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Abstract 
 

The dipeptide L-carnosine has a number of important biological properties. 

Here, we explore the effect of attachment of a bulky hydrophobic aromatic unit, Fmoc 

[N-(fluorenyl-9-methoxycarbonyl)] on the self-assembly of Fmoc-L-carnosine, i.e. 

Fmoc-β-alanine-histidine (Fmoc-βAH). It is shown that Fmoc-βAH forms well defined 

amyloid fibrils containing β-sheets above a critical aggregation concentration, which 

is determined from pyrene and ThT fluorescence experiments. Twisted fibrils were 

imaged by cryogenic transmission electron microscopy. The zinc-binding properties 

of Fmoc-βAH were investigated by FTIR and Raman spectroscopy since the 

formation of metal ion complexes with the histidine residue in carnosine is well 

known, and important to its biological roles. Observed changes in the spectra may 

reflect differences in the packing of the Fmoc-dipeptides due to electrostatic 

interactions. Cryo-TEM shows that this leads to changes in the fibril morphology. 

Hydrogelation is also induced by addition of an appropriate concentration of zinc 

ions. Our work shows that the Fmoc motif can be employed to drive the self-

assembly of carnosine into amyloid fibrils. 
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Introduction  

 
 

The dipeptide L-carnosine (β-alanine-histidine, βAH) has a range of biological 

activities.1-2 It has been shown to have antioxidant properties for carbohydrates (anti-

glycation)3-4 and lipids (anti-lipoxidation).5 The presence of the β−alanine (βAH) 

residue is implicated in these roles, since it can react directly with oxidized 

carbohydrates and lipids.6  The histidine (H) residue has properties including the 

ability to bind to transition metal ions. H-containing dipeptides such as L-carnosine 

(hereafter termed carnosine) are present in the mammalian brain within neuroglia 

and certain types of neurons.7 Carnosine itself was first isolated from a meat extract 

and is present in muscle and nerve tissue, as well as the brain.1-2 Its presence has 

been ascribed to its resistance to cleavage by intracellular proteases as well as the 

weak activity of specific carnosinases.3 The important role of the H residue in 

carnosine is its ability to inhibit glycation-induced protein cross-linking.7  This property 

may be important in the proposed application of carnosine to treat Alzheimer’s 

disease.7 It has also been shown to delay senescence of cultured cells,8 which has 

been ascribed to the antioxidant properties of the peptide amongst other.4 Carnosine 

also has a protective effect in inhibiting fibrillisation of α-crystallin during the 

formation of cataracts.9-10 Derivatives of carnosine such as the methylated compound 

anserine (β-alanine-methylhistidine), homocarnosine (γ−aminobutyryl-carnosine) and 

others have also been isolated from tissue.1, 11 

Despite its known bioactivity, there have been few studies on the physico-

chemical properties of carnosine.  Raman spectra of carnosine on silver 

nanoparticles (via Surface-Enhanced Raman Scattering) have been reported,12 and a 

crystal structure has been published.13 

Here, we explore the use of the Fmoc [Fmoc = N-(fluorenyl-9-

methoxycarbonyl)] unit as a structure-directing agent to induce fibrillisation of 
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carnosine. Recent work has shown that bulky aromatic units such as Fmoc can be 

used to drive the self-assembly of short peptides via π-stacking interactions.14-22 The 

Fmoc unit is a bulky aromatic substituent, used routinely as a protective group in 

solid phase peptide synthesis but generally cleaved from the N-terminus following 

synthesis. Retaining the Fmoc unit provides a convenient means to direct 

π−π stacking interactions and hence fibrillisation.  Here, we first show that carnosine 

itself does not form β-sheet fibrils but forms a random coil structure in aqueous 

solution. We then investigate the self-assembly of Fmoc-carnosine, i.e. Fmoc-βAH 

using a variety of spectroscopic and microscopic techniques.  

Finally, we examine the interaction of Fmoc-βAH with zinc ions due to the 

important role of metal ions in forming complexes with carnosine.23-26 It has been 

suggested that zinc-carnosine chelates can be used natural antioxidants in vivo 27 for 

the treatment of gastric ulcers and inflammations. Since it is known that zinc ions 

form chelates with the imidazole ring in the H residue of carnosine,23-24 it is expected 

that Fmoc-βAH can also induce zinc chelation. On that basis, we investigate in this 

work the self-assembled structure and chelation sites of Fmoc-βAH/Zn2+ complexes, 

to obtain information about the properties of this new peptide derivative.   

 

Experimental 

Materials. The dipeptide βAH was purchased from Sigma-Aldrich (UK) and 

used as received. A portion of the Fmoc-βAH (Scheme 1) was synthesized in our 

laboratory by standard Fmoc solid-phase peptide synthesis techniques, while another 

portion was purchased from C S Bio Co (USA). In aqueous solution, the imidazole 

moiety is known to exist as an equilibrium of two tautomeric forms (I and II , Scheme 

1).23 The tautomers are distinguished by the position of one of the double bounds 

and the protonation level of the nitrogen atoms in the ring. Thus, both Nτ and NΠ are 
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possible chelation sites for Zn2+ ions, in addition to the numerous heteroatoms in the 

remainder of the Fmoc-βAH system. 

 

Synthesis and purification of Fmoc-ββββAH in our laboratory HOBt (1-

hydroxybenzotriazole), HBTU [2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate] and Fmoc- His(Trt) -Wang resin (100-200 mesh, 0.6 mM/g) 

were purchased from Novabiochem (UK). Anhydrous N,N-dimethylformamide (DMF) 

and trifluoroacetic acid (TFA) were purchased from Sigma-Aldrich (UK); acetonitrile 

(HPLC grade) and water (HPLC grade) were purchased from Fisher Scientific (UK).    

Fmoc-βAH was synthesized on a 0.45 mM scale using a standard Fmoc chemistry 

procedure with a sintered glass funnel. After the resin was swollen in DMF for 30 min 

it was drained and treated with piperidine in DMF (1: 4 v/v) to deprotect the Fmoc 

group. The reaction mixture was agitated for 10 min by bubbling nitrogen through it, 

then drained. The piperidine treatment was repeated three times and then the resin 

was drained and washed with DMF (6 x). Later, the resin was allowed to react with 

activated Fmoc-βAH. Fmoc-βAH (3 eq. to resin loading) and 3 eq. HBTU / HOBt 

were dissolved in DMF (6 ml). Subsequently, 5.0 eq. (iPr)2NEt were added to the 

mixture, which was stirred for 5 minutes prior to being added to the drained resin. 

The coupling reaction of the activated Fmoc-βAH with the drained resin was agitated 

for 1.5 h by nitrogen bubbles, drained and washed with DMF (6 x), MeOH (4 x), and 

CH2Cl2 (4 x). In the cleavage step, the obtained Fmoc dipeptide attached to the solid 

support was treated with a mixture of 95% TFA, 2.5% triisopropylsilane, and 2.5% 

water. The mixture was stirred at room temperature for approximately 4 hrs, followed 

by filtration. The cleaved resin was washed three times with TFA. The obtained 

peptide solution was collected and concentrated by evaporating TFA under vacuum, 

followed by precipitation in cold diethyl ether. The crude product was separated by 

centrifugation and decanting the supernatant. The crude peptide was redissolved in 



 6 

HPLC grade water with acetonitrile co-solvent and purified by reverse phase HPLC. 

Preparative reverse-phase HPLC was carried out on Perkin Elmer 200 system using 

a C18 column (Macherey-Nagel, 7µm, 10mm × 250mm) at 35°C (Perkin Elmer 

Series 200 Peltier Column Oven) with a UV/vis detector. The eluents, 0.1% TFA in 

acetonitrile and 0.1% aqueous TFA, were used as a gradient solvent system in the 

reverse-phase HPLC, where the acetonitrile portion increased linearly from 0% to 

90% over 20 min and then decreased linearly to 0% over 10 min with a flow rate of 4 

ml/min. The UV/vis detector monitored the sample elution at 254 nm. The fractions of 

the peptide were collected (retention time: 13 min) and after lyophilization, gave a 

white powder which was characterized by electrospray-mass spectroscopy (ES-MS) 

and 1H NMR. Fmoc- ββββAH : 1H NMR (400MHz, MeOH-d4) δ (ppm): 8.78 (d, J = 1.2 

Hz, 1H), 7.83 (d, J = 7.2 Hz, 2H),7.66 (d, J = 8.0 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 

7.32 (m, 3H), 4.79 ( dd, J1 = 8.4 Hz, J2 = 5.2, 1H), 4.36 (d, J = 6.8 Hz, 2H), 4.22 (t, J = 

6.8 Hz, 1H), 3.32 (m, 3H), 3.12 (dd, J1 = 15.4 Hz, J2 = 8.8, 1H), 2.44 (t, J = 6.8 Hz, 

2H). MS: calc. [M+1]+ = 449.17, found. [M+1]+ = 449.18. 

Synthesis and purification of  Fmoc-ββββAH by C S Bio. Five grams (4 mM) of His-

Cl-Trityl Rx (sub 0.8 mM/g, Lot 2054) in DMF was coupled with 3 eq. of Fmoc-βA 

using DIC/HOBt (3 eq./3 eq.). Coupling time: 3 hrs. After air flow drying, the resin 

was cleaved in a cocktail of TFA/H2O/TIS (95/5/5). Cleavage time: 2 hrs. After 

removal of TFA reagents, water was added to the crude peptide and the mixture was 

lyophilized overnight. Crude peptide was loaded onto RPHPLC column (2 inch) in 

two batches with a flow rate of 25 ml/min in a TFA (0.1%) buffer system, gradient 20-

50% buffer B in 50 min (buffer A, 0.1% TFA in water; buffer B, CAN). Final product 

(1.6 g) was collected and lyophilized with a purity of > 95%. 

Solution and gel formation. βAH was dissolved in Milli-Q water to the desired 

concentration and mixed by gentle stirring. Fmoc-βAH proved to be less soluble than 

βAH in water. Therefore, Fmoc-βAH solutions and gels were dissolved in Milli-Q 
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water by sonication in an ultrasonic bath at 35-40°C for 5-10 minutes. Upon cooling 

to room temperature, samples were allowed to stand for over three hours. Gelation 

was verified by tube inversion.  Binding of Zn2+ by Fmoc-βAH was studied by 

dissolving the peptide in ZnCl2 solutions, following the same method described for 

Fmoc-βAH solutions and gels in water. Metal binding was studied for different molar 

ratios Mr= 
][

][ 2

AHFmoc

ZnCl

β−
= 0.25, 0.5, 1 and 2 ([ ] = molar concentration). All the 

solutions and gels studied in this work had pH ~ 3.  

Pyrene (Pyr) Fluorescence Spectroscopy. Spectra were recorded on a Varian 

Cary Eclipse Fluorescence Spectrometer with samples in 5 mm disposable plastic 

cuvettes. Pyr fluorescence assays were made using a sample containing only Pyr 

(2.0x10-6 wt %), and a set of samples containing (0.02-0.18) wt % Fmoc-βAH 

dissolved in 2.0x10-6 wt % Pyr. All spectra were measured from 366 to 460 nm, using 

λex= 339 nm. 

Circular Dichorism (CD). Spectra were recorded using a Chirascan 

spectropolarimeter (Applied Photophysics, UK). CD was performed using Fmoc-βAH  

or βAH dissolved in water (0.06 wt %) and loaded into cover slip cuvettes (0.1 mm 

thick). Spectra are presented with absorbance A < 2 at any measured point with a 

0.5 nm step, 1 nm bandwidth and 1 second collection time per step at 20 °C.  

Fourier Transform Infra-red (FTIR) spectroscopy. Spectra were measured on a 

Nicolet Nexus spectrometer with DTGS detector. FTIR data was measured for 1 wt 

% peptide solutions in D2O, containing pure Fmoc-βAH, pure βAH or mixtures of 

Fmoc-βAH and ZnCl2 (Mr= 0.25, 0.5, 1 and 2). Samples were sandwiched between 

two CaF2 plate windows (spacer 0.0125 mm) Spectra were scanned 128 times over 

the range of 4000-900 cm-1. Data was corrected by baseline subtraction. 

Raman Spectroscopy in Solution. Raman spectra were recorded on a Thermo 

scientific NXR FT-Raman Module, equipped with a NXR genie detector. Solutions of  
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1 wt % Fmoc-βAH solution in water, or 1 wt % peptide containing ZnCl2 (Mr= 0.25, 

0.5, 1 and 2), were put in cylindrical glass vials, with 5 mm diameter. The laser power 

was set at 1 W.   A spectrum was collected from 400 cm-1 to 4000 cm-1 with 15 cm-1 

interval, taking 2000 averages.  The obtained data was corrected by baseline 

subtraction. 

Thioflavin T Fluorescence (ThT) Spectroscopy. Spectra were recorded at 20 oC 

using a Perkin Elementar Luminescence spectrometer LS50B. A solution containing 

2x10-3 wt% ThT in water was prepared and used as a solvent for Fmoc-βAH or βAH 

solutions (0.01-0.2 wt%). The samples were put in 0.5 cm thick quartz cells, and their 

fluorescence was measured using λex= 440 nm.  

Rheology.  Rheological properties were determined using a controlled stress TA 

Instruments AR-2000 rheometer. The viscosity of the samples was measured 

performing controlled shear rate experiments with a cone-and-plate geometry (cone 

radius= 20 cm; cone angle= 1o). Experiments were conducted on samples containing 

0.004-1 wt % Fmoc-βAH. 

Cryogenic-Transmission Electron Microscopy (Cryo-TEM). Experiments were 

performed at Unilever Research, Colworth (Bedford, UK). Solutions of Fmoc-βAH in 

water (1 wt %), or solutions of Fmoc-βAH (1 wt %) containing ZnCl2 (Mr= 0.25, 0.5, 1 

and 2), were blotted and vitrified using a Gatan Cp3 cryoplunge system. The samples 

were prepared at a controlled temperature of 22 °C and at a relative humidity around 

90%. A 3-µl drop of each solution was placed on a 400-mesh copper TEM grid (Agar) 

covered with a perforated carbon film (plasma treated). The drop was automatically 

blotted and the sample was plunged into liquid ethane (−183 °C) to form a vitrified 

specimen, then transferred to liquid nitrogen (–196°C)  for storage. The specimen was 

examined in a JEOL JEM-2100 electron microscope at 200 kV, at temperatures 

below −175 °C. Images were recorded digitally on a Gatan UltraScan 1000 cooled 
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CCD camera using DigitalMicrograph (Gatan) in the low-dose imaging mode to 

minimize beam exposure and electron-beam radiation damage.  

Transmission Electron Microscopy (TEM). Imaging was performed using a Philips 

CM20 TEM microscope operated at 200 kV. Droplets of a 1 wt % Fmoc-βAH solution 

were placed on Cu grids coated with a carbon film (Agar Scientific, UK), stained with 

uranyl acetate (1 wt %) (Agar Scientific, UK)  and dried. 

Congo Red assay. A drop of a 7 wt % Fmoc-βAH gel was placed onto a glass 

microscope slide, and partially stained using a freshly prepared and filtered 1 wt % 

Congo red solution in water.  The partially stained gel was then placed under a cover 

slip and observed with the microscope through crossed polarizers, using an Olympus 

BX41 polarized microscope.  

X-ray Diffraction (XRD). X-ray diffraction was performed on a stalk prepared by 

suspending a drop of 1 wt % Fmoc-βAH between the ends of wax-coated capillaries, 

and allowing it to dry. The stalks were mounted (vertically) onto the four axis 

goniometer of a RAXIS IV++ x-ray diffractometer (Rigaku) equipped with a rotating 

anode generator. The XRD data was collected using a Saturn 992 CCD camera.  

 

Results and Discussion 

Self assembly of Fmoc-ββββAH in water 

In the following we will describe the self-assembly of Fmoc-βAH in pure 

water. In order to highlight the secondary structure formation in Fmoc-βAH solutions, 

selected results obtained for Fmoc-βAH solutions will be compared with those 

obtained for βAH solutions. 

Addition of the Fmoc unit leads to a substantial increase in hydrophobicity, as 

quantified for example by the octanol-water partition coefficient, which increases from 

log P = -3.7 for βAH to log P =  0.483 for Fmoc-βAH, as computed using web-based 



 10 

software.28 It is therefore possible the Fmoc-βAH in solution possesses a critical 

aggregation concentration (cac) resulting from hydrophobic interactions. 

Pyr fluorescence studies were performed in order to determine the cac for 

Fmoc-βAH in water. This technique is routinely used to determine the critical micellar 

concentration for amphiphiles.29-32 It is based in the analysis of the  fluorescence 

intensity of the 0-0 band at λ ~ 373 nm,  denoted I1, and the fluorescence intensity of 

the ratio I1/I3 (I3: third principal vibronic band at λ~ 383 nm).33  We have used Pyr 

fluorescence in the past to determine the cac for FFFF-PEG3k 34 and βAβAKLVFF-

PEG3k,35 while values of the cac for the β-amyloid peptide were also obtained by 

changes in the fluorescence of Pyr.36   

The inset in Figure 1a shows representative examples of the fluorescence 

emission spectra measured for samples containing 0.02-0.18 wt % Fmoc-βAH and 

2x10-6 wt % Pyr. The emission spectrum of Pyr (λex= 339 nm) is characterized by the 

strong fluorescence of the 0-0 band (λ ~ 373 nm), denoted as I1 
33 (inset Figure 1a). 

Changes in I1 reflect the variations of the lifetime of the excited state of Pyr, which is 

significantly different for different probe surroundings.30 For amphiphilic solutions, a 

substantial increase in I1 upon adding amphiphile to the solution, is due to the 

transfer of the amphiphile to a less polar domain (i.e. micellar core).30 In this way, the 

cac can be pinpointed from the dependence of I1 on the amphiphile concentration. 

The peak at 373 nm weakens significantly and merges into a shoulder on adding Pyr 

to a Fmoc-βAH solution.  Nevertheless, it was possible to use the intensity at 373 nm 

to evaluate Ι1, as a function of Fmoc-βAH concentration, for samples containing 

(0.02-0.18) wt % peptide in Figure 1a. For c> 0.07 wt % Fmoc-βAH, the  Pyr 

absorbance at 373 nm increases substantially upon adding Fmoc-βAH to the 

solution, because the dipeptide is transferred to a less polar domain.30 This 

phenomenon is correlated to the formation of aggregates (fibrils, as shown shortly) 
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and the insertion of the Pyr probe within the hydrophobic cores of the fibrils, for c> 

0.07 wt % Fmoc-βAH.  

The dependence of the ratio I1/I3 with the peptide concentration (Figure 1a) 

provides additional information about the self-assembly mechanism of Fmoc-βAH in 

water. The increase of I1/I3 with peptide concentration (Figure 1a) can be ascribed to 

a progressive decrease in the micropolarity of the environment containing the Pyr 

probe. This process can be understood as the formation of more compact peptide 

structures as the concentration of Fmoc-βAH is increased above the cac. 

Similarly to the results shown in Figure 1a, it has been reported that the ratio 

I1/I3 increases upon addition of surfactant to solutions containing surfactant 

micelles.37 This result was ascribed to the formation of more compact micelles with 

lower micropolarity, for micelles with higher surfactant content. 

Figure 1b shows the solutions of the samples used to measure Ι1 in Figure 

1a. In good agreement with cac ~ 0.07 wt % Fmoc-βAH, the solutions become cloudy 

for c> 0.07 wt %  Fmoc-βAH indicating the formation of large objects (i.e., long fibrils 

as shown shortly) that scatter light in the solution. 

The secondary structure in solution was investigated by CD. Since this 

technique is only suitable for transparent solutions, only samples containing 0.06 wt 

% peptide were investigated. The obtained CD results, together with the 

corresponding absorbance spectra, are shown in Figure 2a and Figure 2b 

respectively. According to the results in Figure 1, the peptides in Figure 2 are not self 

assembled into long range ordered structures. Therefore, the CD spectra in Figure 

2a may be expected to relate to the conformation of isolated molecules, not larger 

scale self assembled structures. 

The CD spectrum for 0.06 wt % βAH is characterized by a strong positive 

band at ~ 214 nm (Figure 2a). This feature is associated to stacking interactions 
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(n�π* transition) of the imidazole ring, in analogy to similar results obtained for short 

peptides containing  aromatic residues.34, 38-42  

Stacking interactions of the aromatic units are still present for 0.06 wt % 

Fmoc-βAH, as it is denoted by the peak at 216 nm. Spectra with peaks in this region 

have been reported for Fmoc-tyrosine derivatives,43-44 and Fmoc-peptides containing  

R, G and D residues.45 However, the CD for 0.06 wt % Fmoc-βAH shows an 

additional peak at 222 nm (Figure 2a). This peak might indicate disruption in the 

packing of H residues for a population of molecules, since the CD spectra for random 

coil Poly-L-H (pH~3) is characterised by a maximum at 222 nm.46-48  

The absorbance spectra corresponding to the CD data in Figure 2a shows no 

features for 0.06 wt % βAH. In contrast, the absorbance for 0.06 wt % Fmoc-βAH 

(Figure 2b) shows a maximum at 204 nm, which might arise from the imidazole 

ring,49 and can be therefore associated to the disordered H residues.  

It can be concluded from Figures 1 and 2 that it is necessary to study 

solutions with concentrations higher than 0.07 wt % to get an insight into the 

secondary structure of the self assembled objects. The secondary structure was then 

further studied by FTIR in the concentration regime c> 0.07 wt %.  

The amide I band of the FTIR spectrum was analyzed for samples containing 

1 wt % βAH or Fmoc-βAH, because it is sensitive to the secondary structure. The 

obtained results are displayed in Figure 3a with the significant peaks listed and 

identified in Table 1. 

The FTIR spectrum for 1 wt % βAH (Figure 3a) is characterized by two strong 

bands50 arising from the random coil or polyproline II-like conformation of βAH in 

solution (Table 1). In contrast, the FTIR spectrum for 1 wt % Fmoc-βAH (Figure 3a) 

suggests the presence of self assembled  β-sheet structure (Table 1).  The spectrum 

also shows a weak shoulder associated to TFA counterions (Table 1), since Fmoc-

βAH was synthesized as a TFA salt. Finally, the peak at 1591 cm-1 shows the 



 13 

existence of NH4
+ ions in the solutions (Table 1). NH4

+ ions are present in the buffer 

during Fmoc-βAH purification and are still left in a small amount after lyophilisation, 

contributing to the peak at 1591 cm-1 in the FTIR spectrum.  

Additional information about the secondary structure of Fmoc-βAH was 

provided by Raman spectroscopy. Figure 3b shows that a 1 wt % solution of Fmoc-

βAH presents several bands which can be easily identified (Table 2). The Raman 

spectrum shows the signature of a β-sheet structure,51 and the imidazole ring in the 

H residue (Table 2).23-24 Other peaks arise from the Fmoc unit,52-53 or the C-O bond in 

the βA residue. Table 2 gives clear evidence of the tautomer II form (Scheme 1). In 

contrast, it is difficult to identify the contribution of the tautomer I, because the band 

at 1293 cm-1 corresponds to both the Fmoc residue52-53  and the imidazole ring in the 

form I23-24 (Table 2). 

Since FTIR and Raman results show the formation of β-sheet structures for 

higher concentrations of Fmoc-βAH, it is interesting to confirm whether this correlates 

to the formation of amyloid fibres. Therefore,  binding of  ThT to Fmoc-βAH was 

subsequently examined, since it is a  dye staining method commonly used as a 

diagnostic for amyloid formation.54-55 The fluorescence of the pure ThT sample, 

excited at λex= 440 nm was characterized by a single broad peak centred at 482 nm 

(results not shown). The intensity of the fluorescence of the ThT peak was not 

affected by adding βAH to the ThT solution. In contrast, the intensity of the 

fluorescence at 482 nm showed a strong dependence on the Fmoc-βAH 

concentration.   

Figure 4 shows the dependence of I/Io on βAH and Fmoc-βAH concentration. 

(I = intensity of the ThT fluorescence peak for samples containing peptide, Io = the 

intensity of the fluorescence peak for a pure ThT solution). As expected, I/Io does not 

depend on the concentration for βAH since that peptide does not fibrillize in solution. 

It is evident from Figure 4 that for Fmoc-βAH enhanced ThT fluorescence is 



 14 

observed, denoting the formation of peptide fibrils for concentrations greater than or 

equal than 0.04 wt % Fmoc-βAH. This result is in good agreement with the cac = 

0.07 wt % Fmoc-βAH determined through Pyr assays in Figure 1.  

It is clear from the Pyr fluorescence experiments that although the samples 

become slightly cloudy for c>0.07 wt%, the Pyr intensity increases with 

concentration. An analogous result was found for Tht fluorescence assays. It is 

evident from these results that the increase in fluorescence intensity arising from the 

binding of Pyr or ThT to fibrils overwhelms any effect associated with the formation of 

large objects (that scatter light) in the solution. 

Results from the ThT fluorescence assays suggest that the number of fibrils 

in solution increases upon increasing the Fmoc-βAH concentration. This effect 

should also change the viscoelastic properties of the samples. The viscosity of the 

Fmoc-βAH samples was investigated by rheology. Figure 5 shows that the viscosity 

of the sample indeed increases steadily within the range (0.004-1) wt % Fmoc-βAH. 

The self assembly of Fmoc-βAH was further studied by cryo-TEM. Figure 6a 

shows a cryo-TEM image obtained for a 1 wt % Fmoc-βAH sample. It contains 

individual fibrils, (15 ± 2) nm thick, some of them twisted around the main fibril axis.  

The self assembly features of the sample in Figure 6a were also investigated 

in a dry film by TEM. Figure 6b shows a negative stain TEM image for a film dried 

from a 1 wt % Fmoc-βAH solution. Figure 6b shows long fibres, (6.9±0.8) nm thick. 

Although some fibrils in Figure 6b seem to be twisted, this cannot be unequivocally 

concluded from the TEM images. It has to be noted that the fibrils measured in the 

dried films (Figure 6b) are thinner than those measured in solution (Figure 6a), 

probably as a result of a dehydration effect. 

TEM has been used in the literature as a tool to propose that Fmoc-

dipeptides56  and Fmoc-tripeptides57 self assemble into nanotubes in aqueous 

solutions. In contrast, the structures revealed by TEM and cryo-TEM in Figure 6 
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correspond to twisted fibrils. According to the FT-IR data (Figure 3a, Table 1) the 

dipeptide motif in Fmoc-βAH is in an antiparallel β-sheet arrangement. Therefore, the 

fibril core might contain the βAH moiety while a fraction of the Fmoc units is exposed 

to the aqueous environment, during Fmoc-βAH self assembly. Although the Fmoc 

unit is highly hydrophobic, the exposure of this unit to water has already been 

suggested when modelling the structure of Fmoc-dipeptide56  and Fmoc-tripeptide57 

nanotubes. 

Further evidence for amyloid formation by Fmoc-βAH was provided by Congo 

red dye labeling experiments. Figure 7 shows the result for a 7 wt % Fmoc-βAH gel, 

partially stained with Congo red and observed through crossed polarizers. The 

sample shows regions of light grey birefringence, corresponding to the pure Fmoc-

gel, coexisting with regions of blue birefringence caused by the Congo red staining 

(Figure 7). The presence of birefringence in the sample without the dye indicates that 

this peptide forms a liquid crystal phase for 7 wt % Fmoc-βAH. 

  X-ray diffraction from a dried stalk was also used to investigate the 

secondary structure of Fmoc-βAH.  Figure 8 contains the 2D XRD pattern obtained 

for a stalk dried from a 1 wt % Fmoc-βAH solution. The inset in Figure 8 corresponds 

to the radial profile of the 2D XRD pattern.  The pattern in Figure 8 presents a “cross 

β” pattern with reflections at 12.4 Å and 4.6 Å, indicating that the β-sheet structure is 

retained upon drying58 and therefore indicates the secondary structure of the fibrils in 

Figure 6b. 

Previous XRD patterns of Fmoc-L3 peptide nanotubes displayed a sharp 

diffraction peak at 3.6 Å, associated to the π−π stacking between Fmoc residues.57 

The XRD pattern in Figure 8 contains a broad diffraction peak at 3.2 Å, which might 

be associated to the π−π stacking between Fmoc residues already deduced from the 

CD data in Figure 2a. The width of the peak at 3.2 Å indicates short range correlation 

of order (π−π stacking). 
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Study of Zn2+ binding by Fmoc-ββββAH in solution 

In the following we will study the formation of Fmoc-βAH/Zn2+ complexes in 

solution. In particular, we will study Zn2+ chelation by self-assembled Fmoc-βAH, 

above the cac. 

Zn2+ chelation by self-assembled Fmoc-βAH was studied for samples 

containing 1 wt % peptide with Mr= 0.25, 0.5, 1 and 2. Samples were first put into 

transparent glass tubes (Figure 9).  Tube inversion and naked eye observation of the 

samples show that samples with Mr= 0.25 and 0.5 flow under tube inversion, but the 

sample with Mr= 1 is a gel which does not flow under tube inversion. The sample 

with Mr= 2 is cloudy and flows under tube inversion.  

Cryo-TEM experiments were performed on samples shown in Figure 9, in 

order to examine the internal structure of the system. Figure 10 shows cryo-TEM 

photographs for 1 wt % Fmoc-βAH samples with Mr= 0.25, 0.5, 1 and 2.  Samples 

with Mr= 0.25, 0.5 and 1 contain twisted fibrils (15±2) nm, (16±2) nm and (14±2) nm 

thick respectively (Figures 10 a-c). The sample with Mr= 2 contains twisted (14±2) 

nm thick fibrils, together with flexible and (48±22) nm thick nanotapes (Figures 10d-

e).  

The Debye screening length DL is the distance over which significant charge 

separation occurs. It can be shown that DL= 1.3 µm for the sample with Mr= 2 (Figure 

10 d-e), and it increases with decreasing [ZnCl2] (Figures 10 a-c). So, DL does not 

seem to be related to fibril dimensions. The ionic strength of the solution would have 

to be much larger to give a nanoscale screening length. This raises the possibility 

that indeed Zn2+ chelation takes place through binding to the imidazole ring of Fmoc-

βAH. It has been reported in the literature that metal chelation by βAH can be 

pinpointed by specific wavelength shifts in FTIR and Raman spectra.24 Therefore, 
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these spectroscopy techniques were used in the following to study the formation of 

Fmoc-βAH/Zn2+ complexes. 

The secondary structure of the samples was further studied by FTIR. The 

results obtained are shown in Figure 11a. Similarly to the FTIR results for the peptide 

in pure water (Figure 3a), the data for Mr= 0.25, 0.5, 1 and 2 samples (Figure 11a) is 

characterized by bands associated to the β-sheet and  TFA and  NH4
+ ions (Table 1).  

A weak shoulder at 1622 cm-1 for the Mr= 0.25 sample, related to the 

tautomer II form,24 smoothly turns into a well defined FT-IR band for the Mr= 2 

sample (Figure 11a). Scheme 1 shows that metal coordination can affect the 

tautomeric equilibrium. Therefore, the progressive  growth in tautomer II  population  

(associated to the growth of the 1622 cm-1 band in Figure 11a) is a consequence of 

Zn2+ binding preferentially to Nτ, resulting in a decrease in the tautomer I population. 

Figure 11b shows the Raman spectra obtained for samples with Mr= 0.25-2 

(1 wt% Fmoc-βAH). Raman spectra containing ZnCl2  show similar features to those 

in Figure 3b, such that Zn2+ chelation can be understood through changes in the 

Raman band positions, as a function of the ZnCl2 content of the sample. 

Unfortunately, due to the overlap of the band corresponding to the tautomer I 

form and the Fmoc moiety at 1293 cm-1 (Figure 11b, Table 2), it is difficult to evaluate 

from the Raman results whether Zn2+ chelation takes place through Nπ or Nτ binding. 

Nevertheless, it is evident from small shifts in the bands associated to the H ring 

(Figure 11b, Table 2), that the imidazole ring is involved in metal coordination. The 

dramatic decrease in intensity observed for the Raman bands at 1445 and 1293  cm-1 

for Mr= 2 (Figure 11b) also suggests the involvement of the imidazole ring in Zn2+ 

chelation. 

Chelation in the tautomer II configuration is revealed by the shifts in the band 

centred at 953 cm-1 (Figure 11b, Table 2). In addition, a new band appears at 1614 

cm-1 for Mr= 2 (Figure 11b, Table 2), indicating chelation in the tautomer II form, in 
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comparison to the Raman spectra of metal-histidine complexes for which the νC4=C5 

band at ~1600 cm-1 indicates a Nτ binding to the metal ion.59  

 

Conclusions 

In this work we studied the self assembly of Fmoc-βAH in aqueous media and 

the metal chelation of this peptide in ZnCl2 solutions. We show that attachment of 

Fmoc leads to a fibrillar structure based on antiparallel β-sheets of bioactive 

carnosine moieties. 

 Pyr and ThT fluorescence experiments were used to determine a cac for 

Fmoc-βAH in water. Incorporation of the bulky aromatic Fmoc substituent leads to 

molecular amphiphilicity. In addition, aromatic π-stacking interactions contribute to 

drive self-assembly in fibrils.  Cryo-TEM and TEM show that Fmoc-βAH forms twisted 

amyloid fibrils above the cac. FTIR and Raman spectroscopy confirmed that Fmoc-

βAH fibrils contain β-sheets. The structure of the peptide fibrils in solution remains 

stable upon drying the aqueous sample, as confirmed by XRD and TEM results.  

Fmoc-βAH/Zn2+ chelation in ZnCl2 solutions is studied for concentrations 

above the cac. Hydrogelation is induced by addition of an appropriate concentration 

of Zn2+ ions. Cryo-TEM shows that addition of ZnCl2 leads to a transition from twisted 

fibrils into wide nanotapes. Changes in the self-assembly motif might be controlled 

not only by electrostatic interactions, but also by Zn2+ chelation. Indeed, the 

estimation of the Debye length suggests that Zn2+ ions might be binding to Fmoc-

βAH. This prediction is confirmed by FTIR and Raman data, which show sensitive 

changes in the spectra associated to Zn2+ chelation. 

Modifying βAH by incorporation of a terminal Fmoc unit may improve the 

efficiency of carnosine in applications in biotechnology, since Fmoc-βAH can form 

fibres while still chelating metal ions. In addition, hydrogelation can be induced (at 

sufficiently high concentration of Zn2+ ions) presumably due to formation of a fibrillar 
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network. Hydrogelation may be a simple and useful detection or drug delivery 

system. Following these observations, incorporation of a terminal Fmoc unit in 

designed peptides might find other applications in diagnostic or delivery systems for 

healthcare. 
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Scheme 1  - Chemical structure of Fmoc-βAH together with the tautomer I and 

tautomer II configurations of the imidazole ring 
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Table 1 : Wavenumbers (cm-1) and assignments of the FTIR bands of βAH, and  

Fmoc-βAH. 

1 wt% βAH 1 wt% Fmoc-βAH Assignments 

1638 cm-1  amide carbonyl (C=O) 

absorption60-61   

1594 cm-1  NH3
+ group60-61   

 1684 cm-1 antiparallel β-sheet51, 62-64 

 1670 cm-1 TFA counterions65-66 

 1636 cm-1 antiparallel β-sheet51, 62-64 

 1591 cm-1 NH4
+ ions 
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Table 2 : Wavenumbers (cm-1) and assignments of main Raman bands of Fmoc-βAH 

and Fmoc-βAH/Zn2+ complexes. 

Assignment 1 wt% 

Fmoc-βAH 

1 wt% 

Fmoc-βAH 

Mr= 0.25 

1 wt% 

Fmoc-βAH 

Mr= 0.5 

1 wt% 

Fmoc-βAH  

Mr= 1 

1 wt% 

Fmoc-βAH  

Mr= 2 

β-sheet51 1627 1627 1627 1627 1661 

νC4=C5*
24 ---- ---- ---- ---- 1614 

Fmoc52 1475 1477 1477 ---- 1488 

δN-H*,δCH2 
24 1445 1445 1445 1445 1435 

νC-N + ring breathing* 24 1343 1355 ---- 1343 1355 

Fmoc 52-53+ tautomer I + ring 

breathing* 23 

1293 1293 1293 1293 1293 

νNCN + δN-H* 24 1216 1233 1233 1226 1216 

C-O bond in the βA residue 1127 1127 1127 1127 ---- 

δC-H*24  1063 ---- 1063 1071 1083 

Fmoc52 1024 1032 1031 1031 1031 

tautomer II+ δC-H* 23 953 953 953 944 987 

Assignments: ν, stretching; δ, in-plane deformation; *, imidazole ring vibration 
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                                                                      (b) 

 

 

 

Figure 1 . (a) Dependence of Pyr fluorescence intensities  I1  and I1/I3 as a function of 

the concentration. (b) Fmoc-βAH solutions used to measure the data in (a), 

containing 2x10-6 wt % Pyr and 0.02-0.18 wt % Fmoc-βAH (as indicated in the figure) 
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Figure 2.  (a) CD and (b) absorbance data obtained for 0.06 wt % Fmoc-βAH and 

βAH. 
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Figure 3.  (a) FTIR data obtained for Fmoc-βAH and βAH solutions. The data has 

been shifted in order to enable visualization. (b) Raman  data obtained for a Fmoc-

βAH solution 
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Figure 4.  Intensity ratio of ThT fluorescence for samples containing Fmoc-βAH and 

βAH (I) normalized by the intensity of the pure  ThT solution (Io),  plotted as a 

function of the peptide concentration 
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Figure 5.  Viscosity at a shear rate= 9s-1 measured for Fmoc-βAH, as a function of 

the concentration 
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Figure 6.   Images of 1 wt % Fmoc-βAH sample from (a) Cryo-TEM and (b) HR-TEM.  
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Figure 7.  Optical micrograph of a sample stained with Congo red (7 wt % Fmoc-

βAH). 
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Figure 8.  XRD 2D pattern obtained for a stalk dried from a 1 wt % Fmoc-βAH 

solution. The inset shows the radial average of the 2D-profile. 
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Figure 9 . Glass vials containing 1 wt % Fmoc-βAH in ZnCl2 solutions with Mr= 0.5, 1 

and 2. 
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Figure 10 . Cryo-TEM results for 1 wt % Fmoc-βAH in ZnCl2 solutions with Mr= (a) 

0.25, (b) 0.5, (c) 1 and (d-e) 2. 
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Figure 11.  (a) FTIR and (b) Raman results for 1 wt % Fmoc-βAH solutions containing 

ZnCl2 (Mr= 0.25, 0.5, 1 and 2). The data has been shifted in order to enable 

visualization. The broken lines indicate the position of the FTIR and Raman bands 

measured for 1 wt % Fmoc-βAH (Figure 3, Tables 1-2). 
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Addition of ZnCl2 to solutions containing Fmoc-βAH fibres induces the co-existence 

of highly twisted fibres with wide flexible tapes.  

 
 


