects,
which alone are stored for further processing to find
feature points. This identification of objects means that
only a small subset of the raw data needs to be stored
and explored for suitable points to track.

Tracking is a feature- (token) based method of mo-
tion analysis; therefore, suitable features must be iden-
tified. This is performed by the feature detection part
of the algorithm that identifies suitable points—for ex-
ample, centroids or local extrema within each object.
The objects do not need to have a single feature point;
for complex fields where objects coalesce and break
apart, multiple feature points are common. Each token
thus consists of the position of the feature point and, in
the application reported here, the strength measured as
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either an average over an object or as a point value
(local maximum or minimum). Other data could also
be part of a token—for example, information on the
size and shape of an object—but it is not considered
in this paper. The segmentation and feature point de-
tection part of the algorithm reads and processes each
frame (data for each time step) sequentially and stores
the object and feature point data for use by the tracking
algorithm.

The main problem that tracking algorithms must
overcome is called the correspondence problem. [ See
Aggarwal and Nandhakumar (1988) for a review of
tracking techniques.] This is where the correspondence
between features obtained in consecutive frames needs
to be determined. This is a nontrivial problem, partic-
ularly as objects can appear and disappear within a se-
quence and be occluded by other objects. The tech-
nique described in this paper was originally developed
for the monocular dynamic scene analysis of video
footage. However, there is no reason why the same, or
similar, techniques cannot be applied to analyze se-
quences of data obtained from numerical models or se-
quences of satellite images.

A brute force approach to the correspondence prob-
lem is combinatorially intractable; that is, considering
all possible trajectories for the feature points would be
computationally prohibitive. Thus, constraints are usu-
ally introduced to make the problem tractable. Early
attempts were based on an assumption that moving ob-
Jjects remained rigid (their physical shape remained un-
changed), which is clearly inappropriate for the prob-
lem here.

Several new methods have been developed in an at-
tempt to solve this problem. The related methods of
Sethi and Jain (1987), Salari and Sethi (1990), and
Rangarjan and Shah (1991) use assumptions about the
smoothness of the motion. This enables them to con-
struct a cost function that is minimized to produce the
smoothest possible tracks. These assumptions are es-
sentially constraints on the expected motion; therefore,
if a sudden change in motion occurs, these techniques
will not detect it and the wrong correspondence may
be assigned. However, they have the advantage of be-
ing able to deal with a large number of moving objects
(represented by feature points). Also, for the applica-
tion that will be considered here, sudden changes in
motion are not expected, provided the frame sampling
rate is sufficient.

The tracking technique adopted here is that of Salari
and Sethi (1990). It is more flexible than the method
of Rangarjan and Shah (1991) because it can cope with
the appearance and disappearance of objects. Also, the
method of Rangarjan and Shah (1991) depends on
some initial correspondence being available in the first
few frames. The determination of this initial corre-
spondence may be a complex task, particularly if ob-
jects can appear at anytime in the frame sequence, al-
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though it is possible if the objects exist for the whole
sequence, an unlikely situation for a meteorological ap-
plication.

The full algorithm for object identification and
tracking has been developed as a two-dimensional
method. It has been coded in the ANSI C program-
ming language (Kernighan and Ritchie 1988), mak-
ing full use of recursion and the freedom to define
data types.

3. Segmentation

In image processing, segmentation is the technique
of thresholding an image into distinct regions (usually
of similar intensities ). In this paper it refers to the thres-
holding of data points into object and background
points, connected component labeling (CCL) [ the sep-
aration of object points into distinct objects by labeling
(Rosenfeld and Kak 1976)], and region growing. The
CCL is based on the use of the quad-tree data structure
(Samet 1989), which provides an efficient method of
examining data at different resolutions, although at the
possible expense of extra storage. The region growing
algorithm is another method by which object points are
assigned to distinct objects by searching for object
points that have not been previously labeled. This is
required to search for parts of objects outside the region
of interest for track continuity purposes and will be
described later.

The segmentation identifies regions in a scene or
frame by giving all points, or pixels, within that region
a unique label. Point and pixel are interchangeable in
this discussion, and so from now on only the term point
is used. The methods described here assume that the
scene, or field, is defined on a regular or semiregular
(parallel grid lines not necessarily uniformly spaced)
rectangular grid. More will be said of this later when
different types of projections are discussed. The stages
involved in the segmentation part of the method will
be described in turn. While parts of this work are in
common use in the analysis of spatial data, all will be
described here for completeness.

The segmentation is initiated when the user chooses
the region of interest in the frame and a threshold value.
Although the whole globe can be considered, in prac-
tice a region of interest is chosen to speed up the
computation. The region chosen must satisfy the area
criterion: it must be 2" X 2™ grid points in dimension.
A binary map is then produced of the region of in-
terest based on the chosen threshold, so that points
with intensities greater than the threshold are consid-
ered as object points, and points with values below
this threshold are considered as background points.
If the region of interest does not fulfill the area cri-
terion, the binary map is extended with zeros so that
the criterion is fulfilled. The thresholding is defined
mathematically as
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where b, ; is the binary field value, f; ; is the actual field
value, T is the value of the threshold, and N, and N,
represent a corner node of the region of interest. More
sophisticated thresholding—for instance, that based on
the intensity histogram, will be considered in the future.

The binary map for the region of interest is now con-
verted into a hierarchy of levels, called the ‘‘data hi-
erarchy,”” which are linked together as a quad tree. A
quad tree is a linked hierarchical data structure based
on the recursive decomposition of the region of interest,
and it allows the data to be examined at varying reso-
lution. The best way to describe the data hierarchy and
quad tree is by illustration. Consider a 2* X 27 binary
map with the value 1 representing an object point, and
the value 0 a background point, as shown in Fig. 1. By
combining quads, as shown in (2), a hierarchy of levels
is obtained (the data hierarchy), where the value —1
represents a combination of 1’s at one level and 0’s at
lower levels, and the superscript / is the level

‘I?,j =b; )

L= gtian t ghitia t ghiao + g,
Vi,j:1<i<?2"" and
I<j=<2"', 1>0].(2)

it btz g5ti2) 5315 4525 = 0 [

I, if Qi;=
q.; =10, if Qi;=0

—1, otherwise

else gi;=—1 )

The hierarchy of levels for the example are as shown
in Fig. 2. Note that for a square region 2" X 2", and
then /... = n. For a rectangular region, this method
needs to be modified. For this situation, eventually a
level is reached that is a single row or column. Every
time this occurs, a row or column of 0’s 1s incorporated

OO OD OO
OO0 OHKHOO
OO OO O
[ o= I e B e I = I e i oo B o)
e O O O
[ T = I N i
o O =
P e e i)

level 0

FIG. 1. An example binary map to be used for an illustration
of the construction of a data hierarchy and quad tree.
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0 -1 -1 -1
1 -1 0 -1 -1 -1 -1
0 0 1 1 0 1
0 0 1 1
level 1 level 2 level 3

FiG. 2. Data levels of data hierarchy formed by combining quads
for the example binary map in Fig. 1.

until a level is reached that has only a single value. For
this more general situation of a 2” X 2" region, /.,
= max(n, m).

The levels of the hierarchy are linked to form a quad-
tree data structure by noticing that for nodes of value
1 or O all their offspring at lower levels have the same
value. Hence, once one of these nodes is labeled, all
the offspring necessarily have the same label. The quad
tree is constructed by linking the nodes and terminating
each branch on the highest node with value 1 or 0. The
quad-tree representation for the example looks like that
shown in Fig. 3, with the tree rooted at level 3.

For the quad-tree representation, the node ordering
1s important and must be carried out consistently. In
fact, if the quad tree is ordered the same way as the
block decomposition, the numerical labels indicate the
order in which the nodes are visited traversing down
the tree. In the example shown, the tree nodes are or-
dered from left to right (northwest, northeast, south-
west, southeast): this is the scanning order. Other scan-
ning orders can be considered but will depend on the
application of the quad tree. The position of a node in
the tree is determined uniquely by the path from the
root to the node —for example, (northwest, southwest)
for node 6 of Fig. 3. This is often encoded into a lo-
cational code. However, for a pointer-based quad tree
this is taken care of by using pointers to node records.

Since the quad-tree representation is required for the
CCL method, it must be structured in a way that is
consistent with the CCL method. The usual and most
efficient representation is as a linked tree structure us-
ing pointers (see Knuth 1973). This is achieved by
using a data record of type image node. These data
records are stored in raster order for each level, so that
each point at each level of the data hierarchy is repre-
sented by an image node data record in memory. The
image node record will contain a field with the node
type identifier (I, 0, or —1), a pointer to the parent
node, pointers to the four offspring nodes, and a pointer
to an equivalence class, which will be discussed
shortly. For the root node of the quad tree, the pointer
to parent actually points to ‘‘null’’ (points to the zero
memory address). For 1 and O (zero) nodes, the point-
ers to offspring point to ‘‘null’’; these are called the
leaf nodes. Thus, the quad tree representation of the
data hierarchy as used here is defined by the links set
using the pointers to parent and offspring. If large im-
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7 8 9 1011121314 15161718 2021 22 23

(b)

Fi1G. 3. (a) The maximal block representation for the example image. The larger the block, the higher the
corresponding node that resides in the quad-tree data structure, and (b) the quad-tree representation of the
image. Level 3istheroot,and @ = 1,00 =0,and O = —1.

ages or very high density grids are used, then this
method of quad-tree construction may need to be re-
vised and more efficient methods of converting a raster
image to a quad tree may need to be implemented.

The equivalence class record is used to identify
equivalences between tree node labels. The equiva-
lence class is stored as a record with two fields: the first
field is the component label for the class, not to be
confused with the node-type identifier, and the second
is a pointer that can point to the equivalence class rec-
ord of another node. In other words, it defines an equiv-
alence relationship between tree node labels. The
equivalence class representation is another form of tree
(see Knuth 1973). Processing the equivalences parti-
tions a set of elements into distinct sets, where the el-
ements are the labels of quad-tree nodes of type 1 and
the sets represent the objects.

The CCL algorithm performs the operations of la-
beling adjacent nodes and assigning equivalences, fol-
lowed by propagating the equivalences through the
quad tree so that all points belonging to a distinct object
are uniquely labeled. The process starts at the root node
and traverses down the tree searching for object nodes.
For each uniabeled object node encountered, a unique
component label is assigned. Then all its adjacent ob-
ject nodes are found in the direction specified by a
search template. This is performed recursively for each
connected object node that is found. The adjacency
search is performed according to the search templates

] %

(a) (b)

FI1G. 4. Search templates used by the CCL algorithm for (a)
four-connected CCL and (b) eight-connected CCL.

shown in Fig. 4 using the neighbor finding techniques
given by Samet (1989). These are quite involved, and
so only a brief description is given here. The basis of
the neighbor finding techniques is to ascend the tree
from the current node to the nearest common ancestor
(NCA). This is the first node at a higher level in the
tree reached by an offspring not related to the direction
of search. For example, in Fig. 3, to find a western
neighbor of tree node 7, the tree is ascended to the
NCA, node B (path northwest, southeast). The tree is
then descended along the path, which is the mirror of
the ascent path, so, using the example from node B, the
tree is descended to node 6 (path southwest). Further
descent is impossible because node 6 is a leaf node.
Any adjacent object nodes found are given the same
unique label. If an adjacent node is found that has al-
ready been labeled, then the equivalence is noted using
the pointer in the equivalence class record. Other op-
erations are performed to compress the path to the head
of the class. After completion of the first tree traversal,
the quad tree is traversed a second time, updating the
labels based on the generated equivalences.

For a 2D domain, two types of connectivity need to
be considered: four connected and eight connected. For
the four-connected case, adjacency is determined along
the four sides of the image element (cf. Fig. 3a). For
the eight-connected case, adjacency is determined
along the four sides and the four vertices of the image
element. The CCL algorithm achieves this by using the
search templates shown in Fig. 4. If a different scanning
order is used, then these templates will also be differ-
ent. So that an eight-connected search can be per-
formed, the CCL algorithm of Samet (1989) has been
modified to include his algorithm for a vertex adja-
cency search.

Finally, the tree is traversed a third time, starting at
the root node. For each component label that is en-
countered, a data record is created of type object. This
will contain three fields, a pointer to the object point
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Region Boundary

A A A A

B Labeled Object Point

[J Unlabeled Object Point

N ,
>\ Object Boundary

FiG. 5. Schematic of the boundary search procedure for a four-connectivity search. The unlabeled points
beyond the region boundary but that belong to the object are labeled as they are encountered along the search

directions indicated.

records, the number of object points, and the object
label. All object leaf nodes encountered are extrapo-
lated to level O of the data hierarchy (unless the node
is already at level 0). This extrapolation is required
because leaf nodes have no pointers to nodes at lower
levels. As an example, consider the quad tree node la-
beled 25 in Fig. 3. This represents the lower right-hand
quadrant of the image and resides at level 2 of the quad
tree. The extrapolation to level O assigns the same label
to all the image or grid points that reside at level 0 in
the region represented by this block. The extrapolation
to all points at level 0 related to a node at level [ > 0
is easily achieved using the level index and the node
position at that level. For the general case, if a node is
at level I > 0 at position (i, j), then all nodes at level
0 at positions (m, n), 2'(i — 1) + 1 <m < 24, 2'(§j
~ 1) + 1 < n < 2/}, are related. These points are
added to the relevant object record. The object point
data are stored in records of type point, which will be
accessed by means of the pointer in the object record.
An object point record has three fields: two for the co-
ordinates, and one for the image intensity value at that
point.

The next stage of the segmentation is to determine
points in the image that lie outside the region of interest
but that belong to objects partially in the region. If this
procedure is not performed, feature points can bunch
up on the boundaries of the region of interest, distorting
the apparent object motion as represented by the tracks.

This is a particular problem if the required feature
points are centroids (obtained by means of some av-
eraging process over an object). If local extrema are
required as feature points, it is still useful to perform
the boundary search, so that an indication of whether
an object is leaving or entering the region of interest
can be determined from the tracking.

The boundary search algorithm is straightforward
and begins by searching through the object point data
for the current frame and noting those objects that have
points on the boundary. A new field is introduced to
the object record that tags the object as a boundary or
interior object. A region growing technique is then used
to extend the relevant objects beyond the boundaries.
This technique is initialized by mapping the boundary
objects onto a 2D array using the object labels. This
array has dimensions sufficient to cover the region of
interest and extends some user-defined integer number
of grid points or pixels beyond the boundaries of the
region of interest. A search is performed in all direc-
tions consistent with the required connectivity, starting
from the boundary points of an object. This is illus-
trated in the schematic of Fig. 5 for a four-connectivity
search. If a new adjacent point is discovered, which is
determined by comparing its intensity value with the
threshold, it is mapped onto the new array with the
relevant object label and a new point record added to
the relevant object record. If a new point is discovered
that is adjacent to two points with different labels, then
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the two relevant object records are merged and given
the same label.

Finally, the segmentation is completed by filtering
out all object records for objects below some user-de-
fined size.

The segmentation process is carried out for all the
frames required and a new record is created for each
frame. This has a pointer to the object records and a
field with the number of objects in the frame.

4. Feature point detection

The extraction of the feature points is probably the
most awkward part of the algorithm being described,
since the feature points must represent relatively
smooth tracks if the tracking part of the algorithm is to
work well. The method used will invariably be chosen
on the basis of the type and quality of the data and the
coordinate system. The methods described in the pre-
vious section depended on the data being defined on a
regular, or semiregular, grid. If the data being analyzed
are not in this form, then some form of interpolation
onto a regular grid will be needed.

For the work reported in this paper, a simple cylin-
drical projection (Plate Carée) has been used. This is
perfectly adequate for the region of the globe consid-
ered here——the tropics and midlatitudes—even though
it is not conformal. Other, shape-preserving or confor-
mal projections can also be used if higher latitudes need
to be explored. Cylindrical conformal projections are
particularly useful in this respect because they preserve
not only the shape of phenomena but also the shape of
the rectangular domain. For statistical analysis of re-
sults, a cylindrical equal-area projection may be useful
(Canters and Decleir 1989).

Detection of suitable feature points will depend on
whether the objects identified have any internal struc-
ture. For the type of fields likely to be encountered that
are of geophysical interest, the local extrema are the
most suitable feature points. For a field defined on a
high-density grid—for example, a satellite image —the
nodal local extrema (a grid point with a value greater
than or equal to its neighboring grid points) may be
good enough. However, for a sparse grid, the nodal
extrema may not be sufficient for tracking, as the tracks
produced would not look very smooth, showing a
““staircase’’ effect.

The nodal maxima or minima are relatively easy to
find for each object. This is achieved simply by com-
paring each object point with its neighbors. However,
clusters of local maxima or minima may occur with
points having the same local highest value. To get a
minimal set of local extrema for each object, the points
obtained for each object are passed to the CCL algo-
rithm again to determine connected points. The cen-
troid of these points is found for each cluster so that
each cluster is represented by a single feature point.
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The term centroid is used here as a generic term for all
points determined by an averaging process, including
weighted averages—for example, center of mass. If
there is very little structure within an object, which is
an unlikely event, some other method must be used to
determine feature points.

For a sufficiently high-density grid, the nodal ex-
trema should be perfectly adequate for tracking. How-
ever, for a coarse-resolution grid, *‘better quality’’ fea-
ture points should be obtained. ‘‘Better quality’’ is used
here in the context of the tracking and implies that
smoother tracks are possible by finding these better
quality points. One way to do this would be to fit a
surface to the grid points using an interpolation tech-
nique. Then, using the nodal extrema as starting points,
a local optimization method could be used—for ex-
ample, a conjugate gradient method—to find the local
extrema more accurately. The drawback to this ap-
proach is that interpolation techniques and local optim-
ization may be computationally expensive.

We intend to implement an algorithm that will pro-
duce a surface fit to the data that together with a local
optimization technique will be used to find local ex-
trema more accurately. The approach to this task will
be based on the algorithm of Dierckx (1980), which
produces either the interpolating surface or a least-
squares approximation depending on the choice of a
smoothness parameter. This may help also with the
analysis of noisy images by producing a smoothed ap-
proximation.

For the current work we have used an ad hoc method
to find the centroids of regions within each object; these
have been sufficiently accurate for use with the tracking
algorithm provided the tracking algorithm parameters
are chosen wisely. The method for finding the centroids
could form the basis of an iterative scheme, but in prac-
tice a single iteration has been found to be sufficient.
The approach is to use the nodal extrema, or the points
derived from them by the CCL algorithm, as initial fea-
ture points and to allocate object points to the nearest
initial feature point for each object, using the Euclidean
distance measure. The centroid is then computed for
each cluster; a strength is also computed. Although the
nodal extrema value could have been used for the
strength, instead the strength is computed by simply
averaging the intensity or the field value for the object
points for each cluster. This is then a measure of the
mean field around the nodal extrema. For objects that
have only a single extremal point, the centroid can be
calculated directly without the cluster analysis. This is
a form of clustering algorithm but is computationally
very cheap.

Each object is processed for feature points and a new
field is introduced into each object record to store the
feature point data. This field is a pointer to a data record
of type features that contains two fields: the number of
feature points for each object and a pointer to the fea-



2580

ture point records. The feature points for each object
are stored in records that have four fields for a 2D do-
main: two for the coordinates, one for the strength of
the feature point, and one for the track number on
which the feature point lies, thus allowing cross refer-
encing of objects and tracks.

An example of the result of the segmentation and
feature point detection procedures are shown in Fig. 6
for a relative vorticity field from the UGAMP GCM.
The task remaining is now to determine the correspon-
dence between the feature points in consecutive frames.

5. Tracking

The method used to determine the correspondence
between the feature points has been adapted from the
algorithm of Salari and Sethi (1990), which was based
on an earlier study of Sethi and Jain (1987). This
method consists of a constrained optimization of a cost
function. It is combinatorially intractable to consider
all tracks that might be constructed from the feature
points; hence, constraints are introduced. The main
constraint is termed path coherence: the motion of ob-
jects cannot change discontinuously. The validity of
this assumption depends on the time interval between
each frame. This constraint essentially states that the
velocity is expected to change smoothly for each object
throughout the time sequence. It is also assumed that
if the motion is smooth on the sphere, then any projec-
tion of the motion will also be smooth, albeit possibly
distorted. This is certainly the case with the simple cy-
lindrical projection used at present.

The version of this technique explored by Sethi and
Jain (1987) was applied to simple test problems,
where, in most cases, the number of feature points was
conserved throughout the various time sequences, al-
though a limited form of occlusion was considered. The
cost function, which will be described shortly, was
minimized using an iterative technique that involved
swapping points between the tracks to improve the lo-
cal smoothness. The local smoothness forms an integral
part of the cost function and is measured using a func-
tion of the vector displacement over three frames for
each track. Of course, in the situations encountered in
meteorology, or oceanography, for any extended time
sequence, phenomena can be expected to appear and
disappear. To deal with this kind of situation, the tech-
nique expounded by Sethi and Jain (1987) has been
extended by Salari and Sethi (1990) with the introduc-
tion of ‘‘phantom’” feature points. These are essentially
used as a computational convenience. Incomplete
tracks are padded out with these points, which do not
need to have any positional or intensity information
defined for them. They allow the total number of
“‘real’’ tracks to be varied; that is, they enable phenom-
ena to appear and disappear and allow tracks to be bro-
ken up or merged depending on the local smoothness.
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Their use will be described in more detail in the fol-
lowing.

The tracking algorithm is initiated by linking all the
feature points based on the nearest neighbor distance
between points in subsequent frames so that each fea-
ture point is assigned to a track and so that the displace-
ment between feature points on tracks is within some
user-defined upper-bound displacement d,,,,,. The pro-
cess of track initialization starts in the first frame by
assigning the k feature points to k tracks. Then, points
in the next frame are assigned to these tracks based on
the displacement distance, which should be less than or
equal to d,,,.. Any existing tracks that do not have a
point assigned from this frame are assigned a phantom
point, while any points that are not used are assigned
to new tracks that are padded with a phantom point in
the preceding frame. This process is repeated for sub-
sequent frames until all the feature points are assigned
to tracks.

The tracks are stored in a record that has two ficlds:
the number of true feature points in the track and a
pointer to records, which identify the frame, the ob-
ject, and the feature point. A phantom feature point
is identified by a negative integer value in the feature
point field. Also, as part of the initialization process,
a set of tracks is formed that is composed only of
phantom points, usually equal to the number of initial
real tracks; these are required to ensure that no final
track has a local smoothness greater than the speci-
fied local smoothness constraint. Although the total
number of tracks, including those with phantom
points only, remains constant following the initiali-
zation, the actual number of tracks made up of real
feature points will vary during the optimization pro-
cedure.

The cost function E is constructed from the devia-
tions of the tracks, calculated using the positions of
feature points in three consecutive frames. This is to be
minimized subject to the constraints so as to produce
the smoothest possible trajectories. For each track the
deviation can be calculated using a measure of the di-
rection, speed, or magnitude of acceleration, or any
combination of these. For this paper, the function of
Salari and Sethi (1990) has been employed, which uses
direction and speed only. The local deviation &} at
time level k for track i is defined as

PP, PEPE)

(0, if P¥~' is a phantom feature point, and
P% and P¥"' are real or phantom.
= ﬁ G(PEY PE, PNy, i PYY PE and PEY

are real feature points.

otherwise,

\¢m£\X’
(3)
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where ¢, is an upper bound on the local smoothness,
which acts as a penalty for missing feature points, and
P! represents the position of a feature point. The non-
dimensional function ¢ is defined in terms of the dis-
placements and measures the local smoothness. This is
given by

Pi! Pt pipLT!
T PE PP P n)

2| P PR IPEPE D2
+w,| 1 - , (4
w2[ PP ey |t @

(b(Pf—l’P:"P{'H—l):wI(l

where P¥ P! is the displacement vector from point
P% to point Pf*', and w, and w, are weights. Notice
that the first term of (4) is zero, if the three points are
collinear, while the second term is zero, if the displace-
ment between the first and second points is equal to the
displacement between the second and third points. The
cost to be minimized is then defined as

—
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—
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where m is now the total number of tracks obtained
during the initialization step and # is the total number
of frames. As previously stated, for a phantom feature
point, no coordinates or strengths need be specified; a
fixed penalty is associated with the phantom points ac-
cording to the definition of the local track deviation.
Also notice that the tracks with only phantom points in
them contribute nothing to the cost function due to the
first condition in (3).

For the current applications, the distance norm is de-
fined as

|PfPE |, if Pf and PF*!

(PiPE ] = both true feature points. (6)
d..c, otherwise,

where || ||, is the Euclidean norm and d,,,,, is a param-

eter that must be chosen based on the expected maxi-
mum possible displacement of objects in the projected
space.

The aim is to find the set of tracks that maximizes
the smoothness, that is, minimizes the cost function,
subject to the maximum displacement constraint
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FIG. 6. Result of segmentation and feature point detection. The identified objects are color coded in units of 10~° s ™! and superimposed
on a blue background that identifies the region of interest chosen. The black dots are feature points, and red dots are object points found
outside the region of interest up to a distance of six grid points from the user-defined region. The field is relative vorticity at 850 mb from
a T42 UGAMP GCM. The segmentation threshold was set at 1.0 X 107557,
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([P% P < d.x and the maximum smoothness con-
straint % < ¢

The actual algorithm is described in Sethi and Jain
(1987) and Salari and Sethi (1990), and so is not re-
peated here. The actual process of minimization con-
sists of swapping points on tracks so as to provide the
maximum gain in smoothness subject to the constraints.
The gain for an exchange at time level k between tracks
i and j is given by

gl =DHPI, PEPEYY + DH(PE, PY, PEY
- Di(PY PE P ~ Q5P PEPEYY),
provided |PfP{"'| < duex and

IPFPI < s (7)

so the k + 1 points of the i, j pair are swapped if they
correspond to the maximum gain (g% ; > 0) at this time
level. This process is performed for each value of k (2
< k < n — 1, for n frames). From (7) it is easy to
deduce the role played by the phantom points. For ex-
ample, suppose 2 (P¥', P¥, P¥') > ¢, (all three
points are real feature points) and Z5(PY', Pk,
P!y = 0 (suppose all three points are phantom
points). Then by swapping P{*' and P!*', the local
smoothness, % (P!, P¥, P¥') = ¢ and
PPy, PY, Pi*') is unchanged. Thus, at the termi-
nation of the algorithm the local smoothness will be
less than or equal to ¢, for all tracks.

The process is an iterative stepwise process analo-
gous to hill climbing techniques and, like hill climbing
techniques, can encounter problems due to the local
nature of the process. What is actually required is the
global optimum, where as the algorithm used here pro-
duces an approximation to the global solution. To ob-
tain a global solution, simulated annealing techniques
or genetic algorithms might be employed; however,
this would generally be more time consuming than a
local technique and computationally prohibitive if the
calculation must be repeated many times. Hence, for
the purpose of building a statistical description of the
climatology from the trajectories, the suboptimal local
technique has been judged to be sufficient.

The algorithm must proceed alternatively forward
and backward in time over the whole time sequence,
unless some initial correspondence over a few frames
is known. This is because if the initial correspondence
is determined arbitrarily, then by stepping only forward
in time, the result will be a function of the initialization.
If some technique could be used to predetermine the
correspondence in the first few frames, following the
first appearance of an object, then only forward time
stepping would be required. This has not been exam-
ined yet because of the complexity of objects appearing
and disappearing throughout the frame sequence.

In practice, for a long time sequence the resultant
tracks consist of locally smooth sections separated by
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phantom points. This is a consequence of swapping real
and phantom points due to violation of the smoothness
constraint. These sections may or may not be related.
If they are related, we can say there has been poor
feature detection, possibly because of occlusion. In the
application reported here, occlusion is impossible since
the data are defined on a single pressure level that de-
termines the vertical position. If occlusion, or some
other reason for poor feature detection is known to oc-
cur, some analysis of continuity for the separate pieces
may be needed. However, this is not required here. The
set of tracks obtained from the tracking algorithm are
scanned and segmented into separate tracks if a dis-
continuity is found. Finally, the phantom points are dis-
carded (they are used only as a calculational aid) and
the track data stored in records as previously described
in this section.

Operationally, four parameters need to be chosen:
the two weights w,, w,, and the two optimization pa-
rameters d,,,, and ¢ ... The choice of these parameters
will depend on the quality of the detected feature points
(how smooth can the tracks be expected to be in terms
of direction and speed when using these points) and
the spatial and temporal time scales within the data. A
sensitivity study could be performed as was done by
Murray and Simmonds (1991). However, it has usu-
ally been found that an intuitive guess is sufficient. An
animation of the data has been found to be of particular
use in aiding the choice of the parameters d,,.x and ¢,
and in verifying the operation of the algorithm for short
sequences. The technique has been found to be reason-
ably robust to the choice of the weights, provided d,,.x
and ¢, are well chosen.

The optimization process can become very ineffi-
cient if performed over a very long sequence of frames
for data that admit a lot of short tracks, since a great
many phantom points may be required. The most com-
putationally efficient means of running the code is to
ensure that tracks are as full as possible with true fea-
ture points. This is achieved by running the code for
short overlapping sequences whose resulting tracks can
be spliced together when, and if, track sections overlap.
The length of sequence to choose for any set of data
will depend on the temporal scales within the data.

6. Some results using model output

The initial motivation for the development of the
method has been the analysis of data from the UGAMP
GCM to explore the effects on the synoptic variability
of using different convective parameterizations, and the
degree of interaction between the tropics and the extra-
tropics for these different parameterizations. The anal-
ysis is performed by examination of cyclonic (and pos-
sibly anticyclonic) activity. In this paper the results are
restricted to a single example that illustrates the per-
formance of the technique. Full results will appear in a
future publication.
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The cyclonic activity in the model output may be
explored by examining fields such as the relative vor-
ticity or pressure. However, the pressure field is not a
good indicator of cyclonic activity in the tropics, be-
cause the pressure anomaly associated with a tropical
disturbance is generally weak, although it has been
used to good effect in the extratropics (cf. Murray and
Simmonds 1991). The low-level (850 mb) relative
vorticity field is a much better indicator of tropical vari-
ability associated with convective activity—for ex-
ample, equatorial synoptic waves (Reed et al. 1986).
Both the cyclonic and anticyclonic activity can be ex-
plored with this field, although typically only the cy-
clonic activity is examined.

The UGAMP GCM used to produce data for this
study is a spectral model derived from the cycle 27
version of the ECMWF model (released in 1987). Hor-
izontal components of variables are represented by
truncated series of spherical harmonics, while in the
vertical there are 19 levels represented by a hybrid co-
ordinate. A more detailed discussion of the spectral
technique and the parameterizations that have been in-
corporated into the model can be found in Simmons et
al. (1988) and Tiedtke et al. (1988). Several changes
to the physical parameterizations have been incorpo-
rated to the UGAMP GCM since its acquisition; these
include changes to the vertical advection and the radi-
ation parameterization (Slingo et al. 1993).

The data used for this paper were obtained by run-
ning the model for 360 days at horizontal resolution
T42 in perpetual January mode, so January climatolog-
ical sea surface temperature (SST) forcing has been
used. The convective scheme that has been used is that
of Betts (1986) and Betts and Miller (1993), which
models both deep and shallow convection by the si-
multaneous relaxation of temperature and moisture
fields toward observed thermodynamic structures.

The results shown in this paper have been obtained
by applying the algorithm to the low-level relative vor-
ticity field (850 mb). The parameters used for the im-
age processing and tracking are as follows. The thresh-
old used for the image processing part of the process
is 1.0 X 107° s~', while the tracking parameterization
used was 1) w, = 0.6; w, = 0.4; 2) dpx = 6% and 3)
Prax = 0.25.

More weight is given to the directional part of the
cost function to compensate for the fact that the cen-
troids are not the best feature points to use. In other
words, there is greater error in the displacements than
would be the case if the local maxima or minima could
be used.

The tracking code was run on overlapping 15-day
sections of the time sequences (6-h time steps), and
the resultant tracks were spliced together. The region
covered is the zone 50°S—50°N latitude and 0°-360°
longitude. Two passes of the data are performed for
each set of data because of problems experienced at the
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equator, as will now be explained. The initial interest
is in the cyclonic activity in the tropics and how it can
affect the midlatitude storm track. However, the cy-
clonic activity in the relative vorticity field, by defini-
tion, has a different sign in the Southern Hemisphere
than in the Northern Hemisphere, so there is a conti-
nuity problem in dealing with the cyclonic part of the
field in the equatorial region. One way to tackle this
difficulty is to multiply the Southern Hemisphere part
of the field by —1, so that it can be treated on the same
basis as the Northern Hemisphere part in the same run
of the code. However, performing this inversion can
lead to an observed lack of continuity across the equa-
tor with a hole in the track distribution that is clearly
artificial. This approach also takes no account of those
systems that have sufficient strength to cross the equa-
tor. Thus, two passes of the data are performed for the
two signs of the field. This has the beneficial result that
continuity across the equator is maintained and that cy-
clonic and anticyclonic activity may be explored at the
same time. Thus, for the positive part of the field we
have cyclonic activity in the Northern Hemisphere and
anticyclonic activity in the Southern Hemisphere, while
for the negative part of the field this is reversed. How-
ever, we will show only the result of the process for
the positive part of the field.

The results are shown in Fig. 7 for a 90-day period.
The colored dots are at the positions of the detected
feature points (at positions 6 h apart for each track),
the color coding of the dots indicates the scaled strength
of the system, and the arrows (colored dark blue; the
arrow head may be difficult to see on pictures of this
size covering the geographical area under considera-
tion) indicate the correspondence and therefore the di-
rection and speed of the system. The dot separation also
gives an indication of velocity where there is difficulty
discerning the arrows.

We will make only qualitative remarks about the re-
sults here and leave a more detailed discussion con-
cerning comparisons between convective schemes on
intraseasonal and interannual time scales together with
statistical analyses to future publications. In Fig. 7 the
apparent strong activity over the Himalayas and other
mountainous regions is spurious and is caused by the
intersection of the 850-mb surface with the orography.
We see that the algorithm has performed well. In the
tropical Pacific two distinct groups of easterly waves
can be seen in the region of the intertropical conver-
gence zone (ITCZ) between 0° and 10°N. The first
group is situated between 230° and 250° longitude with
tracks originating due to cyclogenesis over southern
Central America and propagating northwestward, with
the majority terminating around 10°N. The second
group originate around 225° and propagate westward
more coherently than the first group. Tracks also in-
crease in strength, as indicated by the change in color
of the dots. The growth in the strength of these cyclonic
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systems because of latent heat release in the ITCZ is
most pronounced west of the date line. Also notice that
several intense systems deviate northward away from
the ITCZ at the western side of the Pacific to interact
with systems in the midlatitude storm track. The tracks
for this second group appear to be tightly confined
within the ITCZ, apart from the western side of the
Pacific. This together with the intensification and pole-
ward migration may be overdone because of the use of
the constant SST boundary condition.

In the tropical Atlantic there are a few southwest-
ward propagating waves originating around the Gulf of
Guinea. However, the January conditions used in the
GCM run are not conducive to producing the easterly
waves that are apparent during the northern summer
months in this region.

We turn now to the northern storm tracks. In the
Pacific the majority of the cyclonic activity originates
over China. These systems move eastward and grow in
strength to form part of the Pacific storm track. This
accords well with the observed winter behavior (Boyle
and Chen 1992). However, by examining other 90-day
sections of the GCM run (not shown here), there is
some variation in the region of cyclogenesis, with some
90-day periods showing the South China Sea to be a
region of cyclogenesis. For the Atlantic midlatitude
storm track, the continental United States is the major
region of cyclogenesis but with some activity in the
Gulf of Mexico.

For the Southern Hemisphere, the anticyclonic activ-
ity is generally weak and disorganized; however, at the
latitudes shown, we are not yet into the southern storm
track, which may show more organization for the an-
ticyclonic activity.

A better indication of the variability in the data is
obtained by looking at shorter time sequences—for ex-
ample, on the intraseasonal time scale ( 14—30 days).
Indeed, the results do show considerable variability.
However, the best method of analysis is to construct a
statistical representation of the results. This is currently
being explored so that quantitative comparisons can be
made.

7. Conclusions and further work

This paper outlines a general method of tracking ob-
jects through GCM output and remotely sensed data-
sets. Further work to improve the method is under way
with the aim of implementing the surface-fitting algo-
rithms, as already mentioned. This will enable different
types of projections to be dealt with and, together with
a local optimization algorithm, will allow local extrema
to be found accurately. Other types of projections will
be implemented, particularly for treating the high lati-
tudes and for performing statistical analyses. Eventu-
ally, the aim is to work directly on the sphere instead
of using projections; this is also being explored.
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An example has been shown of how the method per-
forms for data obtained from the UGAMP GCM. This
has shown that coherent equatorial waves can be iden-
tified and tracked and that their poleward migration
from the ITCZ can be followed into the midlatitude
storm track.

The main thrust of future work will be to explore
and implement methods of statistical analysis of the
sets of tracks obtained from the GCM data and from
remotely sensed data. Thus, it is hoped that quantitative
comparisons between various datasets can be made and
that the variability predicted by the models can be com-
pared to that actually observed in the atmosphere.
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