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Abstract

We show that for any sample size, any size of the test, and any weights matrix

outside a small class of exceptions, there exists a positive measure set of regression

spaces such that the power of the Cliff-Ord test vanishes as the autocorrelation increases

in a spatial error model. This result extends to the tests that define the Gaussian power

envelope of all invariant tests for residual spatial autocorrelation. In most cases, the

regression spaces such that the problem occurs depend on the size of the test, but

there also exist regression spaces such that the power vanishes regardless of the size.

A characterization of such particularly hostile regression spaces is provided.
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1 Introduction

In recent years, applied economists have become increasingly aware of the consequences

of incorrectly ignoring spatial autocorrelation in cross-sectional regression studies. One

of these consequences, for example, is that the OLS estimator of the slope parameters

may be inefficient or inconsistent, depending on how the spatial autocorrelation enters

the regression model; see, e.g., Anselin (1988). Moreover, even in cases when the OLS

estimator of the slope parameters is consistent and does not involve a serious loss of

efficiency compared to (a feasible version of) the best linearly unbiased estimator, ne-

glecting spatial autocorrelation may lead to poor assessment of the estimator precision;

see, e.g., Cordy and Griffith (1993). To avoid faulty inferences, testing for spatial auto-

correlation is now common practice in many economic applications; e.g., Case (1991),

De Long and Summers (1991), Besley and Case (1995).

The power of tests for spatial autocorrelation depends, among other things, on the

regressors included in the model. In this paper, we are concerned with the impact of

regressors on the limiting power achieved by tests of residual spatial autocorrelation

as the spatial autocorrelation increases. More specifically, by limiting power we mean

the power as the autocorrelation parameter of a first-order simultaneous autoregressive

(SAR(1)) model approaches the right boundary of the parameter space. The study

of such a limiting power is important for several reasons. Firstly, there are many

empirical applications in economics where unobservable factors lead to large spatial

autocorrelation in a regression model; see, e.g., Militino et al. (2004), Parent and

LeSage (2007).1 Secondly, the properties of inferential procedures that neglect spatial

autocorrelation can be very poor when the autocorrelation is large. Thirdly, a SAR(1)

model with autocorrelation parameter approaching the right boundary of the parameter

space has an intrinsic theoretical interest for econometricians, because of the analogy

to a near unit root process in time series; see, e.g., Fingleton (1999) and Lee and Yu

(2008).

The key contribution on the limiting power of tests for spatial autocorrelation is

Krämer (2005). Krämer focuses on a Gaussian SAR(1) error process with symmetric

weights matrix, and on test statistics that can be expressed as a ratio of quadratic forms

in regression errors. The main message of Krämer (2005) is that, for some combinations

of the regressor matrix and of the spatial weights matrix, the power of such tests may

vanish as the autocorrelation increases. That is, there are circumstances in which it

may be very difficult to detect spatial autocorrelation when the autocorrelation is in

fact large. Martellosio (2010a) shows that Krämer’s results can be extended to any

invariant test of spatial autocorrelation, and also to other models, including a spatial

lag model.

Both Krämer (2005) and Martellosio (2010a) contain simulation results suggesting

1Lee and Yu (2008) give several other references to the empirical economic literature. Regression

models with strongly autocorrelated errors are also relevant in many applications outside economics;

see, e.g., Basu and Reinsel (1994) and Jones et al. (2008).
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that, at least in some cases, a vanishing limiting power of tests for spatial autocorre-

lation may have some empirical relevance. In the present paper, we complement those

simulation results with a theoretical investigation of whether, for any fixed weights

matrix, there always are regression spaces (i.e., column spaces of the regressor matrix)

such that the limiting power vanishes. For simplicity, we restrict attention to a spatial

error model, and to the following tests: the Cliff-Ord test, which is the most popular

test for residual spatial autocorrelation, and point optimal invariant tests, which define

the Gaussian power envelope of invariant tests. Our main result is that for any fixed

sample size, any fixed size of the tests, and any fixed weights matrix outside a small

class of exceptions, the vanishing of the power is an event with positive probability

(according to a suitable measure), in the sense that there exists a positive measure set

of regression spaces such that the limiting power disappears.

What is more, and somewhat surprisingly, there are also regression spaces such that

the limiting power vanishes for all values of the size of a test. We provide a characteri-

zation of such regression spaces, which are particularly “hostile” from the point of view

of testing for large spatial autocorrelation. The characterization is similar in nature

to characterizations of the regressor matrix that minimizes the efficiency of the OLS

estimator (see Watson, 1955), and proves to be relevant for interpretative purposes.

The rest of the paper is organized as follows. Section 2 introduces the set-up.

Section 3 contains our main results. Section 4 presents the characterization of the par-

ticularly hostile regression spaces. Section 5 concludes and indicates possible extensions

of our analysis. Proofs and auxiliary lemmata are collected in the appendices.

2 The Testing Problem

We consider a linear regression model

y = Xβ + u, (1)

where X is a fixed n × k matrix of rank k < n, β is a k × 1 vector of unknown

parameters, and the error vector u follows a SAR(1) process

u = ρWu+ ε (2)

(see, e.g., Cliff and Ord, 1973). Here, ρ is a scalar unknown parameter; W is a fixed

n × n matrix of weights chosen to reflect a priori information on the spatial relations

among the n observational units; ε is an n× 1 vector of “innovations” with

E(ε) = 0, var(ε) = σ2V ,

where σ2 is an unknown positive scalar parameter and V is a fixed n × n symmetric

and positive definite matrix.

The results in this paper require only minimal additional restrictions on the above

model. As far as u is concerned, we assume that its density is positive everywhere
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on Rn, is larger at 0 than anywhere else, and is continuous in both u and ρ. As for

W , we assume, for simplicity, that it has at least one (real) positive eigenvalue, and

that the largest of the positive eigenvalues of W , to be denoted by λmax, has geometric

multiplicity one. Such an assumption is virtually always satisfied in applications of

spatial autoregressions to connected irregular lattices.2

In the context of model (1)-(2), the null hypothesis of no residual spatial autocor-

relation is

H0 : ρ = 0.

The empirically most relevant alternative hypothesis is

H1 : 0 < ρ < λ−1
max,

which represents positive spatial autocorrelation if, as it is usually the case, all the

entries of W are nonnegative. From now on, we set V = In, the identity matrix of

order n, because this does not involve any loss of generality when testing H0 against

H1 (if V 6= In, just premultiply y by V −1/2).

In this paper we are concerned with the behavior of the power function of tests for

spatial autocorrelation when ρ is far from 0 (and n is fixed). More specifically, we will

consider the limiting power of tests for H0 against H1 as ρ→ λ−1
max. Observe that, when

ρ = λ−1
max, u cannot be written as a function of ε, and var(u) does not exist.3

One nice property of the above testing problem is that it is unchanged under the

transformations y → γy+Xδ, with γ ∈ R\{0} and δ ∈ Rk. Accordingly, it is natural

to require that a test for that problem is invariant, that is, is based on a statistic that

is invariant under the same transformations; see, e.g., Lehmann and Romano (2005).

It is simple to show that any invariant test for our testing problem is free of nuisance

parameters both under H0 (that is, the tests are similar) and under H1; see, e.g., King

(1980).

Model (1)-(2) is often referred to as a spatial error model. An alternative model,

which is popular in economics, is the so-called spatial lag model y = ρWy+Xβ+ε (see,

e.g., Anselin, 2002, for a comparison of the two models). In the latter model, contrary

to what happens in the former, ρ affects also E(y). Because this changes the problem

of testing ρ = 0 quite significantly, all formal results in this paper are confined to the

spatial error model. Extensions to the spatial lag model are discussed in Section 5.

A few, mainly notational, remarks are in order. We denote the size of a test by α,

and, to avoid trivial cases, we assume 0 < α < 1. Note that, because of the invariance

2In particular, by the Perron-Frobenius theorem (e.g., Horn and Johnson, 1985, Ch. 8), our

assumption is certainly satisfied if W is entrywise nonnegative and irreducible (see Section 3.3).

Extensions of our set-up to the cases when λmax is not defined (i.e., W is nilpotent) or has geometric

multiplicity larger than one (e.g., W is block diagonal) are straightfoward.
3More generally, in order for model (2) to be invertible (so that u = (In − ρW )

−1
ε), ρ must be

different from the reciprocal of the nonzero real eigenvalues of W . All such non-admissible values of

ρ are outside H1.
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with respect to the transformations y → y + Xδ, the power of any invariant test

depends onX only through its column space col(X), often referred to as the regression

space. All matrices considered in this paper are real. For a q × q symmetric matrix

Q, we denote by λ1(Q) ≤ λ2(Q) ≤ ... ≤ λn(Q) its eigenvalues; by f 1(Q), ...,f q(Q) a

set of corresponding orthonormal eigenvectors; by Ei(Q) the eigenspace associated to

λi(Q); by mi(Q) the (algebraic and geometric) multiplicity of λi(Q).

3 Main Results

This section investigates the existence of pairs (W ,X) such that the limiting power of

tests for residual spatial autocorrelation vanishes. We shall see that such pairs always

exist, as long as W is outside a small class of exceptions. Most importantly, the zero

limiting power is a positive probability event, in a sense to be made clear below. Section

3.1 is devoted to the Cliff-Ord test. Section 3.2 shows that the results concerning the

Cliff-Ord test extend to point optimal tests with only a minor modification. Section

3.3 discusses the exceptions to our main results.

Before we proceed, it is important to point out that the analysis to follow is not

directly relevant if W is row-standardized, or, more generally, has constant row-sums.

Indeed, if W has constant row-sums, the limiting power of any invariant test cannot

vanish as long as an intercept is included in the regression; see Section 3.2.2 of Martel-

losio (2010a). A discussion of the possible consequences of our results for the important

case of a row-standardized W is deferred to Section 5. For now, we point out that in

some applications it may be preferable not to row-standardized weights matrices; see,

e.g., Bell and Bockstael (2000), p. 74, and Kelejian and Prucha (2010).

3.1 The Cliff-Ord Test

The most popular test for residual spatial autocorrelation is the Cliff-Ord test. It

consists of rejecting H0 for large values of

I :=
y′MXWMXy

y′MXy
, (3)

where MX := In−X(X ′X)−1X ′; see Cliff and Ord (1973) and Kelejian and Prucha

(2001).4 When the distribution of u is elliptically symmetric, the Cliff-Ord test is

locally best invariant for our testing problem (see King, 1980 and 1981). Critical

values for the test can be obtained from the exact null distribution of I, or from the

asymptotic null distribution of a suitably normalized version of I.

The issue of the existence of pairs (W ,X) such that the limiting power of the Cliff-

Ord test vanishes is considered in Krämer (2005). Theorem 1 in Krämer (2005) states

that, in a spatial error model, “given any matrix W of weights, and independently

4Note that y′MXy = 0 if and only if y belongs to the set {0} ∪ col(X), which, since k < n, has

zero measure. Hence, I is defined almost surely.
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of sample size, there is always some regressor X such that for the Cliff–Ord test the

limiting power disappears”. The statement is formulated under the assumptions that

the model is Gaussian, and that W is symmetric. Unfortunately, Krämer’s proof

contains an incorrect argument, which has the consequence that the pairs (W ,X)

constructed in that proof do not need to cause the limiting power to vanish.5 We now

aim to settle the issue and place it in a more general context.

Let fmax be one of the two normalized (so that f ′maxfmax = 1) eigenvectors of W

associated to λmax.6 We need the following definition.

Definition 3.1 C is the class of weights matrices W such that m1(W +W ′) = n− 1

and fmax is an eigenvector of W ′.

The class C contains the exceptions to Lemma 3.2 below. More details about the

class C will be given in Section 3.3, where it will become clear that that the weights

matrices used in applications are generally not in C (see in particular Proposition

3.8). At this stage we limit ourselves to point out that the only members of C that

have some empirical relevance are possibly those with (W )ij equal to some constant

positive scalar if i 6= j, to 0 if i = j. We refer to such matrices as equal weights

matrices. Equal weights matrices have recently attracted considerable attention in the

spatial econometric literature; see Kelejian and Prucha (2002), Baltagi (2006), Kelejian

et al. (2006), Baltagi and Liu (2009 and 2010), Smith (2009), and Martellosio (2010b).

Lemma 3.2 Consider testing ρ = 0 in the context of a spatial error model. For any

weights matrix W /∈ C, any number of regressors k > 0, and any size α, there exists

at least one k-dimensional regression space col(X) such that the limiting power of the

Cliff-Ord test vanishes.

Lemma 3.2 establishes that the statement from Krämer (2005) reported earlier is

correct if W /∈ C, for any n, k and α, and generalizes it to nonsymmetric W and to

non-Gaussian models. Both generalizations are achieved by application of Lemma A.1

in Appendix A, which does not require symmetry of W or Gaussianity. Note that the

extension to nonsymmetric weights matrices is important, despite the fact the Cliff-Ord

test statistic can be rewritten in terms of the symmetric matrix (W +W ′) /2, because

assuming a symmetric W in a SAR(1) model does cause loss of generality.

Although it holds for any W /∈ C, Lemma 3.2 has little practical relevance when

W has constant row-sums. As we have mentioned above, in that case—and only in

that case—the restriction that col(X) contains an intercept is sufficient to circumvent

5The problem lies in inequality (12) of Krämer (2005). In most cases, the critical value d1 in

that inequality can be positive or negative depending on α, and hence Krämer’s proof holds only for

sufficiently small α. In addition, there are weights matrices such that d1 < 0 for any α; e.g., a W with

zero diagonal entries and constant off-diagonal entries. For such matrices, inequality (12) is incorrect

for all values of α.
6The two normalized eigenvectors are the same up to sign. Throughout the paper, it is irrelevant

which of the two eigenvectors is chosen. Also, note that the normalization of fmax is made here only

for convenience, and will not be relevant until Section 4.
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the zero limiting power problem. In other words, when W has constant row-sums, the

regression spaces identified by Lemma 3.2 must not contain an intercept, and hence

typically do not occur in applications.

Given any W with non-constant row-sums, Lemma 3.2 says that, for any n, k

and α, there is at least one possibility that the Cliff-Ord test is unable to reject the

null hypothesis when ρ is very far from the null hypothesis. This is a negative and

unusual feature of a statistical test. It is therefore natural to wonder whether the set

of regression spaces causing the limiting power to vanish has zero measure. In that

case, Lemma 3.2, which only says that such a set is nonempty, would be immaterial for

applications. We denote by Gk,n the set—usually called a Grassmann manifold—of all

k-dimensional subspaces of Rn. We refer to the unique rotationally invariant measure

on Gk,n; see Section 4.6 of James (1954) for details.7

Theorem 3.3 Consider testing ρ = 0 in the context of a spatial error model. For

any weights matrix W /∈ C, any number of regressors k > 0, and any size α, the set

of k-dimensional regression spaces such that the limiting power of the Cliff-Ord test

vanishes has positive measure.

Theorem 3.3 asserts that, as X is free to vary without restrictions (in the sense

that col(X) has positive density almost everywhere on Gk,n), the zero limiting power

has a positive probability of occurring. The main practical consequence of this result is

that the zero limiting power is always a threat in applications, regardless of how large

n− k or α are (provided that W /∈ C).
How likely it is in a given application to run into a regression space causing the

limiting power to vanish will depend to a very large extent on W , n − k, and α.

Some simulation experiments analyzing this issue are reported in Krämer (2005) and

Martellosio (2010a). Here, we stress that Theorem 3.3 implies that in any simulation

study of the power properties of the Cliff-Ord test for a fixed W /∈ C and when X

is drawn from a distribution supported on the whole Rn×k, there must be repetitions

such that the limiting power vanishes, provided only that the number of repetitions is

large enough.

3.2 The Point Optimal Invariant Tests

Martellosio (2010a) shows that the zero limiting power problem is not due to the form

of a particular invariant test statistic. More specifically, he shows that if an invariant

critical region does not contain fmax in its closure, then its limiting power is bound

to vanish (see Lemma A.1 in Appendix A). This geometric interpretation suggests

that the results in the previous section can be extended to any other invariant test of

7Of course, X is assumed to be nonstochastic when constructing the Cliff-Ord test. We are now

equipping Gk,n with a probability measure only as a device to assess the practical relevance of the

zero limiting power problem. One may think of an experiment where W is fixed, X is random, and

the Cliff-Ord test is constructed for each realization of X.
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spatial autocorrelation. We shall here focus on the tests that, under the assumption of

elliptical symmetry, define the power envelope of all invariant tests.

Consider testing ρ = 0 against the specific alternative that ρ = ρ̄, for some fixed

0 < ρ̄ < λ−1
max. When the distribution of u is elliptically symmetric, the Neyman-

Pearson lemma implies that the most powerful invariant test rejects ρ = 0 for small

values of

Pρ̄ :=
y′C ′ [CΣ(ρ̄)C ′]

−1
Cy

y′MXy
, (4)

where Σ(ρ̄) := var(y) = [(In − ρ̄W ′)(In − ρ̄W )]
−1

, and C is an (n− k) × n matrix

such that CC ′ = In−k and C ′C = MX (see King, 1980 and 1988). In econometrics,

the most powerful tests against a specific alternative are usually called point optimal

invariant (POI) tests. With an abuse of language, we shall refer to a test based on (4)

as a POI test, irrespective of whether the distribution of u is elliptically symmetric.

Under elliptical symmetry, the POI tests define the power envelope of invariant tests.

Of course, it could be argued that, if the distribution of u is not far from being

elliptically symmetric, then the power function of a test based on (4) should be close

to the power envelope.

In order to state the analog of Theorem 3.3 for POI tests, we need to define a

slightly modified class of exceptions.8

Definition 3.4 C∗ is the class of weights matrices W ∈ C such that m1(W ′W ) ≥
n− 1.

Theorem 3.5 Consider testing ρ = 0 in the context of a spatial error model. For any

weights matrix W /∈ C∗, any number of regressors k > 0, and any size α, there is a

positive measure set of k-dimensional regression spaces such that the limiting power of

a POI test vanishes.

Theorem 3.5 is even more surprising than the corresponding result for the Cliff-Ord

test. To see why this is the case, consider, under the assumption of elliptical symmetry,

the extreme case of a POI test when ρ̄ is close to λ−1
max and the size α is very large.

Since a very large α means that the critical region covers almost the whole sample

space, one might expect the limiting power to be large. In fact, Theorem 3.5 asserts

that, even in the extreme case when both ρ̄ and α are large, regressors can be found

such that the probability content of the critical region vanishes as ρ→ λ−1
max.

At this point, some remarks about how a zero limiting power is achieved (whenW /∈
C) are in order. By simulation one can see that often the power function is increasing

at first, and then is collapsing to zero quite close to λ−1
max. Indeed, under elliptical

symmetry, the power function of the Cliff-Ord test must have positive derivative at

ρ = 0 (because it is locally best invariant), and the power of the POI test must be

8Note that C∗ is strictly smaller than C, because the condition m1(W ′W ) ≥ n−1 is not necessarily

satisfied by a matrix W in C.
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larger than α at ρ = ρ̄ (by the Neyman-Pearson Lemma). Note, in particular, that

if both ρ̄ and α are large, then the power function of the POI test must drop to zero

very quickly after ρ = ρ̄. Although this goes beyond the scope of the present paper,

it would be particularly interesting to study what happens when the assumption of

elliptical symmetry is not satisfied; in this case it should even be possible to find pairs

(W ,X) such that the power function of the Cliff-Ord test or of a test based on (4) is

monotonically decreasing from α to zero.

3.3 Exceptions and Equal Weights Matrices

The reason why the weights matrices in C (resp. C∗) constitute exceptions to our

theorems above is that, in their presence, the limiting power of the Cliff-Ord (resp. a

POI) test can never be zero. This is established in the following proposition.

Proposition 3.6 Consider testing ρ = 0 in the context of a spatial error model. For

any W ∈ C, any X, and any α, the Cliff-Ord test statistic is degenerate (i.e., it

does not depend on y) if fmax ∈ col(X), whereas it has limiting power equal to 1 if

fmax /∈ col(X). The same result holds for a POI test, with C replaced by C∗.

The most important part of Proposition 3.6 is the one concerning the case fmax ∈
col(X).9 Indeed, we are now going to show that, under some conditions that are often

satisfied in practice, the eigenvector fmax of a matrix W ∈ C is a vector of identical

entries, and hence is in col(X) as long as the regression contains an intercept. Consider

the following two conditions.

Condition 1 (W )ij ≥ 0 with (W )ii = 0, for i, j = 1, ..., n.

Condition 2 W is irreducible.

Condition 1 is virtually always satisfied in applications. For the definition of an

irreducible matrix, see e.g. Horn and Johnson (1985). Irreducibility requires the graph

with adjacency matrix W (that is, the graph with n vertices and an edge from vertex

i to vertex j if and only (W )ij 6= 0) to have a path from any vertex i to any vertex j.

This condition is often met in applications. In particular, in the case of an undirected

graph, irreducibility simply rules out the presence of isolated vertices. We have the

following result.

Proposition 3.7 Assume that Conditions 1 and 2 hold. Then, if W ∈ C, fmax is a

vector of identical entries.

The following result is also of interest, because it gives an idea of how small the

class C is.

9This part of the Proposition 3.6 can be seen as a generalization of Proposition 5 in Smith (2009),

which asserts that when W is an equal weights matrix and the regression contains an intercept, the

Cliff-Ord statistic is degenerate. For a discussion of the associated identification problem, see Arnold

(1979), Kariya (1980), and Martellosio (2010b).
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Proposition 3.8 Assume that Conditions 1 and 2 hold. Then, if W ∈ C, W +W ′

is an equal weights matrix.

We are now in a position to also explain why, as mentioned in Section 3.1, the equal

weights matrices are particularly important members of C. Consider the following

condition.

Condition 3 All eigenvalues of W are real.

Condition 3 is certainly satisfied when W is symmetric or a row-standardized ver-

sion of a symmetric matrix, whereas it may not be satisfied in applications to directed

networks.10

Proposition 3.9 Assume that Conditions 1, 2 and 3 hold. Then, W ∈ C if and only

if W is an equal weights matrix.

4 The Particularly Hostile Regression Spaces

Suppose that for a certain pair (W ,X) the limiting power of an invariant critical region

Φ ⊂ Rn vanishes. By Lemma A.1, a zero limiting power occurs if fmax is outside Φ.

One obvious way to try and increase the power is to increase the size of Φ, because the

limiting power becomes positive if Φ includes fmax. However, the minimum size α such

that the limiting power does not vanish may be very large. What is more, there are

cases when fmax remains outside Φ for all values of α (less than 1), so that the limiting

power vanishes irrespective of α. In this section, we characterize the regression spaces

such that, for a fixed W , the limiting power of the Cliff-Ord test or of a POI test

vanishes regardless of α. Such regression spaces are referred to as particularly hostile.

We begin by formalizing the notion of a particularly hostile col(X). For a fixed

W and α, and for the Cliff-Ord test or a POI test, let Hk(α) denote the set of k-

dimensional regression spaces that cause the limiting power to disappear. The set of

particularly hostile k-dimensional regression spaces is the intersection of all sets Hk(α),

for α ∈ (0, 1). Recall from Section 3 that any set Hk(α) is nonempty, provided that

W is outside a class of exceptions (C for for the Cliff-Ord test, C∗ for a POI test).

Since Hk(α2) ⊆ Hk(α1) for any 0 < α1 ≤ α2 < 1, it follows that the set of particularly

hostile regression spaces is nonempty, for any k and any W not in C or C∗.
The following theorem provides some information on the particularly hostile col(X)’s.

This is achieved by making the simplifying assumption that W is symmetric, and by

confining attention to the case when k is not greater than the multiplicity m1(W )

of the smallest eigenvalue of W . The most common value of m1(W ) in applications

to irregular spatial configurations is 1.11 For the case k = m1(W ) = 1, the theo-

10An example of a W ∈ C∗ ⊂ C that does not satisfy Condition 3 is the 3 × 3 matrix with rows

(0, 1, 2), (2, 0, 1), and (1, 2, 0).
11In general, m1(W ) > 1 requires W to satisfy some symmetries; see Biggs (1993), Ch. 15. An

emblematic example is a block diagonal matrix W whose r blocks are all equal to an n × n equal

weights matrix. For such a matrix, m1(W ) = n− r.
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rem provides a complete characterization of the particularly hostile col(X)’s. Some

consequences of nonsymmetry of W will be discussed later, by means of an example.

Theorem 4.1 Consider a spatial error model with symmetric weights matrix W such

that m1(W ) = 1, and with a single regressor (k = 1) that is a scalar multiple of the

vector f 1(W ) + ωfmax, for some ω ∈ R. Let

ω1 :=

[
λmax − λ2(W )

λ2(W )− λ1(W )

] 1
2

; ω2 :=
1− ρ̄λ1(W )

1− ρ̄λmax

[
2− ρ̄ (λmax + λ2(W ))

2− ρ̄ (λ2(W ) + λ1(W ))

] 1
2

.

Then, the limiting power of the Cliff-Ord test vanishes for all values of α if |ω| ≥ ω1,

and the limiting power of a POI test vanishes for all values of α if |ω| ≥ ω1ω2.

More generally, consider a spatial error model with a symmetric W /∈ C, and with

k ≤ m1(W ). For any k linearly independent eigenvectors g1, ..., gk ∈ E1(W ), let Θ

be the set of hyperplanes in span(g1, ..., gk,fmax) that do not contain fmax and are not

in E1(W ). Then, for the Cliff-Ord test or a POI test, any set Θ contains regression

spaces such that the limiting power vanishes for all values of α.

The result in Theorem 4.1 suggests the following interpretation. For a fixed sym-

metric W , let

I0 :=
v′Wv

v′v
,

where v is a realization of an n-dimensional random vector z.12 The statistic I0 is

the particular case of the Cliff-Ord statistic I when E(z) = 0. Suppose that, as it is

typically the case in applications, W has zero diagonal entries. Then, λ1(W ) < 0,

because λmax > 0 by definition and tr(W ) =
∑n

i=1 λi(W ) = 0. If we regard I0 as a

measure of autocorrelation, then, by Lemma A.2, any v ∈ E1(W ) represents a strongly

negatively autocorrelated vector, whereas v = fmax represents a strongly positively

autocorrelated vector.13 For simplicity, let us now focus on the case k = m1(W ) = 1,

so that there is a single regressor, to be denoted by x. Theorem 4.1 asserts that it

is particularly difficult to detect large positive spatial autocorrelation when x can be

written as the sum of a strongly positively autocorrelated component (according to I0)

and a strongly negatively autocorrelated component (according to I0). One could say

that the tests get confused in the presence of such an x.

There are similarities between Theorem 4.1 and contributions in the time-series

literature concerning the so-called Watson’s X matrix (see, in particular, Watson,

1955). This is the regressor matrix that minimizes the efficiency of the OLS estimator

of β relative to the best linear unbiased estimator. The similarities are not surprising,

12Here, for clarity and contrary to what is done in the rest of the paper, we use different notation

for a random variable and its realizations.
13Of course, if E(z) 6= 0, one should demean the data before constructing an autocorrelation index.

That is, in practice, one would not use I0, but Iι := v′M ιWM ιv/v
′M ιv, where ι denotes the n× 1

vector of all ones. In general, v ∈ E1(W ) (resp. v = fmax) will be associated to a small (resp. large)

value of Iι.
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in view of results in Tillman (1975) indicating that, in the presence of Watson’s X

matrix, the Durbin-Watson test has low power as the autocorrelation coefficient of an

AR(1) process approaches 1.

Next, we provide a graphical representation of the hostile regression spaces. Such a

representation is helpful to better understand the characterization in Theorem 4.1, and

to appreciate what happens when W is nonsymmetric. We take n = 3 and k = 1, so

that the regression spaces are lines in R3 through the origin. Without loss of generality,

we normalize the regressors to have fixed length, so that they are points on a sphere

in R3 (of arbitrary radius). We consider the weights matrix

W =

 0 1 0

1 0 1

0 1 0

 . (5)

Figure 1 displays 5000 random points from each of the three regionsH1(0.9) ⊂ H1(0.3) ⊂
H1(0.1), for the Cliff-Ord test. We only plot the positive octant in the coordinate sys-

tem of the eigenvectors of W , because the symmetry of W implies that all regions

H1(α) are symmetric with respect to the coordinate planes in that coordinate system.

It can be seen from Figure 1 that, as stated in Theorem 4.1, the particularly hostile

regressors belong to the plane spanned by f 1(W ) and fmax, and lie between the vector

h := f 1(W ) + ω1fmax and fmax.

1f (W)  

2f (W)  

h

   max f

Figure 1: 5000 random points from each of the regions H1(0.9), H1(0.3) and H1(0.1), for

the weights matrix in (5).

Let us now turn our attention to nonsymmetric weights matrices. Figure 2 is the
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analog of Figure 1 for the weights matrix

Q =

 0 1 0

4 0 1

0 4 0

 . (6)

The coordinate system for Figure 2 is the same as for Figure 1.14 Since Q is non-

symmetric, the regions H1(α) are no longer symmetric with respect to the coordinate

planes (but are still symmetric with respect to the origin), so we now look at a whole

hemisphere rather than at an octant as in Figure 1. We do not plot Hk(0.1), as this

region would cover almost the whole hemisphere (in this artificial illustration, it makes

sense to consider large values of α, as we have only 2 degrees of freedom).

1f (W)  

2f (W)  

h

n f (Q)

   max f

Figure 2: 10000 random points from each of the regions H1(0.9) and H1(0.3), for the weights

matrix in (6).

The characterization in Theorem 4.1 requires symmetry of W . Figure 2 suggests

that a similar characterization should hold when W is nonsymmetric. Indeed, the

particularly hostile regressors are still between h and the eigenvector fn(Q) associated

to the largest eigenvalue of Q. However, contrary to the case of matrix (5), they do not

lie on the plane spanned by h and fn(Q). Because of this reason, a characterization

similar to that in Theorem 4.1 is likely to be significantly more complicated in the case

of nonsymmetric W . To understand what happens when we move from a symmetric

to a nonsymmetric weights matrix, it is useful to replace the two 4’s in matrix (6) with

14In terms of Q, the coordinate system is that of the eigenvectors of the matrix Q+Q′, which is a

scalar multiple of (5).
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a general scalar s. For any s, the particularly hostile regressors are between h and

fn(Q). When s = 1 (the case of Figure 1) they belong to the plane spanned by h and

fn(Q). As s moves away from 1, fn(Q) moves away from fmax = fn(Q +Q′), and

the curve described on the sphere by the particularly hostile regression spaces moves

away from the plane spanned by h and fn(Q).

5 Discussion

In Krämer (2005) and Martellosio (2010a) conditions are given for tests of spatial auto-

correlation to have zero limiting power, where the limit is taken as the autocorrelation

increases. The present paper has continued that work by addressing the question of

whether it is always possible to run into regressors such that the limiting power van-

ishes. Provided that the weights matrix is not in a small class of exceptions, the answer

is positive. As a consequence, in applications there is always a chance that detecting

large autocorrelation by means of a certain test is extremely difficult.

Fortunately, since the regression spaces that cause a zero limiting power depend

on the test, the problem can be tackled. Indeed, there always exists a test of spatial

autocorrelation with nonvanishing limiting power (by Lemma A.1, any test such that

the closure of its critical region does not contain fmax has nonvanishing limiting power).

Hence, a practical recommendation is to check whether the limiting power disappears

using the condition in Lemma A.1. If the power disappears, one can try a different

critical region and check the same condition again.

For simplicity, in this paper we have confined attention to the spatial error model.

In applications, one is also often interested in testing for a spatially lagged dependent

variable in a spatial lag model, or in testing for residual autocorrelation in a spatial

autoregressive model with autoregressive disturbances (see, e.g., Kelejian and Prucha,

2001). Such testing problems have a more complicated structure than the one con-

sidered in this paper: first, they are not invariant under the group of transformations

y → γy+Xδ; second, the distributions of the test statistics for those problems gener-

ally depend on nuisance parameters. While these complications would certainly make

an extension of the results concerning the spatial error model more involved analyti-

cally, there is no reason to believe that they would impede it.

At the beginning of Section 3, we have mentioned that the limiting power of an

invariant test must be positive in the context of a spatial error model with a row-

standardized W , provided that the regression contains an intercept. It is worth re-

marking that, even if it is positive, the limiting power may be very small. An obvious

extension of our analysis would be to establish whether, when W is row-standardized

and in the presence of an intercept, there exist regression spaces such that the limiting

power is smaller than some given positive number. It should also be noted that, in

the context of a spatial lag model or a spatial autoregressive model with autoregres-

sive disturbances, the power of a test for autocorrelation can vanish even when W is

row-standardized and an intercept is included among the regressors (see Martellosio,

13



2010a).

Appendix A Auxiliary Lemmata

The first lemma, reported here for convenience, is Corollary 1 of Martellosio (2010a).

In that paper, the result was derived under the assumption that W is nonnegative and

irreducible, but it is clear that it also holds under the weaker assumption maintained

in the present paper that λmax has geometric multiplicity one. We denote by int(S),

bd(S) and cl(S), the interior, the boundary, and the closure of a set S, respectively.

Lemma A.1 (Martellosio, 2010a) In a spatial error model, the limiting power of

an invariant critical region Φ for testing ρ = 0 against ρ > 0 is: 1 if fmax ∈ int(Φ); in

(0, 1) if fmax ∈ bd(Φ); 0 if fmax /∈ cl(Φ).

The next lemma is proved, for instance, in Horn and Johnson (1985).

Lemma A.2 (Rayleigh-Ritz Theorem) For a q × q symmetric matrix Q,

λ1(Q)x′x ≤ x′Qx ≤ λq(Q)x′x,

for all x ∈ Rq. The equalities on the left and on the right are attained if and only if x

is an eigenvector of Q associated to, respectively, λ1(Q) and λq(Q).

Lemma A.3 For any n×n symmetric matrix Q, and for any k ≥ 1, λn−k(CQC
′) =

λ1(Q) if and only if col(X) contains all eigenvectors of Q associated to the eigenvalues

different from λ1(Q).

Proof. Consider the spectral decomposition Q =
∑s

i=1 ηi(Q)Gi, where η1(Q) <

η2(Q) < ... < ηs(Q) are the s ≤ n distinct eigenvalues of Q, and G1, ...,Gs are the

corresponding eigenprojectors. Since
∑s

i=1Gi = In,

Q = η1(Q)

(
In −

s∑
i=2

Gi

)
+

s∑
i=2

ηi(Q)Gi = η1(Q)In +
s∑
i=2

(ηi(Q)− η1(Q))Gi,

and hence

CQC ′ = η1(Q)In−k +
s∑
i=2

(ηi(Q)− η1(Q))CGiC
′. (7)

Observe that if λn−k(CQC
′) = λ1(Q) thenCQC ′ = λ1(Q)In−k, which in turn implies,

by (7), that CGiC
′ = On, for i = 2, ..., s. The necessity of the condition in the

proposition is thus established. To prove the sufficiency, suppose that col(X) contains

all eigenvectors of Q associated to the eigenvalues different from λ1(Q). Then MX has

an eigenspace spanned by k orthogonal eigenvectors of Q that are in col(X), and an

eigenspace spanned by n−k orthogonal eigenvectors of Q that are not in col(X). The

14



former eigenspace is associated to the eigenvalue 0 and the latter to the eigenvalue 1.

Hence, MXQ has the eigenvalue 0 with multiplicity k and the eigenvalue λ1(Q) with

multiplicity n − k. But, since the nonzero eigenvalues of the product of two matrices

are independent of the order of the factors (e.g., Theorem 1.3.20 in Horn and Johnson,

1985), the eigenvalues of MXQ are the same as those of CQC ′, except for k zeros.

Thus, we must have λn−k(CQC
′) = λ1(Q), and the proof is completed.

Lemma A.4 Any W ∈ C is normal.

Proof. Since W is real, we need to show that WW ′ = W ′W , for any W ∈ C.
Write W = A +B, where A := (W +W ′)/2 is symmetric and B := (W −W ′)/2

is antisymmetric. For any W ∈ C, A has only two eigenvalues: one of them is λmax,

associated to the eigenvector fmax. Letting θ be the other eigenvalue, and G the

corresponding eigenprojector, we have the spectral decomposition

A = λmaxfmaxf
′
max + θG.

Since G = In − fmaxf
′
max, A = θIn + (λmax − θ)fmaxf

′
max. Observe that, for any

W ∈ C, Bfmax = (W −A)fmax = 0. Then,

WW ′ = (θIn + (λmax − θ)fmaxf
′
max +B)(θIn + (λmax − θ)fmaxf

′
max −B)

= θ2In + (2(λmax − θ)θ + (λmax − θ)2)fmaxf
′
max −B2 = W ′W .

Lemma A.5 For any W ∈ C and any X such that fmax /∈ col(X), the Cliff-Ord test

statistic evaluated at y = fmax is

I(fmax) =
1

2
λn−k(C(W +W ′)C ′).

Proof. For any W ∈ C, the matrix A := (W +W ′)/2 admits the spectral decom-

position λ1(A)G1 +λn(A)Gn where G1 and Gn are the spectral projectors associated

with λ1(A) and λn(A), respectively. Since fn(A) = fmax for any W ∈ C, and the

spectral projectors must sum to In, we can write

A = λ1(A)In + (λn(A)− λ1(A))fmaxf
′
max. (8)

Assume that fmax /∈ col(X), and consider an arbitrary vector v ∈ Rn−k that is orthog-

onal to Cfmax. From (8) we have

CAC ′v = λ1(A)CC ′v + (λn(A)− λ1(A))Cfmaxf
′
maxC

′v,

and hence, since CC ′ = In and f ′maxC
′v = 0,

CAC ′v = λ1(A)v.
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Thus, CAC ′ has an (n− 1)-dimensional eigenspace (the orthogonal complement of

Cfmax). But, since CAC ′ is symmetric because A is, the other eigenspace of CAC ′

must be spanned by Cfmax. The eigenvalue of CAC ′ pertaining to such an eigenspace

cannot be smaller than λ1(A) by the Poincaré separation Theorem (e.g., Horn and

Johnson, 1985). It follows that

CAC ′Cfmax = λn−k(CAC
′)Cfmax, (9)

which in turn implies that I(fmax) = λn−k(CAC
′).

Lemma A.6 For any W ∈ C∗ and any X such that fmax /∈ col(X), the POI test

statistic evaluated at y = fmax is

Pρ̄(fmax) = λ−1
n−k(CΣ(ρ̄)C ′).

Proof. For any W ∈ C∗, the matrices W + W ′ and W ′W are simultaneously

diagonalizable, because they are diagonalizable and, by Lemma A.4, they commute

(e.g., Horn and Johnson, 1985, Theorem 1.3.12). Recall thatΣ(ρ̄) = (In−ρ̄(W+W ′)+

ρ̄2W ′W )−1 and that, for any W ∈ C∗, m1(W +W ′) = n− 1 and m1(W ′W ) ≥ n− 1.

Also, observe that m1(W ′W ) ≥ n− 1 if and only if W ′W is a scalar multiple of In.

Thus, for any W ∈ C∗, m1(Σ(ρ̄)) = n− 1. We can now proceed similarly to the proof

of Lemma A.5. More specifically, on replacing A in that proof with Σ−1(ρ̄), expression

(9) becomes

CΣ(ρ̄)C ′Cfmax = λn−k(CΣ(ρ̄)C ′)Cfmax,

or, equivalently,

(CΣ(ρ̄)C ′)−1Cfmax = λ1((CΣ(ρ̄)C ′)−1)Cfmax.

Using the last expression, we obtain

Pρ̄(fmax) =
f ′maxC

′ [CΣ(ρ̄)C ′]
−1
Cfmax

f ′maxMXfmax

= λ1((CΣ(ρ̄)C ′)−1) = λ−1
n−k(CΣ(ρ̄)C ′),

which is the desired conclusion.

Appendix B Proofs

Proof of Lemma 3.2. Consider some arbitrary n, k, α, and W /∈ C. Let Φ =

{y ∈ Rn : I > c} be the critical region associated to the Cliff-Ord test. It is readily

established that the closure of Φ is col(X)∪ {y ∈ Rn : I ≥ c}. Hence, by Lemma A.1,

the limiting power of the Cliff-Ord test vanishes if fmax /∈ col(X) and I(fmax) < c,

where I(fmax) denotes the Cliff-Ord test statistic evaluated at y = fmax. Letting
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A := (W + W ′)/2, we obtain from Lemma A.2 that I ≥ λ1(A), for all y ∈ Rn

and all X ∈ Rn×k. Let C be an (n− k) × n matrix such that CC ′ = In−k and

C ′C = MX . On writing I = t′CWC ′t/t′t, where t := Cy, Lemma A.2 also implies

that I ≤ λn−k(CAC
′) for all y ∈ Rn. Thus, in order to prove the lemma, it suffices to

show that there exists at least one col(X) such that the following three properties are

satisfied: (i) fmax /∈ col(X); (ii) I(fmax) is arbitrarily close to λ1(A); (iii) λn−k(CAC
′)

is not arbitrarily close to λ1(A). Note that, since we are assuming α < 1, we do not

need to prove the existence of a col(X) such that I(fmax) = λ1(A). Also, observe that

condition (iii) is necessary, because without it the limiting power could be 1 even if

there exists a col(X) that satisfies (ii).

Consider now, for some g ∈ E1(A), a sequence {X l}∞l=1 such that the vector

(MXl
fmax)∗ converges to g∗, in the sense that

lim
l→∞
‖(MXl

fmax)∗ − g∗‖ = 0,

where ‖·‖ is an arbitrary norm on Rn, and a ‘∗’ indicates that a vector v ∈ Rn has

been normalized with respect to ‖·‖, i.e., v∗ := v/ ‖v‖ (the arbitrariness of the norm

follows from the fact that the convergence of a sequence of vectors in Rn is independent

of the choice of the norm; see Corollary 5.4.6 of Horn and Johnson, 1985). By Lemma

A.2

lim
l→∞

I(fmax) = lim
l→∞

f ′maxMXl
AMXl

fmax

f ′maxMXl
fmax

= λ1(A). (10)

Expression (10) implies the existence of at least one col(X) that satisfies (i) and (ii).

In order to establish that there exists at least one col(X) that satisfies (i), (ii) and

(iii), we need to show that it is possible to choose a g ∈ E1(A) in such a way that

lim
l→∞

λn−k(C lAC
′
l) 6= λ1(A), (11)

where C l is an (n− k) × n matrix such that C lC
′
l = In−k and C ′lC l = MXl

. This

is trivial if m1(A) < n − k (because in that case (11) is satisfied for any g ∈ E1(A),

by the Poincaré separation Theorem; e.g., Horn and Johnson, 1985), but not more

generally. Observe, however, that, as long as W /∈ C, it is always possible to find a

sequence {X l}∞l=1 such that the following two properties are satisfied: (a) lim
l→∞

col(X l)

does not contain all eigenvectors of A associated to the eigenvalues other than λ1(A);

(b) lim
l→∞
‖(MXl

fmax)∗ − g∗‖ = 0 for some g ∈ E1(A). The existence of a g ∈ E1(A)

such that (11) holds then follows from Lemma A.3, and this completes the proof.

Proof of Theorem 3.3. Consider some arbitrary n, k, α, and W /∈ C. In the

proof of Lemma 3.2 it is shown that a col(X) that minimizes I(fmax), regarded as a

function from Gk,n to R, always exists and causes a zero limiting power of the Cliff-

Ord test vanishes. Since I(fmax) is continuous at its points of minimum, it follows

that (for any α < 1), it is possible to find a neighborhood, defined according to some

arbitrary distance on Gk,n, of the points of minimum such that any col(X) in this
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neighborhood causes the limiting power of the size-α Cliff-Ord test to disappear. Any

such neighborhood has nonzero invariant measure on Gk,n (see James, 1954), and hence

the proof is complete.

Proof of Theorem 3.5. The proof is similar to the proofs of Lemma 3.2 and Theorem

3.3. First, we need to establish some bounds on Pρ̄. By Lemma A.2, for all col(X) ∈
Gk,n and all y ∈ Rn,

Pρ̄ ≤ λn−k(CΣ(ρ̄)C ′)−1.

Noting that λn−k(CΣ(ρ̄)C ′)−1 = λ−1
1 (CΣ(ρ̄)C ′) and that, by Poincaré separation

Theorem (e.g., Horn and Johnson, 1985), λ1 (CΣ(ρ̄)C ′) ≥ λ1(Σ), we have

Pρ̄ ≤ λ−1
1 (Σ(ρ̄)).

On writing I = t′(CΣ(ρ̄)C ′)−1t/t′t, where t := Cy, Lemma A.2 also implies that

Pρ̄ ≥ λ−1
n−k(CΣ(ρ̄)C ′), for all y ∈ Rn. Given the above bounds on Pρ̄, and following the

same reasoning as in the proof of Lemma 3.2, we need to show that there exists at least

one col(X) such that: (i) fmax /∈ col(X); (ii) the POI statistic evaluated at y = fmax,

to be denoted by Pρ̄(fmax), is arbitrarily close to λ−1
1 (Σ(ρ̄)); (iii) λ−1

n−k(CΣ(ρ̄)C ′) is

not arbitrarily close to λ−1
1 (Σ(ρ̄)).

Consider a sequence {X l}∞l=1 defined as in the proof of Lemma 3.2, but with A

replaced by Σ(ρ̄). We have

lim
l→∞

Σ(ρ̄)MXl
fmax = λ1(Σ(ρ̄))MXl

fmax. (12)

Premultiplying both sides of (12) by C l, we obtain

lim
l→∞

(C lΣ(ρ̄)C ′l)C lfmax = λ1(Σ(ρ̄))C lfmax,

and hence

lim
l→∞

(C lΣ(ρ̄)C ′l)
−1C lfmax = λ−1

1 (Σ(ρ̄))C lfmax.

It follows that, by Lemma A.2,

lim
l→∞

Pρ̄(fmax) = lim
l→∞

f ′maxC
′
l(C lΣ(ρ̄)C ′l)

−1C lfmax

f ′maxMXl
fmax

= λ−1
1 (Σ(ρ̄)). (13)

Expression (13) implies the existence of at least one col(X) that satisfies (i) and (ii).

In order to establish that there exists at least one col(X) that satisfies (i), (ii) and

(iii), we need to show that it is possible to choose a g ∈ E1(Σ(ρ̄)) in such a way that

lim
l→∞

λn−k(C lΣ(ρ̄)C ′l) 6= λ1(Σ(ρ̄)). (14)

But, as long as W /∈ C∗, it is possible to find a sequence {X l}∞l=1 such that lim
l→∞

col(X l)

does not contain all eigenvectors ofΣ(ρ̄) associated to the eigenvalues ofΣ(ρ̄) different
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from λ1(Σ(ρ̄)), and lim
l→∞
‖(MXl

fmax)∗ − g∗‖ = 0 for some g ∈ E1(Σ(ρ̄)). The exis-

tence of a g ∈ E1(Σ(ρ̄)) such that (14) holds then follows from Lemma A.3. We have

thus established that there exists a nonempty set of k-dimensional regression spaces

such that the limiting power of a POI test vanishes. That such a set has positive

invariant measure on Gk,n follows by the same argument used in the proof of Theorem

3.3 for the Cliff-Ord test.

Proof of Proposition 3.6. We start from the Cliff-Ord test. Write I = t′CAC ′t/t′t,

with t := Cy and A := (W +W ′)/2. Then, by Lemma A.2,

I ≤ λn−k(CAC
′), (15)

for all y ∈ Rn. Consider some arbitrary α, X and W ∈ C. Suppose first that

fmax /∈ col(X). By Lemma A.5, I(fmax) = λn−k(CAC
′), which implies that fmax

is in the interior of the Cliff-Ord critical region. The limiting power of the Cliff-Ord

test is thus 1, by Lemma A.1. Let us now suppose that fmax ∈ col(X). For any

W ∈ C, m1(A) = n− 1, and hence the application of Lemma A.3 with Q = A yields

λn−k(CAC
′) = λ1(A). Thus, I ≤ λ1(A) by (15). But, by Lemma A.2, I ≥ λ1(A), for

any y and any X. Thus I is degenerate because it equals λ1(A) for any y and any X.

The proof for a POI test is similar. By Lemma A.2,

Pρ̄ ≥ λ−1
n−k(CΣ(ρ̄)C ′). (16)

If fmax /∈ col(X), then, by Lemma A.6, Pρ̄(fmax) = λ−1
n−k(CΣ(ρ̄)C ′), and hence

the limiting power of a POI test is 1, by Lemma A.1. Recall that Σ(ρ̄) = (In −
ρ̄(W + W ′) + ρ̄2W ′W )−1 and that, for any W ∈ C∗, m1(W + W ′) = n − 1 and

m1(W ′W ) ≥ n − 1. When W ∈ C∗, W +W ′ and W ′W commute, by Lemma A.4,

and hence they are simultaneously diagonalizable. It follows that m1(Σ(ρ̄)) = n−1 for

any W ∈ C∗. Thus, when fmax /∈ col(X) we can apply Lemma A.3 with Q = Σ(ρ̄),

to obtain λn−k(CΣ(ρ̄)C ′) = λ1(Σ(ρ̄)). But then, using again Lemma A.2 as for the

Cliff-Ord test, we reach the conclusion that Pρ̄ does not depend on y if fmax ∈ col(X),

which completes the proof.

Proof of Proposition 3.7. For any W ∈ C, the symmetric matrix W +W ′ admits

the spectral decomposition

W +W ′ = 2λmaxfmaxf
′
max + λ1(W +W ′)(In − fmaxf

′
max). (17)

Since (W )ii = 0 for i = 1, ..., n, W + W ′ has zero trace. Hence the sum of the

eigenvalues ofW +W ′ must be zero, which implies that 2λmax = −(n−1)λ1(W +W ′).

From (17) we obtain

(W +W ′)i,i = λ1(W +W ′)
[
(1− n)(fmax)2

i + (1− (fmax)2
i )
]

= λ1(W +W ′)(1− n(fmax)2
i ),
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which is 0 for all i if and only if (fmax)2
i = 1/n for all i. But, since W is a nonnegative

irreducible matrix, it follows by the Perron-Frobenius theorem that fmax is entrywise

positive or entrywise negative (e.g., Horn and Johnson, 1985, Ch. 8). Hence, for any

W ∈ C, (fmax)i is independent of i, which is the desired conclusion.

Proof of Proposition 3.8. Follows immediately from expression (17) and Proposition

3.7.

Proof of Proposition 3.9. For any c > 0, the matrix c(Jn − In), where Jn denotes

the n× n matrix of all ones, has the simple eigenvalue (n− 1)c and the eigenvalue −c
with multiplicity n− 1. Hence, any such matrix is a weights matrix in C, establishing

the sufficiency of the condition in the lemma. To prove the necessity, we start by

observing that if a real normal matrix has only real eigenvalues, then it is symmetric

(Horn and Johnson, 1985, p. 109). Thus, by Lemma A.4, we only need to show that if

W ∈ C is symmetric and has zero diagonal entries, then it has identical and positive

off-diagonal entries. If W ∈ C is symmetric, we can write

W = λ1(W )In + (λn(W )− λ1(W ))fmaxf
′
max. (18)

Such an expression shows that if (W )ii = 0 for i = 1, ..., n, then (fmax)2
i is independent

of i. Since W is nonnegative and irreducible, it follows that fmax has identical entries,

by the same argument used at the end of the proof of Proposition 3.7. Then, by (18),

the off-diagonal entries of W are identical and positive, which completes the proof.

Proof of Theorem 4.1. We start from the part of the theorem relative to the Cliff-

Ord test, when k ≤ m1(W ). The first step in the proof corresponds to a simplification

of the first part of the proof of Lemma 3.2, for the case when W is symmetric. By

replacing the bound I ≥ λ1(A) (that holds for all y ∈ Rn and all X ∈ Rn×k) with

the bound I ≥ λ1(CWC ′) (that holds for all y ∈ Rn and for a fixed X ∈ Rn×k),

we obtain that the limiting power of the Cliff-Ord test vanishes for all values of α if

(i) fmax /∈ col(X), (ii) I(fmax) = λ1(CWC ′), and (iii) λ1(CWC ′) 6= λn−k(CWC ′).

Observe that W /∈ C, because in order for the size α of an invariant critical region to be

less than 1, n > 2. Any col(X) ∈ Θ satisfies (i) by definition. We are now going to show

that there are col(X) ∈ Θ such that Cfmax ∈ E1(CWC ′), which is equivalent to (ii).

Since W is symmetric, its eigenvectors f i(W ), i = 1, ..., n, are pairwise orthogonal.

Thus, if col(X) ∈ Θ, MXf i(W ) = f i(W ), for i = m1(W ) + 1, ..., n − 1. It follows

that, for any col(X) ∈ Θ and for i = m1(W ) + 1, ..., n− 1,

CWC ′Cf i(W ) = CWMXf i(W ) = CWf i(W ) = λi(W )Cf i(W ).

That is, the (n − k) × (n − k) matrix CWC ′ admits the n −m1(W ) − 1 eigenpairs

(λi(W ),Cf i(W )), i = m1(W ) + 1, ..., n − 1. But then, by the symmetry of CWC ′

and the fact that the vectors Cf i(W ), i = m1(W ) + 1, ..., n− 1 are pairwise orthog-

onal (because the f i(W )’s are), the remaining eigenvectors of CWC ′ must be in the

subspace spanned by the vectors Cf 1(W ), ...,Cfm1(W )(W ),Cfmax. Observe that,
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for any col(X) ∈ Θ and for any g ∈ E1(W ) ∩ col(X), Cfmax and Cg are linearly

dependent. Thus, Cfmax must be an eigenvector of CWC ′, i.e.,

CWMXfmax = λ̃Cfmax, (19)

for some eigenvalue λ̃. The condition Cfmax ∈ E1(CWC ′) is satisfied if and only if

λ̃ ≤ λm1(W )+1(W ). (20)

As col(X) ∈ Θ approaches a subspace orthogonal to E1(W ), MXfmax tends to a

vector in E1(W ), which implies, by (19), that λ̃→ λ1(W ) (note that, by the definition

of Θ, no col(X) ∈ Θ can be orthogonal to E1(W )). Thus, by the continuity of the

eigenvalues of a matrix (CWC ′ here) in the entries of the matrix, plus the fact that

λ1(W ) < λm1(W )+1(W ), there always are col(X) ∈ Θ that satisfy (20) and hence

condition (ii). Such regression spaces also satisfy condition (iii), because, in order for

λ1(CWC ′) = λn−k(CWC ′), we should have that all the eigenvalues of CWC ′ are

identical, but this is impossible when W /∈ C.
So far, we have established the part of the theorem relative to the case k ≤ m1(W ),

for the Cliff-Ord test. The extension to a POI test is straightforward, by relying

precisely on the same modifications necessary to move from the proof of Lemma 3.2 to

the proof of Theorem 3.5. We now turn to the part of the theorem concerned with the

particular case k = m1(W ) = 1. Let X be a scalar multiple of f 1(W ) + ωfmax, so

that col(X) ∈ Θ as long as ω 6= 0. For the Cliff-Ord test, we need to establish which

values of ω satisfy (20). When m1(W ) = 1, (20) reads

λ̃ ≤ λ2(W ), (21)

where λ̃ is the eigenvalue of Cfmax associated to the eigenvector of CWC ′. Observe

that

MXfmax =

[
In −

1

1 + ω2
(f 1(W ) + ωfmax)(f ′1(W ) + ωf ′max)

]
fmax

= fmax −
ω

1 + ω2
(f 1(W ) + ωfmax) =

1

1 + ω2
(fmax − ωf 1(W )),

where we have used the fact that f 1(W ) and fmax are normalized and orthogonal.

Plugging the above expression for MXfmax in (19) gives

1

1 + ω2
[λmaxCfmax − ωλ1(W )Cf 1(W )] = λ̃Cfmax. (22)

Now, since CX = On, Cf 1(W ) = −ωCfmax. Hence, from (22) we obtain λ̃ =

[λmax + ω2λ1(W )]/(1 + ω2). This expression can be used to solve (21) in terms of ω,

which yields |ω| ≥ [λmax − λ2(W )]1/2 / [λ2(W )− λ1(W )]1/2. The extension to a POI

test can be performed by replacing W with Σ(ρ̄) = (In − ρ̄W )−2. In this case we

need to establish for which values of ω

λ̄ ≤ λ2(Σ(ρ̄)), (23)
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where λ̄ is the eigenvalue of Cfmax associated to the eigenvector of CΣ(ρ̄)C ′. Pro-

ceeding exactly as for the Cliff-Ord test, (23) yields

|ω| ≥ [λn(Σ(ρ̄))− λ2(Σ(ρ̄))]1/2/[λ2(Σ(ρ̄))− λ1(Σ(ρ̄))]1/2. (24)

Using λi(Σ(ρ̄)) = (1− ρ̄λi(W ))−2, and after some straightforward algebra, from (24)

we obtain |ω| ≥ ω1ω2, which completes the proof.
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