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Abstract

We discuss and test the potential usefulness of single-column models (SCMs)
for the testing of stochastic physics schemes that have been proposed for use in
general circulation models (GCMs). We argue that although single column tests
cannot be definitive in exposing the full behaviour of a stochastic method in the
full GCM, and although there are differences between SCM testing of deterministic
and stochastic methods, SCM testing remains a useful tool. It is necessary to
consider an ensemble of SCM runs produced by the stochastic method. These
can be usefully compared to deterministic ensembles describing initial condition
uncertainty and also to combinations of these (with structural model changes)
into poor man’s ensembles. The proposed methodology is demonstrated using an
SCM experiment recently developed by the GCSS (GEWEX Cloud System Study)
community, simulating transitions between active and suppressed periods of tropical
convection.
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1 Introduction

In recent years, increasing attention has been given to the potential usefulness (Palmer
2001, Wilks 2005) of introducing some stochastic component(s) to the physical parame-
terisations used in GCMs. For example, many GCMs are known to have have insufficient
high-frequency, small-scale variability of convective heating rates and precipitation in the
tropics, which may damage their ability to represent low-frequency, large-scale climate
variability (Ricciardulli and Garcia 2000; Horinouchi et al. 2003). A wide variety of
plausible stochastic methods continue to be suggested and actively investigated, includ-
ing perturbing the inputs to a parameterisation (e.g. Tompkins and Berner submitted),
perturbing the parameters used within it (e.g. Byun and Hong 2007), perturbing its out-
puts (e.g. Teixeira and Reynolds 2008), and even constructing new parameterisations
designed explicitly to be stochastic from the outset (e.g. Plant & Craig 2008). There is
a growing acceptance that the use of stochastic elements in GCMs may be desirable for
both theoretical and practical reasons (e.g. Penland 2003, Williams 2005). Thus, the time
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may soon be approaching when the key question changes from why a stochastic method?

to which stochastic method? Here, we explore whether single column modelling might be
able to provide some insights that could inform such decision-making.

The aim of a stochastic scheme is to introduce variability into the numerical repre-
sentation of the climate system. In order to determine the variability of some climate
phenomenon in the GCM, either multiple or long integrations are likely to be required.
Further lengthy explorations would also be required if one wished to assess the impact
of that variability on other aspects of the model climate. How then, in practice, should
one choose the stochastic method(s) to be used in a GCM? The difficulty is not simply
the range of possible schemes available in the literature, but also (at least) two other
important considerations.

First, we do not know how well various methods might combine. The motivations be-
hind various schemes, and the uncertainties they attempt to address, may often appear to
be very different. At first sight then it may be attractive to use several methods. However,
there may be a danger in this of some “double counting”, particularly if attempting to
combine some of the more generic methods to address parameterisation uncertainty. For
instance, taking a single parameterisation and perturbing its inputs, parameters and out-
puts simultaneously might not be totally unreasonable, but it would be extremely naive
to expect good performance by implementing three such methods directly “off-the-shelf”.

Second, one’s difficulties are compounded by the fact that many (if not all) of the
stochastic schemes in the literature themselves contain free parameters and structural
uncertainties. We can use the random parameters approach to offer a simple example.
Suppose that one wished to choose random values for the entrainment rate and the CAPE
closure timescale in the parameterisation of deep convection. Should those choices be
correlated, and if so, then how?

It would surely be impractical to conduct full GCM testing of all plausible stochastic
physics schemes and all possible variations on their basic themes. However, it should
be possible to do better than testing some best guesses. As a first step, we describe
in this paper essentially a test-of-concept for the idea that single-column model (SCM)
experiments might have some useful value for comparing stochastic schemes. We are not
at this stage attempting an assessment of the relative performance of various stochastic
schemes. Rather, our objective is to demonstrate that simple methods to improve one’s
understanding of the behaviour of various stochastic schemes are both possible and worth
pursuing. It does not seem unreasonable to hope that current best guesses could evolve
into educated guesses.

The paper is organised as follows. In Section 2 we introduce some issues in single-
column modelling and their implications for testing stochastic methods. Section 3 de-
scribes the modelling framework used in this study, including the stochastic methods
(3.1) and the ensemble approach (3.2). Results (section 4) are shown for the sensitivity
to initial condition (IC) perturbations (4.1), and for the mean states (4.2) and variabilities
(4.3 and 4.4) of various stochastic methods. Conclusions are drawn in Section 5.

2 An SCM Approach for Stochastic Schemes

Single-column modelling has a long history as a useful guide towards understanding and
testing the behaviour of deterministic parameterisations within a GCM. In the full GCM,
a parameterisation interacts with model dynamics and with the other parameterisations.
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Essentially the SCM is a means to understand the latter, which may or may not dominate
in the full GCM. Usually the dynamical forcing of the SCM is determined beforehand,
perhaps based on an observational campaign. The forcing is independent of the current
model state, which constrains the possible responses. Thus the SCM may behave dif-
ferently from the corresponding full GCM if dynamical feedback is an important aspect
of the situation modelled. One consequence is that parameterisation errors in a GCM
which adversely affect model dynamics may not be apparent in the SCM, which is kept
on track by the prescribed dynamics.

It is not immediately apparent how an SCM might be used to make meaningful
comparisons of stochastic methods. In some cases, the use of a single column may simply
not be viable because the stochastic terms cannot easily be applied (e.g. Shutts 2005).
Indeed, it has been suggested that an ideal stochastic method would probably be non-local
(Palmer 2001; Craig et al. 2005; Ghil et al. 2005). For the present though, the majority
of stochastic methods can be formulated for a single column. Nonetheless, an obvious
objection to SCM comparisons remains: feedback from the introduced variability to the
dynamics may be a key feature of the behaviour in a full GCM (e.g. Lin and Neelin 2002).
This will be missing in a traditional SCM experiment with specified dynamics. SCMs can
include appropriate dynamical feedbacks by using a parameterised dynamics formulation,
such as a weak-temperature gradient approximation for the tropical atmosphere (e.g.
Sobel et al. 2007), or by coupling vertical advection to the parameterised diabatic heating
via a gravity-wave model (Bergman & Sardeshmukh 2004). Ultimately, we believe that
these and similar frameworks would be particularly well-suited to studying stochastic
physics schemes, but do not pursue them further here.

It may nonetheless be possible to gain some useful insights into the behaviour of
stochastic methods through an SCM comparison. The results for each method must be
considered in the form of an ensemble of SCM runs, each run having a different set of
random numbers. Our proposal is to compare such ensembles to the SCM results obtained
from multiple deterministic parameterisations, the suite of deterministic configurations
being treated as a so-called poor-man’s ensemble (e.g. Mylne et al. 2002).

3 Experimental setup

Experiments have been carried out using the single-column form of the UK Met Office
Unified Model (UM, Cullen 1993). The model runs are based on GCSS PCCS case 5,
the design of which is described by Petch et al. (2007). Specifically, we study here
the consecutive time periods B and C. Model intercomparison cases have been a major
part of the Global Energy and Water cycle EXperiment (GEWEX) Cloud System Study
(GCSS), which aims to support the development of physically based parameterisations
for cloud processes. An overview of the Precipitating Convective Cloud Systems (PCCS)
working group can be found in Moncrieff et al. (1997).

Case 5 simulates a column of the atmosphere in the tropical West Pacific warm pool
region, at 2◦S 156◦E, and the model runs presented here span the period 9–28 January
1993. The forcing data-set is derived from observations taken in the TOGA-COARE
campaign (Webster and Lukas 1992). It contains temperature and moisture increments
due to turbulent fluxes from the ocean surface and to large-scale vertical and horizontal
advection1. Also prescribed are timeseries of observed winds, towards which the SCM is

1These data-sets are available for the whole of the TOGA-COARE observing period, along with
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strongly relaxed, with a timescale of 1 hour. Any deviations of the winds in these runs
from those observed are therefore limited. The forcings and initial conditions are derived
directly from surface and radiosonde measurements averaged over the TOGA-COARE
IFA (Intensive Flux Array, see figure 14 of Webster & Lukas 1992).

The focus of case 5 is the transition of tropical convection from suppressed to active
phases, and two such transitions occur during these SCM runs. See figure 1 in which the
periods are defined as in Petch et al. (2007). Here we label ActB, a very active period
with heavy rain, SupC, in which convection is suppressed by the large scale forcing, and
ActC, the subsequent active phase. Rain rates are similar to those found in other SCMs
(Woolnough et al. submitted).
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Figure 1: 6-hourly means of the 5th, 50th and 95th percentiles of rainfall rate from an
ensemble of SCM runs using the default UM configuration (solid lines), and a budget-
derived estimate for the TOGA-COARE IFA (dotted line). This estimate has some
negative values, since the observations were insufficient to derive an accurate moisture
budget (Petch et al. 2007). The time axis is labelled in whole days since the start of the
month of January 1993, as in later figures. Annotations are explained in the text.

The SCM runs use a timestep of 30 minutes and there are 38 levels in the vertical.
The performance of the default UM SCM for this case in comparison to other models is
discussed by Petch et al. (2007) and Woolnough et al. (submitted). It is more consistent
with CRM simulations than some of the SCMs, which were somewhat dry.

3.1 Model Variants

Taking the UM SCM as a basis, several model configurations have been tested, differing
through either the convection parameterisation or the stochastic method used. These are
described below and summarised in table 1. Most of the stochastic methods have been
implemented by introducing a stochastic element to the pre-existing UM parameterisa-
tions. We quantify the variability associated with a stochastic method using the spread of
an ensemble, with a different set of random numbers drawn for the stochastic component
of each ensemble member. Small initial condition perturbations are also included in the
ensembles; these are discussed in section 3.2.

information about their derivation, at http://tornado.atmos.colostate.edu/togadata/data/ifa data.html

4



Scheme name Description Type
Default UM Includes Gregory & Rowntree mass flux Deterministic

convection scheme
Multiplicative The default UM with multiplicative noise Stochastic
Noise introduced to total physics tendencies
Random Parameters The default UM with randomly time- Stochastic
(Varying) varying model parameters
Random Parameters The default UM with randomly selected Deterministic
(constant) but constant model parameters
Kain-Fritsch The UM with the Kain-Fritsch mass flux Deterministic

convection scheme instead of the default
Plant & Craig The UM with the Plant & Craig Stochastic
(stochastic) stochastic convection scheme
Plant & Craig The UM with the Plant & Craig Deterministic
(deterministic) convection scheme in deterministic mode

Table 1: Summary of the SCM configurations used.

• Default UM

The default UM configuration contains parameterisations for layer-cloud micro-
physics, radiation, boundary layer processes and convection. Martin et al. (2006)
provide an overview of the current set of schemes. Convection is represented by
a deterministic bulk mass flux scheme based on Gregory & Rowntree (1990), but
which has since been modified (Martin et al. 2006). There are prognostic mois-
ture variables for specific humidity, cloud liquid water content and cloud ice water
content.

• Kain-Fritsch convection scheme

An alternative deterministic mass flux scheme for convection is that of Kain &
Fritsch (KF, 1990). The version described by Kain (2004) has been implemented
here. For a discussion of the differences between the schemes of Gregory & Rowntree
(1990) and KF in the UM in a forecasting context, see Done (2002).

• Multiplicative Noise scheme

This scheme follows the method of Buizza et al. (1999) and is designed to represent
parameterisation uncertainty. At each timestep, the total parameterised tendencies
for each model variable are multiplied by a random number ǫ1 chosen from a uniform
distribution between 1 − k and 1 + k, where the constant k sets the amplitude of
the stochastic perturbations. The random number is the same for each model
variable and at each vertical level. Temporal correlation is enforced by keeping
the same random number for multiple timesteps. Buizza et al. (1999) found that
the greatest improvements to the performance of the ECMWF ensemble prediction
system occurred for k = 0.5 and a new random number every 6 hours. The same
choices are made here. Total tendencies from the default UM are multiplied by ǫ1 at
the end of each timestep, with a check to restore moisture to zero if the stochastic
perturbation implies a negative value.

• Random Parameters scheme

GCM parameterisations include parameters for which the appropriate value is not
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well determined. The Random Parameters scheme attempts to account for pa-
rameterisation uncertainty by allowing such parameters to vary within a plausible
range. This scheme follows the system used (Arribas 2004) in the Met Office Global
and Regional Ensemble Prediction System (MOGREPS, Mylne et al. 2005). The
relevant parameters and ranges can be found in Arribas (2004), but include the
entrainment rate and CAPE closure timescale from the UM convection scheme.
Temporal correlations are described by a first-order auto-regression model,

Pn+1 = µP + r(Pn − µP ) + kP ǫ2 (1)

in which the parameter is labelled P and the update number n. µP is the default
value of P , r is an auto-correlation coefficient and kP ǫ2 is a stochastic shock term
(see section 3.2 of Mylne et al. 2005) in which ǫ2 is a random number uniformly
distributed between −1 and 1, and kP is a parameter-dependent normalisation.
Each parameter is subject to maximum and minimum acceptable bounds, and the
same random number ǫ2 is used for all parameters at each update, every 3 hours.

• Random but constant parameters

Another approach to sampling parameter uncertainty is to run an ensemble in
which each run has a fixed, but different parameter set. This approach has been
used to make probabilistic predictions of future climate (e.g. Murphy et al. 2004).
For this study, we simply adapt the random parameters scheme above by choosing
initial parameter values randomly within the acceptable range and holding these
fixed. Our method does not explore parameter space in an un-biased way, as
it is constrained by the correlations between parameters assumed in the random
parameters scheme above. Nonetheless, it allows for an interesting test of the
temporal correlations in that scheme.

• Plant & Craig stochastic convection scheme

In the Plant & Craig (2008) parameterisation, a finite number of distinct plumes
are present in a grid-box area at any instant, resulting in a random sampling of the
full spectrum for an ensemble of cumulus clouds. The spectrum used is based on an
equilibrium exponential distribution of cloud-base mass flux (Craig & Cohen 2006)
and plumes are produced at random, with the properties of each based on an adap-
tation of the KF plume model. The smaller the grid-box size, the more limited the
sampling and the larger the fluctuations from statistical equilibrium. A sounding
averaged over nearby grid-points and recent timesteps provides a smoothed input
for the CAPE closure calculation. Of course, spatial averaging is not possible in an
SCM. Preliminary tests showed that the scheme behaved sensibly in the SCM when
averaging over 20 timesteps. This choice represents a compromise between provid-
ing a smooth input profile and the need to capture variations in the dynamical
forcings.

• Deterministic limit of the Plant & Craig scheme

The Plant & Craig (2008) scheme can operate as a spectral convective parameter-
isation by running the plume model for every category of cloud and weighting the
tendencies according to the probability of that cloud occuring. This corresponds
to the deterministic limit of a very large grid-box in which the cumulus ensemble
is well sampled.
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3.2 Initial Condition Ensembles and Ensemble Size

It should be noted that a stochastic scheme is not required in order for a parameterisa-
tion embedded in an SCM to exhibit variability; even if the prescribed forcings remain
constant, a purely deterministic SCM will vary from one timestep to the next. This is
particularly associated with switches in parameterisations, the most important of which
is the trigger function in the convection scheme. This can often exhibit exaggerated on-off
behaviour (e.g. Willett and Milton 2006), and the exact set of timesteps on which the
convection scheme triggers can be very sensitive to small changes in the model state (this
was found to be true in deterministic SCM ensembles used in this study, not shown).
Such unsteady behaviour inherent to convective and other parameterisations provides a
source of variability in deterministic and stochastic SCMs alike.

Part of the variability in a stochastic physics SCM ensemble2 may arise simply be-
cause the stochastic (ST) perturbations force each ensemble member to follow a different
realisation, with the convection being triggered on a different set of timesteps. Such
realisations can also be explored in a deterministic model by running an ensemble with
initial condition (IC) perturbations. We suggest that such IC ensembles should be run
in order to make meaningful comparisons of stochastic schemes with their deterministic
counterparts. Hack and Pedretti (2000) suggest that an ensemble approach is appropriate
for SCM studies as an SCM can be sensitive to small differences in the initial conditions.

The perturbations for an IC SCM ensemble should be small enough not to introduce
significant bias to any of the ensemble members, but large enough to force the ensemble
members to diverge into an unbiased sample of probable realisations early in the model
run. It should be emphasised that the IC perturbations are only used in this study to
provide a sample of realisations and are not necessarily intended to represent realistic IC
uncertainty. Thus, there is no requirement for the perturbations to match instrumental
and sampling errors in the observations that provide the ICs. Results of such ensemble
tests are discussed in section 4.1.

Another aspect to consider is the ensemble size required. We use 39 member ensem-
bles, which appears to be sufficient to produce useable results. The robustness of results
derived from ensembles of this size can be estimated from a brief statistical consideration:

• Ensemble means. Assuming some model variable to be approximately normally
distributed, its ensemble mean has a standard error of σ/

√
K, where σ is the

standard deviation and K is the number of ensemble members. For example, in the
IC ensemble for the default UM, the ensemble standard deviation for temperature is
of the order 0.5 K. This gives the ensemble mean a standard error of approximately
0.08 K, leading to a 95% confidence interval of ±0.16 K, which is less than 10% of
the amplitude of typical temperature variations during the model runs (see figure
2).

• Ensemble spread. This can be quantified by the root-mean-square deviation of
ensemble members from their mean (the standard deviation σ). It can be shown
that the sampling distribution of a standard deviation is approximately normal with
standard error σ/

√
2K, for ensemble sizes K >

∼ 25. In our case, with K = 39, this
leads to a 95% confidence interval of ±22% of σ. An interval this broad suggests

2That is, an ensemble in which each member has the same stochastic parameterisation scheme but
draws a different set of random numbers for it.
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that ensemble spreads calculated for single variables should be interpreted with
care. More accurate ensemble spreads occur for an error norm which sums the
ensemble spread over the model column. We present below results for the Total
Column root-mean-square Ensemble Spread, given by

TCES =







∫ psurf

ptop

∑K
k=1

(

Fk − F
)2

dp

(psurf − ptop)(K − 1)







1/2

(2)

where F is a model variable, F its ensemble mean, p is the pressure coordinate, and
k labels ensemble members. Assuming hydrostatic balance, the TCES is the square
root of the mass-weighted vertical integral of estimated model-field variance. Since
there are vertical correlations between model levels in the SCM, it is not obvious
how much more accurate this norm will be than the ensemble standard deviation
at a single level. We have therefore performed some simple tests to estimate a
sampling error for the TCES and found a 95% confidence interval of around ±10%.

4 Results

4.1 Ensemble Sensitivity to Initial Condition Perturbations

We have constructed IC ensembles from two sets of IC perturbations. In set 1, random
temperature perturbations are applied to the lowest model level, chosen from a uniform
distribution between ±0.25 K. Temperature perturbations for set 2 are larger and cover
a greater vertical extent. A uniform distribution is again used with amplitude 0.5 K at
the surface and decreasing exponentially above with a height scale of 1 km. For these
larger perturbations, it is desirable to ensure that no spurious super-saturation occurs,
and so corresponding perturbations are applied to the specific humidity field in order to
maintain the relative humidity.

Figure 2 shows spaghetti plots of temperature for a single model level in the lower
troposphere. Set 1 IC perturbations have been added to the default UM. Figure 3 is
equivalent, but for the Kain-Fritsch convection scheme. For the default UM, the per-
turbations appear to produce a good spread of realisations, but using the KF scheme
the ensemble members fail to diverge. Even at the end of the 19 day runs they re-
main clustered in six distinct groups, the members of each group triggering convection
on the same set of timesteps (not shown). Figure 4 shows the temperature plume for
the Kain-Fritsch scheme using the set 2 IC perturbations. It is clear that the ensemble
members are less tightly clustered than with the set 1 perturbations, producing a more
representative sample of realisations. But the spread is still smaller than in the default
UM using set 1. It is perhaps slightly surprising that the SCM responds so differently
to IC perturbations when different convection schemes are used. This is in contrast to
Hume and Jakob (2005).

An important point to note from the simulations of Hack and Pedretti (2000) is
their observation of bifurcations in SCM solutions (e.g. their figure 4), with ensemble
members dividing into two or more preferred modes. Clearly, this raises issues with the
representativeness of statistics such as the ensemble mean, since the mean state may lie
between modes and never actually occur. Little evidence for multi-modal behaviour was
found in the present study. Clearly separated modes do occasionally occur, as seen for
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Figure 2: Ensemble plume plot of temperature on model level 10 (800 hPa) for the default
UM with the set 1 IC perturbations. The solid line denotes the control run (with no IC
perturbations) and the dotted line denotes the ensemble mean.
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Figure 3: As figure 2 but with the Kain-Fritsch convection scheme.
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Figure 4: As figure 2 but with the Kain-Fritsch convection scheme and the set 2 IC
perturbations.
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example, using the Kain-Fritsch convection scheme around the 19th (figure 4). However,
these persist for no longer than a day or so. The presence or absence of bifurcations
is presumably related to the character of either (or both) the SCM or the large-scale
forcing. We do not speculate further here, but rather note that the ensemble mean and
standard deviation appear to be genuinely useful diagnostics for the present study.

Figure 5 shows timeseries of the TCES of temperature, for the Default UM ensemble
with set 1 and set 2 IC perturbations, and also for an ensemble which includes the
multiplicative noise scheme described in section 3.1, both with and without set 2 IC
perturbations added. The corresponding plots for relative humidity are shown in Figure 6.

8 10 12 14 16 18 20 22 24 26
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time / days

T
em

pe
ra

tu
re

 T
C

E
S

 / 
K

 

 

Def. UM, set2 IC
Def. UM, set1 IC
Mult. Noise, no IC
Mult. Noise, set2 IC 

Figure 5: TCES of temperature, in the default UM with set 1 (dash-dotted line) and
set 2 (solid line) IC perturbations, with multiplicative-noise perturbations but no IC
perturbations (dotted line), and with both set 2 IC perturbations and multiplicative
noise (dashed line).
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Figure 6: As figure 5, but for relative humidity rather than temperature.

Looking first at the two Default UM TCES ensembles, there is more spread over the
first 6 days using the larger set 2 IC perturbations. However, the set 1 and 2 ensembles
look very similar beyond 6 days, suggesting that the ensemble spread has saturated in
both. This is reassuring as it suggests that the saturated level of ensemble spread in
temperature is independent of the size and nature of the IC perturbations, but rather
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provides a measure of the inherent variability of the SCM. For the Kain-Fritsch scheme,
the larger IC perturbations produce larger ensemble spreads throughout (figures 3 and
4), but this is because the spread did not saturate when the set 1 IC perturbations were
used.

In a stochastic physics (ST) SCM ensemble, the stochastic method provides some
physically-motivated source of variability. One might anticipate that the physics pertur-
bations would allow the ST ensemble to explore at least those realisations accessible to
its deterministic analogue3. If this is true, then IC perturbations should have little effect
on ensemble spread when implemented in an ST ensemble. It is clear from figures 5 and 6
that beyond the first 36 hours or so, the ensembles including multiplicative noise ST per-
turbations have spreads that are consistently larger than those occurring in the IC-only
ensembles, typically by a factor of about a third. The inclusion of IC perturbations in
addition to multiplicative noise slightly increases the spread during the first day, but has
no significant effect thereafter. This is consistent with the idea that the IC perturbations
allow one to sample different realisations, but do not affect the underlying distribution of
probable realisations which emerges once the spread of the ensemble saturates. Similar
conclusions apply for the other stochastic methods used (not shown).

Comparisons of the effects of IC and ST perturbations have been made before in
the context of global GCM ensemble prediction systems. Buizza et al. (1999) found
that IC-only ensembles produced consistently larger spread than ST-only ensembles, and
that ensembles with IC and ST perturbations produced greater spread still4. Teixeira and
Reynolds (2008) found similar results over the tropics using a multiplicative noise scheme
applied only to the moist convective tendencies (their figure 7a). Although these results
differ from ours in placing far greater emphasis on IC perturbations, this is not surprising
given the context. In particular, we focus on the saturated level of ensemble spread due
to IC perturbations whereas in the cited studies, the runs do not reach saturation5. Also
those studies used much larger IC perturbations designed to sample IC uncertainty.

It is interesting to note in Figures 5 and 6 the time-variability of the ensemble spreads.
The spread clearly has some dependence on the large scale forcing, with a peak followed
by a sudden drop in spread occurring at the start of each convectively active phase.
To study this in more detail, we show in figure 7 a time–height plot of the ensemble
spread in temperature in the set 2 Default UM ensemble. The spread appears to follow
different characteristic regimes during suppressed and active phases, while behaving in a
more unsteady manner during transition periods between the two. Note that in figure
7 the active and suppressed phases labelled in figure 1 have been redefined in order to
separate out the transition periods. This will allow the ensemble variability characteristic
of suppressed and active phases to be analysed in section 4.3.

Most notably during transitions from suppressed to active phases, the pattern of
ensemble spread appears to be related to the convective cloud top height. For example,
peaks in TCES on the 15th (figures 5 and 6) correspond to large spreads in the mid-
troposphere where the ensemble produces a broad range of convective cloud tops. During
the following day this range suddenly narrows and the ensemble spread drops throughout

3By which we mean the equivalent configuration with the stochastic component disabled, providing
of course that such an equivalent is well-defined. For example, for a stochastic method in which model
parameters are selected randomly, the deterministic analogue is simply a simulation with the default
parameter set.

4This is shown for forecast days 3, 5 and 7 in their table 1a.
5See Teixeira and Reynolds (2008), figure 7a for example.

11



Time / days

H
ei

gh
t /

 k
m

 

 

8 10 12 14 16 18 20 22 24 26
0

5

10

15

0.5

1

1.5

2

ActBSupB SupC ActC

Figure 7: Ensemble r.m.s. spread in temperature (K) for the Default UM ensemble us-
ing set 2 IC perturbations (shaded). Overlaid are the 25th and 75th percentiles of the
convective cloud top height (dotted lines). These values are determined at each timestep
from the subset of ensemble members in which the convection scheme triggers and are
smoothed for presentation here using 6-hourly averaging. Annotations are explained in
the text.

the troposphere. Another interesting feature is the sloping layer of high ensemble spread
around the 24th and 25th, which increases in height from roughly 7 km to 9 km during the
transition from SupC to ActC. This layer closely follows the 75th percentile of convective
cloud top height, indicating an ascending lid on the convection. The ensemble spread is
large here because the ensemble members produce a range of different heights for this
lid, which has a sharp temperature gradient across it (not shown).

4.2 Intercomparison of Ensemble Mean States

An ensemble was produced for each of the SCM configurations described in section 3.1.
In the case of the stochastic Plant & Craig scheme, two separate ensembles were produced
for columns with horizontal scales ∆x of 50 and 100 km (as explained in section 3.1, the
stochastic fluctuations in that scheme depend on the column size). To ensure a consistent
comparison between stochastic physics SCM ensembles and their deterministic analogues,
we included the set 2 IC perturbations in all ensembles, although beyond the first day
they make very little difference to the stochastic ones.

We show results here for the precipitable water content (PWC), the mass-weighted in-
tegral of specific humidity through the column. Figure 8 shows timeseries of observation-
derived PWC and ensemble means for three deterministic SCM configurations. The
SCMs exhibit large systematic biases from the observed PWC; this is probably due to
discrepancies in the large scale forcings used to drive the SCMs, as found in other SCM
and CRM studies which use advective forcings derived from observations (e.g. Krueger
and Lazarus 1999). The Kain-Fritsch and Plant & Craig schemes (which are based on
the same convective plume model) produce a drier state than the default UM, although
well within the range of values seen when comparing various SCMs (Woolnough et al.

submitted). The drying is associated with tropospheric cooling in these schemes relative
to the default UM (not shown).

Several of the SCM configurations in this study include ST perturbations but are
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Figure 8: Six-hourly mean PWC derived from TOGA-COARE observations (dotted line),
and ensemble means for the Default UM (dashed line), Kain-Fritsch (solid line), and Plant
& Craig deterministic mode (dash-dotted line) configurations.

based on the UM convection scheme. In figure 9, we show the difference in ensemble
mean PWC between these configurations and their deterministic analogue, the default
UM. Also shown is the difference between the Kain-Fritsch scheme and the default UM.
Figure 10 shows similar plots for the Plant & Craig scheme. In terms of ensemble mean
PWC, the difference between the two convection parameterisations (default UM and
Kain-Fritsch) is several times the difference between any of the stochastic schemes and
its deterministic analogue. Similar remarks apply to other variables and suggest that the
ensemble mean fields are more sensitive to structural differences in the convection scheme
than they are to the introduction of stochastic schemes.
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Figure 9: Six-hourly mean difference in ensemble mean PWC relative to the default UM,
for the multiplicative noise (dotted line), time-varying random parameters (dashed line),
constant random parameters (dash-dotted line), and Kain-Fritsch (solid line) configura-
tions.

However, the observation that stochastic physics schemes designed to represent model
uncertainty or departures from statistical equilibrium can change the mean state of the
SCM by even a relatively small amount is interesting. Statistical tests indicate that the
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Figure 10: As figure 9, but for the Plant & Craig scheme with gridlengths of 50 km
(dotted line) and 100 km (dashed line) and in deterministic mode (dash-dotted line), and
for the Kain-Fritsch scheme (solid line).

ensemble mean state of the time-varying random parameters ensemble is significantly
cooler and dryer than the default UM for much of the model run, especially during
periods of suppressed convection. However the constant random parameters scheme did
not produce this deviation despite sampling the same range of values for model parameters
(see figure 9). This suggests noise induced drift; the random noise introduced by the
time-variation of the model parameters causes the SCM to explore a region of phase-
space which is asymmetric about the mean state of the deterministic analogue. Note in
figure 10 that the stochastic Plant & Craig scheme produces a similar drift relative to
its deterministic analogue (most clearly seen around the 22nd), which is also found to
be statistically significant during the suppressed phases. This drift is smaller when the
larger column size is used.

4.3 Intercomparison of Ensemble Variability

Figure 11 shows time-mean vertical profiles of ensemble spread in temperature for the
active and suppressed periods ActB, SupC and ActC, as labelled in figure 7. There
are marked differences between active and suppressed phases. This is most apparent in
the mid-troposphere where the spread tends to be higher during active phases, whereas
in the lower troposphere most of the SCM configurations exhibit greater spread during
the suppressed phase (the Plant & Craig scheme is an exception during ActC). These
observations are consistent with the notion that convective variability is a key ingredient
in producing spread.

There are distinct differences between the profiles in panels (a), (b) and (c), which are
for configurations using the default UM’s convection scheme, and those in panels (d), (e)
and (f), which are for configurations based on the Kain-Fritsch convective plume model.
The latter grouping exhibits large peaks in ensemble spread in the upper troposphere
and lower stratosphere region, presumably associated with convective overshoots. Such
peaks are absent for the first grouping, which tend to have greater spread in the mid-
troposphere. The vertical structure of the ensemble spread profile appears to be primarily
dependent on the convective plume model used, with the ST perturbations primarily
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Figure 11: Vertical profiles of ensemble r.m.s. spread in temperature, for eight different
SCM ensembles, averaged over the periods ActB (panels a and d), SupC (panels b and
e), and ActC (panels c and f). The periods are as defined in figure 7. The profiles in
panels a, b and c are for the Default UM configuration (solid line), the Multiplicative
Noise scheme (dotted line), the time-varying Random Parameters scheme (dashed line),
and the constant Random Parameters scheme (dot-dashed line). Those in panels d, e
and f are for the Kain-Fritsch configuration (solid line), and the Plant & Craig scheme
with a gridlength of 50 km (dotted line), 100 km (dashed line), and in deterministic mode
(dot-dashed line).

affecting its amplitude.

In the troposphere, the default UM ensemble produces more spread than the Kain-
Fritsch ensemble. These profiles confirm that the convection parameterisation is an im-
portant source of variability and also that different deterministic convection parameterisa-
tions produce rather different variabilities in the host model. Thus, if the high-frequency
variability of a model does have important effects on climate, one should introduce some
(stochastic) method to control the high-frequency variability, or at least should investi-
gate the on-off characteristics of the GCM convection parameterisation.

The schemes that represent model uncertainty (multiplicative noise, random param-
eters and constant random parameters) tend to scale-up the profile of ensemble spread
produced by their deterministic analogue in the mid and upper troposphere, but have
relatively little effect on the lower troposphere. The multiplicative noise scheme also
affects the stratosphere, as it directly perturbs the radiative tendencies which dominate
there. The stochastic Plant & Craig scheme also tends to scale-up the profile of spread
produced by its deterministic mode, but differs from the other methods in that during
ActB and SupC it creates substantial increases in spread in the lower troposphere.

The deterministic Plant & Craig scheme generally produces small ensemble spreads,
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often smaller than those in the Kain-Fritsch ensemble. This is consistent with its de-
sign, since it uses time-averaged profiles to reduce timestep-to-timestep variability in its
closure calculations. The stochastic form of this scheme is not designed to represent
generic model uncertainty, but specifically the variability arising from sub-sampling the
cumulus ensemble within a finite area. For an area of side ∆x = 100 km, the scheme
is certainly more spread than in deterministic mode, but still comparable with the de-
terministic Kain-Fritsch ensemble and in the troposphere is much less spread than any
of the model-uncertainty schemes. However, with ∆x = 50 km the ensemble spread has
tropospheric values comparable to those produced by model-uncertainty schemes. These
results suggest that local fluctuations about convective equilibrium become as important
as generic model uncertainty at resolutions of around 50 km, and a key mechanism for
variability at smaller grid-lengths.

4.4 Comparison of Stochastic Physics SCM Ensemble Spread

to Model Uncertainty

Although the stochastic physics schemes used in this study do produce significant en-
semble spread, it remains to determine whether or not the levels of spread are appro-
priate. To examine this point, it is useful to compare the ensembles that are designed
to represent model uncertainty with the range of model states produced by different
deterministic structural configurations. A poor-man’s ensemble is produced by combin-
ing the 39-member IC ensembles produced by the Default UM, the Kain-Fritsch scheme
and the deterministic Plant & Craig scheme, each with equal weighting. The spread of
this combined 117-member ensemble can be used as a simple measure of the spread of
model states associated with model uncertainty. With only three different model config-
urations, its representativeness is questionable, but we suggest that a stochastic scheme
that aims to represent model uncertainty should produce at least comparable levels of
spread. Figure 12 shows timeseries of several ensemble percentiles of PWC for each of
the stochastic schemes and for the constant random parameters scheme, compared with
the same percentiles of the combined deterministic ensemble. (The ensemble mean PWC
for each deterministic scheme was shown in figure 8).

It is encouraging to find that the three schemes designed to represent generic model
uncertainty do indeed produce spread comparable to the combined deterministic ensem-
ble (see panels a, b and c). However, these schemes tend simply to broaden the ensemble
about the ensemble mean state of their deterministic analogue. Thus, they fail to ex-
plore regions of phase-space which are accessible to the other deterministic schemes. The
model-uncertainty scheme which looks most promising in this study is the Random Pa-
rameters scheme. As discussed in section 4.2, it produces some noise-induced drift, and
this appears to be favourable, in the sense that the distribution of PWC is nudged to-
wards that of the combined deterministic ensemble. It only fails to encompass the full
range of model uncertainty during the last day or two of the runs.

Panels d and e show results for the stochastic Plant & Craig scheme. These confirm
the points made in section 4.3, that fluctuations about convective equilibrium result in
ensemble spread similar to key aspects of model uncertainty on scales of around 50 km.
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Figure 12: The 5th, 25th, 75th and 95th percentiles of PWC (solid lines) for ensembles us-
ing (a) the multiplicative noise scheme, (b) the time-varying Random Parameters scheme,
(c) the constant Random Parameters scheme, and (d,e) the Plant & Craig scheme with
a gridlength of (d) 100 km and (e) 50 km. Each panel also shows (shaded) the same
ensemble percentiles for the combined deterministic ensemble.

5 Conclusions

Single column tests isolate the parameterisation schemes of a GCM and allow one to
study their interactions under prescribed forcings. The strengths of the approach are
also its weaknesses: it can be very helpful to explore the behaviour of parameterisations
in a clean arrangement, but the behaviour is not necessarily representative of that in the
parent GCM. We have performed single-column tests of tropical convection, comparing
various stochastic physics methods. The interactions of stochastic perturbations with
model dynamics are likely to be an important aspect of their behaviour in a full GCM,
but we wished to consider whether SCM tests may nonetheless have value.

It is necessary to study stochastic methods with ensembles of SCM runs. Here we
have used an ensemble size of 39 which is certainly practical, and sufficient to make
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some inferences about the methods, but additional members might have allowed more
definitive statements to be made in some cases. The stochastic ensembles can be usefully
compared with deterministic ensembles produced by initial condition uncertainty and
also with combinations of these into poor man’s ensembles. Such comparisons allow one
to judge not merely that the ensemble mean from some stochastic method is sensible, but
also to assess the variability that the method produces through its interactions with the
GCM parameterisation set. For example, if the spread of a stochastic ensemble designed
to represent model uncertainty were much larger (smaller) than the poor man’s ensemble,
then the SCM would imply that for a good performance of the method in a full GCM
the interactions of the stochastic perturbations with GCM dynamics should be such as
to strongly dampen (amplify) the variability introduced.

In agreement with Hack and Pedretti (2000), deterministic SCM runs were found to
be sensitive to small initial condition perturbations. The variability of initial condition
ensembles is strongly dependent on the convection parameterisation used, according to
the timings and frequency of triggering. The perturbations chosen allowed the runs
to diverge into a set of independent realisations within a few days. The same initial
condition perturbations had very little effect on the ensembles produced by stochastic
methods, beyond the first day or two.

Three methods designed to represent model uncertainty appeared to perform well,
the ensemble spreads being broadly similar to that of the deterministic poor man’s en-
semble. The ensemble mean states were close to the ensemble means of the deterministic
analogue (differences in the convective parameterisation produced substantially larger
changes to the mean). For the random parameters scheme, however, there was a statisti-
cally significant noise-induced drift of ensemble mean PWC. The Plant & Craig scheme
produced levels of spread similar to the model-uncertainty approaches for ∆x = 50 km,
suggesting that fluctuations about convective equilibrium form an important component
of variability at and below this scale.

Although there are some changes in methodology and philosophy for SCM testing of
stochastic methods, we are inclined to view our results as encouraging and to speculate
that SCM testing may have a useful role to play in studying stochastic parameterisations.
This may be particularly the case for studying possible variations of a method, and
determining whether further, more comprehensive testing is desirable. For example, it
seems clear from our results that a GCM integration with a horizontal resolution of 2.5◦

would not be a good test of the impact of the convective fluctuations parameterised in
the Plant & Craig scheme. Given that comprehensive testing of all details of all plausible
stochastic methods will remain impractical, we contend that the indications of potential
impact that may be gleaned from SCM tests are far preferable to no indications at all.
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