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Talk structure

F Introduction and theory
- Motivation
- Variational data assimilation
- Observation error covariance matrices

F Quantifying observation error correlations
- Desroziers’ method of statistical approximation
- Application to IASI data
- Results

F Modelling observation error correlation structure
- Approximate structures for R
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What are observation error correlations?

Every observation y of a atmospheric variable x has an
associated error ε: y = Hx + ε
→ observation error correlations are present when components
of the error vector ε are related
→ measurement errors are attributed to 3 sources: instrument
noise, forward model error and representativity error
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Error sources

• Instrument noise
- temperature converted neδt value
- regular calibrations ensure noise is uncorrelated between

channels
• Forward model error

- errors in discretisation of radiative transfer equation
- errors in mis-representation of gaseous contributors
- errors from undetected cloud

• Representativity error
- contrasting model and observation resolutions
- observations resolve spatial scales or features that the

model cannot
- contributes to cross channel observation error correlations
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Why are correlations important?

Problems
-ve magnitude and behaviour relatively unknown
-ve reduce weighting of observations in analysis
-ve for an observation vector of size 106, difficult to store and

invert observation error matrix if correlations are included
Benefits
+ve increase accuracy of gradients of the observed field

represented in the analysis
+ve works with the prior error covariance to specify how

observation features should be smoothed
+ve more information available from observations
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Observation error correlation and Shannon
Information Content

Figure: The SIC under different approximations of R
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Variational data assimilation

Assimilation objective

Model forecast + Observation data→ State of atmosphere

Assimilation method Minimise a cost function which
measures distance of a solution state x from the observations
yo
∈ Rm and the background field xb

∈ Rn

Cost Function

J(x) =
1
2
(x − xb)T B−1(x − xb) +

1
2
(yo
− H(x))T R−1(yo

− H(x))

where B and R are the background and observation error
covariance matrices respectively
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An error covariance matrix structure

The observation error covariance matrix takes the form:

R = D1/2CD1/2

where C is the error correlation matrix

C =


1 ρ12 . . . ρ1m
ρ12 1 . . . ρ2m
...

. . .
. . .

...
ρ1m ρ2m . . . 1


and D is the error variance matrix

D =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

. . .
. . .

...
0 0 . . . σ2

m


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A desirable error covariance matrix

Main issue in observation error correlation modelling

F need to calculate matrix-vector product R−1(yo
−Hx) every

time we calculate cost function J
F relatively easy if R = D ≡ m scalar multiplications
F BUT y ∈ R106

and so R ∈ R106
×106

which, if dense, is
impossible to store and invert

The perfect partner: what do we want from R , D?
r structure resulting in an R−1 suitable for storage / can be

used cheaply in a matrix-vector product
r representative of the true error correlation structure
r greater access to information from the observations and

improved analysis accuracy
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Quantifying cross-channel correlations: a study

Objective

Generate the true observation error correlation structure for a
sample set of remotely sensed data typical of NWP

Data type

- IASI (infrared atmospheric sounding interferometer)
observations

- measurements of the infrared radiation emitted by the
earth’s surface and atmosphere at different wavelengths

Method

We use a post analysis diagnostic derived from variational data
assimilation theory [Desroziers, 2005]
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Desroziers’ method of statistical approximation

Recall the background state, xb , and observation vector, y, are
approximations to the true state of the atmosphere, xt ,

y = Hxt + εo

xt = xb + εb

where εo and εb are the observation and background errors
respectively.

The best linear unbiased estimate of the true state, xa , is given
by

xa = xb + K(y − Hxb) = xb + Kdo
b

K = BHT (HBHT + R)−1
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Desroziers’ method of statistical approximation

Innovation vector

do
b = y − Hxb = Hxt + εo − Hxb

≈ εo + Hεb

Analysis innovation vector

do
a = y − Hxa = y − H(xb + Kdo

b )

≈ (I − HK)do
b

≈ R(HBHT + R)−1do
b
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Desroziers’ method of statistical approximation

Taking the expectation of the cross product of do
a and do

b , and
assuming

E[εo(εb)T ] = E[εb(εo)T ] = 0,

we find a statistical approximation for the observation error
covariances

E
[
do

a (do
b )T
]
≈ E

[
R(HBHT + R)−1do

b (do
b )T
]

≈ R(HBHT + R)−1E
[
(εo + Hεb)(εo + Hεb)T

]
≈ R(HBHT + R)−1(R + HBHT )

≈ R
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Application to IASI data

Figure: Assimilation process
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Application to IASI data

Methodology
• aim to identify correlations between 139 IASI channels

used in 4D-Var assimilation
• only use clear sky, sea surface observations from night

and day
• R matrix is calculated using E

[
do

a (do
b )T
]
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Observation error correlation matrix

Figure: Error correlation matrix for 139 channels used in Var
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Observation error correlation matrix

(a) (b)

Figure: Error correlation matrix for (a) temperature sounding
channels; (b) water vapour channels
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Operational and diagnosed error variances

Figure: Operational error variances (black line), diagnosed error
variances (red line), and first off-diagonal error covariance (green line)
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Diagnosed error variances: comparison with
Hollingsworth-Lonnberg (H-L) method

Figure: Diagnosed error variances (red line), H-L diagnosed error
variances for 84.8km (blue and black line) and 61.9km (green line)
separation. Plot provided by James Cameron, UK Met Office.
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Quantifying cross-channel correlations: a summary

F Strong off-diagonal correlations are present between
channels with similar spectral properties

F Channels highly sensitive to water vapour have large
observation error variances and covariances

F The observation error variance is being overestimated in
current asimilation algorithms

F Diagnosed error variances are comparable with those
using the H-L diagnostic

F Non-symmetric matrices! → future work
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Modelling error correlation structure

What next?

Investigate how to approximate the true error correlation
structure within operational assimilation methods...

Current approaches
• a diagonal matrix approximation
• diagonal variance inflation

Alternative approaches
• a Markov error covariance approximation
• a truncated eigendecomposition approximation [Fisher,

2005]
• a Toeplitz to circulant matrix approximation [Healy, 2005]
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A Markov error covariance approximation

Consider a Markov covariance matrix of the form

Rij = σ2ρ|i−j|, ρ = exp
(
−
δz
h

)
where σ2 is the error variance, δz is the level spacing, and h is
the length scale
This is equivalent to a correlation matrix of the form

C =


1 ρ ρ2 . . . ρn

ρ 1 ρ . . . ρn−1

ρ2 ρ 1 . . . ρn−2

. . .
. . .
. . .

. . .
ρn . . . ρ2 ρ 1


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A Markov error covariance approximation

The benefit of this choice is that C has a tri-diagonal inverse

C−1 =
1

1 − ρ2



1 −ρ 0 . . . 0
−ρ 1 + ρ2

−ρ . . . 0
0 −ρ 1 + ρ2 . . . 0
. . .

. . .
. . .

...
0 . . . −ρ 1 + ρ2

−ρ
0 . . . 0 −ρ 1


and therefore as does R: R−1 = 1

σ2 I × C−1

No need to store and invert R!
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An eigendecomposition approximation

Describe C by a truncated eigendecomposition using its
leading eigenpairs

R̃ = D1/2C̃D1/2 = D1/2

αI +

K∑
k=1

(λk − α)vk vT
k

D1/2

where (λk , vk ) is an eigenvalue, eigenvector pair of C, K is the
number of eigenpairs used, and α is chosen such that
trace(R̃)=trace(D) [Fisher, 2005]

This matrix also has an easily attainable inverse

R̃−1 = D−1/2

α−1I +

K∑
k=1

(λ−1
k − α

−1)vk vT
k

D−1/2

No need to store and invert R!
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Summary

F Observation error correlations are often created because
of contrasting model and observation resolutions

F Including observation error correlation structure can
increase analysis accuracy and information content

F In IASI data, observation error correlations are strongest
bewteen channels with similar spectral properties

F In IASI data, the largest observation error covariances are
between channels highly sensitive to water vapour

F In order to include observation error correlation structure in
data assimilation algorithms, the R matrix must be suitably
structured
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Future work

F Working with a symmetric matrix, eg. fitting a correlation
function to the data, taking the symmetric part

F Investigation using the diagnostic update in a identical twin
1D shallow water model experiment
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