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Abstract. We use microwave retrievals of upper tropospheric humidity

(UTH) to estimate the impact of clear-sky-only sampling by infrared instru-

ments on the distribution, variability and trends in UTH. Our method iso-

lates the impact of the clear-sky-only sampling, without convolving errors

from other sources. On daily time scales IR-sampled UTH contains large data

gaps in convectively active areas, with only about 20-30% of the tropics (30◦S–

30◦N) being sampled. This results in a dry bias of about −9%RH in the area-

weighted tropical daily UTH time series. On monthly scales, maximum clear-

sky bias (CSB) is up to −30%RH over convectively active areas. The mag-

nitude of CSB shows significant correlations with UTH itself (-0.5) and also

with the variability in UTH (-0.6). We also show that IR-sampled UTH time

series have higher interannual variability and smaller trends compared to mi-

crowave sampling. We argue that a significant part of the smaller trend re-

sults from the contrasting influence of diurnal drift in the satellite measure-

ments on the wet and dry regions of the tropics.

D R A F T April 13, 2011, 10:49am D R A F T



JOHN ET AL.: BIASES IN IR-SAMPLED UTH X - 3

1. Introduction

Water vapour in the upper troposphere is important for radiative and hydrological feed-

backs in the climate system [e.g., Held and Soden, 2000]. Measurements of 6.7µm channel

(Channel 12) radiance from the High Resolution Infrared Radiation Sounder (HIRS) in-

strument on National Oceanic and Atmospheric Administration (NOAA) polar orbiting

satellites have provided a vital infrared (IR) record of upper tropospheric humidity (UTH,

defined as the relative humidity in the upper troposphere weighted by the Jacobian of

Channel 12) since 1979 [e.g., Soden and Bretherton, 1996]. HIRS UTH data have been

used for a variety of purposes such as evaluating the humidity distribution [e.g., Soden

and Bretherton, 1996], comparing with in situ measurements [Soden and Lanzante, 1996],

studying the variability [Bates et al., 1996, 2001; McCarthy and Toumi , 2004], evaluating

climate models [Bates and Jackson, 1997; Allan et al., 2003; Soden et al., 2005], and for

estimating trends [Bates and Jackson, 2001; Soden et al., 2005]. These studies have used

various versions of the clear-sky HIRS data set developed by the NOAA’s National Cli-

mate Data Center (NOAA/NCDC). Since clouds are not transparent to IR radiation and

the tropics contain extensive coverage of upper level clouds [e.g., Sassen et al., 2008], IR

UTH retrievals require careful screening of cloud.

Cloud contamination of IR measurements can introduce a positive UTH bias [Soden

and Lanzante, 1996]. However, more important is a dry bias or clear-sky bias (CSB)

introduced by the preferential sampling of drier, lower UTH cloud-free scenes by the

IR measurements [Lanzante and Gahrs , 2000]. This poses a challenge in comparing IR

UTH data sets with consistently sampled clear-sky UTH simulated by climate models
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[Cess and Potter , 1987; Allan et al., 2003]. From a climate model, clear-sky diagnostics

are calculated at any required time step by setting cloud fraction to zero in a radiative

transfer model. However, IR satellite measurements of clear-sky radiances are not possible

when there is a cloud at or above the dominant emitting layers of the atmosphere in the

field of view of the satellite instrument. This issue was also raised in Buehler et al. [2008]

when comparing IR UTH with other humidity data sets and is a general problem in the

estimates of clear-sky fields from satellite infrared and visible measurements [Erlick and

Ramaswamy , 2003; Allan et al., 2003; Allan and Ringer , 2003; Sohn et al., 2006; Sohn

and Bennartz , 2008]. Lanzante and Gahrs [2000] reported a modest (a few percent of

RH) CSB in satellite IR measurements although the analysis remains inconclusive due

to limitations [e.g., Soden and Lanzante, 1996; Moradi et al., 2010] of the radiosonde

observations.

Recently, Sohn et al. [2006] also estimated the dry bias in IR clear-sky UTH estimates

using upper tropospheric water vapour (UTW, in kgm−2) retrieved from the Special

Sensor Microwave/Temperature-2 (SSM/T-2), seasonal mean atmospheric temperature

and water vapour profiles from the NCEP [Kalnay et al., 1996] reanalysis, and cloud

information from the International Satellite Cloud Climatology Project (ISCCP) data

set. Through this indirect method, they estimated the dry bias to be 20–30%RH in

highly convective areas, a significantly higher value than the estimate of Lanzante and

Gahrs [2000]. However, errors in UTW, ISCCP cloud products, and NCEP profiles are

likely to have affected these results.

The aim of the present study is to isolate only the impact of clear-sky-only sampling

and to avoid errors from other factors and data sets. Another motivation of this study is
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to explore the impacts of clear-sky-only sampling on the variability and trend of a UTH

data set. Lanzante and Gahrs [2000] speculated IR satellite data may underestimate UTH

trend in the tropics by a factor of 0.15. Allan et al. [2003] used climate model simula-

tions to suggest that clear-sky sampling did not affect interannual variability significantly.

However, so far in the literature, discussions on the impacts of clear-sky-only sampling

are generally limited to the distribution of humidity.

To illustrate the potential influence of clear-sky sampling on trends and variability, we

show time series of 400 hPa relative humidity (RH) anomalies, area-weighted over the

tropical (30S-30N) all and clear areas, in the upper panel of Figure 1, using 20 years

(1989-2008) of daily humidity and cloud cover data from the ERA-Interim reanalysis

[Simmons et al., 2007]. Clear areas are identified here by grid boxes with less than 30%

cloud cover. It is evident that the interannual variability and trend of the clear areas are

significantly different from those for the whole tropics. This suggests that caution should

be taken when analysing the IR UTH data, which samples only clear areas, to find out

variability and trends in UTH and provides a further motivation for assessing the effect

of clear-sky-only sampling on satellite IR UTH datasets.

Since late 1998, microwave (MW) instruments such as the Advanced Microwave Sound-

ing Unit-B (AMSU-B) and the Microwave Humidity Sounder (MHS) have been flown

together with HIRS. The instruments have similar spatial sampling characteristics (cross-

track scanning, with very similar viewing geometries) and the weighting function of one

of the microwave channels (183.31±1.00GHz) is similar to that of HIRS Channel 12,

thus allowing for coincident UTH measurements. Microwave data are only contaminated

by precipitating cold clouds: less than 5% of the data are discarded as cloud contami-

D R A F T April 13, 2011, 10:49am D R A F T



X - 6 JOHN ET AL.: BIASES IN IR-SAMPLED UTH

nated, thus they provide an almost all-sky UTH dataset [e.g., Brogniez and Pierrehumbert ,

2007]. The present study therefore provides a unique opportunity to estimate the impacts

of clear-sky-only sampling in the IR UTH using MW UTH.

This article is organised as follows: Section 2 contains description of data sets used and

analysis method, Section 3 discusses the results and Section 4 provides the summary and

discussion.

2. Data and Method

2.1. Study approach

Buehler et al. [2008] estimated the impact of cloud-filtering on UTH from microwave

measurements on monthly time scales to be less than 5%RH in the tropics (see their Fig-

ure 4). They calculated the difference between UTH from using all pixels and UTH from

only clear pixels. Note that “clear” for microwave is different from “clear” for infrared.

UTH data calculated without cloud filtering have some values more than 100%RH with

respect to water due to cloud contamination. Therefore, estimates of Buehler et al. [2008]

can be considered as the upper limit of the sampling bias in microwave UTH data and

the true bias will be less than their estimate. Thus, the microwave estimate of UTH can

be used to estimate the CSB in IR data, although CSB can be a few %RH higher where

precipitating cold clouds are present.

The basic idea of our study is to select those microwave scenes which would be considered

cloud-free by HIRS, and compare this sub-sample to the cloud-cleared (as described in

Section 2.5) AMSU-B/MHS data. In this way we can isolate the effect of the HIRS clear-

sky only sampling, while at the same time ignoring any other differences between the two

sensor types (such as slightly different weighting functions of HIRS and AMSU-B/MHS,
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calibration errors, or RT model errors). Note that the HIRS data are only used to define

sampling, the HIRS UTH data themselves are not used anywhere in this study.

We focus our study in the tropics (30◦S–30◦N) as it is the most important area of the

globe for water vapour feedback [Held and Soden, 2000].

2.2. HIRS clear-sky brightness temperature

We used clear-sky HIRS data from http://www.ncdc.noaa.gov/HObS [Shi and Bates ,

2011] to identify pixels which were cloud-free according to the NCDC HIRS cloud clear-

ance algorithm which is similar to Rossow and Garder [1993] and is as follows. Observed

window channel brightness temperatures at 11.1µm are compared spatially and tempo-

rally to an estimated clear-sky value and rejected as cloudy if the observation is too cold.

For obtaining clear-sky observations, the thresholds are chosen to remove all clouds at

the expense of removing some clear-sky pixels. It should be noted that most of the cli-

mate analyses of UTH have been conducted using the NCDC HIRS data set (e.g., studies

mentioned in Section 1). In this study we use “infrared (IR)” to denote the NCDC HIRS

data.

2.3. Microwave brightness temperature

We obtained brightness temperatures from the Microwave Humidity Sensor (MHS,

equivalent to AMSU-B) on the MetOpA satellite for 2008 and mapped them on to the

HIRS resolution (Level 1d) using the ATOVS and AVHRR Processing Package [AAPP;

Atkinson and Whyte, 2003]. The spatial resolution of the MHS measurements is about

16 km at nadir and for the HIRS/4 instrument is 10 km at nadir. Mapping the MHS to
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HIRS grid eliminates biases which could originate from different spatial resolutions of the

instruments.

2.4. UTH estimation from microwave data

UTH can be estimated using the 183.31±1.00GHz microwave channel measuements of

MHS (Channel 3). The weighting function of this channel is generally sensitive to the rel-

ative humidity of a wide atmospheric layer, approximately between 500 and 200 hPa. The

weighting function can move up or down according to variations in total humidity content

of the atmosphere which is not very large for a tropical atmosphere (see Buehler and John

[2005] and Buehler et al. [2008] for a detailed discussion). According to Buehler and John

[2005], there is a simple transformation of the brightness temperature of 183.31±1.00GHz

channel (TB3) to UTH as shown in the following equation:

ln(UTH) = a+ b ∗ TB3 (1)

where UTH is the relative humidity in the upper troposphere weighted with the channel’s

weighting function, and a and b are regression coefficients which are derived for each

viewing angle of the instrument. More details on the retrieval methodology can be found

in Buehler and John [2005]. UTH data are not affected by the limb effect because we use

appropriate regression coefficients for each viewing angle [John et al., 2006]. The data

set has been validated using high-quality radiosonde and satellite measurements [Buehler

et al., 2004; John and Buehler , 2005; Buehler et al., 2008; Milz et al., 2009; Moradi et al.,

2010]. Ideally, a comparison of these data to other (either observed or modelled) humidity

data sets should be done by simulating the 183.31±1.00GHz radiances from the latter
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humidity data and then converting them to UTH as described above for a like-to-like

comparison.

2.5. Filtering cloud-contaminated microwave scenes

Microwave radiances are affected by precipitating ice clouds so all the microwave radi-

ances used in this study are filtered for clouds using a method developed by [Buehler et al.,

2007] which works as follows. Firstly, Channel 3 of MHS is sensitive to higher altitudes of

the troposphere than Channel 4 (183.31±3.00GHz). In clear-sky conditions, because of

the lapse rate of air temperature, the brightness temperature of Channel 3 (TB3) is colder

than the brightness temperature of Channel 4 (TB4). But ice clouds can make TB4 colder

than TB3 because ice particle scattering is stronger at the sensitive altitudes of Channel 4,

owing to the higher average ice water content. When the cloud is very high and opaque,

it can be considered like a low emissivity surface for both channels. TB3 is then warmer,

because of the higher water vapour emission for this channel above this quasi-surface,

which will increase both up- and down-welling radiation for this channel. Therefore, in

the presence of an ice cloud ∆TB = TB4 − TB3, which is positive in clear-sky conditions,

becomes negative. Secondly, clouds also reduce the value of TB3 directly, so that a viewing

angle dependent threshold Tthr(θ) was utilized. In summary, the conditions for uncon-

taminated data are ∆TB > 0 and TB3 > Tthr(θ). Data not fulfilling both conditions are

considered cloud and/or rain contaminated. Values of Tthr for each viewing angle are

given in Buehler et al. [2007]. The fraction of data detected as cloudy in the tropics varies

from 3–5% depending on the sampling time of satellite. In this study the base data set

used is the cloud-filtered AMSU-B/MHS data, i.e., cloud contaminated microwave scenes

are discarded before analysing the data.
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3. Results and discussion

3.1. Impact on UTH distribution

In this section we discuss the impact of the clear-sky sampling of HIRS on the distribu-

tion of daily and monthly average UTH. Also, the dependence of the clear-sky bias (CSB)

on the UTH is discussed. We iterate that the IR data are only used for sampling, the IR

UTH data themselves are not used anywhere in this study. All of the UTH data in this

study are retrieved from MW radiances. IR UTH refers to the UTH data which is created

from MW UTH data by mimicking the HIRS instrument’s clear-sky-only sampling.

3.1.1. Daily data

We created gridded (1◦x1◦ longitude-latitude) data sets of MW UTH for both

microwave-coverage and infrared-coverage sampling for each day of 2008. Examples of

daily maps for January (upper panels) and July (lower panels) are shown in Figure 2.

The left panels in Figure 2 show the microwave sampling and the right panels show in-

frared sampling. Microwave sampling is nearly uniform in the whole tropics, with only

small data gaps which are mainly due to orbital gaps around 20◦N and 20◦S, and the pres-

ence of deep convective or precipitating clouds. By contrast, infrared-coverage sampling

in the right panels shows large gaps. In fact, the IR sampling is good only in the dry de-

scending regions where the humidity is considerably lower than in the humid areas. Note

also the intermittent presence of high UTH values in convective regions in IR sampling.

Studies, such as Xavier et al. [2010] which investigated the variability of UTH associated

with the Indian summer monsoon using microwave data require daily UTH data. Such a

study would have been impossible using infrared data because of persistent cloud cover
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over the monsoon region, but there is good coverage in microwave sampling over the

Indian region in July.

The upper panel of Figure 3 shows the fraction of tropical sampling of infrared data

for all available days in 2008. The sampling fraction is about 20%, i.e., 80% of the data

are rejected as cloud contaminated. There are also some days with the fraction as low

as 12%. It is noteworthy that there is no clear seasonal dependence in tropical average

sampling fraction.

Area-weighted, tropical averaged UTH time series for microwave-coverage and infrared-

coverage sampling are shown in the bottom panel of Figure 3. It shows that infrared-

coverage tropical average UTH is always about 7%RH lower than the microwave-coverage

UTH. The yearly mean value of MW UTH is 31.2%RH and for IR UTH it is 24.74%RH.

The mean of the difference (IR-MW, not shown) time series is −7.18±0.69%RH. The

infrared-coverage time series is noisier than the microwave-coverage one owing to limited

sampling (the standard deviation of IR time series is 1.24%RH and that of MW time

series is 1.05%RH). It is not clear how this will translate to variability on inter-annual

and longer time scales. Changes in cloud detection algorithms can also introduce spurious

changes in bias or variability. For example, cloud detection is mostly done on the basis of

brightness temperature thresholds, so changes in brightness temperature of channels, due

to instrument degradation etc., can impact the magnitude of clear sky bias. Though we

can see a seasonal dependence in CSB for some regions when sampled in infrared-coverage,

this does not lead to seasonal biases in the tropical averaged, infrared-coverage UTH time

series.

D R A F T April 13, 2011, 10:49am D R A F T



X - 12 JOHN ET AL.: BIASES IN IR-SAMPLED UTH

According to Buehler and John [2005] the retrieval bias of microwave UTH varies be-

tween +2%RH for low humidity values and -4%RH for high humidity values. This be-

haviour is typical of a linear regression method, in which the dry profiles are retrieved

too moist and the moist profiles too dry. This occurs because components of the retrieval

come from the prior information used and, in a linear regression scheme, the a priori

profile is the mean of the data set used to compute the regression coefficients, and the a

priori error covariance is the covariance of the same data set [Eyre, 1987]. This means

dry regions have a moist bias and wet regions have a dry bias, therefore the difference

between them is smaller than that in reality. From Buehler and John [2005] (see their

Figure 5), IR-sampled UTH values in dry regions have about 2%RH moist bias, but this

would not contribute to the difference in Figure 3, because the IR sampled UTH are also

sampled by MW. However, high UTH values in the wet regions which are sampled only

by MW have on average about −2%RH dry bias (although the maximum could be up to

−4%RH) and this has to be considered while estimating the clear-sky bias. This means

that in Figure 3 the difference will be about 9%RH instead of the 7%RH depicted.

3.1.2. Monthly data

In general, monthly means of UTH are used for data analysis as well as for model

evaluation [e.g., Bates et al., 1996, 2001; McCarthy and Toumi , 2004; Bates and Jackson,

1997; Soden et al., 2005], so we attempt to estimate the CSB based on monthly mean

UTH values. This is one of the main differences compared to previous studies which

could estimate CSB only on seasonal [Sohn et al., 2006] or longer time scales [Lanzante

and Gahrs , 2000]. Figure 4 shows January and July monthly maps of microwave-coverage

and infrared-coverage UTH. Monthly averages are obtained by collecting all the pixels
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available per grid box during the whole month and then computing the mean. One could

also construct the monthly mean by first computing daily means and then averaging

them. In the former method, a few clear days having many pixels (probably drier UTH)

can outweigh a large number of humid days with few pixels. However, we found that the

difference between the two averaging methods is only a few %RH and has noisy spatial

patterns.

UTH values are high along the inter tropical convergence zone (ITCZ) and over mon-

soon regions and low over the subsidence areas of the Hadley/Walker circulations. The

distinction between humid and dry regions is better observed in the microwave-coverage

compared to infrared-coverage. Seasonal migration of UTH patterns associated with the

movements of ITCZ is also better represented in the microwave-coverage data.

The distributions are similar but with smaller UTH values in ascending areas for

infrared-coverage, as expected (Figure 6, which will be discussed later, shows the dif-

ferences directly). In some of the persistent convective regions, e.g., some areas in the

Bay of Bengal during July, there is no infrared sampling for the whole month. Figure 5

shows the distribution of the number of pixels in each grid box for MW and IR-sampling.

MW-sampling shows a nearly uniform distribution of pixels with a range of 200–400 pix-

els per grid point. The convective regions show fewer pixels, but still have more than

sufficient pixels (>200) to represent the distribution of monthly means. In IR sampling,

convective and clear areas show a very large difference in the numbers of pixels with clear

areas having 300 pixels and convective regions less than 40 pixels per grid point. There

are also about 1% of grid points with no IR sampling for a whole month.
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The spatial distribution of CSB in infrared-coverage UTH is shown in Figure 6 for

January and July. It is calculated as infrared-coverage minus microwave-coverage UTH.

In regions of precipitating and deep convective clouds, microwave data also will have a

small dry bias which according to Buehler et al. [2007] is about 2–3%RH. However, this

is negligible compared to the CSB in convective regions which is up to −30%RH. CSB is

larger than −20%RH at 1.3% and 0.4% of grid points for January and July, respectively.

The maximum bias for both months is −32%RH. As noted previously there are grid points

with no IR data at all for a whole month. Maximum CSB, % of grid points with missing

data and CSB more than −20%RH for all months are given in Table 1. Maximum CSB

values are in the range of 30–36%RH. There are 0.8 to 3.3% of grid boxes (ie., about 200

to 700 grid points out of 21600 grid points in the tropics) with no IR sampling for the

entire month and 70–330 grid boxes with CSB larger than −20%RH.

The main difference of these results compared to Lanzante and Gahrs [2000] is that

we get coherent patterns of CSB by just using one month of data and without using

robust statistical parameters. This is because statistical noise is reduced by the larger

sample and by avoidance of no error contributions from spatio-temporal mis-matches and

measurement methodology diferences in our comparison method. Another difference is

the magnitude of CSB: they estimated the bias to be 5–10%RH whereas our results show

at least twice this magnitude in convective regions.

We have also analysed the entire ±60 latitude range and the results show CSB similar

to the tropics over the storm tracks in the mid latitudes. An example for this is shown

in Figure 7. The NCDC HIRS data are cloud cleared not only for high clouds, but also

for all types of clouds including low level clouds which do not contaminate Channel 12

D R A F T April 13, 2011, 10:49am D R A F T



JOHN ET AL.: BIASES IN IR-SAMPLED UTH X - 15

measurements. Therefore the clear-sky bias is not only confined to the convectively active

regions but also to low/mid level cloud regions (e.g., Eastern Pacific, north of maritime

continent during January).

3.2. Dependence of CSB on UTH and its variability

We have seen in previous sections that the magnitude of CSB is associated with the

presence of convection. Also, convection is the main source of humidity in the tropical

upper troposphere [Soden, 2004]. To explore the relation between CSB and UTH, we did a

correlation analysis using all grid point values for January and July monthly averages and

the results are shown in the upper panels of Figure 8 (scatter density plots on which the

contours show the fraction of data points outside the contour). In general, the magnitude

of CSB increases with increasing UTH. The correlation is −0.48 for January and −0.52

for July. The slope of the linear fit is −0.241±0.003%RH per %RH for January and

−0.182±0.002%RH per %RH for July.

However, there are grid points with high humidity but small CSB. This could be due

advection of humidity to clear areas. For example, Xavier et al. [2010] reported that,

though convection mainly happens in the Bay of Bengal during the active phases of the

Indian monsoon, there are high values of UTH over cloud free areas of the Arabian sea ,

because the strong easterly jet advects humidity from over the Bay of Bengal. In this case

over the Arabian sea CSB will be small even if high UTH values are present. Therefore

the high noise in the correlation analysis for higher humidity values is expected.

Figure 9 shows the standard deviation of UTH values at each grid point for MW and

IR-sampling. A very noticeable feature is the lower grid point variability in IR-sampled

UTH on monthly scales. It is expected that the variability of humidity will be high in
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locations with medium UTH, for example, near the boundaries of dry and humid regions

due to changing dynamical regimes on intra-seasonal time scales [Xavier et al., 2010].

Also, the minimum variability is expected to be at grid points with persistently either

low or high UTH on monthly to seasonal time scales. Note that clear-sky-only sampling

reduces variance in medium UTH areas by preferentially removing high UTH values. But

in convective areas clear-sky only sampling may increase variance by removing most of

the samples, leaving only a few high values and few low values (instead of many high

values and a few low values and thus low variance).

The lower panels of Figure 8 illustrate a very good correlation between the clear-sky

bias and the grid point standard deviation of MW-sampled UTH for January and July.

The correlation is −0.6 for both months. Small variability in UTH will generally produce

small CSB since all values, clear and cloudy, will have similar UTH. This may not apply

where there is persistent cloud cover and high UTH but a few clear events with low UTH,

however. Larger variability in UTH gives the potential for large CSB providing that there

is a correlation between UTH and mid to upper level cloudiness.

3.3. Impact on inter-annual variability and trend

Lanzante and Gahrs [2000] used the association between the UTH and the CSB to infer

the temporal variability in the CSB. They speculated that the IR UTH in the tropics

will underestimate the magnitude of either a positive or a negative trend, because if UTH

increases in the tropics, it will lead to more cloudy days which results in CSB increasing

with time. Conversely, if UTH decreases in the tropics, it will lead to fewer cloudy days

which results in CSB deceasing with time. They estimated that the underestimation is

by a factor of 0.15.
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In Section 1 we discussed this issue using ERA-Interim 400 hPa relative humidity and

cloud cover data. It was shown that inter-annual variability and trend are significantly

different for the clear and whole tropics (see Figure 1). UTH for clear areas shows a

larger decreasing trend (−1.50±0.10%RH per decade) compared to the entire tropics

(−1.08±0.10%RH per decade) which is at odds with the speculations of Lanzante and

Gahrs [2000]. The bottom panel of Figure 1 shows the clear fraction of the tropics which

indicate a small, but statistically significant decrease (−0.5±0.13% per decade) in the

area of clear regions in tropics in the ERA-Interim reanalysis.

Though the microwave data are available only for about 10 years, we make an attempt

to see how clear-sky-only sampling affects variability and trend in the actual UTH time

series using data from AMSU-B on-board NOAA-15. The data are available since 1999.

The HIRS instrument on NOAA-15 is HIRS/3 whose pixels have a spatial resolution of

18.9 km at nadir which is similar to the AMSU-B (16 km). To find the AMSU-B pixel

closest to a HIRS clear-sky pixel, we have used the collocation method described in Holl

et al. [2010]. Firstly, for each HIRS clear-sky pixel, we collected all AMSU-B pixels with a

centrepoint of at most 30 km from the HIRS centrepoint. Then we select only the closest

AMSU-B pixel thus found. In this way, we get a one-to-one mapping between HIRS

clear-sky and AMSU-B, where the distances between the centrepoints are mostly between

0 and 15 km, with some cases of distances between 15 and 30 km (corresponding to HIRS

pixels outermost on the scan line where the pixel size increases to almost three times the

nadir value). The time difference between the measurements is always negligibly small.

Figure 10 shows the area-weighted, tropical, daily, UTH anomaly time series. The

standard deviations of IR- and MW-sampled time series are 1.05%RH and 0.85%RH,
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respectively. This excess noise of for IR-sampling is comparable to that of the IR time

series in Figure 3. The linear trends in the IR and MW-sampled time series are−0.67±0.22

and −1.10±0.17%RH per decade, respectively which means a smaller trend in clear-

sky-only sampling. This is at odds with the ERA Interim results shown in Figure 1,

but appears consistent with the speculation of Lanzante and Gahrs [2000]. The error

estimate of the linear trend was calculated by taking into account the autocorrelation

of the time series as described in Santer et al. [2000]. We also calculated the trend

in the difference time series (IR-sampling minus MW-sampling) which is is statistically

significant at 0.43±0.14%RH per decade.

It is plausible that the difference in the IR and MW trend does not fully relate to a real

difference in UTH trends between the wet and dry regions as proposed by Lanzante and

Gahrs [2000]. A likely explanation for the trend difference in this case is that satellite

orbit drift causes aliasing of the diurnal cycle of UTH to preferentially affect the moist

regions of the tropics. The orbit of NOAA-15 has drifted about 3 hours since 1998. The

equator crossing time of NOAA-15 was 7:30AM/PM in 1998 and is 4:30 AM/PM in 2010.

This drift causes observed UTH to decrease for the ascending node (PM) and increase at

a slower rate for the descending (AM) node according to Chung et al. [2007]. However,

note that the diurnal cycle estimated by Chung et al. [2007] was only for METEOSAT-8

domain using IR UTH data and this may not be representative for the whole tropics.

Separate analysis of NOAA-15 UTH data for ascending and descending nodes revealed a

small decreasing trend for the descending node and a much larger decreasing trend for the

ascending node (not shown). This suggests the diurnal cycle from orbit drift is affecting

the overall trend although decreasing trends for both nodes may indicate other factors
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such as instrument degradation contributing to the overall trend. The aliasing will have

been greater in the MW-sampling time series because it better samples the moist regions

of the tropics where the diurnal cycle of UTH is greater. Correcting for aliasing of the

diurnal cycle is a major task which we are pursuing.

It is not clear why the trend result is opposite for reanalysis, although the latter is

not generally good at reproducing observed trends in the hydrological cycle [Bengtsson

et al., 2004; John et al., 2009]. The trends in real data and reanalysis for clear areas are

statistically similar. The satellite observations assimilated in the reanalysis over cloudy

regions or errors arising from assimilating cloud affected radiances may be the reason for

the unrealistic trend over wet regions in the reanalysis.

4. Summary and discussion

We have presented a unique method of estimating the impact of clear-sky-only sampling

on the HIRS estimates of upper tropospheric humidity. The uniqueness of this study is its

method which isolates only the sampling effects which is a clear advantage over previous

studies. Previous studies have used radiosonde data, cloud and reanalysis information

to deduce the impacts but at the cost of propagating errors in these data sets into the

estimated impacts.

Our method uses co-flying infrared and microwave sensors on the same satellite. Mi-

crowave data are affected only by deep convective precipitating clouds, so they provide an

almost all-sky estimate of UTH. We use clear sky infrared pixels provided by the NCDC

data set to sub-sample the microwave data to simulate the infrared sampling of UTH.

Thus, we do not use IR-measured UTH. If we had used IR-measured UTH, it would

have introduced errors due to different sensitivities of IR and MW channels to humidity
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changes. We also mapped the microwave data to IR resolution using AAPP, thus reducing

errors arising from different spatial resolution. Our method also eliminates errors caused

by differing measurement times. Because these features of our method reduce the statis-

tical noise we do not need a longer time period average or robust statistical parameters

to obtain stable results.

Daily IR-sampled UTH data sample only the dry descending regions in the tropics, thus

not giving any information on the upper tropospheric humidity in moisture-source areas.

Daily, area-weighted, tropical averaged, IR-sampled UTH is always about 9%RH lower

than the MW-sampled UTH. Time series of IR and MW-sampled UTH were analysed

for a year, but no seasonal variations in bias for tropical averaged time series are evident

which is consistent with Allan et al. [2003].

IR-sampled monthly mean UTH data show excessively indistinct boundaries between

ascending and descending regions. There are some areas in the tropics with no infrared

coverage for an entire month. We estimated coherent patterns of clear-sky bias (CSB),

which is the IR-sampled UTH minus MW-sampled UTH, on monthly time scales. Over

some convective regions the CSB is as large as −30%RH which is about a 50% relative

bias in UTH. Seasonal migration of CSB is also seen due to the movement of the tropical

convergence zone. The bias is correlated not only with UTH values but also with UTH

variability; the larger the variability the higher the bias. Inter-annual variability of tropical

UTH time series is higher for IR-sampled UTH owing to larger spatial noise arising from

limited sampling.

The implication of clear-sky-only sampling by infrared measurements for longwave cloud

radiative forcing comparisons between models and satellite data has been discussed and
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documented [Cess and Potter , 1987; Allan and Ringer , 2003; Sohn et al., 2006; Sohn and

Bennartz , 2008; Sohn et al., 2010]. The major contribution to the model-observation

inconsistency in longwave cloud radiative forcing originates from upper tropospheric hu-

midity [e.g., Sohn and Bennartz , 2008]. The large clear-sky bias in UTH corresponds to

about 15Wm−2 bias in satellite estimates of cloud radiative forcing.

The clear-sky HIRS measurements are sampling meteorologically unusual situations

of cloud free conditions, so they only represent a limited aspect of the climate system.

Therefore, there is the potential for misinterpretation of feedbacks and variability in the

climate system if this is not accounted for.

There is a small decreasing trend in the tropical UTH in the reanalysis and in AMSU-

B estimated UTH. But the impact of clear-sky-only sampling on the UTH trend has

shown opposite results for reanalysis data and AMSU-B data. In the ERA Interim data

the decreasing trend is larger in clear areas compared to the whole tropics, but it is the

other way around for AMSU-B data. AMSU-B results are in line with the speculation of

Lanzante and Gahrs [2000] that the clear-sky-only sampling will underestimate any trend

in the UTH. However, it is plausible that a large part of UTH trend in AMSU-B data

relates to diurnal cycle aliasing due to satellite orbital drift rather than a real trend. The

MW-sampling is more sensitive to this as the diurnal cycle of UTH is larger in the moist

regions which are not sampled by the IR method. Therefore the difference in trend for

MW and IR sampling time series is not entirely due to the clear-sky-only sampling.

One might argue that it is not necessary to clear all clouds, but only mid- and high-

level clouds, when creating a UTH data set using HIRS Channel 12 measurements. We

agree with this, but there is no HIRS data set with such cloud clearance that is readily
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available for climate analysis. In fact, the only HIRS data set available is the NCDC

clear-sky radiance data set. Brogniez et al. [2006] have created a clear-sky radiance data

set of METEOSAT 6.3µm channel radiances by clearing only high/middle clouds by

using ISCCP cloud properties. This significantly enhanced the sampling mainly in the

subtropical subsidence regions. However, the HIRS Channel 12 is sensitive to even thin

cirrus clouds which cover a significant area in the tropics [Wylie et al., 2005; Sassen et al.,

2008, 2009]. Also, some studies, for example, Jackson and Bates [2001], demonstrated

the use of HIRS temperature sounding channels to improve the UTH retrieval algorithm.

These temperature channels (HIRS Channels 4 and 6) are sensitive to upper and lower

tropospheric temperatures, so they account for the tropospheric lapse rate. However,

their method demands a completely clear-sky satellite radiances. Despite this, it would

be useful to have a HIRS Channel 12 radiance data set with only high and mid level

clouds cleared, cloud top heights being determined from AVHRR measurements.
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Figure 1. The upper panel shows area-weighted, tropical, 400 hPa relative humidity

(RH) anomaly time series of the ERA-Interim reanalysis. Daily data are used and a 30 day

smoothing is applied for clarity. Clear areas represent grid points where the total cloud

clover from the reanalysis is less than 30%. The slopes of linear trends are −1.08±0.10,

and −1.50±0.10%RH per decade for all and clear areas, respectively. The clear minus all

time series (not shown) has a linear trend of −0.43±0.07%RH per decade. Error estimate

of the linear trend is calculated by taking into account the autocorrelation of the time

series as described in Santer et al. [2000]. The lower panel shows the clear fraction of the

tropics. A linear fit which has a slope of −0.50±0.13% per decade is also shown.

Figure 2. Examples of gridded daily UTH (in %RH) for January and July for MW

and IR sampling (see Section 2 for details on sampling). Note that the data themselves

are microwave in all cases, only the sampling differs. In the IR maps, large areas appear

white, because they are cloudy.
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Figure 3. The upper panel shows the IR sampling fraction. Lower panel shows the

area-weighted average (tropics, 30 S to 30N) of UTH calculated from gridded daily fields

(Figure 2) for all available days of 2008. The black line represents MW-sampling and the

red line represents IR sampling.

Figure 4. Mean of UTH at each grid point for all available UTH values in a month.

The upper panels are for January and the lower panels are for July. The left panels are

for microwave sampling and the right panels for infrared sampling.

Figure 5. Total number of pixels in each grid box for a month. The upper panels are

for January and the lower panels are for July. The left panels are for microwave sampling

and the right panels for infrared sampling.

Figure 6. Clear-sky bias (CSB, which is the difference between IR-sampled and MW-

sampled UTH) in %RH for (left) January and (right) July.

Figure 7. Clear sky bias (difference between IR-sampled and MW-sampled UTH) in

%RH for July for tropics and midlatitudes.
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Figure 8. Scatter density plots showing the dependence of clear-sky bias on UTH and

its variability. Upper panels show dependence of tropical clear-sky bias on microwave

sampled UTH and lower panels show its dependence on grid point standard deviation of

microwave sampled UTH for (left) January and (right) July. Coloured contours show the

fraction of data points outside each contour. Black is 0.01, green is 0.1, blue is 0.3 and

red is 0.5.

Figure 9. The standard deviation of UTH (in %RH) at each grid point for all available

pixels in a month. The upper panels are for January and the lower panels are for July.

The left panels are for microwave sampling and the right panels for infrared sampling.

Figure 10. Time series of tropical, area-weighted, UTH anomalies for (red) microwave

sampling and (black) infrared sampling using NOAA-15 AMSU-B satellite data. A 30

days smoothing is applied. Straight lines show a linear trend in the data. It should be

noted that the time series is not corrected for diurnal cycle aliasing due to satellite orbital

drift which is identified as the main reason for the spurious trend seen in the time series.

Please see the text for details.
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Table 1. Statistics of clear-sky bias (CSB) for all months in 2008. ”Miss” denotes %

of grid points with missing values due to no IR sampling for the entire month. ”>20”

denotes % of grid points where CSB is higher than 20 %RH. There are 21600 grid points

in the tropics.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Max -31.87 -36.20 -36.27 -33.94 -30.27 -31.27 -32.25 -29.88 -31.08 -27.14 -32.50 -33.84

Miss 1.49 3.32 2.07 1.23 1.05 1.54 1.77 0.76 1.19 0.98 1.44 1.91

>20 1.31 1.18 0.67 0.94 0.88 0.48 0.41 0.32 0.50 0.58 0.79 1.53

D R A F T April 13, 2011, 10:49am D R A F T






















	2010JD015355article_source_pdf.pdf
	2010jd015355-p01
	2010jd015355-p02
	2010jd015355-p03
	2010jd015355-p04
	2010jd015355-p05
	2010jd015355-p06
	2010jd015355-p07
	2010jd015355-p08
	2010jd015355-p09
	2010jd015355-p10

