
A moving-mesh finite element method and
its application to the numerical solution of
phase-change problems
Article

Accepted Version

Hubbard, M.E., Baines, M., Jimack, P.K. and Mahmood, R.
(2009) A moving-mesh finite element method and its
application to the numerical solution of phase-change
problems. Communications in Computational Physics, 6 (3).
pp. 595-624. ISSN 1815-2406 Available at
https://centaur.reading.ac.uk/18944/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://www.global-sci.com/

Publisher: Global Science Press

Publisher statement: "First published in Communications in Computational
Physics in Vol 6 (2009), pp. 595-624 published by Global Science Press," ©
Copyright 2006, Global Science Press

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

http://www.reading.ac.uk/centaur

Moving Mesh Finite Elements for Moving Internal and

External Dirichlet Boundaries

M.J. Baines

M.E. Hubbard

P.K. Jimack

R. Mahmood

November 25, 2005

Abstract

The application of a recently developed moving mesh finite element algorithm to problems

with moving internal and external boundaries is discussed. Particular attention is paid to the

problem of combining Dirichlet boundary conditions on the dependent variable with mass

conservation, and approaches which allow both to be satisfied simultaneously are proposed.

Their merits relative to approaches which impose only one of these conditions exactly are

also commented on. A modification to the original scheme is suggested which allows its use

in the approximation of problems where mass is not conserved, even when its variation in

time cannot be written out explicitly. The discussion is illustrated through one- and two-

dimensional numerical approximations of (i) a mass-conserving problem, the porous medium

equation, for which simple self-similar solutions exist with finite but time-dependent support,

(ii) a problem for which mass isn’t conserved, the one-phase Stefan problem, which also has

simple exact solutions available for validation, and (iii) a problem with a moving internal

Dirichlet boundary, a two-phase Stefan problem.

1 Introduction

REDO THIS SECTION!

The moving mesh finite element method of Baines, Hubbard and Jimack [1, 2, 3] has

been successfully applied to a range of time-dependent approximations to PDEs where a

moving boundary is involved. In those papers, the results shown are obtained using a simple

implementation of the necessary conditions at the moving boundaries. In particular, when

the nodal values of the dependent variable were recovered the Dirichlet boundary conditions

1

were only imposed approximately, but in a manner which ensured that mass was conserved

exactly in the interior of the domain. This work describes how it is possible to impose

boundary conditions of this type exactly while still maintaining conservation of mass, and

discusses the relative merits of the different approaches.

Section 2 provides a brief summary of the moving mesh finite element method, and is

followed in Section 3 by a description of the available options for applying the boundary

conditions. These are then compared in Section 3.2 using solutions of the one- and two-

dimensional porous medium equation, to illustrate the differences, and the paper concludes

with a summary of the observations.

2 The Moving Mesh Finite Element Method

The proposed algorithms may be applied in any number of space dimensions but, for the

purposes of clarity the much of the description of the method will be illustrated in two space

dimensions.

Consider initially an abstract time-dependent partial differential equation (PDE) of the

general form
∂u

∂t
= Lu , (1)

on a finite, time-dependent domain Ω(t). L is a differential operator involving space deriva-

tives only and the dependent variable u = u(x, t) is defined in a fixed frame of reference with

coordinate x at time t.

In the context of PDE (1), the total mass of the system can be expressed as

θ =

∫

Ω(t)

u dΩ , (2)

and its variation in time may be written as

d

dt

∫

Ω(t)

u dΩ = θ̇ . (3)

The original moving mesh finite element method was derived for the situation where θ̇ = 0,

i.e. mass conservation. The algorithm was driven by local mass conservation, whereby a

proportion of the total mass was assigned to each mesh node and the dependent variable

was recovered after the mesh was moved in a manner which retained this distribution of the

total mass across the nodes.

Mass is no longer assumed to be conserved, so the mesh movement must be driven in a

slightly more general manner. It is still possible to “distribute” the mass at each time-step

across a series of test functions wi = wi(x, t), leading to a slightly different set of local weak

forms (which reduce to local weak conservation principles when θ̇ = 0) given by

d

dt

∫

Ω(t)

wi u dΩ = θ̇i = ci θ̇ . (4)

2

The ci represent the proportion of the total mass associated with the ith test function, and

in this more general case it is this that will be kept constant as time progresses, to drive an

appropriate mesh movement. Importantly, these equations sum to the global equation (3)

when
∑

wi ≡ 1 over the whole domain. Careful choice of the wi, e.g. to be standard finite

element test functions, then ensures that the equations (4) are localised in some sense, which

simplifies the discrete system which will result. Similarly, these test functions also lead to a

corresponding distributed form for Equation (2), given by
∫

Ω(t)

wi u dΩ = ci θ , (5)

where ci ∈ [0, 1] represents the fraction of the total mass associated with the test function

wi. Clearly
∑

ci = 1 is required to maintain the correct total mass.

The moving mesh finite element method is derived by differentiating the integrals in (4)

with respect to time, assuming that the test functions are advected with velocity ẋ, applying

Leibnitz’ rule and integrating by parts. This gives [1]

ci θ̇ −

∮

∂Ω(t)

wi u ẋ · n dΓ +

∫

Ω(t)

u ẋ · ∇wi dΩ =

∫

Ω(t)

wi Lu dΩ , (6)

where n is the unit outward normal to ∂Ω(t), the boundary of the domain. These equations

could be discretised directly to return velocities but, instead, ẋ is replaced by the gradient

of a velocity potential, ∇φ. This imposes an irrotationality condition on the velocity field

(this is not necessary, the curl can be prescribed to be non-zero [1], but will be assumed

here) which allows two-dimensional velocities to be specified uniquely. Thus

ci θ̇ −

∮

∂Ω(t)

wi u∇φ · n dΓ +

∫

Ω(t)

u∇φ · ∇wi dΩ =

∫

Ω(t)

wi Lu dΩ , (7)

is solved to obtain velocity potentials. The velocities themselves are then recovered from the

vector equations ∫

Ω(t)

wi ẋ dΩ =

∫

Ω(t)

wi ∇φ dΩ . (8)

Even in one dimension, where specifying the curl of the velocity field is not required for

uniqueness, the introduction of a velocity potential still has the value of replacing one non-

symmetric linear system with two symmetric ones.

Application of the finite element method leads to discrete forms of (7) and (8) given by

Ci θ̇ −

∮

∂Ω(t)

Wi U ∇Φ · n ds +

∫

Ω(t)

U ∇Φ · ∇Wi dΩ =

∫

Ω(t)

Wi LU dΩ (9)

and ∫

Ω(t)

Wi Ẋ dΩ =

∫

Ω(t)

Wi ∇Φ dΩ . (10)

Note that from now on, X ≈ x, Ẋ ≈ ẋ, Φ ≈ φ and U ≈ u are assumed to be local (piecewise

linear in this case) finite element functions, and Wi ≈ wi are the usual piecewise linear

3

basis functions moving with the velocity field Ẋ. The variable i can now be thought of as

a mesh node index. A standard Galerkin finite element approach is used to carry out the

approximation, on a mesh of N + B nodes, the first N of which are the interior nodes, the

remainder being on the boundary. It is possible to use other (upwind, for example) finite

element methods, and future research may show this to be preferable.

A single time-step of the moving mesh finite element method consists of the following

stages [1].

a Given a set of mesh nodes with positions Xi and a total mass θ, solve the discrete form

of (5),
∫

Ω(t)

Wi U dΩ = Ci θ (11)

to recover the solution values Ui at all of the mesh nodes, i = 1, . . . , N + B. The

constants ci and θ are calculated from the initial conditions (solution and mesh). Ap-

plication of boundary conditions to this equation will be discussed in more detail

Section 3.

b Having found appropriate values for the Ui, solve (9) for i = 1, . . . , N +B, to obtain the

velocity potentials Φ at the mesh nodes and, if it is not known explicitly, θ̇. Invertibility

of the resulting system is ensured by imposing Φ = 0 at one or more nodes, typically

chosen to be on the boundary.

For the purposes of this work, when θ̇ is not known explicitly, in order to ensure that

the number of equations matches the number of unknowns Φ = 0 will be specified at

one node but the equation associated with that point will be retained.

c Use the resulting values of Φi to obtain the mesh node velocities via (10) for i =

1, . . . , N + B, with no boundary conditions imposed.

These three steps can be thought of as evaluating a function of the form ~F (~X, θ) (the arrows

indicate a vector which contains the values stored at all of the nodes of the mesh) which

satisfies
d(~X, θ)

dt
= ~F (~X, θ) . (12)

This system of ordinary differential equations in time can then be integrated using an ap-

propriate method (here it is simply forward Euler).

3 Boundary Conditions, Conservation and the PME

The issues presented here will be illustrated using the Porous Medium Equation (PME)

∂u

∂t
= ∇ · (un∇u) (13)

4

where n > 0 is an integer exponent, with the Dirichlet boundary condition u = 0. This

permits solutions with finite, but time-dependent, support in which mass (the integral of the

dependent variable u over the whole domain) is conserved, i.e. θ̇ = 0.

This gives explicitly an expression for LU , the discrete counterpart of the right hand side

of (1), which leads to

−

∮

∂Ω(t)

Wi U ∇Φ · n dΓ +

∫

Ω(t)

U ∇Φ · ∇Wi dΩ = −

∫

Ω(t)

Un ∇Wi · ∇U dΩ (14)

in place of (9), which must be solved alongside (10) and (11). The additional condition of

U = 0 on the boundary, then gives
∫

Ω(t)

U ∇Φ · ∇Wi dΩ = −

∫

Ω(t)

Un ∇Wi · ∇U dΩ . (15)

The boundary conditions for (15) are taken to here be Φ = 0 on the whole boundary [1],

so the equations themselves are only solved for internal nodes. One implication of this is

that

Ẋ · s = ∇Φ · s = 0 , (16)

for any tangent s to the boundary. In other words, boundary nodes can only move perpen-

dicular to the boundary. This is compatible with imposing zero curl on the mesh velocity

field and appropriate to the radially symmetric two-dimensional test cases used below. In

more complex situations, the condition can easily be relaxed because Φ = 0 needs only to

be imposed at one boundary node to obtain ~Φ uniquely. This does not change the approach

described below. In fact the radial symmetry of the problem means that solving the system

with Φ = 0 at one node on the boundary actually leads to Φ = 0 on the whole boundary,

and the solutions are virtually indistinguishable.

When the mesh velocities are recovered from (10) the boundary values of Ẋ are left

free, though clearly other conditions may be applied if more information is known about the

boundary’s behaviour.

Of prime interest here is the application of the boundary condition U = 0 to (11).

It has already been applied in the derivation of (15) and so is implicitly included in the

resulting mesh velocity field. However, (15) and (10) are only approximations, and (12) is not

integrated exactly, so these velocities will not necessarily provide new nodal positions which

are exactly compatible with both mass conservation and the Dirichlet boundary condition.

Therefore U = 0 must be imposed directly on the recovery of U in (11) if it is needed

precisely. It is not immediately obvious how to impose this condition while simultaneously

maintaining exact mass conservation.

Separately, the two conditions are easy to satisfy:

• exact boundary conditions with approximate mass conservation can be achieved by

overwriting the boundary equations with U = 0, but solving (11) for internal nodes

only. It guarantees that the mass associated with the internal nodes is conserved, not

the total mass.

5

• approximate boundary conditions with exact mass conservation can be achieved by

solving (11) for all nodes without any overwriting.

Both approaches rely on the mesh velocities being approximated accurately (the approach

is designed to do this) for the other condition to be recovered adequately. However, for both

U = 0 and conservation of mass to be enforced exactly, a slight adjustment in viewpoint is

required.

3.1 A Mass-Conserving Dirichlet Boundary Condition

The moving mesh finite element method is driven by the local conservation principles of (11)

for each of the mesh nodes i. These are used both to recover the dependent variable U and

(after differentiating with respect to time) to calculate the mesh velocity Ẋ via the velocity

potential Φ. Since imposing U = 0 on the boundary involves overwriting equations, in

order to conserve mass globally as well, information carried by the boundary equations must

somehow be associated with internal nodes. Furthermore, this must be done in a manner

which retains invertible systems.

Two approaches are proposed.

1 It follows from (11) that the proportion of the overall mass associated with each internal

node remains constant, leading to
∫

Ω(t)

Wi U dΩ = C ′

i θ′ (17)

for the internal nodes, i = 1, . . . , N , where the coefficients

C ′

i =

∫

Ω(t)
Wi U dΩ

∑N

j=1

∫

Ω(t)
Wj U dΩ

(18)

and the “internal” mass

θ′ =

N∑

j=1

∫

Ω(t)

Wj U dΩ (19)

are calculated from the initial conditions and fixed throughout the computation. Simple

algebraic manipulation of (17) leads to

∫

Ω(t)

Wi U dΩ + C ′

i

N+B∑

j=N+1

∫

Ω(t)

Wj U dΩ = C ′

i θ . (20)

Equation (20) can then be solved for Ui, i = 1, . . . , N with U = 0 substituted for

the boundary nodes i = N + 1, . . . , N + B. It can be confirmed that this guarantees

that mass is conserved exactly by summing (20) over the internal nodes, noting that
∑N

j=1 c′i = 1.

Note that differentiation of (17) with respect to time leads directly to (9), as before, but

only for the internal nodes. No constraint is explicitly applied at the boundary nodes,

6

but at a later stage the boundary node equations for Φ are overwritten by Φi = 0 for

i = N + 1, . . . , N + B. Unfortunately, direct differentiation of (20) leads to a different,

singular, set of equations for the velocity potentials: constraining the nodal masses

and the total mass to be constant overspecifies the system, so a constraint must be

eliminated prior to solving the equations for the velocity potential.

Differentiating (17) instead of (20) effectively ignores the boundary equations associ-

ated with
N+B∑

j=N+1

d

dt

∫

Ω(t)

Wj U dΩ = 0 , (21)

leaving a non-singular system for the velocity potentials (the same one as (11) leads to

when only internal nodes are considered). The removal of the singularity in this manner

is related to applying Φ = 0 at the boundary nodes, in which case the derived boundary

equations are overwritten, even though the boundary nodes are included in the initial

conservation principle. This is because a conservation constraint is ignored whenever an

equation for U or Φ is overwritten by strongly imposing Dirichlet boundary conditions

at a node. The penalty for doing this is that, although it removes the singularity it

leads instead to values for Φ which imply velocities in (10) which may not be compatible

with exact conservation, even if calculated precisely.

Although it achieves the primary objective (U = 0 on the boundary and constant θ),

this approach still has two significant shortcomings: both the symmetry and (in more than

one space dimension) the sparsity of the system generated for recovering U are lost. Even

in simple cases this leads to crippling computational expense.

2 Approach 1 can be thought of as distributing the total mass associated with the bound-

ary nodes to the internal nodes, in proportion to the amount of mass originally asso-

ciated with each internal node. This boundary mass has to be redistributed for the

scheme to be conservative, but it could be sent to any nodes. From an efficiency point

of view it is most convenient to associate it with adjacent internal nodes. For example,

in one dimension (with nodes numbered 0, 1, . . . , N, N + 1) this leads to the equations

∫ XN+1

X0

(W0 + W1) U dx = (c0 + c1) θ

∫ XN+1

X0

WiU dx = ci θ for i = 2, . . . , N − 1

∫ XN+1

X0

(WN + WN+1) U dx = (cN + cN+1) θ (22)

It is then implicitly assumed that the mass associated with each of the two boundary

nodes (0 and N + 1) remains constant, which allows the associated equations to be

eliminated from the derivation of the velocity potential equations and creates a non-

singular system to be solved for Φ.

7

1
2

3

kj

J

KI

Figure 1: Boundary nodes for two-dimensional boundary conditions.

The two-dimensional situation is a little more complicated. Consider a node, I say,

on the boundary: the mass associated with it, according to the connectivity shown in

Figure 1, is given by
∫

Ω(t)

WI U dΩ

=

∫

41

WI U dΩ +

∫

42

WI U dΩ +

∫

43

WI U dΩ

=

∫

41

WI (WI UI + WJ UJ + Wj Uj) dΩ +

∫

42

WI (WI UI + Wj Uj + Wk Uk) dΩ

+

∫

43

WI (WI UI + Wk Uk + WK UK) dΩ (23)

Now, since UI , UJ and UK are constrained by the Dirichlet boundary conditions to

retain the same value for all time, the mass associated with these terms in the above

integral will also remain constant (whether or not θ̇ = 0). This means that they can

safely be ignored in the recovery of U , as long as they are eliminated from both the

left and right hand sides of the equation used to recover the dependent variable (11).

The remaining contribution of the integral is then
∫

41

WI (Wj Uj) dΩ +

∫

42

WI (Wj Uj + Wk Uk) dΩ +

∫

43

WI (Wk Uk) dΩ

=

∫

Ω(t)

WI (Wj Uj) dΩ

︸ ︷︷ ︸

add to equation j

+

∫

Ω(t)

WI (Wk Uk) dΩ

︸ ︷︷ ︸

add to equation k

(24)

The contributions are combined with the equations of nodes adjacent to the boundary

in the manner illustrated by (22) and the resulting equations solved for the internal

values of U . A a similar approach can be followed, however many internal nodes

are adjacent to I, though it can be noted that in the special case where node I has

no adjacent internal nodes, the use of linear finite elements means that the Dirichlet

boundary condition implies that the mass for this cell does not change with time and

can therefore be ignored. In fact U = 0 has been assumed at the boundary nodes

throughout the calculations carried out in (24).

8

The additional terms in (24) are, as in approach 1, implicitly assumed to be a constant

proportion of the overall mass, which means that they may be ignored in the derivation

of the velocity potentials and these equations also remain as (15). The advantage of

this alternative approach is that it simply adds terms to the diagonal of the mass

matrix to be inverted to find U , thus maintaining symmetry and sparsity. In fact,

the additional terms make the matrix more diagonally dominant and hence easier to

invert.

An alternative view of both of the above approaches is that they modify the test functions

Wi. In the first approach the test functions are no longer local, which explains the loss of

sparsity, but in the second their support is the same as it would be for the standard linear

hat functions. Typical two-dimensional test functions are shown in Figure 2. An example is

shown for an internal node and a boundary node for each of the two approaches.

Method Ci: boundary node Method Ci: internal node

Method Cii: boundary node Method Cii: internal node

Figure 2: Test functions for the recovery of U via mass conservation in two dimensions which

are compatible with exact imposition of Dirichlet boundary conditions.

This gives the four options which will be compared in Section 3.2:

A U = 0 imposed exactly, mass conservation approximated.

9

B U = 0 recovered approximately, mass conserved exactly.

C U = 0 imposed exactly and mass conserved exactly,

i with boundary mass distributed across the domain.

ii with boundary mass distributed to adjacent nodes.

Note that other monitors can be used to drive the mesh movement [3], but although analogous

approaches to applying the boundary conditions exist, they have not yet been investigated.

It also remains to investigate the behaviour of the method proposed here, which solves for

θ̇ rather than trying to impose it, when it is combined with alternative monitor functions.

This is partly because in these cases the moving mesh method generally results in a nonlinear

conservation principle which cannot yet be inverted in a robust enough manner to warrant

direct recovery of U . A conservative Arbitrary Lagrangian-Eulerian (ALE) approach is

preferred for the recovery of U in this situation [3], though this reduces to (11) when the

mass monitor is used.

3.2 Numerical Experiments

Equation (13) admits a family of compact support similarity solutions with moving bound-

aries at which u = 0 [4]. Two cases are considered, one with exponent n = 1 (for which the

slope of the self-similar solution at the moving boundary is finite) and another with n = 3

(for which the slope at the boundary is infinite). It can be shown that in d space dimensions

(here d = 1 or 2) a radially symmetric self-similar solution exists of the form

u(r, t) =

1
λd(t)

(

1 −
(

r
r0λ(t)

)2
) 1

n

|r| ≤ r0λ(t)

0 |r| > r0λ(t)

(25)

in which r is the usual radial coordinate, and where

λ(t) =

(
t

t0

) 1

2+dn

and t0 =
r0

2n

2(2 + dn)
. (26)

The problem is parameterised by the initial front position r0 (at time t0) and the position

of the moving front is given by r0λ(t). The test cases are run until time T = t − t0.

Results are shown for two test cases each in one and two space dimensions, as follows.

• One dimension, n = 1, r0 = 0.5 (giving t0 = 0.04167) and run until T = 10 (when

r ≈ 3.11154).

• One dimension, n = 3, r0 = 0.5 (giving t0 = 0.075) and run until T = 10 (when

r ≈ 1.33231).

• Two dimensions, n = 1, r0 = 0.5 (giving t0 = 0.03125) and run until T = 0.1 (when

r ≈ 0.71578).

10

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1

−5.5

−5

−4.5

−4

−3.5

−3

LOG(dx)

LO
G

(e
rr

or
)

Porous Medium Equation: n = 1

Method A

Method B

Method Ci

Method Cii

slope = 2

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1

−4

−3.5

−3

−2.5

−2

LOG(dx)

LO
G

(e
rr

or
)

Porous Medium Equation: n = 1

Method A

Method B

Method Ci

Method Cii

slope = 2

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1
−3.5

−3

−2.5

LOG(dx)

LO
G

(e
rr

or
)

Porous Medium Equation: n = 3

Method A

Method B

Method Ci

Method Cii

slope = 1

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1

−2

−1.5

−1

LOG(dx)

LO
G

(e
rr

or
)

Porous Medium Equation: n = 3

Method A

Method B

Method Ci

Method Cii

slope = 1

Figure 3: Comparison of L2 errors in the solution (left) and L∞ errors in the boundary node

positions (right) for the different boundary approximations in one space dimension.

Table 1: Numerical estimates of the orders of accuracy of the scheme for the dependent

variable U and the boundary position X using each set of boundary conditions, obtained by

comparing errors on the finest pair of meshes used in the experiments.

One dimension Two dimensions

n = 1 n = 3 n = 1 n = 3

Method U X U X U X U X

A 2.01 2.01 1.17 0.92 2.10 2.46 1.02 1.31

B 2.00 1.62 1.11 0.92 1.91 2.02 1.00 1.30

Ci 2.02 2.00 1.17 0.92 – – – –

Cii 2.02 2.00 1.17 0.92 2.00 2.50 1.01 1.31

11

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8
−5

−4.5

−4

−3.5

−3

LOG(dx)

LO
G

(e
rr

or
)

Porous Medium Equation: n = 1

Method A

Method B

Method Cii

slope = 2

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8

−5.5

−5

−4.5

−4

−3.5

LOG(dx)

LO
G

(e
rr

or
)

Porous Medium Equation: n = 1

Method A

Method B

Method Cii

slope = 2

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8

−2.5

−2

LOG(dx)

LO
G

(e
rr

or
)

Porous Medium Equation: n = 3

Method A

Method B

Method Cii

slope = 1

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8

−3

−2.5

LOG(dx)

LO
G

(e
rr

or
)

Porous Medium Equation: n = 3

Method A

Method B

Method Cii

slope = 1

Figure 4: Comparison of L2 errors in the solution (left) and boundary node positions (right)

for the different boundary approximations in two space dimensions.

12

• Two dimensions, n = 3, r0 = 0.5 (giving t0 = 0.046875) and run until T = 0.1 (when

r ≈ 0.57673).

All results have been obtained on uniform meshes, for which the representative initial mesh

size dx is repeatedly halved to estimate orders of accuracy. The time-step is divided by four

with each refinement. The results shown have been calculated with θ̇ = 0 imposed explicitly

with φ = 0 on the whole boundary, but experiments with the new approach which solves for

θ̇ along with φ give results which are indistinguishable to about 8 decimal places. The errors

are shown in Figures 3 and 4, while numerically estimated orders of accuracy are given in

Table 1 These lead to a number of observations.

• There can be significant differences between the errors in approximating the boundary

position even when the errors in the solution approximation are very similar.

• Typically, the method is second order accurate when n = 1 and first order accurate

when n = 3, whatever approach is used model the boundary conditions. The exception

is the approximation to the boundary position in two dimensions, which appears to be

of higher order in each case.

• Overall, the least accurate approach seems to be to conserve mass exactly and impose

U = 0 weakly (method B). This is most noticeable when considering the error in the

boundary position. The other approaches all give similar results in each case.

• In terms of computational speed, methods A, B and Cii are very similar. In fact

method Cii is typically the fastest, seemingly because the adjustments made to the

matrix improve its conditioning and so accelerate the convergence of the conjugate

gradient algorithm used to solve for the dependent variable. Method Ci is significantly

slower (by factors of more than 100 for even moderately fine meshes such as the 2113

node mesh used as part of the two-dimensional experiments), leading to its omission

from the two-dimensional results.

• There is almost no difference in quality between the results obtained using methods

Ci and Cii.

• Method A seems less robust than the others. In this case all results were necessarily

obtained using half the time-step of the other approaches due to stability problems

and mesh tangling.

• All of the methods allow the dependent variable to become negative, but the nature

of the solutions tested has meant that this has only happened when the Dirichlet

boundary condition is not enforced exactly. The negative values (when they appear)

are only small, but there may be practical circumstances in which even this would be

unacceptable.

13

Of the four proposed, method Cii, which allows mass to be conserved exactly simultane-

ously with exact imposition of the Dirichlet boundary conditions, appears to have the best

combination of accuracy, robustness, speed and physical realism and so is proposed for future

use. It has already been shown to have robust counterparts which can be implemented in

other situations (where mass is not conserved and/or u 6= 0 on the boundary – which can be

due to modelling PDEs other than the PME) but these have not yet been thoroughly tested

in terms of their accuracy compared to the simpler approaches.

4 Internal Boundaries and Stefan Problems

Consider a domain divided in to inner and outer regions, ΩI and ΩO respectively, as illus-

trated in Figure 5. The two-phase Stefan problem, which represents the transition between,

for example, liquid and solid phases, is modelled by the equation

ut = ∇2u in ΩI and ΩO (27)

with Dirichlet boundary conditions u = uI = 0 on ΓI , the interface between ΩI and ΩO, and

u = uO on ΓO the outer boundary. In addition, conditions are also placed on the velocities

of the boundaries:

[∇u · n] = CL ẋ · n on ΓI (28)

where n is the outward pointing unit normal to the given domain, and for the purposes of this

problem, the outer boundary is assumed to be fixed, i.e. ẋ = 0 on ΓO. Must check which

way the jump is taken! One-phase Stefan suggests it’s liquid-solid, though it

is clearly linked with the meaning of the sign of CL. We will assume here that

the inner region is solid and the outer region is liquid. It may be wise to change the

subscripts from I(nner) and O(uter) to S(olid) and L(iquid).

nO

nO

ΓO

Γ
−

I

ΩI

ΩO

nI

Γ
+

I

Figure 5: A generic domain for the two-phase Stefan problem.

For the purposes of clarity, the mesh nodes are assumed to be numbered as follows:

• Nodes 1, . . . , NI are those in the interior of ΩI .

14

• Nodes NI +1, . . . , NI +BI are those on the interface ΓI . In Figure ?? this is indicated

by both Γ−

I , the boundary of ΩI , and Γ+
I , the coincident boundary of ΩO.

• Nodes NI + BI + 1, . . . , NI + BI + NO are those in the interior of ΩO.

• Nodes NI + BI + NO + 1, . . . , NI + BI + NO + BO are those on the interface of ΓO.

4.1 Calculating the Mesh Velocity Potential

Following the approach presented earlier, differentiating the weak form
∫

Ω(t)

Wi U dΩ = Ci θ(t) , (29)

with respect to time leads, ultimately, to

−

∫

Ω(t)

∇Wi · (∇U + UẊ) dΩ +

∮

Γ(t)

Wi(∇U + UẊ) · n dΓ = Ci θ̇ (30)

where Ω(t) = ΩO(t) ∪ ΩI(t) and Γ(t) = ΓO ∪ Γ−

I (t) ∪ Γ+
I (t). With a small amount of

manipulation to move the unknowns (largely) to the left hand side, and substituting in the

velocity potential, this then becomes
∫

Ω(t)

∇Wi · U∇Φ dΩ + Ci θ̇

= −

∫

Ω(t)

∇Wi · ∇U dΩ +

∮

Γ(t)

Wi ∇U · n dΓ +

∮

Γ(t)

Wi U Ẋ · n dΓ (31)

It would be nice to be able to solve this in the same way across the whole domain but,

for reasons which will be elaborated on later, this does not work. Hence, at this stage, the

integrals are separated into components over each of the domains which leads to
∫

ΩI(t)

∇Wi · U∇Φ dΩ +

∫

ΩO(t)

∇Wi · U∇Φ dΩ + CI
i θ̇I + CO

i θ̇O

= −

∫

ΩI(t)

∇Wi · ∇U dΩ −

∫

ΩO(t)

∇Wi · ∇U dΩ (32)

+

∮

Γ−

I
(t)

Wi ∇U · nI dΓ +

∮

Γ+

I
(t)

Wi ∇U · nO dΓ +

∮

ΓO

Wi ∇U · nO dΓ

+

∮

Γ−

I
(t)

Wi U ∇Φ · nI dΓ +

∮

Γ+

I
(t)

Wi U ∇Φ · nO dΓ +

∮

ΓO

Wi U ∇Φ · nO dΓ

All of the final three terms disappear, either because U = 0 on ΓI or Ẋ = 0 on ΓO. The

remaining boundary integrals along do not cancel out because ∇U is discontinuous across

this boundary.

For what follows it is assumed that no cell spans either ΩI or ΩO, i.e. no cell has all of

its vertices on ΓI and no cell has vertices on both ΓI and ΓO. Given this, the following five

situations arise.

15

1. For i = 1, . . . , NI , Wi = 0 on ΓI , ΓO and ΩO so
∫

ΩI(t)

∇Wi · U∇Φ dΩ + CI
i θ̇I = −

∫

ΩI(t)

∇Wi · ∇U dΩ (33)

2. For i = NI +1, . . . , NI +BI , but considering only integration over the region ΩI , since

U = 0 on ΓI (the process would be slightly more complicated if U = UI 6= 0),
∫

ΩI(t)

∇Wi · U∇Φ dΩ + CI
i θ̇I

= −

∫

ΩI(t)

∇Wi · ∇U dΩ +

∮

Γ−

I
(t)

Wi ∇U · nI dΓ (34)

which, having applied the boundary condition at the interface in the form
∮

Γ−

I

Wi ∇U · nI dΓ +

∮

Γ+

I

Wi ∇U · nO dΓ =

∮

ΓI

Wi CL ∇φ · nO dΓ (35)

becomes
∫

ΩI(t)

∇Wi · U∇Φ dΩ −

∮

ΓI(t)

Wi CL ∇Φ · nO dΓ + CI
i θ̇I

= −

∫

ΩI(t)

∇Wi · ∇U dΩ −

∮

Γ+

I
(t)

Wi ∇U · nO dΓ (36)

3. For i = NI + 1, . . . , NI + BI , but considering only integration over the region ΩO, the

same procedures carried out in stage 2 lead to
∫

ΩO(t)

∇Wi · U∇Φ dΩ + CO
i

˙θO

= −

∫

ΩO(t)

∇Wi · ∇U dΩ +

∮

Γ+

I
(t)

Wi ∇U · nO dΓ (37)

and then
∫

ΩO(t)

∇Wi · U∇Φ dΩ −

∮

ΓI(t)

Wi CL ∇Φ · nO dΓ + CO
i

˙θO

= −

∫

ΩO(t)

∇Wi · ∇U dΩ −

∮

Γ−

I
(t)

Wi ∇U · nI dΓ (38)

4. For i = NI + BI + 1, . . . , NI + BI + NO, Wi = 0 on ΓI , ΓO and ΩI so the equations

used are the same as those used in stage 1 for the interior of ΩI .
∫

ΩO(t)

∇Wi · U∇Φ dΩ + CO
i θ̇I = −

∫

ΩO(t)

∇Wi · ∇U dΩ (39)

5. For i = NI + BI + NO + 1, . . . , NI + BI + NO + BO, Wi = 0 on ΓI and ΩI , and Ẋ = 0

on ΓO so
∫

ΩO(t)

∇Wi · U∇Φ dΩ + CO
i

˙θO

= −

∫

ΩO(t)

∇Wi · ∇U dΩ +

∮

ΓO

Wi ∇U · nO dΓ (40)

16

It is typical to apply homogeneous Neumann boundary conditions at this boundary,

so in many cases the final term, given by the boundary integral, disappears.

Clearly this implies that Φ is dual valued on ΓI. This is not a problem because the recovery

of Ẋ from Φ only requires integrals over mesh cells, even when the boundary condition for

Ẋ is not explicitly enforced at the interface.

θ̇I is found by assuming that Φi = 0 at an arbirtary node i for which 1 ≤ i ≤ NI + BI ,

but keeping all of the equations. Similarly θ̇O is obtained in the same manner, assuming

Φi = 0 for any i where NI + 1 ≤ i ≤ NI + BI + NO + BO.

Remark: when i = NI + 1, . . . , NI + BI , integrating over the whole domain leads to
∫

Ω(t)

∇Wi · U∇Φ dΩ + CI
i θ̇I + CO

i
˙θO (41)

= −

∫

Ω(t)

∇Wi · ∇U dΩ +

∮

Γ−

I
(t)

Wi ∇U · nI dΓ +

∮

Γ+

I
(t)

Wi ∇U · nO dΓ

which, having applied the boundary condition at the interface, becomes
∫

ΩI(t)

∇Wi · U∇Φ dΩ −

∮

ΓI (t)

Wi CL ∇Φ · nO dΓ + CI
i θ̇I + CO

i
˙θO

= −

∫

ΩI(t)

∇Wi · ∇U dΩ (42)

All of this relies on the boundary condition being applied as
∮

Γ−

I
(t)

Wi ∇U · nI dΓ +

∮

Γ+

I
(t)

Wi ∇U · nO dΓ =

∮

ΓI(t)

Wi CL ∇Φ · n) dΓ (43)

where CL > 0 represents freezing and CL < 0 represents thawing. This needs the sign

checking, along with its relationship with CL. This leaves us with a counting prob-

lem, since Φ would need to be specified at at least 2 points in order to free up enough

equations to solve for both θ̇I and θ̇O.

It is possible to solve for the total mass variation θ̇ but this requires extra work with

including the Dirichlet boundary condition at the interface. The equations may need to be

derived in the knowledge that ∇U is discontinuous here, and hence that ∇2u is infinite. I say

this as though it’s more complicated, but the more I look at it the more it looks

like it might actually be slightly simpler, not least because it would lead to

a single-valued phi on the interface.

4.2 Recovering the Mesh Velocity

The following can either be solved all at once or on ΩI and ΩO separately.

1. For i = 1, . . . , NI , solve
∫

ΩI (t)

Wi Ẋ dΩ =

∫

ΩI(t)

Wi ∇Φ dΩ (44)

17

2. For i = NI + 1, . . . , NI + BI , on either ΩI or ΩO, either solve

CL

∮

ΓI(t)

Wi Ẋ · nI dΓ =

∮

Γ−

I

Wi ∇u · nI dΓ +

∮

Γ+

I

Wi ∇u · nO dΓ (45)

or impose

CL Ẋi · n = [∇u · n]i (46)

along with Ẋi · s = 0. In the radially symmetric situations considered here it should

also be valid to solve

CL

∮

ΓI(t)

Wi Ẋ dΓ =

∮

Γ−

I

Wi ∇u dΓ +

∮

Γ+

I

Wi ∇u dΓ (47)

directly to obtain both components of the velocity without explicitly imposing zero tan-

gential velocity. Is this generally safe? It clearly satisfies the desired

boundary condition but do we want to impose a stronger condition?

3. For i = NI + BI + 1, . . . , NI + BI + NO, solve
∫

ΩO(t)

Wi Ẋ dΩ =

∫

ΩO(t)

Wi ∇Φ dΩ (48)

4. For i = NI + BI + NO + 1, . . . , NI + BI + NO + NI , simply impose

Ẋi = 0 (49)

Initial experiments in one dimension suggest that the inclusion of the interface boundary

condition in the calculation of the velocity potential makes it unnecessary to do so again

here so it may be possible (and would definitely be simpler) to instead solve the following

1. For i = 1, . . . , NI + BI + NO, solve
∫

ΩI (t)

Wi Ẋ dΩ =

∫

ΩI(t)

Wi ∇Φ dΩ (50)

2. For i = NI + BI + NO + 1, . . . , NI + BI + NO + NI , simply impose

Ẋi = 0 (51)

4.3 Recovering the Dependent Variable

The following can be solved on ΩI and ΩO independently.

1. For i = 1, . . . , NI , solve ∫

ΩI(t)

W̃i U dΩ = C̃I
i θI (52)

2. For i = NI + 1, . . . , NI + BI , impose Ui = UI = 0.

18

3. For i = NI + BI + 1, . . . , NI + BI + NI , solve

∫

ΩO(t)

W̃i U dΩ = C̃O
i θO (53)

4. For i = NI + BI + NO + 1, . . . , NI + BI + NO + NI , impose Ui = UO.

Note that W̃i are the modified test functions of Section 3 which allow U to be specified

strongly on Dirichlet boundaries, with C̃I
i and C̃O

i being the corresponding proportions of

the total masses. Also, C̃I
i = 0 for i = NI + 1, . . . , NI + BI + NO + BO and C̃O

i = 0 for

i = 1, . . . , NI + BI and i = NI + BI + NO + 1, . . . , NI + BI + NO + BO.

Note also that, although it might well be possible to solve a single system over the whole

domain instead of the two separate systems split by th emoving interface, U changes sign

between the two domains, which means that it is no longer entirely appropriate as a monitor

function unless the two domains are considered separately.

4.4 Single Phase Stefan Problems

The single phase Stefan problem can simply be considered to be a special case of the two-

phase problem described above in which there is a single domain and it is assumed that u =

uI = 0 in the neighbouring region, adjacent to the moving interface. The only modification

to be made is that solution in the second domain must be avoided, since ∇u = 0 here and

this would lead to a singularity in the calculation of the velocity potential.

5 Results

With new θ̇...

For PME and 1/2-phase Stefan...

One and two dimensions...

Similarity solutions, Frank spheres, other?

6 Conclusions

EXPAND THIS SECTION.

Four approaches to the imposition of Dirichlet boundary conditions on the dependent

variable of a time-dependent, mass-conserving PDE on a time-dependent domain have been

compared for a newly developed moving mesh finite element method. The porous medium

equation has been used in one and two space dimensions to test the different approaches.

The results suggest that a method which imposes both mass conservation and boundary

conditions exactly is the best. Of the two methods proposed which satisfy both of these

properties, the one which maintained the sparsity (and appears to improve the conditioning)

19

of the mass matrix which is inverted to find the dependent variable, was considerably more

efficient. This approach (and its variants derived for other situations) is proposed for use

with the moving mesh finite element method in the future.

References

[1] Baines MJ, Hubbard ME, Jimack PK. A moving mesh finite element algorithm for the

adaptive solution of time-dependent partial differential equations with moving bound-

aries. Appl Numer Math, to appear.

[2] Baines MJ, Hubbard ME, Jimack PK. A moving mesh finite element algorithm for fluid

flow problems with moving boundaries. Int J Numer Meth Fl, to appear.

[3] Baines MJ, Hubbard ME, Jimack PK, Jones AC. Scale-invariant moving finite elements

for nonlinear partial differential equations in two dimensions. Appl Numer Math, sub-

mitted.

[4] Murray JD, Mathematical Biology: An Introduction (3rd edition), Springer (2002).

20

