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ABSTRACT

An improved algorithm for the generation of gridded window brightness temperatures is presented. The primary
data source is the International Satellite Cloud Climatology Project, level B3 data, covering the period from
July 1983 to the present. The algorithm takes window brightness, temperatures from multiple satellites, both
geostationary and polar orbiting, which have already been navigated and normalized radiometrically to the
National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer, and generates
3-hourly global images on a 0.58 by 0.58 latitude–longitude grid. The gridding uses a hierarchical scheme based
on spherical kernel estimators. As part of the gridding procedure, the geostationary data are corrected for limb
effects using a simple empirical correction to the radiances, from which the corrected temperatures are computed.
This is in addition to the application of satellite zenith angle weighting to downweight limb pixels in preference
to nearer-nadir pixels. The polar orbiter data are windowed on the target time with temporal weighting to account
for the noncontemporaneous nature of the data. Large regions of missing data are interpolated from adjacent
processed images using a form of motion compensated interpolation based on the estimation of motion vectors
using an hierarchical block matching scheme. Examples are shown of the various stages in the process. Also
shown are examples of the usefulness of this type of data in GCM validation.

1. Introduction

The aim of this paper is to report a new algorithm
for the generation of global window brightness tem-
peratures (WBTs) from multiple infrared (IR) satellite
imagery. This form of data is useful both for the vali-
dation of general circulation models (GCMs) and per-
forming quantitative climatological studies of convec-
tion over wide areas, for example the whole of the Trop-
ics. Thus, these type of data can be very useful for
exploring the properties, in terms of the distribution and
variability, of organized convective systems from the
mesoscale to the synoptic scale over seasonal to decadel
periods. This is provided that a sufficiently long time
series of this type of data can be generated at suitable
spatial and temporal resolution. Of course we can per-
form regional studies using individual satellites, but
generating global data at current forecast GCM reso-
lutions allows comparisons to be made with the vari-
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ability predicted by GCMs as well as enabling clima-
tological studies to be performed over wide areas.

Recent developments in operational forecasting have
aimed to directly assimilate satellite radiance measure-
ments from atmospheric sounders. This arguably might
form the basis of directly comparing radiances from
models and satellites via a forward model, taking into
account viewing angle dependencies; this would have
to be done on a per satellite basis. For example, the
current European Centre for Medium-Range Weather
Forecasts (ECMWF) code RTATOV (Saunders et al.
1999) is only configured to use the National Oceanic
and Atmospheric Administration (NOAA) polar orbit-
ing TIROS Operational Vertical Sounder instrument.
However, such comparisons may depend on the so-
phistication of the underlying radiative transfer model
used to perform the forward modeling and the inter-
polation required in space and time to the satellite ob-
servation position. For example, the RTATOV code uses
a two-stream model with a plane parallel atmosphere
with scattering effects neglected. While this may be a
reasonable approximation for clear-sky or stratiform-
cloud regions, what the satellite actually measures can
in practice be the result of more complex situations in
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which scattering is important and for which a full 3D
radiative transfer code is more appropriate. While this
approach is feasible for validating models by compar-
ison of absolute radiance values, a computationally sim-
pler means of validating models can be achieved by
comparing the predicted variability with the observed
variability on a range of spatial and temporal scales by
using the outgoing longwave radiation as a surrogate
for WBT. Since most GCMs output this variable rou-
tinely there is no need to invoke the additional com-
putational overhead of computing and comparing ra-
diances, which are dependent on satellite and possibly
the form of the forward model. Thus, meaningful com-
parisons can be made between models and observations
on this basis and provides the motivation for the gen-
eration of global WBT.

Composite satellite imagery is routinely generated by
weather forecast groups at a number of operational cen-
ters to aid in weather forecasting and, for example, to
improve the model forecasts by ‘‘bogusing’’ systems in
the forecast initialization process. The process of gen-
erating composites generally takes the form of ‘‘stitch-
ing’’ multiple IR satellite images together. The com-
posite data are rarely referenced to a grid, which is
useful for the types of studies previously mentioned,
and even when they are, the methodology is rather
crude, often just averaging pixel WBT over grid boxes,
whose size may vary with latitude (latitude-dependent
grid boxes, equal-area grids, are often used to take ac-
count of the areal distortion when projecting spherical
data onto a cylindrical projection). Artifacts of the pro-
cess are often apparent in these composite images, usu-
ally appearing as discontinuities in the image intensities.
These discontinuities can be caused by prior or non-
existent intercalibration between different satellite series
and/or limb-darkening effects, as well as by cloud shear-
ing effects caused by cloud motion when the images are
not from the same synoptic times.

An alternative to generating the composites, and then
gridding the WBT, is to take the calibrated data from
the required individual satellites and interpolate/smooth
the data directly onto the grid. This has the benefit that
data from the individual satellites can be corrected for
calibration, navigation, and limb effects before the com-
posite/gridding procedure is performed. Additionally,
these corrections produce a better set of gridded data
for determining the motion of mesoscale/synoptic sys-
tems in tracking studies.

Of course, to generate global WBT at a reasonable
temporal sampling rate, that is, 1–3 h, there has to be
sufficient satellite coverage over such a time period.
This is obviously not a problem currently since there is
a profusion of weather satellites operational for which
operational centers have access, and which provide near-
ly global coverage every 30 min. This is an enormous
amount of data at full weather satellite IR resolutions
(;4 km for geostationary and polar orbiting satellites).
However, these data are not generally or systematically

available outside the operational centers. It is also at a
significantly higher resolution than current GCM res-
olutions. In order to generate a historical global WBT
dataset for both climatological studies and GCM vali-
dation, similar data coverage is required over an ex-
tended period of time. Fortunately, the International Sat-
ellite Cloud Climatology Project (ISCCP) (Rossow et
al. 1997) has been archiving and processing the avail-
able weather satellite imagery using data available from
July 1983 to the present (excluding the Indian INSAT
satellite, apart for a brief period from April 1988 to
March 1989, with the result that there is poor synoptic
data coverage in the Indian Ocean region). To reduce
the amount of data for processing and archiving, the
raw imagery is subsampled to a nominal spatial reso-
lution of 30 km and temporal resolution of 3 h to pro-
duce the level-B3 imagery. These data are processed
into cloud products by ISCCP, typically on an equal-
area cylindrical grid of resolution ;2.58 at 3-hourly
intervals. While these data are useful for large scale
studies, they are of limited use for observing and study-
ing smaller spatial scales, for example, mesoscale phe-
nomena. The trend is for climate models to be run at
ever higher spatial resolutions, depending on the sim-
ulation period. For example, the ECMWF reanalyses
are available at resolutions ;1.08, and free running
models are not far behind. It therefore makes sense to
provide data at a resolution that will be useful for val-
idation for the foreseeable future. The fact that the WBT
data are not on the identically same grid as the model
data is not a problem if we are concerned with studies
of variability, as opposed to comparison of absolute val-
ues.

A first attempt at generating WBT data from the
ISCCP B3 archive was performed by Tanaka et al.
(1991), and was used for studies of the diurnal cycle
throughout the Tropics by Salby et al. (1991), on a lim-
ited period of one year from July 1983 to June 1984.
The usefulness of this type of data for studying tropical
mesoscale activity was illustrated by Hodges (1998),
using Salby’s data. In order to conduct such analyses
without having to worry about missing data the pro-
duction of a dataset with few data voids is important.
However, some missing data is inevitable, because of
failed satellites or corrupted input data, so the best that
can be done is to minimize the occurrence of data voids.
The grid chosen by Tanaka et al. was 512 3 512 (equiv-
alent to 0.358 latitude 3 0.78 longitude), driven by their
desire to perform efficient spatial fast Fourier transform
analyses. Their algorithm essentially averaged pixel val-
ues for the contributing satellites over grid boxes, with
the pixel temperature values weighted by the cosine of
the satellite zenith angle; that is, they downweight the
limb pixels in comparison with near-nadir pixels. This
anticipates the problem of limb darkening and changes
in pixel foot print size but does not actually correct the
IR values. The data taken for this spatial sampling was
constrained to be within 1.5 h of the target synoptic
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TABLE 1. Summary information of contributing satellites. Note that
geostationary satellites were sometimes moved to cover for the failure
of other satellites; e.g., METEOSAT-3 covered for the failure of
GOES-6.

Satellite Agency Series IR band

Subsatel-
lite

longitude

METEOSAT
GMS

ESA
JMA

3, 4, 5
1, 2, 3, 4
5

10.5–12.5 mm
10.5–12.5 mm
10.3–11.4 mm

08
1408E

GOES-E NOAA 5, 7
8

10.5–12.5 mm
10.2–11.2 mm

758W

GOES-W NOAA 6, 7
9

10.5–12.5 mm
10.2–11.2 mm

1358W

NOAA-AM
NOAA-PM

NOAA
NOAA

8, 10, 12
7, 9, 11, 14

10.3–11.3 mm
10.3–11.3 mm

—
—

time. Small voids in the grid were filled by spatially
averaging over surrounding nonvoid grid values at two
levels; larger voids in the grid were filled by simple
linear temporal interpolation using gridded data from
adjacent synoptic times (equivalent to 6-h separation).
This is a fairly straightforward and simple algorithm for
generating the global WBT data and will used as a ref-
erence for the improved algorithm described here.

In this paper an improved algorithm for generating
global WBT from the ISCCP B3 archive is described.
The algorithm development forms part of the Cloud
Archive User Service (CLAUS) project to generate a
long-term historical archive of global WBT at resolu-
tions suitable for both climate studies and GCM vali-
dation, and to use this data to perform these types of
studies. The algorithm essentially follows the approach
used by Tanaka et al. (1991), but differs in the tech-
niques that have been used for the spatial gridding, limb-
darkening correction, and temporal interpolation. The
grid chosen for the study has a spacing of 0.58 latitude
3 0.58 longitude (360 3 720) on a Plate Carrée latitude–
longitude projection. The choice of this grid is partially
driven by the resolution of the available data and also
by the requirements of GCM validation. However, the
techniques can be applied just as well to higher-reso-
lution data if required, and we hope to illustrate this in
the future with full-resolution imagery. Also, the al-
gorithm can be applied to other data, for example, the
water vapor channel, although this channel was not
available on all the satellite series until recently. The
final product data are supplemented by quality data,
which will also be described.

The paper continues with a description of the ISCCP
B3 data and then continues with a step-by-step approach
to the algorithm methodology, followed by examples of
the applicability of the data to GCM validation.

2. Description of the ISCCP B3 data

The ISCCP B3 data are generated by ISCCP from the
raw full-resolution imagery by a process of subsam-
pling, calibration, and navigation (Rossow et al. 1997).
The B3 data are stored as 8-bit values (together with
the relevant calibration tables). This can limit some ap-
plications due to a lack of accuracy—for example, iden-
tifying changes associated with the sea surface or low
level stratocumulus. The contributing satellites consist
of the geostationary satellites METEOSAT, GOES-E,
GOES-W, GMS, and for a limited period, INSAT (this
is not used by CLAUS because of the limited availability
of the data, although this may be used in subsequent
reprocessing), while the polar orbiting satellites are
NOAA-AM and NOAA-PM. The full-resolution im-
agery is sampled in space and time for the geostationary
satellites to produce imagery every 3 h at a nominal
pixel spacing of 30 km. There is the issue of bias of
the raw data, due to how each satellite instrument sam-
ples the Earth, as well as bias caused by the sampling

scheme used to produce the B3 data, which still needs
to be investigated. The effect of the spatial sampling,
in contrast to spatial averaging to produce the B3 data
also still needs to be explored. For the polar orbiting
satellites spatial sampling is performed to produce the
same nominal pixel spacing as for the geostationary
satellites. Each image is calibrated according to the
available spectral channels; the IR channel is used in
the CLAUS project, and normalized to the reference
NOAA polar orbiter satellites for the channels common
to the geostationary satellites (see Table 1 for the rel-
evant channels). Although each image is navigated and
corrected for navigation errors, residual problems with
satellite intercalibration, image navigation, and bad scan
lines are occasionally observed in the B3 data.

Each B3 image has available for each pixel the fol-
lowing: its geolocated (latitude–longitude) position; the
satellite zenith angle (the angle between the satellite
view direction of a point on the earth and the nadir view
direction of the same point); a physical value for each
spectral channel (an equivalent blackbody WBT for the
IR channels); and flags for scan line quality, on/off plan-
et pixels, and a land/water mask. Instead of using the
calibration tables that come with each B3 image based
on normalization to the Advanced Very High Resolution
Radiometer (AVHRR) on the NOAA-7 polar orbiting
satellite, the newer calibration tables based on normal-
ization to the AVHRR on NOAA-9 are used (Brest et
al. 1997). These new tables, available as version 1 of
the ISCCP BT dataset, have been corrected by ISCCP
for artifacts found in the older tables. In addition to their
use for converting the IR channels of the various sat-
ellites to brightness temperatures, they are used to gen-
erate polynomial fits between radiance and temperature
for use in the limb-darkening correction to be described
later.

The ISCCP B3 data consists of all available spectral
channels. For the CLAUS project the IR channels listed
in Table 1 are extracted from the B3 data and stored in
a simple packed format for use by the CLAUS program.
The data extraction process is supplemented by quality
controls to identify corrupt scan lines and bad pixel
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TABLE 2. Statistics for maximum scan line length for GOES-6 for
Jan 1984 as an example of detecting squashed images.

Scan length
No. of images

392
1

402
226

403
9

453
12

values. Bad scan lines are found using two methods: a
run length search of scan lines to identify regions that
have the identical pixel value and a check of the mean
and variance along the scan line, so that any scan line
that has a high or low value for the mean and a low
variance is also excluded. This approach appears to re-
move nearly all the bad scan lines that are erroneously
flagged as good by ISCCP. Occasionally, images are so
badly corrupted that they are wholly unusable: these are
identified using the percentage of bad scan lines value
obtained from the B3 data. Another form of image cor-
ruption appears only for the geostationary satellites, in
particular the GOES series. This manifests itself as an
apparent bad image navigation. Examination of the im-
ages reveals that for some images the on-planet disk is
apparently squashed in the vertical direction. Other
types of bad navigation appear as vertical translations
of a nonsquashed disk. When these data are gridded,
this results in large vertical translations in what should
be fixed features, such as continents. The squashed im-
ages are identified by examining the value for the max-
imum on-planet scan line length; this is larger than for
good images, so that images are excluded if they exceed
a scanline length threshold. For example, the GOES-6
satellite for January 1984 had the maximum scan line
statistics shown in Table 2. The single image with length
392, is a partial image so should be accepted; the ma-
jority of images have length of 402, but the images with
lengths of 453 are bad images and should be excluded.
Thus, an acceptance threshold of 20 from the value of
402 accepts the images with length 392, 402, and 403
and rejects those with value 453. The image translations
are harder to detect automatically since they require the
identification of surface features and the comparison of
their ISCCP navigated position with their actual posi-
tion. A manual quality control is used to identify them,
but this is operator dependent. Ideally, these otherwise
good images should be renavigated, which may possibly
be done in subsequent algorithm improvements. The
pixel on/off-planet flag is used to exclude all off-planet
pixels. Thus, the resulting reformatted data should con-
tain only data from good images/scan lines and only for
on-planet pixels for the IR channel. However, other
types of bad data occasionally slip through, in the form
of bad images/scan lines that are not flagged and are
not easily automatically detected as well as badly nav-
igated images; these then require manual intervention.

3. Algorithm overview

The algorithm proceeds by first initializing a grid and
a calibration table to convert temperatures to 8-bit in-

tegers for archiving in the chosen image format. The
grid is chosen by specifying the number of grid points
required in longitude and latitude for the Plate Carrée
projection (this is the only projection used at present,
although any grid can be used). This was chosen as the
most convienient for comparing with global GCM data.
The method of performing the gridding is independent
of the grid chosen, since a spherical nonparametric re-
gression technique is used (Hodges 1996). The calibra-
tion table is used to scale the gridded WBT values so
that the data can be stored in image format [the Portable
Gray Map (PGM) format is used]. Valid values are
scaled to the range (1–255), with the value 0 being used
to indicate missing data values. The PGM format is also
used for the quality data, with the quality values being
packed into bit fields for each quality byte. Each grid
point thus has a byte in the WBT image and a byte in
each of the quality images; there are two quality images
per WBT image.

The algorithm continues by looping over the chosen
time range, performing the spatial regression at each
synoptic time at three smoothing levels, incorporating
corrections for limb darkening for the geostationary sat-
ellites and temporal weighting for the polar orbiting
satellites to account for the asynoptic nature of the polar
orbiter data. Three smoothing levels where chosen as a
compromise between processing speed and the require-
ment of producing as complete an image as possible
from the spatial regression. For each synoptic time the
required B3-reformatted data within 1.5 h of the target
time are identified from the satellite header summaries
obtained at the data extraction/reformat stage. This usu-
ally results in the identification of a single image for
each geostationary satellite, unless more than one series
is operational at the same time, for example, METEO-
SAT-3 and METEOSAT-4, with METEOSAT-3 being
used as cover for the failed GOES-6. For the polar or-
biting satellites there may be several images that overlap
the temporal window.

The spatial regression is performed by looping over
the data for each contributing satellite with only the data
that fall within the 61.5-h time window being used.
This will include all of the data in a geostationary sat-
ellite image that coincides with the target time, but may
only be a partial polar orbiter image, so only the data
for scan line times that fall with the time window are
used. For each satellite the algorithm loops over each
of the selected B3 pixels, checking to ensure that it has
a valid value and that it falls within a satellite zenith
angle mask. The mask is used for the geostationary
satellites to exclude the very extreme limb pixels which
can be affected by variations in satellite navigation.
Each B3 pixel is also corrected for limb-darkening ef-
fects if the current satellite is a geostationary satellite.
No limb-darkening correction is currently performed for
the polar orbiter data as the swath is relatively narrow
compared with the geostationary satellite field of view.
Also no correction is made for changes in pixel footprint
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size with the change in satellite zenith angle. Following
the application of these checks and corrections to the
B3 pixel the contribution to the grid estimates is com-
puted for each smoothing level and the estimates for the
regression and data density are updated. A crude ap-
proach to computing the contributions to the grid for
each pixel would be to check every grid point for each
pixel, a very time-consuming process. However, since
the weighting kernels we are using are spatially local
in nature a much more efficient scheme has been de-
veloped which limits the amount of checking required
to just the grid points local to the pixel position on the
sphere.

Following the completion of the regression estima-
tion, there are estimates available at three smoothing
levels on the chosen grid. The estimate for the smooth-
ing level, which has the highest data density estimate
is the one taken as the final gridpoint value. Ideally, a
fully adaptive regression estimation should be used
which varies the smoothing with the local data density.
However, for this amount of data, this approach would
be computationally prohibitive (a pilot density estimate
is required; see Hodges 1996) as well as invalidating
the efficient search method mentioned. Finally the grid-
ded data are scaled to image format and written to file.
The quality data are also written to file.

The final stage is to take the images obtained from
the spatial regression and fill the remaining data voids
using temporal interpolation between adjacent images.
This is performed using a motion compensated inter-
polation method based on a hierarchical determination
of the motion vectors, as opposed to the simple linear
interpolation method used by Tanaka et al. (1991). How-
ever, both methods have been implemented for com-
parison purposes. The motion compensated interpola-
tion is found to preserve the sharpness of features much
better than the simple linear interpolation although on
average the differences are not very large between the
two methods at the resolution being used. This is in part
a consequence of the resolutions in space and time that
the ISCCP B3 data provides. The final gridded data are
written to file along with the updated quality informa-
tion.

An important though difficult question to answer is
what accuracy we require for validation studies. As the
ISCCP B3 data are only 8 bit, this is already a limitation
on the available accuracy and appears to preclude the
study of the ocean surface or low-level stratocumulus
cloud regions in studies so far conducted using data
produced by the algorithm described here. However,
examination of diurnal and semidiurnal activity and Hy-
ashi spectra do not indicate any problems with the data
produced by the algorithm, at least in the Tropics for
cloud systems and land, so we conclude the algorithm
is performing adequately for the required purpose of
model validation at least. The usefulness of the data
produced by the algorithm in other studies will only

become apparent with time and use in a range of ap-
plications.

4. Spatial regression

The spatial regression is required to combine the
ISCCP B3 data distributed along scan lines for multiple
satellites onto the chosen grid. This is done using the
reformatted data and performing a nonparametric re-
gression onto the chosen grid. Since the ISCCP B3 data
can be considered as data distributed on a unit sphere,
that is, each ISCCP B3 pixel has a latitude–longitude
coordinate, the method for gridding the B3 data is to
use a spherical nonparametric regression estimator
based on local spherical kernels (Hodges 1996). This
requires the grid to be converted to three-dimensional
Cartesian coordinates representing unit vectors pointing
to the grid points on the unit sphere. The kernels es-
sentially control the region of influence of each data
point (B3 pixel position) and their contribution to an
estimation point (grid point) via a function of the an-
gular separation between a data point and a grid point.
This approach is independent of the grid chosen, that
is, any distribution of grid points can be selected and a
regression estimate performed. Also, there is no bias in
the estimate (although there may be in the source data)
as the estimation is performed in spherical geometry,
which obviates the need to introduce some form of cor-
rection, that is, latitudinal-dependent area weighting. It
is not apparent that Tanaka et al. (1991) took this into
account in their algorithm, since they used fixed angular
grid boxes. The ISCCP C1 and C2 data (280-km grid)
take this into account by using an equal area grid for
their cloud products, although this does not take account
of the change in shape of the sampling region, for ex-
ample, a rectangular latitude–longitude box at the equa-
tor is not a rectangular box at higher latitudes on the
earth.

The spatial regression is performed by looping over
all the identified ‘‘good’’ pixels for each satellite. For
each pixel the contributions to the regression and data
density estimates are computed for three kernel widths
controlled by the spherical kernel parameters. This is
performed for those grid points local to the position of
the pixel (this will be described shortly). These contri-
butions are then used to update the regression and data
density estimates for the three smoothing regimes. Be-
fore the updates are computed the pixel value is first
compared against a temperature acceptance mask to ex-
clude unlikely temperature values (the mask used by
Tanaka et al. 1991 has been used), although it is very
rare for a pixel value to be rejected, and then corrected
for limb-darkening effects. The limb-darkening effects
are caused by a mixture of radiative and geometric ef-
fects due to the view angle. For example, for a broken
cloud field viewed at a large zenith angle, it is more
likely that cold cloud tops are viewed than at nadir
where there is a greater possibility of viewing the sur-
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FIG. 1. CLAUS satellite zenith angle weighting function compared
with cos(u) weighting function used by Tanaka et al. (1991).

TABLE 3. Kernel parameters for the three smoothing levels and
their equivalent ABRs.

C 1.000038078 1.000152328 1.000342792

ABR (deg) 0.5 1.0 1.5

face. Also, for a large viewing angle the radiance at the
top of the atmosphere will be decreased due to the longer
pathlength through the atmosphere. This correction is
required, in addition to the zenith angle weighting, to
correct for artifacts which appear when polar orbiting
data are adjacent to geostationary limb data. The zenith
angle weighting has little effect unless the pixels from
different satellites are mixed. This correction is also
required for the temporal interpolation, where a missing
geostationary satellite results in a data hole with ap-
parent bright edges due to the limb effects adjacent to
the interpolated hole. The correction for these effects
will be discussed later.

The regression estimate is computed at grid point i
as

N

(t) (z) (s)T w w kO j j j i, j
j51

T̂ 5 , (1)i N

(t) (z) (s)w w kO j j i, j
j51

where T̂i is the temperature estimate at the ith grid point,
Tj is the calibrated temperature at the jth pixel with N
the number of pixels, and is the polar orbiter tem-(t)wj

poral weighting defined as

1, if geostationary

1 t 2 t0(t) w 5 1 2 , (2)j ) )[ ]h h
if polar orbiter |t 2 t | # h, h # 1.5 h. 0

This progressively downweights polar orbiter pixels
that are temporally farther away from the target synoptic
time t0 and thus provides tapering to the polar orbiter
data.

The satellite zenith angle weighting is given by(z)wj

the function

1 1 0.43429 ln[cos(u )], if cos(u ) $ 0.1j j(z)w 5 (3)j 50, otherwise,

where uj is the satellite zenith angle for the jth pixel.
This weighting function progressively downweights off-
nadir pixels in favor of near-nadir pixels. Tanaka et al.
(1991) also used a zenith angle weighting based on only
cos(u). The function we have used does not fall off as
severely as cos(u) for small u but falls off more quickly
for extreme limb values of u. This is shown in Fig. 1
compared with cos(u). The form of the function in ex-
pression (3) is chosen to reflect the functionality often
used for limb darkening correction factors (see Minnis
et al. 1991 and later discussion on limb-darkening cor-
rection). The cutoff value of cos(u) 5 0.1 is used to
exclude the extreme limb pixels, which are the most
affected by the extreme viewing angle and that might
be viewing a mixture of on-planet and off-planet re-
gions. Larger values can be specified on a per-geosta-
tionary-satellite basis to exclude bad pixels associated
with navigation problems as discussed earlier (usually
for GOES satellites in the ISCCP B3 data).

The spatial weighting function is given by the(s)ki,j

linear spherical kernel function (Hodges 1996),

 C
(CX · X 2 1), CX · X 2 1 $ 0 i j i j2p(C 2 1)(s)k 5i, j (4)

0, otherwise,

where C is the kernel smoothing parameter, which con-
trols the bandwidth of the kernel; and X i and Xj are the
unit vectors representing the grid point and pixel po-
sition, respectively, on the sphere. Note that this func-
tion is also a probability density function since it in-
tegrates to unity on the sphere. The three smoothing
levels are represented by a choice of three values for
the parameter C, these are given in Table 3 with their
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FIG. 2. Schematic of the method for determining the grid points lo-
cal to a pixel position for fixed-width kernels.

equivalent arc band radius (ABR), obtained from the
constraint CXi · X j 2 1 $ 0.

Note these are global parameters; ideally we would
like to use a fully adaptive scheme in which case the
parameter C becomes a local parameter dependent on
the data density (Hodges 1996), but this is very expen-
sive.

The spatial data density is given by

N1
(s)f̂ 5 k , (5)Oi i, jN j51

and is used to determine which estimate to use of the
three smoothing levels.

As mentioned earlier, rather than test each grid point
for a contribution from the current pixel, only those grid
points local to the pixel position are tested for a contri-
bution. This is possible because constant width kernels
are being used. The method for determining the grid
points local to a pixel position is illustrated in Fig. 2.

For each latitude circle in the grid a longitude point
is chosen, for example, point (b) in Fig. 2. The number
of longitude nodes that can possibly fall within a fixed
kernel centered on this point is computed by translating
the kernel to point (c) in Fig. 2, and counting the lon-
gitude nodes along the latitude line XY in Fig. 2. This
is done by computing the value of CX1 · X2 2 1: pos-
itive values indicate that the point X2 is within the kernel
support for a kernel centered at X1. This ensures that
all required grid points are captured for any pixel po-
sition. This process is performed once for all the lines
of latitude in the grid for a hemisphere (the process is
symmetric about the equator). Clearly, as we move to
higher latitudes the number of longitude nodes that fall
within the kernel support increases, so that near the
poles all the longitude nodes are likely to fall within
the kernel support. The number of latitude nodes within
the kernel extent is constant and only needs computing
once. This process is repeated for each kernel width
used, that is, three in this case. The way these subgrid
extents are used is to find the nearest grid point to the
current pixel position; the subgrid extents then provide
the local grid points that need testing for possible con-

tributions to the WBT estimate and density estimate at
each of these grid points.

An example of the result for just the primary regres-
sion, that is, using the smallest regression kernel, is
shown in Fig. 3, together with the primary data density,
the result of applying the three levels of spatial regres-
sion (all scaled to 8-bit images) and its temperature
calibrated form.

Notice in Fig. 3 that the result for the primary re-
gression is a much more complete image than was ob-
tained by Tanaka et al. (1991) for their first spatial stage.
The final image, obtained using all three regression lev-
els, is shown in Fig. 3c. This still has some regions with
no data; these are subsequently filled using the temporal
interpolation part of the algorithm described in section
6. Figure 3b shows the spatial probability density func-
tion (i.e., ignoring the temporal weighting of the polar
orbiter data) scaled to an 8-bit image. This shows the
complex way the satellite views overlap with each other
and the patterns formed by the data sampling using
spherical kernel estimators. Figure 3d shows the same
data but calibrated to temperature.

5. Limb-darkening correction

The reasons for including a limb-darkening correction
have already been discussed. Here the form of this cor-
rection is described. The approach of Tanaka et al.
(1991) to the problem of limb effects, is to weight the
pixels with their cosine of satellite zenith angle to reduce
the contribution of the limb pixels relative to pixels
closer to nadir. However, this only works when satellite
views overlap: it has no effect when there is no overlap.
The effect of limb darkening, when combining data from
different satellite platforms, is often apparent when there
is a polar orbiter swath adjacent to a geostationary limb.
The geostationary limb shows much lower temperatures
(brighter image values) than the adjacent polar orbiter,
that is, there is a discontinuity in temperature. To correct
for these effects for data from geostationary satellites
there have been several previous studies, resulting in
empirical limb correction functions for application to
the radiances which correct the radiances to nadir view.
However, these can never really fully take account of
the geometric effects. The correction of the radiances
to nadir is provided by the following expression:

R(u)
R(0) 5 , (6)

l(u)

where R(u) is the radiance at a zenith angle u, R(0) is
the radiance at nadir, and l(u) is the limb correction
function as a function of the satellite zenith angle. Min-
nis et al. (1991) derived an empirical function based on
limited radiative transfer calculations (Minnis and Har-
rison 1984) in aerosol-free atmospheres for the spectral
window 10.0–12.0 mm. The Minnis function is given
by
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FIG. 4. Limb-darkening function estimated by the ratio of geosta-
tionary to polar orbiter standardized radiances. The lower curve rep-
resents the limb correction applied to the CLAUS data. The upper
curve shows the limb-darkening function predicted by the radiative
transfer calculations by Minnis et al. (1991).

01, if u , 11
l(u) 5 (7)5b 1 a ln[cos(u)] otherwise,

where a 5 0.03247 and b 5 1.000602.
However, we have found that the response of this

function does not correct sufficiently for the limb-dark-
ening effect. This can be attributed to the lack of any
clouds in the radiative models from which the expres-
sion is derived, or the presence of aerosols that can result
in more absorption. An alternative empirical means to
determine the nature of the correction would be to com-
pare the geostationary limb pixels with polar orbiter
pixels suitably localized in time and space to that of the
geostationary satellite. This will be discussed in more
detail shortly.

A similar approach to determining the limb-darkening
relationship was explored by Smith et al. (1994) using
data from the Earth Radiation Budget Experiment
(ERBE) scanning radiometer operating in along-track
mode. This is a broad band instrument (5–50 mm) and
allows the comparison to made between limb views and
nadir views of the same position on the earth with only
a short time difference. The data were partitioned ac-
cording to scene type, day/night and season and the
limb-darkening relationship derived for each of these
scenarios. However, Smith et al. (1994) were interested
in radiative fluxes, so their limb correction functions are
normalized differently than in expression (6). However,
for most scenes, irrespective of time of day or season
the relationship between limb and nadir data is remark-
ably similar, except for scenes with snow cover. This
stable relationship between nadir and limb data is in
part due to the size of the ERBE footprint, which is
quite large and likely to contain some cloud and also
because the broad spectral band used which will tend
to smooth the differences due to cloud cover. Addition-
ally, the averaging over a large number of observations
will tend to smooth out any variation; the relationship
may show more variation for a single pass. Smith et al.
(1994) fit their results to a simple physical model, which
resulted in a relationship dependent on special functions
in the form of the exponential integral of order 4.

To explore the limb-darkening problem further, the
gridded values of geostationary satellites were com-
pared with those of the polar orbiters. The look angle
of the polar orbiter imagery was restricted to u , 368
to approximate the nadir view of scenes imaged on the
limbs of the geostationary satellites. The polar orbiter
scans were further restricted to times within half an hour
from the geostationary image to reduce effects of tem-
poral variability in clouds or land. To compare the de-
rived limb-darkening functions with previous results,
the gridded temperatures for both the polar orbiter and
geostationary satellites were converted to a standardized
radiance based on a common window profile. We chose
a typical window profile for the GOES-E satellite based
on the ISCCP calibration tables. We find that the results
are not sensitive to the detailed form of this standardized

window. For every grid location which has both geo-
stationary and polar orbiter coverage (subject to the con-
straints listed above), the ratio Rgs/Rpo of the geosta-
tionary to polar orbiter radiances are computed. The
average value and standard deviation of these ratios for
a given range dz of the cosine nadir view angle are then
computed.

Figure 4 shows the limb-darkening profiles for three
geostationary satellites over the period 1–16 January
1992. The limb functions for the GOES-7 and GMS-4
satellites are in good agreement with each other and are
consistent with the broadband measurements of Smith
et al. (1994). METEOSAT-4 appears to exhibit a greater
amount of limb darkening for reasons, which are not
clear at present. One possibility that may account for
these differences in limb behavior is that for these geo-
stationary instruments their may be a danger of includ-
ing the effects of CO2 absorption/emission at the long-
wave end of the transmission window. However, the
overlap of the spectral response functions of each of
these satellites barely overlap the CO2 region with the
greatest overlap occurring for GMS-4 (according to the
ISCCP documentation). What may be more relevant is
the shape of the spectral response functions: this would
probably require a radiative transfer transfer study along
the lines of the forward modeling described in the in-
troduction to resolve this issue. Inspection of images of
the spatial variation of Rgs/Rpo reveals that much of the
scatter associated with each data point in Fig. 4 arises
from cloudy regions containing high spatial variability.
Thus, the scatter may be caused by slight navigation
errors, differing footprint sizes due to viewing geometry
angle, projection effects of vertical cloud distribution,
and/or temporal variability. The upper curve shows the
radiative transfer predictions of Minnis et al. (1991) (a
5 0.0325) discussed above. The empirical estimates of
the limb function clearly have a faster fall-off with nadir
angle than the Minnis function. The reason for this dis-
crepancy, we suggest, is due to the neglect of aerosols
and clouds in the theoretical calculation. The lower
curve shows the limb correction [eq. (7) with a 5 0.09]
adopted for the CLAUS dataset. This admittedly crude
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FIG. 5. Comparison of interpolated images of a Southern Hemi-
sphere midlatitude storm using motion compensation (left) and
straight temporal averaging (right). The true image is shown in the
center panel. The features indicated by the arrows are discussed in
the text.

approach may lead to some artifacts remaining associ-
ated with limb darkening as a result of the limited study
performed here. But there is a significant reduction in
the number and magnitude of artifacts that can be iden-
tified with no correction. Ideally, the limb correction
should be determined on a per-satellite basis and for
different scene types, etc. This is a substantial task that
we hope to tackle in the future.

The limb correction is applied in the following way.
For each individual geostationary satellite image a quar-
tic polynomial fit is produced for the radiance as a func-
tion of window brightness temperature using the cali-
bration tables available in the ISCCP BT version 1 files.
This is used to obtain the radiance, which is corrected
for the limb effects by applying expression (6). This is
then converted back to temperature by applying New-
ton’s method to the quartic expression. The computa-
tional overhead is small, since the expression for the
polynomial and limb correction function can be eval-
uated rapidly and the Newton scheme has a quadratic
order of convergence. Also, we only need to store the
quartic coefficients for each geostationary image,
whereas using an alternative lookup table approach
would require a significantly greater amount of storage
(following the reformat stage the satellite calibration
tables which might be used as lookup tables are no
longer required).

6. Temporal interpolation

Gaps in the spatially sampled images because of in-
complete satellite coverage cause problems for appli-
cations which require complete data, such as storm
tracking, scale-dependent analysis, and some GCM val-
idation activities. For this reason, we use a temporal
interpolation method to ‘‘fill in’’ the data holes to pro-
duce a spatially and temporally homogeneous dataset.
The interpolation scheme is based on a cross-correlation
method to estimate a field of cloud motion vectors over
each data void using adjacent images in the series. In-
terpolation is then performed along the local velocity
vector over the neighbouring image frames. As will be
shown below, the motion compensation reduces blurring
of moving cloud systems, especially in midlatitude re-
gions, as compared with the simple linear interpolation
method used by Tanaka et al. (1991), which neglect
motion effects.

Central to this method is the estimation of cloud mo-
tion vectors. Much work has been done in this area as a
means of deriving mesoscale and synoptic wind fields
for use in forecasting and model validation. This work
largely uses cross-correlation methods to search for high-
ly correlated regions between pairs of successive satellite
images. Straightforward application of cross-correlation
methods, however, often produces irregular velocity
fields containing non–physical motion vectors. By thres-
holding the velocity field according to the correlation
coefficient many (but not all) of the erroneous velocity

vectors may be rejected, but this can lead to sparsely
sampled velocity fields (e.g., Wahl and Simpson 1990).
Attempts to produce spatially smooth fields often rely on
iterative methods involving, for example, vector median
filters (Simpson and Gobat 1994), energy minimization
(Larsen et al. 1998), or fluid motion models (Hasler et
al. 1998). However, these techniques tend to be com-
putationally expensive, prohibiting their use for large da-
tasets such as that here. In addition, not all these methods
clearly demonstrate that the smoothed velocity field ac-
tually represents a better estimate of the true field. We
have found that for the present dataset, confusion between
multiple correlation maxima is a large contributor to the
presence of erroneous velocity estimates. This is most
likely due to a breakdown in the implicit assumption of
the cross-correlation method, which holds that at small
scales the image structure evolves entirely through rigid
translation and not rotation, dilation, or differential
brightness variations. The degree to which these as-
sumptions are valid for cloud imagery depends on the
spatial scale and temporal sampling of the image se-
quence. As, for example, the temporal sampling rate de-
creases, larger differences may occur in the cloud struc-
ture between subsequent images, violating these as-
sumptions and resulting in a poor correlation match for
the true displacement vector. If, in addition, a given cloud
feature happens to resemble a neighbouring cloud system,
then an erroneous correlation peak may appear, even
though the corresponding displacement vector does not
correspond to true physical motion.

In the present approach, we use a hierarchical method
of selecting the final correlation peak. Initially, rela-
tively large blocks are chosen which are designed to
follow the motion of synoptic systems such as midlat-
itude storms or tropical cyclones. We find that for blocks
with linear sizes of 208, the correlation surfaces for the
ISCCP B3 data often contain a single peak correspond-
ing to the average motion at that spatial scale. Thus,
confusion between multiple peaks rarely occurs on these
scales. However, since the velocity field is underresolved
at this scale, we divide each large block into four smaller
blocks and recompute the correlation surface. The ve-
locity estimate in the large block is used to select the
local maximum in the correlation surface produced by
each smaller block. (In principle, a quad-tree algorithm
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FIG 7. Difference temperature plot for the CLAUS algorithm and the Tanaka et al. (1991) algorithm for 0600 UTC 4 Jan 1984: CLAUS–
Tanaka.

could be used, so that the correlation surface need not
be recomputed. The total computation time would there-
fore not be sensitive to the number of hierarchical levels
used.) This method implicitly assumes that smaller-scale
motions may be regarded as perturbations on a larger-
scale flow. For midlatitude systems, squall lines, and
tropical cyclones this appears to be a good assumption,
with the method producing velocity fields that are sub-
stantially more coherent, and that result in smaller in-
terpolation errors than those made from straightforward
cross-correlation methods. However, for complex dy-
namics at small spatial scales, common to tropical con-
vection, this assumption breaks down and the method
provides little (if any) improvement over simple linear
interpolation as used by Tanka et al. (1991). Finally, we
note that this method has little computational overhead,
unlike other more sophisticated iterative techniques,
which makes it ideal for large datasets such as CLAUS.

Implementation of this method proceeds as follows.
Given a data void in the temperature image at time t,tT i

a grid of contiguous blocks centered on the void is over-
laid on the preceding image . Each block is thent21T i

translated over a portion of the image to find thet11T i

displacement vector vf that produces the largest corre-
lation coefficient. If any of the blocks contain incomplete
data, that block is repositioned on the next frame, for

example, from image to . As a quality control,t21 t22T Ti i

the matching is then performed in reverse, where the grid
of blocks is overlaid on image and matched againstt11T i

the preceding frame to produce the vector vb. If thet21T i

displacement vectors vf and vb agree to within a specified
value dv and have correlation coefficients larger than a
specified threshold R0, the average of the vectors is used
for the local velocity estimate. The vectors are rejected
if |vf 2 vb| . dv or if both correlation coefficients fall
below R0. If only one vector satisfies r . R0, then the
corresponding vector is selected. Rejected velocity esti-
mates are replaced by local averages of the velocity field.
In the event that no neighboring velocity values are de-
fined, the velocity estimate is set to zero. In this case,
the interpolation reduces to the simple non-motion-com-
pensated method. The resulting set of motion vectors are
then ‘‘fed in’’ to the hierarchical scheme described above.
At each stage in the hierarchy, the quality control just
described is implemented.

Once the velocity field has been estimated the tem-
perature values in the data void are interpolated ac-tT i

cording to
t1DtW(Dt)TO i1y Dti

DttT 5 , (8)i
W(Dt)O

Dt
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TABLE 4. First quality byte structure. The spare bit fields are used
when additional satellites are operating, e.g., an additional METEO-
SAT.

Bit Satellite series

1
2
3
4

GMS
METEOSAT
GOES-E
GOES-W

5
6
7
8

NOAA-PM
NOAA-AM
Spare
Spare

TABLE 5. Second quality byte packing order.

M I Z

8 7 6 5 4 3 2 1

TABLE 6. Values of the interpolation flags in the second quality
byte.

Value Regression/interpolation level

0
1
2
3

Primary spatial
Secondary spatial
Tertiary spatial
Primary temporal

4
5
6
7

Secondary temporal
Tertiary temporal
Reserved
Reserved

where vi is the local cloud motion field, the summation
runs over the two neighboring images on either side of
the target image, and the temporal weighting function
W(Dt) is temporally symmetric, with W(Dt 5 63 h) 5
5W(Dt 5 66 h). Only those images that have spatially
sampled data values contribute to the sum. The values
of the weighting function were chosen so that the image
contributions at times Dt 5 66 h are negligible when
the Dt 5 63-h frames are present. When vi is locally
zero, the interpolated value is given by simple temporal
averaging.

The left panel in Fig. 5 shows the results of the mo-
tion-compensated interpolation technique applied to a
midlatitude storm in the Southern Hemisphere. The true
image is shown in the center panel, while temporal in-
terpolation without motion-compensation was used to
produce the image in the right panel. In this example,
motion compensation reduces the amount of blurring
due to cloud motion (see lower arrow), reducing the
corresponding interpolation error by 30% from 6.5 to
4.6 K. Notice that the cloud band that appears doubled
in the right panel (see upper arrow) is much better rep-
resented by the motion-compensated interpolation. An
example of a complete image obtained from the spatial
and temporal parts of the algorithm are shown in Fig.
6, along with its temperature scaled version and images
of the two quality fields.

A comparison of Tanaka et al.’s (1991) results and
the result of applying the full CLAUS algorithm is
shown in Fig. 7. This figure shows that the algorithm
reported here consistently has lower cloud-top temper-
atures. This may be due to using the more recent ISCCP
calibration tables, but is more likely to be due to the
difference in approach of the spatial sampling. As has
already been mentioned, the distance weighting scheme
fills more of the grid values in the primary pass than
that of Tanaka et al. (1991). The Tanaka algorithm fills
the remaining small holes by local averaging which
smooths out the temperatures, resulting in warmer cloud
tops. Additionally, the box averaging used by Tanaka
is a discrete process, while our distance weighting meth-
od is continuous, so there may be an element of mis-
alignment in this comparison. Clearly evident is the ef-
fect of the limb-darkening correction for the geosta-
tionary satellites, which show warmer temperatures than

Tanaka et al. (1991) around the geostationary limbs; the
Indian Ocean region shows this most clearly; this is
where there is only a very small overlap between ME-
TEOSAT and GMS and at this particular time there is
no polar orbiter coverage for this region.

7. Quality indicators

As well as producing the gridded WBT data, a large
amount of quality data is also produced, which is stored
as two bytes per grid point. Although this amounts to
twice as much data as the gridded data, this is justified
because it provides users with as much information as
possible to allow assessment of the quality of a grid
point value based on a knowledge of how it was derived.
The first byte contains the contributing satellite infor-
mation, one bit per satellite and packed according to
Table 4.

The second byte (Table 5) contains a missing data value
flag in the high end bit, with a value of zero for present
and one for missing. The first 4 bits (low end) contain the
average satellite zenith angle (Z) computed as

N

(s)z kO j i, j
j51

ẑ 5 , (9)i N

(s)kO i, j
j51

where zj 5 cos(uj) is the cosine of satellite zenith angle
for data point j and ẑi is the mean cosine of satellite
zenith angle computed from all contributing satellites
to the ith grid point. The values of ẑi are scaled into the
integer range 0–15. The remaining three bits (I) are used
to indicate the means by which the gridpoint data has
been derived, for example, primary regression, temporal
interpolation etc. The values take the range from 0 to
7, that is, they fit into 3 bits. The various values are
listed in Table 6. The temporal values are defined to
reflect the number of frames at times 63 h from target
which contribute to the interpolation, since they gen-
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erally provide a more reliable estimate than the 66-h
images. The primary, secondary, and tertiary temporal
interpolation values indicate that both, one, or neither
of the t0 6 3-h frames were used in the interpolation.
When tertiary temporal interpolation is used, the esti-
mated image value is solely dependent on the image
frames 6 h from the target image, and thus represents
the least accurate interpolation level. The reliability of
the local image estimate therefore increases with de-
creasing value of the interpolation fields taken as a
whole.

The two quality bytes for each grid point are stored
as images in two separate files. Color-coded examples
of these are shown in Fig. 6, and clearly reveal the
complex way that the satellite coverage of the individual
satellites overlap, as well as the distribution of methods
by which the data have been combined.

8. Applications

The types of data that are produced by the algorithm
described here can be used for a variety of climatolog-
ical studies and GCM validation. Processing the whole
of the ISCCP B3 archive will produce a dataset from
July 1983 to the present, that is, ;16 yr, at the 3-hourly
time steps. This will allow a range of climatological
studies to be performed on cloud systems from meso-
scale to supercloud cluster scales, for example African
squall lines, modulation of convection by easterly
waves, diurnal variations, the Madden–Julian oscillation
and the effects of El Niño to name but a few. Salby et
al. (1991) used their limited period of data to generate
time means, filtered variance and power spectra. The
CLAUS data will allow these simple statistics to be
generated over a much longer period, to explore the
natural variability of tropical cloud systems in particular.
The motion and evolution of cloud systems can also be
explored (Hodges 1998), although new techniques are
currently being investigated to deal with differing cloud
structures.

For GCM validation the data can be used to explore
whether models produce the correct diurnal cycle, an
important diagnostic of the radiation scheme and con-
vective parameterization; also whether the models are
capable of simulating such processes as the Madden–
Julian oscillation, for example.

As an example, the usefulness of the CLAUS data is
demonstrated by a limited study of the diurnal variation
in the Tropics using a years worth of data for 1992. The
results of this study are shown in Fig. 8 for the diurnal
amplitude and Fig. 9 for the diurnal phase (in terms of
the local time) for the four seasons obtained by per-
forming a time spectral analysis at each grid point.

The diurnal amplitude of the WBT in Fig. 8, shows
that the maximum WBT at this frequency occurs over
the land, as would be expected as a result of the low
heat capacity of the land surface, which allows it to
respond to solar heating and infrared cooling, faster than

the ocean. Regions over the land with lower amplitudes
of the WBT indicate the main regions of convective
activity. For example, over the African region of the
Sahel and Congo for JJA there is a band of lower am-
plitudes from the Ethiopian highlands to the Guinea
coast, which indicates the main region of convective
activity for this period.

More general observations of the diurnal phase in-
dicate that for clear-sky regions over the land the max-
imum WBT occurs in the early afternoon after the peak
in the solar heating, whereas for clear-sky regions over
the ocean the maximum WBT occurs in the late after-
noon due the larger heat capacity of water, resulting in
a slower temperature response to the solar heating. In
convectively active regions over the land the maximum
in WBT occurs in the morning when the convective
activity is decaying. Over the convectively active oce-
anic regions the maximum in WBT shows less orga-
nization with a lot of variability, although around the
land margins the phase is consistently in the late even-
ing, possibly associated with the formation of stratiform
clouds.

More extended studies will be performed along the
lines described above once the full CLAUS dataset is
completed.

9. Conclusions

A new algorithm has been presented for generating
gridded WBT from multiple satellite images. Although
the skeleton of the algorithm follows that of Tanaka et
al. (1991), the individual elements of the algorithm use
alternative techniques that are more comprehensive in
their approach, for example the use of spherical kernel
estimators for the spatial regression, the introduction of
a temporal weighting for the asynoptic polar orbiter
data, a correction for limb darkening, and the use of
motion compensated temporal interpolation to fill data
voids. This results in a reduction in many of the artifacts
apparent in the data of Tanaka et al. (1991) (observed
in the years’ worth of data processed by Tanaka et al.
1991). The CLAUS project will process the whole of
the ISCCP B3 archive, amounting to about 16 years’
worth of data. This will allow meaningful climatological
studies to be performed as described in the previous
section, as well as the validation of several aspects of
GCM integrations.

Further improvements to the algorithm are ongoing,
including studies of the limb-darkening problem: at the
moment empirical, but also in the future using radiative
transfer models. Further work will also be performed
to study the effects of data bias in the source data and
due to the sampling of the raw data to B3 resolution.
The efficacy of applying the algorithm to full-resolution
data will also be explored.
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FIG. 8. Diurnal amplitude for the four seasons: DJF, MAM, JJA, and SON.
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FIG. 9. Diurnal phase in local time for the four seasons: DJF, MAM, JJA, and SON.
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