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Beyond antioxidants: the cellular and molecular interactions of
flavonoids and how these underpin their actions on the brain

Jeremy P. E. Spencer1,2
1Molecular Nutrition Group, School of Chemistry, Food and Pharmacy and

2Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG2 6AP, UK

The consumption of flavonoid-rich foods and beverages has been suggested to limit the neuro-
degeneration associated with a variety of neurological disorders and to prevent or reverse
normal or abnormal deteriorations in cognitive performance. Flavonoids mediate these effects
via a number of routes, including a potential to protect neurons against injury induced by
neurotoxins, an ability to suppress neuroinflammation and a potential to promote memory,
learning and cognitive function. Originally, it was thought that such actions were mediated
by the antioxidant capacity of flavonoids. However, their limited absorption and their low
bioavailability in the brain suggest that this explanation is unlikely. Instead, this multiplicity of
effects appears to be underpinned by three separate processes: first, through their interactions
with important neuronal and glial signalling cascades in the brain, most notably the phospha-
tidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways that regulate pro-
survival transcription factors and gene expression; second, through an ability to improve
peripheral and cerebral blood flow and to trigger angiogenesis and neurogenesis in the hippo-
campus; third, by their capacity to directly react with and scavenge neurotoxic species and
pro-inflammatory agents produced in the brain as a result of both normal and abnormal brain
ageing. The present review explores the potential inhibitory or stimulatory actions of flavonoids
within these three systems and describes how such interactions are likely to underlie neuro-
logical effects.

Flavonoids: Neurological effects: Molecular actions

Representing one of the most important lifestyle factors,
diet can strongly influence the incidence and onset of CVD
and neurodegenerative disorders. Various phytochemical
constituents of foods and beverages, in particular a class of
compounds termed flavonoids, have been avidly investi-
gated in recent years. They have been proposed to exert a
multiplicity of neuroprotective actions within the brain,
including a potential to protect neurons against injury
induced by neurotoxins(1), an ability to suppress neuro-
inflammation(2) and the potential to promote memory,
learning and cognitive function(3,4). This multiplicity of

effects appears to be underpinned by three processes. First,
the flavonoids interact with important neuronal signalling
cascades in the brain leading to an inhibition of apoptosis
triggered by neurotoxic species and to a promotion of
neuronal survival and differentiation(1). These effects
include selective actions on a number of protein kinase and
lipid kinase signalling cascades, most notably the phos-
phatidylinositol 3-kinase (PI3K)/Akt and mitogen-
activated protein kinase (MAPK) pathways that regulate
pro-survival transcription factors and gene expression.
Second, the flavonoids induce peripheral and cerebral

Abbreviations: BDNF, brain-derived neurotrophic factor; CREB, cAMP response element-binding protein; ERK, extracellular signal-regulated protein
kinase; iNOS, inducible NO synthase; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase;
PKB, protein kinase B.
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vascular blood flow in a manner that may lead to the
induction of angiogenesis and of new nerve cell growth
in the hippocampus(2). Third, the flavonoids may react
directly with and scavenge neurotoxic species and pro-
inflammatory agents produced in the brain as a result of
both normal and abnormal brain ageing(3). Thus, the con-
sumption of flavonoid-rich fruits, such as berries,
throughout life holds a potential to limit the neurodegen-
eration associated with a variety of neurological disorders
and to prevent or reverse normal or abnormal deterio-
rations in cognitive performance. The present review will
highlight the neuroprotective mechanisms of flavonoids
through their ability to interact with neuronal signalling
pathways, their potential to inhibit neuroinflammation and
their impact on the vascular system. It will also attempt to
address whether at present there is enough data to support
a causal relationship between the consumption of flavo-
noids and behavioural outcomes such as memory and
learning in human subjects. Finally, in light of this current
information, potential future areas of research will be
highlighted that may help to fully address the impact of
flavonoid-rich diets on human cognitive performance.

Flavonoid: sources and structure

Flavonoids are synthesised in plants from the reaction of a
chalcone precursor with three molecules of malonyl-CoA.
Under the action of the enzymes chalcone synthase and
chalcone flavanone isomerase the chalcone precursor is
isomerised into a flavanone(5,6). Although they share a
similar 2,3-dihydro-2-phenylchromen-4-one skeleton
structure, the hydroxylation of the C-3 position of ring C
allows differentiation between flavanonols from flavanones
(Fig. 1). From these central intermediates the pathway
diverges into several side branches, each resulting in a
different class of flavonoids. Flavonoids are found ubiqui-
tously in plants and as such are major constituents of a
variety of fruit and vegetables, beverages such as tea and
wine and seeds such as cocoa beans and grape seeds. All
flavonoids share a common structure consisting of two
aromatic rings (A and B), which are bound together by
three C atoms, forming an oxygenated heterocycle (ring C;
Fig. 1). Based on variations in the saturation of the basic
flavan ring system, their alkylation and/or glycosylation
and the hydroxylation pattern of the molecules flavonoids
may be divided into seven subclasses: flavonols; flavones;
flavanones; flavanonols; flavanols; anthocyanidins; iso-
flavones (for review, see Manach et al.(7)). In addition,
flavanols, which are sometimes referred to as flavan-3-ols,
exist both as monomers and oligomers also known as
condensed tannins or proanthocyanidins. These oligomeric
forms differ on the basis of their constitutive units (e.g.
catechin and epicatechin), their sequence and the positions
of inter-flavanic linkages (C-4–C-6 or C-4–C-8 in the
B-type series, with additional C2–O–C7 or C2–O–C5
bonds in A-type structures)(8).
The flavanols are found predominantly in green and

black teas, red wine, apples and cocoa. Variations in their
structure reside in the hydroxylation pattern of ring B and
the presence of a gallic acid moiety in C-3 position

(Fig. 1). The lack of a double bond at the 2–3 position and
the presence of a 3-OH group on ring C creates two centres
of asymmetry. Typical dietary flavanols include catechin,
epicatechin, epigallocatechin, epicatechin gallate, epi-
gallocatechin gallate and proanthocyanidins, which may be
found at high concentration in cocoa, tea, red wine and
fruits such as apples, grapes and many berry fruits. The
sources of anthocyanins such as pelargonidin, cyanidin and
malvidin include red wine and berry fruits such as blue-
berries (Vaccinium corymbosum), blackberries (Rubus
fruticosus), cherries (Prunus avium) and strawberries
(Fragaria · ananassa). These compounds exist as glyco-
sides in plants, are water soluble and appear red or blue
according to the pH of their environment. Individual
anthocyanins arise from the variation in number and
arrangement of the hydroxyl and methoxy groups around
the three rings (Fig. 1). Flavones, (e.g. apigenin, luteolin)
are found in artichoke (Cynara cardunculus), celery
(Apium graveolens L.) and parsley (Petroselinum crispum),
chives (Allium schoenoprasum) and other herbs. Hydroxy-
lation on position 3 of the flavone structure gives rise to
the 3-hydroxyflavones, also termed the flavonols (e.g.
kaempferol, quercetin), which are found predominantly in
onions (Allium cepa L.), leeks (Allium ampeloprasum var.
porrum (L.)) and broccoli (Brassica oleracea; Fig. 1).
Dietary flavanones (e.g. naringenin, hesperetin, taxifolin)
are found predominantly in citrus fruit and tomatoes
(Fig. 1). Finally, isoflavones such as daidzein and genistein
are a subclass of the flavonoid family found in soyabean
and soya products. They have a large structural variability
and >600 isoflavones have been identified to date and are
classified according to oxidation level of the central pyran
ring (Fig. 1).

Absorption, metabolism and distribution of flavonoids

Although flavonoids have been identified as powerful
antioxidants in vitro(9–11), their ability to act as anti-
oxidants in vivo is limited by the extensive bio-
transformation and conjugation that occurs during their
absorption from the gastrointestinal tract, in the liver and
finally in cells (for review, see Williamson & Manach(12),
Manach et al.(13), Scalbert & Williamson(14) and Spencer
et al.(15)). In the small intestine and liver dietary flavonoids
(and other polyphenols) are substrates for phase I (hydro-
lysing and oxidising) and phase II (conjugating and
detoxifying) enzymes, i.e. they are de-glucosylated and
metabolised into glucuronides, sulfates and O-methylated
derivatives(14,16,17). Further metabolism occurs in the
colon, in which the enzymes of the gut microflora induce
the breakdown of flavonoids to simple phenolic acids that
may then undergo absorption and are further metabolised
in the liver(15,18). The extent of metabolism in the large
intestine has been largely ignored to date, although there is
now intense interest in the generation, absorption and
potential bioactivity of these bacterially-derived forms.
Moreover, it has recently been suggested that their meta-
bolism by bacteria in the colon may also result in the
selective beneficial growth of several bacterial groups and
species(19). Post absorption from the gastrointestinal tract

Interactions of flavonoids: neurological effects 245
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Fig. 1. The structures of the main classes of flavonoids and their biosynthesis. The major differences between the indi-

vidual groups reside in the hydroxylation pattern of the ring structure, the extent of saturation of ring C and the substitution

in the C-3 position. All flavonoids are derived from chalcone precursors that are derived from phenylpropanoid and three

molecules of malonyl-CoA and biosynthesised by chalcone synthase (CHS). Various enzymes act to bring about the

formation of the various flavonoid classes: chalcone isomerase (CHI), flavone synthase (FSI/FS2), isoflavone synthase

(IFS), flavanone 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS), leucoanthocya-

nidin reductase (LAR), anthocyanidin reductase (ANR), UDP glucose-flavonoid 3-O-glucosyl transferase (UFGT), flavonol

synthase (FLS). EGC, epigallocatechin; ECG, epicatechin gallate; EGCG, epigallocatechin gallate.
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flavonoids also undergo at least three types of intracellular
metabolism: (1) oxidative metabolism; (2) P450-related
metabolism; (3) conjugation with thiols, particularly glu-
tathione(20). Many studies have indicated that although
glucuronides, sulfates, O-methyl derivatives and intra-
cellular metabolites such as flavonoid–glutathione adducts
may still participate in antioxidant reactions (in particular,
scavenging reactive oxygen and nitrogen species) in the
circulation, their effectiveness to do so is greatly reduced
relative to their parent aglycones (or indeed those found in
plants)(21–26).
In order for flavonoids to influence brain function

directly they must additionally penetrate the blood–brain
barrier, which controls entry of xenobiotics into the
brain(27). Flavanones such as hesperetin, naringenin and
their in vivo metabolites, along with some dietary antho-
cyanins, cyanidin-3-rutinoside and pelargonidin-3-gluco-
side, have been shown to traverse the blood–brain barrier
in relevant in vitro and in situ models(28). Their extent of
blood–brain barrier penetration is dependent on compound
lipophilicity(29), i.e. less polar O-methylated metabolites
may be capable of greater brain uptake than the more polar
flavonoid glucuronides. However, evidence exists to sug-
gest that certain drug glucuronides may cross the blood–
brain barrier(30) and exert pharmacological effects(31,32),
suggesting that there may be a specific uptake mechanism
for glucuronides in vivo. Their brain entry may also depend
on their interactions with specific efflux transporters
expressed in the blood–brain barrier such as P-glycopro-
tein(33), which appears to be responsible for the differences
between naringenin and quercetin flux into the brain in
situ(28). In animals flavanones have been found to enter the
brain following their intravenous administration(34), whilst
epigallocatechin gallate(35), epicatechin(36) and anthocya-
nins(37,38) are found in the brain after their oral adminis-
tration. Furthermore, several anthocyanins have been
identified in different regions of the brains of rats(39) and
blueberry-fed pigs(40), with eleven intact anthocyanins
found in the cortex and cerebellum. Although further work
is necessary to establish their bioavailability to the brain,
particularly in human subjects, these results suggest that
they may localise in the brain and are capable of direct
neuroprotective and neuromodulatory actions.

Antioxidants or signalling molecules?

Historically, the biological actions of flavonoids, including
those on the brain, have been attributed to their ability to
exert antioxidant actions(9), through their ability to scav-
enge reactive species or through their possible influences
on intracellular redox status(41). However, it is now thought
highly unlikely that this classical H-donating antioxidant
activity accounts for the bioactivity of flavonoids in vivo,
particularly in the brain where they are found at only very
low concentrations(1). Indeed, it is clear that the con-
centrations of flavonoids and their metabolite forms accu-
mulated in vivo(42) are lower (high nM, low mM) than those
recorded for small-molecule antioxidant nutrients such as
ascorbic acid and a-tocopherol(43). Consequently, the bene-
ficial effects of flavonoid metabolites in vivo are unlikely

to result from their ability to out-compete antioxidants
such as ascorbate, which are present at higher concentra-
tions (high mM to mM). However, evidence has accumu-
lated to suggest that the cellular effects of flavonoids may
be mediated by their interactions with specific proteins
central to intracellular signalling cascades(44), such as the
MAPK signalling pathway and the PI3K/Akt signalling
cascade (Fig. 2). For example, flavonoids have been shown
to be capable of exerting neuroprotective actions (at low
concentration) via their interactions with critical neuronal
intracellular signalling pathways pivotal in controlling
neuronal survival and differentiation, long-term potentia-
tion and memory(3,45–47). The present review will examine
such actions and how they may impact on the progression
of chronic brain disease.

Direct interactions with signalling pathways

Flavonoids have been shown to exert neuronal effects
through their interactions with a number of protein kinase
and lipid kinase signalling cascades, such as the PI3K/Akt,
tyrosine kinase, protein kinase C and MAPK signalling
pathways(48–54) (Fig. 2). Inhibitory or stimulatory actions at
these pathways are likely to profoundly affect neuronal
function by altering the phosphorylation state of target
molecules and/or by modulating gene expression. Although
selective inhibitory actions at these kinase cascades may be
beneficial in cancer, proliferative diseases, inflammation
and neurodegeneration, they could be detrimental during
development, particularly in the immature nervous system
in which protein kinase and lipid kinase signalling regu-
lates survival, synaptogenesis and neurite outgrowth. In the
mature brain post-mitotic neurones utilise MAPK and
PI3K cascades in the regulation of key functions such as
synaptic plasticity and memory formation(55,56), thus fla-
vonoid interactions within these pathways could have
unpredictable outcomes and will be dependent both on the
cell type and disease studied.

MAPK belong to the superfamily of serine/threonine
kinases and play a central role in transducing various
extracellular signals into intracellular responses(57,58). The
best-characterised MAPK pathways are the mitogenic
extracellular signal-regulated protein kinase (ERK) path-
way and the stress-activated c-Jun N-terminal kinase (JNK)
and p38 cascades (Fig. 2). Once activated ERK, JNK and
p38 phosphorylate a number of cytosolic proteins and
transcription factors resulting in the enhancement of their
transcriptional activities and activation of dependent
genes(59). ERK and JNK are generally considered as hav-
ing opposing actions, in particular in neuronal apopto-
sis(60). ERK1/2 are usually associated with pro-survival
signalling(61–63) through mechanisms that may involve
activation of the cAMP response element-binding protein
(CREB)(62,64) (Fig. 2), the up-regulation of the anti-apop-
totic protein Bcl-2 and non-transcriptional inhibition of
Bcl-xL/Bcl-2-associated death promoter(62,63). On the other
hand, JNK has been strongly linked to transcription-
dependent apoptotic signalling(65,66), possibly through the
activation of c-Jun(67) and other activated protein-1 pro-
teins including JunB, JunD and activating transcription
factor 2(68). Many investigations have indicated that

Interactions of flavonoids: neurological effects 247
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flavonoids and their metabolites may interact selectively
within the MAPK signalling pathways(52,69). The potential
modulation of MAPK signalling by flavonoids is important
as ERK1/2 and JNK are involved in growth factor-induced
mitogenesis, differentiation, apoptosis and various forms of
cellular plasticity(65,66,70–72).
There is much evidence to support the actions of flavo-

noids on the ERK pathway(53,73,74), which appear to be
mediated by interactions with MAPK kinases MEK1 and
MEK2 and potentially membrane receptors(44,52). Indeed,
flavonoids have close structural homology to specific
pharmacological modulators of ERK signalling such as
PD98059 (20-amino-30-methoxyflavone). The flavonol

quercetin and to a lesser extent its O-methylated metabolites
have been shown to induce neuronal apoptosis via a
mechanism involving the inhibition of ERK rather than
by induction of pro-apoptotic signalling through JNK(54).
The potent inhibition of ERK activation, and indeed
Akt/protein kinase B (PKB) phosphorylation, is also
accompanied by downstream activation of Bcl-xL/Bcl-2-
associated death promoter and a subsequent strong activa-
tion of caspase-3. On the other hand, some flavonoids have
been observed to exert a stimulatory effect on ERK1/2.
For example, the flavan-3-ol (–)-epicatechin and one of
its metabolites, 30-O-methyl-(–)-epicatechin, have been
shown to stimulate phosphorylation of ERK1/2 and the

JNK1,2,3 p38
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Oxidative stress

Cytokines

Growth
Differentiation
Development 

Inflammation
Apoptosis

Differentiation

CREB, STAT-1,3,
ER , Elk -1 

c-Jun, ATF-2,
53, SMAD4 

ERK1/2/5 

MEK1/2/5 

A -Raf, c- Raf 
MEKK2,3 

PKB/Akt

PDK1,2

PI3K

Intracellular 
kinase

signalling

Stimuli 

Transcription 
factor 

Biological
response 

BAD, mTOR
ASK1, p53, eNOS

Growth
Differentiation

Cell cycle control
Apoptosis

Cytokines
Integrins

Oxidative stress

Fig. 2. Potential points of flavonoid action within mitogen-activated protein kinase (MAPK) and phosphatidylinositol

3-kinase (PI3K)/Akt signalling cascades in neurons and glia. Activation of extracellular signal-regulated protein kinase

(ERK) 1/2/5 and Akt are generally pro-survival, whilst inhibitory actions on c-Jun N-terminal kinase (JNK) and p38

pathways are also likely to be neuroprotective. Through their effects on these pathways they may regulate a wide

variety of processes, including cell growth, cell proliferation, differentiation, cell cycle entry, cell migration and apop-

tosis. MEK, MKK, MAPK kinases; MEKK, MEK kinase; CREB, cAMP response element-binding protein; STAT, signal

transducer and activator of transcription; ER, oestrogen receptor; ASK1, apoptosis signal-regulating kinase 1; ATF-2,
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downstream transcription factor CREB at physiologically-
relevant concentrations(75). Interestingly, this activation of
the ERK pathway is no longer apparent at higher con-
centrations, suggesting that effects on this pathway are
concentration specific. Furthermore, stimulation of ERK1/2
and CREB is not observed with (–)-epicatechin-5-O-b-D-
glucuronide, suggesting that effects on the ERK pathway
may be dependent on cell or membrane permeability, as has
been previously reported(76). In support of these observa-
tions, the protective action of another flavanol, epigalloca-
techin gallate, against 6-hydroxydopamine toxicity and
serum deprivation has been shown to involve the restoration
of both protein kinase C and ERK1/2 activities(77,78).
There is strong evidence linking the activation of JNK to

neuronal loss in response to a wide array of pro-apoptotic
stimuli in both developmental and degenerative death sig-
nalling(65,68,79). The activation of the JNK pathway and
the death of specific neuronal populations are crucial
events during early brain development(80). As with the
other MAPK, the core signalling unit is composed of an
MAPK kinase kinase, typically MAPK kinase kinases
MEK1–4, which phosphorylate and activate MAPK
kinases MKK4–7, which then phosphorylate and activate
the JNK(79,81) (Fig. 2). Another MAPK kinase kinase,
apoptosis signal-regulating kinase 1, also plays an essential
role in stress-induced apoptosis(82,83). Apoptosis signal-
regulating kinase 1 can be activated in response to a
variety of stress-related stimuli and activates MKK4,
which in turn activates JNK (Fig. 2) and indeed p38(84).
Overexpression of apoptosis signal-regulating kinase 1 has
been shown to induce the activation of both JNK and p38
and lead to apoptosis via signals involving the mitochon-
drial cell death pathway(80,82). Investigation has indicated
that oxidative-induced activation of caspase-3 in neurons is
blocked by flavonoids, providing compelling evidence in
support of a potent anti-apoptotic action of flavonoids
in these cells(53,73,76,85). The flavanols epicatechin and
30-O-methyl-epicatechin have been shown to protect neu-
rons against oxidative damage via a mechanism involving
the suppression of JNK and downstream partners c-jun and
pro-caspase-3(53,86). Similarly, the flavone baicalein has
been shown to inhibit 6-hydroxydopamine-induced JNK
activation and neuronal cell death and quercetin may sup-
press JNK activity and apoptosis induced by H2O2

(87,88),
4-hydroxy-2-nonenal(89) and TNFa(69).
In addition to the MAPK pathway flavonoids have been

shown to modulate signalling through the serine/threonine
kinase Akt/PKB, one of the main downstream effectors of
PI3K, a pivotal kinase in neuronal survival(90–93) (Fig. 2).
Flavonoids have long been known to modulate PI3K, via
direct interactions with its ATP-binding site(51). Indeed, a
number of studies have demonstrated that the structure of
flavonoids determines whether or not they act as potent
inhibitors of PI3K(50,94). One of the most selective PI3K
inhibitors available, LY294002, was modelled on the
structure of quercetin(48,49,95). Quercetin and some of its
in vivo metabolites have been shown to inhibit pro-survival
Akt/PKB signalling pathways by a mechanism of action
consistent with quercetin and its metabolites acting at
and inhibiting PI3K activity(54). However, other flavonoids
such as the citrus flavanone hesperetin induce the activation

of Akt/PKB and the inhibition of pro-apoptotic proteins
such as apoptosis signal-regulating kinase 1, Bcl-xL/Bcl-2-
associated death promoter, caspase-9 and caspase-3 in
cortical neurons(73).

Inhibition of neuroinflammation

Neuroinflammatory processes in the brain are believed
to play a crucial role in the development of Alzheimer’s
disease and Parkinson’s disease(96,97) as well as injury
associated with stroke(98). Activated microglia and/or
astrocytes release cytokines and other mediators that have
been linked to the apoptotic death of neurons. In particular,
increases in cytokine production (IL-1b, TNFa), inducible
NO synthase (iNOS) and NO and increased NADPH oxi-
dase activation(99) all contribute to glial-induced neuronal
death (Fig. 3). The majority of these events are controlled
by upstream MAPK signalling, which mediates both the
transcriptional and post-transcriptional regulation of iNOS
and cytokines in activated microglia and astrocytes(100,101).
Evidence suggests that the non-steroidal anti-inflammatory
drug ibuprofen may be effective in delaying the onset of
neurodegenerative disorders, particularly Parkinson’s dis-
ease, by reducing inflammatory injury in specific brain
regions(102). Thus, there is a desire to develop new drugs
capable of preventing progressive neuronal loss linked to
neuroinflammation(2). Recently, the flavanone naringenin,
found at high concentrations in citrus fruits, has been
found to be highly effective in reducing lipopolysacchar-
ide- and interferon-g-induced glial cell activation and
resulting neuronal injury(103) via an inhibition of p38 and
signal transducer and activator of transcription-1 and a
reduction in iNOS expression (Fig. 3). The structurally-
related flavanone hesperetin and other flavonoids appear to
be incapable of inhibiting pathways leading to NO
production, although they have been found to partially
alleviate neuroinflammation through the inhibition of
TNFa production(103).

Flavonoids present in blueberry have also been shown to
inhibit NO, IL-1b and TNFa production in activated
microglia cells(104), whilst the flavonol quercetin(105), the
flavones wogonin and bacalein(106), the flavanols catechin
and epigallocatechin gallate(107) and the isoflavone genis-
tein(108) have all been shown to attenuate microglia- and/or
astrocyte-mediated neuroinflammation via mechanisms
that include inhibition of, in astrocytes and microglia: (1)
iNOS and cyclooxygenase 2 expression; (2) NO produc-
tion; (3) cytokine release; (4) NADPH oxidase activation
and subsequent reactive oxygen species generation. All
these effects appear to depend on an ability to directly
modulate protein kinase and lipid kinase signalling path-
ways(45,46). For example, they may act by inhibiting
MAPK signalling cascades, such as p38 or ERK1/2, which
regulate both iNOS and TNFa expression in activated glial
cells(101,103) (Fig. 3); fisetin inhibits p38 MAPK phos-
phorylation in lipopolysaccharide-stimulated BV-2 micro-
glial cells(109) and the flavone luteolin inhibits IL-6
production in activated microglia via inhibition of the JNK
signalling pathway(110). The effects of flavonoids on these
kinases may influence downstream pro-inflammatory tran-
scription factors important in iNOS transcription. One of
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these transcription factors, NF-kB, responds to p38 sig-
nalling and is involved in iNOS induction(111), suggesting
that there is interplay between signalling pathways, tran-
scription factors and cytokine production in determining
the neuroinflammatory response in the central nervous
system. In support of this notion, some flavonoids have
been shown to prevent transcription factor activation, with
the flavonol quercetin and the flavanone naringenin able
to suppress NF-kB, signal transducer and activator of
transcription-1 and activating protein-1 activation in lipo-
polysaccharide- and interferon-g-activated microglial
cells(103,105).

Inhibition of toxin-induced neuronal injury

The underlying neurodegeneration observed in Parkinson’s
disease, Alzheimer’s disease, and other neurodegenerative
diseases is believed to be triggered by multi-factorial pro-
cesses, including neuroinflammation, glutamatergic excito-
toxicity, increases in Fe and/or depletion of endogenous
antioxidants(112–114). There is a growing body of evidence

to suggest that flavonoids and other polyphenols may be
able to counteract this neuronal injury, thereby delaying
the progression of these brain pathologies(1,46,115–119). For
example, a Ginkgo biloba extract has been shown to pro-
tect hippocampal neurons against NO- and b-amyloid-
induced neurotoxicity(120) and studies have demonstrated
that the consumption of green tea may have a beneficial
effect in reducing the risk of Parkinson’s disease(121–124).
In agreement with the latter study, tea extracts and pure
(–)-epigallocatechin 3-gallate have been shown to attenu-
ate 6-hydroxydopamine-induced toxicity(125), to protect
against hippocampal injury during transient global ischae-
mia(126) and to prevent nigral damage induced by 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine(127).

The death of nigral neurons in Parkinson’s disease is
thought to involve the formation of the endogenous neuro-
toxin 5-S-cysteinyl-dopamine and its oxidation product
dihydrobenzothiazine(128,129) (Fig. 3). 5-S-cysteinyl-cate-
cholamine conjugates possess strong neurotoxicity and
initiate a sustained increase in intracellular reactive oxygen
species in neurons leading to DNA oxidation, caspase-3
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Fig. 3. The cellular mechanisms by which flavonoids and their metabolites protect against neuroinflammation and

neuronal injury induced by 5-S-cysteinyl-dopamine (CysDA), dihydrobenzothiazine (DHBT-1) and related reactive

oxygen species (ROS). Flavonoids inhibit the p38 pathway glia cells leading to a reduction in inducible nitric oxide

synthase (iNOS) expression and nitric oxide release. In neurons they scavenge neurotoxic species and induce

pro-survival signalling pathways, such as extracellular signal-regulated protein kinase (ERK) 1/2 and phosphati-

dylinositol 3-kinase (PI3K)/Akt, leading to an inhibition of neuronal apoptosis. STAT-1, signal transducer and

activator of transcription-1; IFN-g , interferon-g ; RNS, reactive nitrogen species; ASK1, apoptosis signal-regulating

kinase 1; JNK, c-Jun N-terminal kinase; BAD, Bcl-xL/Bcl-2 associated death promoter; MEK1/2, mitogen-activated

protein kinase kinases; CREB, cAMP response element-binding protein. , Activation; , inhibition.
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activation and delayed neuronal death(128) (Fig. 3). Such
adducts may be generated by reactive species(130) and have
been observed post mortem to be elevated in the substantia
nigra of patients with Parkinson’s disease(131), suggesting
that such species may be potential endogenous nigral
toxins. However, 5-S-cysteinyl-dopamine-induced neuro-
nal injury is effectively counteracted by nanomolar con-
centrations of various flavonoids, including pelargonidin,
quercetin, hesperetin, caffeic acid, 40-O-methyl derivatives
of catechin and epicatechin(130). Furthermore, in the pres-
ence of the flavanol (+ )-catechin tyrosinase-induced
formation of 5-S-cysteinyldopamine is inhibited by a
mechanism linked to the capacity of catechin to undergo
tyrosinase-induced oxidation to yield cysteinyl-catechin
adducts(132). In contrast, the inhibition afforded by flava-
nones, such as hesperetin, is not accompanied by the for-
mation of cysteinyl-hesperetin adducts, indicating that it
may inhibit via direct interaction with tyrosinase(132).
Reactive oxygen and nitrogen species have also been

proposed to play a role in the pathology of many neuro-
degenerative diseases(113) (Fig. 3). There is abundant
evidence that flavonoids are effective in blocking this
oxidant-induced neuronal injury, although their potential to
do so is thought not to rely on direct radical- or oxidant-
scavenging activity(76,86). Instead, they are believed to act
by modulating a number of protein kinase and lipid kinase
signalling cascades, such as the PI3K/Akt, tyrosine kinase,
protein kinase C and MAPK signalling pathways(1,46).
Inhibitory or stimulatory actions at these pathways are
likely to profoundly affect neuronal function by altering
the phosphorylation state of target molecules, leading to
changes in caspase activity, and/or by gene expression.
For example, flavonoids have been observed to block
oxidative-induced neuronal damage by modulating the
activation of both the MAPK(53,87–89) and PI3K/Akt(73)

signalling pathways and the activation of caspase-3(76,86),
providing evidence in support of their potent anti-apoptotic
action, and have been found to protect neurons against a
variety of neurotoxic insults.

Modulation of synaptic plasticity and neuro-cognitive
performance

There is now much evidence to suggest that fruit- and
vegetable-derived phytochemicals, in particular flavonoids,
are capable of promoting beneficial effects on memory,
learning and cognitive performance(119,133–141). It appears
that these low-molecular-weight non-nutrient components
are able to impact on memory through their ability to exert
effects directly on the brain’s innate architecture for
memory(3,47,142,143). The concentrations of flavonoids and
their metabolites that reach the brain are thought to be
sufficiently high to exert pharmacological activity at
receptors, kinases and transcription factors. Although the
precise site of their interaction with signalling pathways
remains unresolved, evidence indicates that they are cap-
able of acting in a number of ways: (1) by binding to ATP
sites on enzymes and receptors; (2) by modulating the
activity of kinases directly, i.e. MAPK kinase kinase,
MAPK kinase or MAPK; (3) by affecting the function of

important phosphatases, which act in opposition to kinases;
(4) by preserving Ca2 + homeostasis, thereby preventing
Ca2 + -dependent activation of kinases in neurons; (5) by
modulating signalling cascades lying downstream of
kinases, i.e. transcription factor activation and binding to
promoter sequences(3,4). By affecting such pathways they
have the potential to induce new protein synthesis in neu-
rons and thus an ability to induce morphological changes
that have a direct influence on memory acquisition, con-
solidation and storage.

Various individual cascades have been linked with this
control of de novo protein synthesis in the context of long-
term potentiation, synaptic plasticity and memory (Fig. 3):
(1) cAMP-dependent protein kinase A; (2) PKB/Akt(81);
(3) protein kinase C; (4) Ca–calmodulin kinase(83); (5)
ERK(3). All five pathways converge to signal to CREB, a
transcription factor that binds to the promoter regions of
many genes associated with synapse re-modelling, synaptic
plasticity and memory (Fig. 4). Flavonoids are now well
known to modulate neuronal signalling pathways crucial in
inducing synaptic plasticity(3), and although each of these
pathways are known to be involved in increasing the
number of, and strength of, connections between neurons,
flavonoids appear to interact primarily with the ERK
and PKB/Akt pathways(46,54,75). The activation of these

Plant bioactives

Cell signalling and gene expression

PKA, PKB/Akt, PKC, CaMK, ERK

Increased blood flow
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New nerve cell growth
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BDNF, Nrf, Arc mTOR, VEGF-B, TGF-βNMDA-R 

Fig. 4. Flavonoid-induced activation of neuronal signalling and gene

expression in the brain. Such processes may lead to changes in

synaptic plasticity and neurogenesis in the brain that ultimately

influence memory, learning and cognition. PKA, PKB, PKC, protein

kinase A, B and C respectively; CaMK, Ca–calmodulin kinase;

ERK, extracellular signal-regulated protein kinase; CREB, cAMP

response element-binding protein; BDNF, brain-derived neuro-

trophic factor; Arc, the activity-regulated cytoskeletal-associated

protein termed Arc/Arg3.1; NMDA-R, N-methyl D-aspartate receptor;

mTOR, mammalian target of rapamycin; VEGF-b, vascular endo-

thelial growth factor b; TGF-b, transforming growth factor b.
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pathways by blueberry flavonoids, along with the activa-
tion of the transcription factor CREB and production of
neurotrophins such as brain-derived neurotrophic factor
(BDNF), is known to be required during memory acqui-
sition and consolidation. Agents capable of inducing path-
ways leading to CREB activation will have the potential
to enhance both short-term and long-term memory(133)

by providing a more efficient structure for interpreting
afferent nerve or sensory information. One mechanism
by which this provision may come about is through flavo-
noid-induced increases in neuronal spine density and
morphology, two factors considered to be vital for learning
and memory(144). Changes in spine density, morphology
and motility have been shown to occur with paradigms that
induce synaptic as well as altered sensory experience and
lead to alterations in synaptic connectivity and strength
between neuronal partners, affecting the efficacy of
synaptic communication (Fig. 4).
Fisetin, a flavonoid found in strawberries, has been

shown to improve long-term potentiation and to enhance
object recognition in mice by a mechanism dependent on
the activation of ERK and CREB(145,146). Similarly, the
flavanol (–)-epicatechin induces both ERK1/2 and CREB
activation in cortical neurons and subsequently increases
CREB-regulated gene expression(75), whilst nanomolar
concentrations of quercetin are effective at enhancing
CREB activation(54). Blueberry-induced improvements in
memory have been shown to be mediated by increases in
the phosphorylation state of ERK1/2, rather than that of
Ca–calmodulin kinase (II and IV) or protein kinase A(133).
Other flavonoids have also been found to influence the
ERK pathway, with the citrus flavanone hesperetin capable
of activating ERK1/2 signalling in cortical neurons(73) and
flavanols such as (–)-epigallocatechin 3-gallate restoring
both protein kinase C and ERK1/2 activities in 6-hydro-
xydopamine-treated and serum-deprived neurons(77,78).
Furthermore, this ability to activate the ERK pathway is
not restricted to neurons and has also been observed in
fibroblasts exposed to low concentrations of epica-
techin(147).
CREB activation downstream of ERK appears critical in

the induction of long-lasting changes in synaptic plasticity
and memory(148–150) and disruption of CREB activity
specifically blocks the formation of long-term memory(151),
whereas agents that increase the amount or activity of
CREB accelerate the process(152). CREB is known to be a
critical transcription factor linking the actions of neuro-
trophins such as BDNF to neuronal survival, differentiation
and synaptic function(153–155). Consequently, the central
role of CREB in these processes has led to considerable
interest in identifying safe effective agents that may
enhance the activity of CREB in specific regions of the
brain, as these agents may lead to an improvement in
memory(152). Recent studies have shown that spatial
memory performance in rats supplemented with blueberry
correlates well with the activation of CREB and with
increases in both pro-BDNF and mature BDNF levels in
the hippocampus(133). Regulation of BDNF is interesting as
this neurotrophin is intimately linked to the control of
synaptic plasticity and long-term memory(156) (Fig. 5) and
decreases in BDNF and pro-BDNF have been reported in

Alzheimer’s disease(157,158). Furthermore, a polymorphism
that replaces valine for methionine at position 66 of the
pro-domain of BDNF is associated with memory defects
and abnormal hippocampal function in human subjects(159).

Flavonoid-induced activation of CREB and BDNF
expression has also been shown to lead to the activation of
the PI3K/Akt signalling pathway(133), presumably via the
binding of BDNF to pre- or post-synaptic tropomyosin
receptor kinase B receptor. The activation of Akt by fla-
vonoids in the hippocampus triggers the activation of the
mTOR pathway and the increased translation of specific
mRNA subpopulations(160), including the activity-regulated
cytoskeletal-associated protein termed Arc/Arg3.1(133),
which is known to be important in long-term potentiation
and has been proposed to be under regulatory control of
both BDNF(161) and the ERK signalling(162) (Fig. 4).
Increased Arc/Arg3.1 expression may facilitate changes in
synaptic strength and the induction of morphological
changes such as that observed when small spines are con-
verted into large mushroom-shaped spines through a
mechanism dependent on actin polymerisation(163). In
support of this role, studies have indicated that changes in
neuronal morphology occur in response to flavonoid sup-
plementation(164) and that certain flavonoids can influence
neuronal dendrite outgrowth in vitro(78). Furthermore,
nobiletin (a poly-methoxylated flavone found in citrus
peel) also induces neurite outgrowth(165) and synaptic
transmission(166) via its ability to interact directly with
MAPK and protein kinase A signalling pathways, whilst its
metabolite 40-demethylnobiletin exerts similar effects via
the same pathways(167).

Effects on the peripheral and cerebrovascular system

Recent dietary interventions in human subjects using
flavanol-containing foods have substantiated epidemio-
logical data for an inverse relationship between flavanol
intake and the risk of CVD, indicating various potential

Brain BDNF

Cognition

Blood BDNF

BBB

Flavonoid

Neuron Glia Endothelial cell

Fig. 5. Generation of brain-derived neurotrophic factor (BDNF) by

flavonoids may occur in the brain (neurons and glial cells) and the

periphery (endothelial cells). As BDNF may cross the blood–brain

barrier (BBB) both sites of generation have the potential to be rel-

evant to changes in cognition. Additionally, plasma measures of

BDNF may reflect brain generation in response to flavonoids and

general cognitive performance.

252 J. P. E. Spencer



P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

flavanol-mediated bioactivities including the improvement
of vasodilatation(168–172), blood pressure(173), insulin resis-
tance and glucose tolerance(174), the attenuation of platelet
reactivity(175) and the improvement of immune responses
and antioxidant defence systems(176,177) (Fig. 6). The
intake of flavanol-rich foods such as cocoa or of pure
(–)-epicatechin has been shown to be highly effective in
improving peripheral blood flow and surrogate markers of
cardiovascular function(178). The intake of flavanols has
been shown to result in acute elevations in the level of
circulating NO species, an enhanced flow-mediated dila-
tation response of conduit arteries and an augmented
microcirculation(172,178,179). For example, increases in
flow-mediated dilatation and plasma NO species in patients
with hypertension, diabetes and coronary artery disease
have been observed after consumption of flavanol-rich
cocoa or chocolate(172,174) and flavanol-rich cocoa reverses
endothelial dysfunction in smokers(180) and hypercholes-
terolaemia in post-menopausal women(181). Furthermore,
increases in flow-mediated dilatation in patients with
coronary artery disease have also been observed following

consumption of black tea or grape juice(182,183). It has also
been reported that flavanols might help to lower blood
pressure in subjects with hypertension(173,184,185) and in
healthy individuals(174). It has been proposed that these
effects are mediated by an ability of flavonoids to increase
circulating NO levels, perhaps through actions directly on
endothelial NO synthase(168,186–188). Indeed, in vitro
experiments have indicated that cocoa flavanols(186) and
grape-derived polyphenols(189,190) have the ability to
induce endothelium-dependent dilatation via a direct acti-
vation of the endothelial NO synthase and NO production.
Although, it is unlikely that oligomeric forms of flavanols
may exert such actions in vivo (because of their poor
absorption), flavanol monomers, specific flavanol metab-
olites, flavonols and flavones have also been observed to
influence NO production and endothelium-dependent
relaxation in vivo(178,191–193).

This ability to affect vascular function may also play a
role in determining flavonoid effects in the brain, in parti-
cular effects on cognition, which are known to also depend
on brain blood flow. There is evidence to suggest that
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Fig. 6. The peripheral vascular and cardiovascular effects of flavonoid-rich foods.

Flavanols in particular have been shown to induce a number of cardiovascular risk factors

including blood pressure, vascular function and blood clotting. Such vascular effects

are also thought to play a role in determining brain blood flow and changes in cognitive
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flavonoids are capable of preventing many forms of cere-
brovascular disease, including those associated with stroke
and dementia(194,195). Flavonoids, in particular flavanols,
have been shown to influence cerebrovascular blood
flow(196,197) and these vascular effects are potentially
important as increased cerebrovascular function is known
to facilitate adult neurogenesis in the hippocampus(143,198)

(Fig. 4). Indeed, new hippocampal cells are clustered near
blood vessels, proliferate in response to vascular growth
factors and may influence memory(199). Furthermore, effi-
cient cerebral blood flow is vital for optimal brain function,
with several studies indicating that there is a decrease in
cerebral blood flow in patients with dementia(200,201). Brain
imaging techniques such as functional MRI and trans-
cranial Doppler ultrasound have shown that there is a
correlation between cerebral blood flow and cognitive
function in human subjects(201). For example, cerebral
blood flow velocity is lower in patients with Alzheimer’s
disease and low cerebral blood flow is also associated with
incipient markers of dementia. In contrast, subjects without
dementia with higher cerebral blood flow are less likely to
develop dementia. As mentioned earlier, flavonoids are
capable of inducing increased cerebral blood flow in
human subjects 1–2 h post intervention(196,197). After con-
sumption of a flavanol-rich cocoa drink the blood oxygen-
ation level-dependent functional MRI shows an increase in
blood flow in certain regions of the brain, along with a
modification of the flow oxygenation level-dependent
response to task switching. Furthermore, arterial spin-
labelling sequence MRI also indicates that cocoa flavanols
increase cerebral blood flow for £2 h post ingestion(202).
In support of these findings, an increase in cerebral blood
flow through the middle cerebral artery has been reported
after the consumption of flavanol-rich cocoa using trans-
cranial Doppler ultrasound(196).

Present and future perspectives

The actions of dietary flavonoids on cognition appear to
involve a number of effects within the brain, including a
potential to protect neurons against injury induced by
neurotoxins and neuroinflammation, a potential to activate
synaptic signalling and an ability to improve cere-
brovascular blood flow. These effects appear to be under-
pinned by an ability to interact with cell signalling
cascades in the brain and the periphery, leading to an
inhibition of apoptosis triggered by neurotoxic species, the
promotion of neuronal survival and differentiation and an
enhancement of peripheral and cerebral blood perfusion.
Such effects induce beneficial changes in the cellular
architecture required for cognition and consequently pro-
vide the brain with a more efficient structure for inter-
preting afferent nerve or sensory information and for the
storage, processing and retrieval of memory. Furthermore,
such interactions also protect the brain against neuronal
losses associated with ageing, which is particularly rel-
evant as this innate brain structure is known to deteriorate
with aging, with neuronal populations or synaptic connec-
tions lost over time, leaving the system less efficient in the
processing and storage of sensory information.

However, although flavonoid consumption may have the
potential to limit or even reverse age-dependent deterio-
rations in brain function, there are a number of questions
still to be resolved. Most notably, at present there are no
data in support of a causal relationship between the con-
sumption of flavonoids and behavioural outcomes in
human subjects. In order to identify such relationships
future intervention studies will be required to utilise better-
characterised intervention materials, more appropriate
controls and more rigorous clinical outcomes. Whilst cog-
nitive behavioural testing in human subjects and animals
provides an appropriate way of assessing function, in vivo
structural and dynamic quantitative assessments will ulti-
mately be required to provide hard evidence of effects in
the brain. For example, it would be highly advantageous to
directly link behavioural responses to changes in hippo-
campal volume and density, changes in neural stem cell
and progenitor cells and alterations in brain blood flow
using MRI and functional MRI techniques. Functional
MRI measures may be used to assess changes in blood
flow that underlie improved cognitive functioning as a
result of flavonoid supplementation. In addition, such hae-
modynamic changes may be further compared with chan-
ges in grey matter density and to biomarkers of neural stem
and progenitor cells using H1-NMR spectroscopy. Such an
approach will be essential to provide links between flavo-
noid intake and brain function in a mechanistic, dynamic
and quantitative way. Taking such an approach it may also
be possible to assess other factors relating to intake such as
what time frame is required to gain maximum beneficial
effects, which flavonoids are most effective in inducing
these changes and in which doses?

Furthermore, the modulation of neurotrophic factors
such as BDNF represent useful targets for the prevention
of cognitive decline as they are known to be critical in both
the protection and repair of neurons in the central nervous
system(203,204). For example, levels of brain BDNF have
been shown to correlate with human learning, memory and
cognitive function(205–207). Future efforts should focus on
whether the ability of flavonoids to induce improvements
in cognition is mediated by their ability to induce BDNF
and/or other neurotrophin production in either the brain or
the periphery (Fig. 5). Although highly-specific behav-
ioural tests exist to determine cognitive performance in
human subjects, presently there is a lack of biochemical
markers that can be used as surrogates of human cognitive
performance. BDNF may be one such functional bio-
markers, as it has been shown to cross the blood–brain
barrier and thus levels in the plasma may reflect levels in
the brain(208) (Fig. 5). As flavonoid consumption has been
reported to increase BDNF expression in rat brain and this
increase is related to an improvement in spatial working
memory(133), there is a possibility that the same may occur
in human subjects and that increases in brain BDNF may
be detected as a biomarker in plasma (Fig. 5). Thus, future
studies should investigate the usefulness of BDNF and
other brain-derived components as biomarkers of cognitive
changes in human subjects and whether they also respond
to intervention with flavonoid-rich foods.

Finally, the potential impact of diet on healthcare costs
should not be ignored. Dementia costs in the UK alone
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have been estimated to be £17 · 109 per year. Develop-
ment of a treatment that would reduce severe cognitive
impairment in older individuals by only 1% per year
would cancel out all estimated increases in the long-term
care costs for the ageing population(209). Also, there is
intense interest in the development of drugs capable of
enhancing memory and learning, both in adults and chil-
dren, and there is a strong possibility that in the future
specific nutrients, in particular fruit-derived flavonoids,
might act as precursors for the development of a new
generation of memory-enhancing drugs.
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