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Abstract

We discuss and test the potential usefulness of single-calon models (SCMs)
for the testing of stochastic physics schemes that have beeproposed for use in
general circulation models (GCMs). We argue that although sngle column tests
cannot be de nitive in exposing the full behaviour of a stochastic method in the
full GCM, and although there are di erences between SCM tesing of deterministic
and stochastic methods, SCM testing remains a useful tool. tlis necessary to
consider an ensemble of SCM runs produced by the stochastic ethod. These
can be usefully compared to deterministic ensembles desbing initial condition
uncertainty and also to combinations of these (with structural model changes)
into poor man's ensembles. The proposed methodology is demstrated using an
SCM experiment recently developed by the GCSS (GEWEX Cloud $stem Study)
community, simulating transitions between active and suppressed periods of tropical
convection.
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1 Introduction

In recent years, increasing attention has been given to theotential usefulness (Palmer
2001, Wilks 2005) of introducing some stochastic componésit to the physical parame-
terisations used in GCMs. For example, many GCMs are known teave have insu cient
high-frequency, small-scale variability of convective lag¢ing rates and precipitation in the
tropics, which may damage their ability to represent low-&quency, large-scale climate
variability (Ricciardulli and Garcia 2000; Horinouchi et al. 2003). A wide variety of
plausible stochastic methods continue to be suggested anctigely investigated, includ-
ing perturbing the inputs to a parameterisation (e.g. Tompks and Berner submitted),
perturbing the parameters used within it (e.g. Byun and Hon@007), perturbing its out-
puts (e.g. Teixeira and Reynolds 2008), and even construogj new parameterisations
designed explicitly to be stochastic from the outset (e.g.l&nt & Craig 2008). There is
a growing acceptance that the use of stochastic elements irC@s may be desirable for
both theoretical and practical reasons (e.g. Penland 2008/illiams 2005). Thus, the time



may soon be approaching when the key question changes frauimy a stochastic method?
to which stochastic methodMHere, we explore whether single column modelling might be
able to provide some insights that could inform such decisiemaking.

The aim of a stochastic scheme is to introduce variability o the numerical repre-
sentation of the climate system. In order to determine the véaability of some climate
phenomenon in the GCM, either multiple or long integrationsare likely to be required.
Further lengthy explorations would also be required if one ished to assess the impact
of that variability on other aspects of the model climate. Ha then, in practice, should
one choose the stochastic method(s) to be used in a GCM? Thecdlty is not simply
the range of possible schemes available in the literatureutbalso (at least) two other
important considerations.

First, we do not know how well various methods might combineThe motivations be-
hind various schemes, and the uncertainties they attempt taddress, may often appear to
be very di erent. At rst sight then it may be attractive to us e several methods. However,
there may be a danger in this of some \double counting”, partularly if attempting to
combine some of the more generic methods to address paramségion uncertainty. For
instance, taking a single parameterisation and perturbings inputs, parameters and out-
puts simultaneously might not be totally unreasonable, buit would be extremely naive
to expect good performance by implementing three such mett®directly \o -the-shelf".

Second, one's di culties are compounded by the fact that may (if not all) of the
stochastic schemes in the literature themselves containe®& parameters and structural
uncertainties. We can use the random parameters approach toer a simple example.
Suppose that one wished to choose random values for the entraent rate and the CAPE
closure timescale in the parameterisation of deep convewii Should those choices be
correlated, and if so, then how?

It would surely be impractical to conduct full GCM testing ofall plausible stochastic
physics schemes and all possible variations on their bastetnes. However, it should
be possible to do better than testing some best guesses. Asrat step, we describe
in this paper essentially a test-of-concept for the idea thaingle-column model (SCM)
experiments might have some useful value for comparing shastic schemes. We are not
at this stage attempting an assessment of the relative perfoance of various stochastic
schemes. Rather, our objective is to demonstrate that singlmethods to improve one's
understanding of the behaviour of various stochastic schesare both possible and worth
pursuing. It does not seem unreasonable to hope that currebest guesses could evolve
into educated guesses.

The paper is organised as follows. In Section 2 we introducense issues in single-
column modelling and their implications for testing stochstic methods. Section 3 de-
scribes the modelling framework used in this study, includg the stochastic methods
(3.1) and the ensemble approach (3.2). Results (section 4eashown for the sensitivity
to initial condition (IC) perturbations (4.1), and for the m ean states (4.2) and variabilities
(4.3 and 4.4) of various stochastic methods. Conclusionseadrawn in Section 5.

2 An SCM Approach for Stochastic Schemes

Single-column modelling has a long history as a useful guitevards understanding and
testing the behaviour of deterministic parameterisationgithin a GCM. In the full GCM,
a parameterisation interacts with model dynamics and withhie other parameterisations.



Essentially the SCM is a means to understand the latter, whitmay or may not dominate
in the full GCM. Usually the dynamical forcing of the SCM is déermined beforehand,
perhaps based on an observational campaign. The forcing melépendent of the current
model state, which constrains the possible responses. Thire SCM may behave dif-
ferently from the corresponding full GCM if dynamical feedack is an important aspect
of the situation modelled. One consequence is that paramasation errors in a GCM
which adversely a ect model dynamics may not be apparent inhe SCM, which is kept
on track by the prescribed dynamics.

It is not immediately apparent how an SCM might be used to makeneaningful
comparisons of stochastic methods. In some cases, the usa sihgle column may simply
not be viable because the stochastic terms cannot easily beped (e.g. Shutts 2005).
Indeed, it has been suggested that an ideal stochastic metheould probably be non-local
(Palmer 2001; Craiget al. 2005; Ghilet al. 2005). For the present though, the majority
of stochastic methods can be formulated for a single colummMonetheless, an obvious
objection to SCM comparisons remains: feedback from the miduced variability to the
dynamics may be a key feature of the behaviour in a full GCM (g. Lin and Neelin 2002).
This will be missing in a traditional SCM experiment with spei ed dynamics. SCMs can
include appropriate dynamical feedbacks by using a paransgtsed dynamics formulation,
such as a weak-temperature gradient approximation for therdpical atmosphere (e.g.
Sobelet al. 2007), or by coupling vertical advection to the parameteres diabatic heating
via a gravity-wave model (Bergman & Sardeshmukh 2004). Ultiately, we believe that
these and similar frameworks would be particularly well-sted to studying stochastic
physics schemes, but do not pursue them further here.

It may nonetheless be possible to gain some useful insightgoi the behaviour of
stochastic methods through an SCM comparison. The resultsrfeach method must be
considered in the form of an ensemble of SCM runs, each run hay a di erent set of
random numbers. Our proposal is to compare such ensembleshite SCM results obtained
from multiple deterministic parameterisations, the suiteof deterministic con gurations
being treated as a so-called poor-man's ensemble (e.g. Mybt al. 2002).

3 Experimental setup

Experiments have been carried out using the single-columari of the UK Met O ce
Uni ed Model (UM, Cullen 1993). The model runs are based on G&S PCCS case 5,
the design of which is described by Petclet al. (2007). Specically, we study here
the consecutive time periods B and C. Model intercomparisorases have been a major
part of the Global Energy and Water cycle EXperiment (GEWEX)Cloud System Study
(GCSS), which aims to support the development of physicallpased parameterisations
for cloud processes. An overview of the Precipitating Conetive Cloud Systems (PCCS)
working group can be found in Moncrie et al. (1997).

Case 5 simulates a column of the atmosphere in the tropical ¥ePaci c warm pool
region, at 2 S 156E, and the model runs presented here span the period 9{28 Jamy
1993. The forcing data-set is derived from observations tak in the TOGA-COARE
campaign (Webster and Lukas 1992). It contains temperaturand moisture increments
due to turbulent uxes from the ocean surface and to large-ate vertical and horizontal
advectiont. Also prescribed are timeseries of observed winds, towanghich the SCM is

1These data-sets are available for the whole of the TOGA-COARE observing period, along with



strongly relaxed, with a timescale of 1 hour. Any deviation®f the winds in these runs
from those observed are therefore limited. The forcings amuitial conditions are derived

directly from surface and radiosonde measurements averdgever the TOGA-COARE

IFA (Intensive Flux Array, see gure 14 of Webster & Lukas 199).

The focus of case 5 is the transition of tropical convectiomdm suppressed to active
phases, and two such transitions occur during these SCM runSee gure 1 in which the
periods are de ned as in Petclet al. (2007). Here we label ActB, a very active period
with heavy rain, SupC, in which convection is suppressed byé large scale forcing, and
ActC, the subsequent active phase. Rain rates are similar those found in other SCMs
(Woolnough et al. submitted).
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Figure 1: 6-hourly means of the 5th, 50th and 95th percentseof rainfall rate from an

ensemble of SCM runs using the default UM con guration (sali lines), and a budget-
derived estimate for the TOGA-COARE IFA (dotted line). This estimate has some
negative values, since the observations were insu cient tderive an accurate moisture
budget (Petchet al. 2007). The time axis is labelled in whole days since the staof the

month of January 1993, as in later gures. Annotations are g{ained in the text.

The SCM runs use a timestep of 30 minutes and there are 38 lev@h the vertical.
The performance of the default UM SCM for this case in compa&on to other models is
discussed by Petclet al. (2007) and Woolnoughet al. (submitted). It is more consistent
with CRM simulations than some of the SCMs, which were somewahdry.

3.1 Model Variants

Taking the UM SCM as a basis, several model con gurations haween tested, di ering
through either the convection parameterisation or the stdmastic method used. These are
described below and summarised in table 1. Most of the stodte methods have been
implemented by introducing a stochastic element to the prexisting UM parameterisa-
tions. We quantify the variability associated with a stochatic method using the spread of
an ensemble, with a di erent set of random numbers drawn foihe stochastic component
of each ensemble member. Small initial condition perturbens are also included in the
ensembles; these are discussed in section 3.2.

information about their derivation, at http://tornado.at mos.colostate.edu/togadata/data/ifa data.html
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Scheme name Description Type
Default UM Includes Gregory & Rowntree mass ux | Deterministic
convection scheme

Multiplicative The default UM with multiplicative noise | Stochastic

Noise introduced to total physics tendencies

Random Parameters| The default UM with randomly time- Stochastic

(Varying) varying model parameters

Random Parameters| The default UM with randomly selected | Deterministic

(constant) but constant model parameters

Kain-Fritsch The UM with the Kain-Fritsch mass ux | Deterministic
convection scheme instead of the default

Plant & Craig The UM with the Plant & Craig Stochastic

(stochastic) stochastic convection scheme

Plant & Craig The UM with the Plant & Craig Deterministic

(deterministic) convection scheme in deterministic mode

Table 1: Summary of the SCM con gurations used.

Default UM

The default UM con guration contains parameterisations fo layer-cloud micro-
physics, radiation, boundary layer processes and convexti Martin et al. (2006)
provide an overview of the current set of schemes. Convectits represented by
a deterministic bulk mass ux scheme based on Gregory & Rownate (1990), but
which has since been modi ed (Martinet al. 2006). There are prognostic mois-
ture variables for speci ¢ humidity, cloud liquid water corient and cloud ice water
content.

Kain-Fritsch convection scheme

An alternative deterministic mass ux scheme for convectio is that of Kain &
Fritsch (KF, 1990). The version described by Kain (2004) habeen implemented
here. For a discussion of the di erences between the schemé&regory & Rowntree
(1990) and KF in the UM in a forecasting context, see Done (2@

Multiplicative Noise scheme

This scheme follows the method of Buizzat al. (1999) and is designed to represent
parameterisation uncertainty. At each timestep, the totalparameterised tendencies
for each model variable are multiplied by a random number, chosen from a uniform
distribution between 1 k and 1 + k, where the constantk sets the amplitude of
the stochastic perturbations. The random number is the sam#or each model
variable and at each vertical level. Temporal correlationsi enforced by keeping
the same random number for multiple timesteps. Buizzat al. (1999) found that
the greatest improvements to the performance of the ECMWF aemble prediction
system occurred forkk = 0:5 and a new random number every 6 hours. The same
choices are made here. Total tendencies from the default UMeamultiplied by ; at
the end of each timestep, with a check to restore moisture te@w if the stochastic
perturbation implies a negative value.

Random Parameters scheme
GCM parameterisations include parameters for which the apppriate value is not



well determined. The Random Parameters scheme attempts ta@unt for pa-
rameterisation uncertainty by allowing such parameters toary within a plausible
range. This scheme follows the system used (Arribas 2004 lre Met O ce Global
and Regional Ensemble Prediction System (MOGREPS, Mylnet al. 2005). The
relevant parameters and ranges can be found in Arribas (2004ut include the
entrainment rate and CAPE closure timescale from the UM comction scheme.
Temporal correlations are described by a rst-order autoegression model,

Prer = p + 1 (P p)+ Kp 2 (1)

in which the parameter is labelled® and the update numbern. p is the default
value of P, r is an auto-correlation coe cient and kp », is a stochastic shock term
(see section 3.2 of Mylneet al. 2005) in which , is a random number uniformly
distributed between 1 and 1, andkp is a parameter-dependent normalisation.
Each parameter is subject to maximum and minimum acceptableounds, and the
same random number, is used for all parameters at each update, every 3 hours.

Random but constant parameters

Another approach to sampling parameter uncertainty is to ra an ensemble in
which each run has a xed, but di erent parameter set. This aproach has been
used to make probabilistic predictions of future climate (g. Murphy et al. 2004).
For this study, we simply adapt the random parameters schemabove by choosing
initial parameter values randomly within the acceptable rage and holding these
xed. Our method does not explore parameter space in an undsed way, as
it is constrained by the correlations between parameters sismed in the random
parameters scheme above. Nonetheless, it allows for an mefging test of the
temporal correlations in that scheme.

Plant & Craig stochastic convection scheme

In the Plant & Craig (2008) parameterisation, a nite number of distinct plumes
are present in a grid-box area at any instant, resulting in aandom sampling of the
full spectrum for an ensemble of cumulus clouds. The spectnwised is based on an
equilibrium exponential distribution of cloud-base massux (Craig & Cohen 2006)
and plumes are produced at random, with the properties of datased on an adap-
tation of the KF plume model. The smaller the grid-box size,lte more limited the
sampling and the larger the uctuations from statistical eqilibrium. A sounding
averaged over nearby grid-points and recent timesteps pides a smoothed input
for the CAPE closure calculation. Of course, spatial averagy is not possible in an
SCM. Preliminary tests showed that the scheme behaved sdbigiin the SCM when
averaging over 20 timesteps. This choice represents a compise between provid-
ing a smooth input prole and the need to capture variations n the dynamical
forcings.

Deterministic limit of the Plant & Craig scheme

The Plant & Craig (2008) scheme can operate as a spectral centive parameter-

isation by running the plume model for every category of claband weighting the

tendencies according to the probability of that cloud occumg. This corresponds
to the deterministic limit of a very large grid-box in which the cumulus ensemble
is well sampled.



3.2 Initial Condition Ensembles and Ensemble Size

It should be noted that a stochastic scheme is not required iorder for a parameterisa-
tion embedded in an SCM to exhibit variability; even if the pescribed forcings remain
constant, a purely deterministic SCM will vary from one timstep to the next. This is
particularly associated with switches in parameterisatios, the most important of which
is the trigger function in the convection scheme. This can & exhibit exaggerated on-o
behaviour (e.g. Willett and Milton 2006), and the exact set btimesteps on which the
convection scheme triggers can be very sensitive to smalbdges in the model state (this
was found to be true in deterministic SCM ensembles used inishstudy, not shown).
Such unsteady behaviour inherent to convective and other pameterisations provides a
source of variability in deterministic and stochastic SCMslike.

Part of the variability in a stochastic physics SCM ensembtemay arise simply be-
cause the stochastic (ST) perturbations force each ensemlhember to follow a di erent
realisation, with the convection being triggered on a dieent set of timesteps. Such
realisations can also be explored in a deterministic modey lounning an ensemble with
initial condition (IC) perturbations. We suggest that suchIC ensembles should be run
in order to make meaningful comparisons of stochastic schesnwith their deterministic
counterparts. Hack and Pedretti (2000) suggest that an ensble approach is appropriate
for SCM studies as an SCM can be sensitive to small di erencesthe initial conditions.

The perturbations for an IC SCM ensemble should be small englu not to introduce
signi cant bias to any of the ensemble members, but large eagh to force the ensemble
members to diverge into an unbiased sample of probable raaliions early in the model
run. It should be emphasised that the IC perturbations are dg used in this study to
provide a sample of realisations and are not necessarilyentded to represent realistic IC
uncertainty. Thus, there is no requirement for the perturb&ions to match instrumental
and sampling errors in the observations that provide the ICsResults of such ensemble
tests are discussed in section 4.1.

Another aspect to consider is the ensemble size required. \WWee 39 member ensem-
bles, which appears to be su cient to produce useable resglt The robustness of results
derived from ensembles of this size can be estimated from gelbistatistical consideration:

Ensemble means.Assuming some model variable to be gpproximately normally
distributed, its ensemble mean has a standard error of K, where is the
standard deviation andK is the number of ensemble members. For example, in the
IC ensemble for the default UM, the ensemble standard deviah for temperature is
of the order Q5 K. This gives the ensemble mean a standard error of approxately
0:08 K, leading to a 95% con dence interval of 0:16 K, which is less than 10% of
the amplitude of typical temperature variations during themodel runs (see gure

2).

Ensemble spread. This can be quanti ed by the root-mean-square deviation of
ensemble members from their mean (the standard deviation). It can be shown
that the samplinglgis_tribution of a standard deviation is aproximately normal with
standard error = 2K, for ensemble size& > 25. In our case, withK = 39, this
leads to a 95% con dence interval of 22% of . An interval this broad suggests

2That is, an ensemble in which each member has the same stochi@sparameterisation scheme but
draws a di erent set of random numbers for it.



that ensemble spreads calculated for single variables skabube interpreted with
care. More accurate ensemble spreads occur for an error nowhich sums the
ensemble spread over the model column. We present below testdor the Total
Column root-mean-square Ensemble Spread, given by

2 31=2
Rpsurf P K = 2

2 F« F odp
TCES = § 22 =
(psurf ptop)(K 1)

(@)

whereF is a model variable F its ensemble meanp is the pressure coordinate, and
k labels ensemble members. Assuming hydrostatic balancege tRCES is the square
root of the mass-weighted vertical integral of estimated nuel- eld variance. Since
there are vertical correlations between model levels in tH@CM, it is not obvious
how much more accurate this norm will be than the ensemble stdard deviation
at a single level. We have therefore performed some simplestieto estimate a
sampling error for the TCES and found a 95% con dence interVaf around 10%.

4 Results

4.1 Ensemble Sensitivity to Initial Condition Perturbatio ns

We have constructed IC ensembles from two sets of IC perturti@ens. In set 1, random
temperature perturbations are applied to the lowest modeklel, chosen from a uniform
distribution between 0:25 K. Temperature perturbations for set 2 are larger and coxe
a greater vertical extent. A uniform distribution is again wsed with amplitude Q5 K at
the surface and decreasing exponentially above with a heigttale of 1 km. For these
larger perturbations, it is desirable to ensure that no spumus super-saturation occurs,
and so corresponding perturbations are applied to the spaechumidity eld in order to
maintain the relative humidity.

Figure 2 shows spaghetti plots of temperature for a single el level in the lower
troposphere. Set 1 IC perturbations have been added to the fdalt UM. Figure 3 is
equivalent, but for the Kain-Fritsch convection scheme. Hothe default UM, the per-
turbations appear to produce a good spread of realisationbut using the KF scheme
the ensemble members fail to diverge. Even at the end of the By runs they re-
main clustered in six distinct groups, the members of each ap triggering convection
on the same set of timesteps (not shown). Figure 4 shows thenteerature plume for
the Kain-Fritsch scheme using the set 2 IC perturbations. Its clear that the ensemble
members are less tightly clustered than with the set 1 pertbations, producing a more
representative sample of realisations. But the spread isilstsmaller than in the default
UM using set 1. It is perhaps slightly surprising that the SCMresponds so di erently
to IC perturbations when di erent convection schemes are @sl. This is in contrast to
Hume and Jakob (2005).

An important point to note from the simulations of Hack and Pdaretti (2000) is
their observation of bifurcations in SCM solutions (e.g. thir gure 4), with ensemble
members dividing into two or more preferred modes. Clearlyhis raises issues with the
representativeness of statistics such as the ensemble mesince the mean state may lie
between modes and never actually occur. Little evidence fowlti-modal behaviour was
found in the present study. Clearly separated modes do ocaasally occur, as seen for
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Figure 2: Ensemble plume plot of temperature on model leved 1800 hPa) for the default
UM with the set 1 IC perturbations. The solid line denotes thecontrol run (with no IC
perturbations) and the dotted line denotes the ensemble mea
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Figure 3: As gure 2 but with the Kain-Fritsch convection scleme.
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Figure 4: As gure 2 but with the Kain-Fritsch convection sclteme and the set 2 IC
perturbations.



example, using the Kain-Fritsch convection scheme arountié 19th ( gure 4). However,
these persist for no longer than a day or so. The presence orsabce of bifurcations
is presumably related to the character of either (or both) tb SCM or the large-scale
forcing. We do not speculate further here, but rather note tht the ensemble mean and
standard deviation appear to be genuinely useful diagnoss for the present study.
Figure 5 shows timeseries of the TCES of temperature, for thi@efault UM ensemble
with set 1 and set 2 IC perturbations, and also for an ensemblehich includes the
multiplicative noise scheme described in section 3.1, bothkith and without set 2 IC
perturbations added. The corresponding plots for relativeumidity are shown in Figure 6.
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Figure 5: TCES of temperature, in the default UM with set 1 (dash-dotted lire) and
set 2 (solid line) IC perturbations, with multiplicative-noise perturbations but no IC
perturbations (dotted line), and with both set 2 IC perturbations and multiplicative
noise (dashed line).
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Figure 6: As gure 5, but for relative humidity rather than temperature.

Looking rst at the two Default UM TCES ensembles, there is moe spread over the
rst 6 days using the larger set 2 IC perturbations. Howeverthe set 1 and 2 ensembles
look very similar beyond 6 days, suggesting that the ensembbspread has saturated in
both. This is reassuring as it suggests that the saturated \el of ensemble spread in
temperature is independent of the size and nature of the IC garbations, but rather
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provides a measure of the inherent variability of the SCM. Fathe Kain-Fritsch scheme,
the larger IC perturbations produce larger ensemble spreadhroughout ( gures 3 and
4), but this is because the spread did not saturate when thetsk IC perturbations were
used.

In a stochastic physics (ST) SCM ensemble, the stochastic thed provides some
physically-motivated source of variability. One might anicipate that the physics pertur-
bations would allow the ST ensemble to explore at least thosealisations accessible to
its deterministic analogué. If this is true, then IC perturbations should have little e ect
on ensemble spread when implemented in an ST ensemble. Itlsac from gures 5 and 6
that beyond the rst 36 hours or so, the ensembles including uftiplicative noise ST per-
turbations have spreads that are consistently larger thanhibse occurring in the 1C-only
ensembles, typically by a factor of about a third. The inclusn of IC perturbations in
addition to multiplicative noise slightly increases the spead during the rst day, but has
no signi cant e ect thereafter. This is consistent with the idea that the IC perturbations
allow one to sample di erent realisations, but do not a ect hie underlying distribution of
probable realisations which emerges once the spread of thesemble saturates. Similar
conclusions apply for the other stochastic methods used ¢nghown).

Comparisons of the e ects of IC and ST perturbations have baemade before in
the context of global GCM ensemble prediction systems. Bua et al. (1999) found
that IC-only ensembles produced consistently larger sprédhan ST-only ensembles, and
that ensembles with IC and ST perturbations produced greatepread stil*. Teixeira and
Reynolds (2008) found similar results over the tropics ugigna multiplicative noise scheme
applied only to the moist convective tendencies (their gue 7a). Although these results
di er from ours in placing far greater emphasis on IC perturhtions, this is not surprising
given the context. In particular, we focus on the saturatedelvel of ensemble spread due
to IC perturbations whereas in the cited studies, the runs daoot reach saturatior?. Also
those studies used much larger IC perturbations designed sample IC uncertainty.

It is interesting to note in Figures 5 and 6 the time-variabity of the ensemble spreads.
The spread clearly has some dependence on the large scaleirigy with a peak followed
by a sudden drop in spread occurring at the start of each corotevely active phase.
To study this in more detail, we show in gure 7 a time{height pot of the ensemble
spread in temperature in the set 2 Default UM ensemble. The sgad appears to follow
di erent characteristic regimes during suppressed and age phases, while behaving in a
more unsteady manner during transition periods between thievo. Note that in gure
7 the active and suppressed phases labelled in gure 1 haveeherede ned in order to
separate out the transition periods. This will allow the ersmble variability characteristic
of suppressed and active phases to be analysed in section 4.3

Most notably during transitions from suppressed to active lpases, the pattern of
ensemble spread appears to be related to the convective ddop height. For example,
peaks in TCES on the 15th (gures 5 and 6) correspond to largegeads in the mid-
troposphere where the ensemble produces a broad range ofvective cloud tops. During
the following day this range suddenly narrows and the ensetelspread drops throughout

3By which we mean the equivalent con guration with the stochastic component disabled, providing
of course that such an equivalent is well-de ned. For examp, for a stochastic method in which model
parameters are selected randomly, the deterministic analgue is simply a simulation with the default
parameter set.

4This is shown for forecast days 3, 5 and 7 in their table 1a.

5See Teixeira and Reynolds (2008), gure 7a for example.
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Figure 7: Ensemble r.m.s. spread in temperature (K) for the &ault UM ensemble us-
ing set 2 IC perturbations (shaded). Overlaid are the 25th ah75th percentiles of the
convective cloud top height (dotted lines). These values adetermined at each timestep
from the subset of ensemble members in which the convectiocheme triggers and are
smoothed for presentation here using 6-hourly averaging.nAotations are explained in
the text.

the troposphere. Another interesting feature is the slopmlayer of high ensemble spread
around the 24th and 25th, which increases in height from rotaly 7 km to 9 km during the
transition from SupC to ActC. This layer closely follows the75th percentile of convective
cloud top height, indicating an ascending lid on the conveitin. The ensemble spread is
large here because the ensemble members produce a range efeatit heights for this
lid, which has a sharp temperature gradient across it (not shwn).

4.2 Intercomparison of Ensemble Mean States

An ensemble was produced for each of the SCM con gurationssteibed in section 3.1.
In the case of the stochastic Plant & Craig scheme, two sepa&esensembles were produced
for columns with horizontal scales x of 50 and 100 km (as explained in section 3.1, the
stochastic uctuations in that scheme depend on the columrize). To ensure a consistent
comparison between stochastic physics SCM ensembles angittideterministic analogues,
we included the set 2 IC perturbations in all ensembles, alttugh beyond the rst day
they make very little di erence to the stochastic ones.

We show results here for the precipitable water content (PW)C the mass-weighted in-
tegral of speci ¢ humidity through the column. Figure 8 show timeseries of observation-
derived PWC and ensemble means for three deterministic SChrtgurations. The
SCMs exhibit large systematic biases from the observed PW@is is probably due to
discrepancies in the large scale forcings used to drive th€Nds, as found in other SCM
and CRM studies which use advective forcings derived from sdérvations (e.g. Krueger
and Lazarus 1999). The Kain-Fritsch and Plant & Craig schense(which are based on
the same convective plume model) produce a drier state thahe default UM, although
well within the range of values seen when comparing variou€Bls (Woolnough et al.
submitted). The drying is associated with tropospheric cdimg in these schemes relative
to the default UM (not shown).

Several of the SCM con gurations in this study include ST pdurbations but are
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Figure 8: Six-hourly mean PWC derived from TOGA-COARE obsestions (dotted line),
and ensemble means for the Default UM (dashed line), Kain4Esch (solid line), and Plant
& Craig deterministic mode (dash-dotted line) con guratians.

based on the UM convection scheme. In gure 9, we show the drence in ensemble
mean PWC between these con gurations and their determiniat analogue, the default
UM. Also shown is the di erence between the Kain-Fritsch same and the default UM.
Figure 10 shows similar plots for the Plant & Craig scheme. Iterms of ensemble mean
PWC, the dierence between the two convection parameteris@mns (default UM and
Kain-Fritsch) is several times the di erence between any athe stochastic schemes and
its deterministic analogue. Similar remarks apply to othevariables and suggest that the
ensemble mean elds are more sensitive to structural di erees in the convection scheme
than they are to the introduction of stochastic schemes.

....... Mult. Noise
— — — RP Noise
----- RP Const

8 10 12 14 16 18 20 22 24 26
Time / days

PWC difference / mm

Figure 9: Six-hourly mean di erence in ensemble mean PWC gdlve to the default UM,
for the multiplicative noise (dotted line), time-varying random parameters (dashed line),
constant random parameters (dash-dotted line), and Kain+itsch (solid line) con gura-
tions.

However, the observation that stochastic physics schemessined to represent model
uncertainty or departures from statistical equilibrium can change the mean state of the
SCM by even a relatively small amount is interesting. Statigcal tests indicate that the
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Figure 10: As gure 9, but for the Plant & Craig scheme with gridlengths of 50 km
(dotted line) and 100 km (dashed line) and in deterministic mde (dash-dotted line), and
for the Kain-Fritsch scheme (solid line).

ensemble mean state of the time-varying random parameterasemble is signi cantly
cooler and dryer than the default UM for much of the model rungespecially during
periods of suppressed convection. However the constant dam parameters scheme did
not produce this deviation despite sampling the same rangéwalues for model parameters
(see gure 9). This suggests noise induced drift; the randomoise introduced by the
time-variation of the model parameters causes the SCM to elgpe a region of phase-
space which is asymmetric about the mean state of the detemstic analogue. Note in
gure 10 that the stochastic Plant & Craig scheme produces aimailar drift relative to
its deterministic analogue (most clearly seen around the 8&), which is also found to
be statistically signi cant during the suppressed phasesThis drift is smaller when the
larger column size is used.

4.3 Intercomparison of Ensemble Variability

Figure 11 shows time-mean vertical pro les of ensemble spigkin temperature for the
active and suppressed periods ActB, SupC and ActC, as lakedl in gure 7. There
are marked di erences between active and suppressed phase€his is most apparent in
the mid-troposphere where the spread tends to be higher dog active phases, whereas
in the lower troposphere most of the SCM con gurations exhib greater spread during
the suppressed phase (the Plant & Craig scheme is an exceptiduring ActC). These
observations are consistent with the notion that convect® variability is a key ingredient
in producing spread.

There are distinct di erences between the pro les in panel&), (b) and (c), which are
for con gurations using the default UM's convection schemeand those in panels (d), (e)
and (f), which are for con gurations based on the Kain-Friteh convective plume model.
The latter grouping exhibits large peaks in ensemble spread the upper troposphere
and lower stratosphere region, presumably associated witionvective overshoots. Such
peaks are absent for the rst grouping, which tend to have geger spread in the mid-
troposphere. The vertical structure of the ensemble spregulo le appears to be primarily
dependent on the convective plume model used, with the ST perbations primarily
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Figure 11: Vertical pro les of ensemble r.m.s. spread in teperature, for eight di erent
SCM ensembles, averaged over the periods ActB (panels a angd 8upC (panels b and
e), and ActC (panels ¢ and f). The periods are as dened in gw 7. The proles in
panels a, b and c are for the Default UM con guration (solid he), the Multiplicative
Noise scheme (dotted line), the time-varying Random Pararters scheme (dashed line),
and the constant Random Parameters scheme (dot-dashed lineThose in panels d, e
and f are for the Kain-Fritsch con guration (solid line), and the Plant & Craig scheme
with a gridlength of 50 km (dotted line), 100 km (dashed ling)and in deterministic mode
(dot-dashed line).

a ecting its amplitude.

In the troposphere, the default UM ensemble produces morerspd than the Kain-
Fritsch ensemble. These pro les con rm that the convectiorparameterisation is an im-
portant source of variability and also that di erent deterministic convection parameterisa-
tions produce rather di erent variabilities in the host model. Thus, if the high-frequency
variability of a model does have important e ects on climateone should introduce some
(stochastic) method to control the high-frequency variality, or at least should investi-
gate the on-o characteristics of the GCM convection paranterisation.

The schemes that represent model uncertainty (multiplicate noise, random param-
eters and constant random parameters) tend to scale-up the@le of ensemble spread
produced by their deterministic analogue in the mid and uppetroposphere, but have
relatively little e ect on the lower troposphere. The multiplicative noise scheme also
a ects the stratosphere, as it directly perturbs the radiaive tendencies which dominate
there. The stochastic Plant & Craig scheme also tends to sealip the pro le of spread
produced by its deterministic mode, but di ers from the othe methods in that during
ActB and SupC it creates substantial increases in spread imé lower troposphere.

The deterministic Plant & Craig scheme generally producesrall ensemble spreads,
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often smaller than those in the Kain-Fritsch ensemble. Thiss consistent with its de-
sign, since it uses time-averaged pro les to reduce timegt¢o-timestep variability in its
closure calculations. The stochastic form of this scheme mot designed to represent
generic model uncertainty, but speci cally the variability arising from sub-sampling the
cumulus ensemble within a nite area. For an area of side x = 100 km, the scheme
is certainly more spread than in deterministic mode, but si comparable with the de-
terministic Kain-Fritsch ensemble and in the tropospheresi much less spread than any
of the model-uncertainty schemes. However, with x = 50 km the ensemble spread has
tropospheric values comparable to those produced by modeicertainty schemes. These
results suggest that local uctuations about convective aglibrium become as important
as generic model uncertainty at resolutions of around 50 krand a key mechanism for
variability at smaller grid-lengths.

4.4 Comparison of Stochastic Physics SCM Ensemble Spread
to Model Uncertainty

Although the stochastic physics schemes used in this study groduce signi cant en-
semble spread, it remains to determine whether or not the lels of spread are appro-
priate. To examine this point, it is useful to compare the ersnbles that are designed
to represent model uncertainty with the range of model state produced by di erent
deterministic structural con gurations. A poor-man's engmble is produced by combin-
ing the 39-member IC ensembles produced by the Default UM, éhKain-Fritsch scheme
and the deterministic Plant & Craig scheme, each with equal @ighting. The spread of
this combined 117-member ensemble can be used as a simplesmeaof the spread of
model states associated with model uncertainty. With onlyhree di erent model con g-
urations, its representativeness is questionable, but weggest that a stochastic scheme
that aims to represent model uncertainty should produce atehst comparable levels of
spread. Figure 12 shows timeseries of several ensemble griies of PWC for each of
the stochastic schemes and for the constant random parametescheme, compared with
the same percentiles of the combined deterministic ensemblThe ensemble mean PWC
for each deterministic scheme was shown in gure 8).

It is encouraging to nd that the three schemes designed to peesent generic model
uncertainty do indeed produce spread comparable to the combd deterministic ensem-
ble (see panels a, b and c). However, these schemes tend simplbroaden the ensemble
about the ensemble mean state of their deterministic analog. Thus, they fail to ex-
plore regions of phase-space which are accessible to thesottheterministic schemes. The
model-uncertainty scheme which looks most promising in thistudy is the Random Pa-
rameters scheme. As discussed in section 4.2, it producessmoise-induced drift, and
this appears to be favourable, in the sense that the distriltion of PWC is nudged to-
wards that of the combined deterministic ensemble. It onlyails to encompass the full
range of model uncertainty during the last day or two of the ros.

Panels d and e show results for the stochastic Plant & Craigseme. These con rm
the points made in section 4.3, that uctuations about convetive equilibrium result in
ensemble spread similar to key aspects of model uncertairap scales of around 50 km.
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