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 7 

ABSTRACT 8 

 9 

The consistency of precipitation variability estimated from the multiple satellite-based observing 10 

systems is assessed. There is generally good agreement between TRMM TMI, SSM/I, GPCP and AMSRE 11 

datasets for the inter-annual variability of precipitation since 1997 but the HOAPS dataset appears to 12 

overestimate the magnitude of variability. Over the tropical ocean the TRMM 3B42 dataset produces unrealistic 13 

variabilitys. Based upon deseasonalised GPCP data for the period 1998-2008, the sensitivity of global mean 14 

precipitation (P) to surface temperature (T) changes (dP/dT) is about 6%/K, although a smaller sensitivity 15 

of 3.6%/K is found using monthly GPCP data over the longer period 1989-2008. Over the tropical oceans 16 

dP/dT ranges from 10-30%/K depending upon time-period and dataset while over tropical land dP/dT is –8 to –17 

11%/K for the 1998-2008 period. 18 

Analyzing the response of the tropical ocean precipitation intensity distribution to changes in T we find the 19 

wetter area P shows a strong positive response to T of around 20%/K. The response over the drier tropical 20 

regimes is less coherent and varies with datasets, but responses over the tropical land show significant 21 

negative relationships over an interannual time-scale. The spatial and temporal resolutions of the datasets 22 

strongly influence the precipitation responses over the tropical oceans and help explain some of the 23 

discrepancy between different datasets. Consistency between datasets is found to increase on averaging 24 

from daily to 5-day time-scales and considering a 1
o
 (or coarser) spatial resolution. Defining the wet and dry 25 

tropical ocean regime by the 60
th
 percentile of P intensity, the 5-day average, 1

o
 TMI data exhibits a coherent drying 26 

of the dry regime at the rate of  -20%/K and the wet regime becomes wetter at a similar rate with warming. 27 

28 
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1. Introduction 29 

 30 

Climate change is anticipated to exert profound effects on the hydrological cycle and therefore society 31 

[Meehl et al., 2007]. Anticipated changes, based upon physical theory and global modeling have long 32 

indicated increases in global mean precipitation, intensification of extreme precipitation and a decline in 33 

mean precipitation over the dry, sub-tropical regions of net moisture export [Mitchell et al., 1987; 34 

Trenberth, 2011]. While enhanced radiative cooling of a warming atmosphere is thought to control global 35 

mean changes [Mitchell et al., 1987; Lambert and Webb, 2008; Stephens and Ellis, 2008; Allan, 2009], 36 

regional changes in mean and extreme precipitation are strongly linked to the rises in atmospheric moisture 37 

with warming due to the Clausius Clapeyron equation [Emori and Brown, 2005; Bengtsson et al., 2007] 38 

which explains enhanced transport of moisture into regions of net moisture convergence [Held and Soden, 39 

2006], and also changes in dry static energy transport [Muller and O’Gorman, 2011]. 40 

Appreciating the robust aspects of changes in global to regional precipitation changes are vital for 41 

informing adaptation and mitigation policy choices and therefore there is a powerful motivation for 42 

confirming physically based models by careful use of high quality, homogenous observations. Observed 43 

signals of increased global mean and extreme precipitation and an enhanced contrast between the wet and 44 

dry regions of the tropics have been detected [Zhang et al., 2007; Chou et al., 2007; Adler et al., 2008; 45 

Allan et al., 2010; Min et al., 2011] yet obtaining consistent and robust results from a variety of observing 46 

systems remains a considerable challenge [John et al., 2009; Haerter et al., 2010; Wang et al., 2008]. 47 

The aim of the present study is to evaluate the observed global response of precipitation and its extremes 48 

utilizing a variety of satellite-based global datasets over a range of spatial and temporal scales. The reason 49 

for doing so is to seek clear observational signals of precipitation response to natural cycles of warming 50 

and cooling in the present day climate system that may be of relevance for evaluating the physical 51 

responses simulated in a variety of climate model simulations and identifying reasons for inconsistencies 52 

among datasets. We consider global data from 1987 to 2010 but concentrate upon the period since 1997 53 

over the tropical region (30
o
N-30

o
S), since it not only has the main ascending branch of the Hadley and 54 

Walker circulations which affect the climate globally, but it is also covered by a variety of satellite 55 

observations. The two primary questions we aim to address in the following sections are: (i) are there 56 

robust responses of global and tropical precipitation and its percentile distribution  to interannual changes 57 

in surface temperature and (ii) how do the spatial and temporal scales sampled influence these 58 

relationships. 59 

 60 

61 
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2. Datasets and methods 62 

 63 

Ideally, observed precipitation data over the whole globe will be helpful in studying the spatial 64 

distribution of precipitation and its response to changing climate, but few datasets covering both the global 65 

land and ocean are available. Most satellites sensors may only reliably retrieve precipitation over the ice-66 

free oceans.  67 

The SSM/I (Special Sensor Microwave Imager) is a seven-channel, four-frequency, orthogonally 68 

polarized, passive microwave radiometric sensor system [Wentz and Spencer, 1998; Vila et al., 2010] 69 

covering the global ice-free ocean and it has been operated on different DMSP (Defense Meteorological 70 

Satellite Program satellites) platforms (F08, F10, F11, F12, F13 and F15) since 1987. It has a spatial 71 

sampling resolution from 12.5 to 25km. The precipitation rate is one of the retrieved parameters. The next 72 

generation SSM/I instrument, the Special Sensor Microwave Imager/Sounder (SSMIS) [Wentz and 73 

Spencer, 1998] on aboard DMSP satellites F16 and F17 has been operating since 2003 and 2007 74 

respectively. The precipitation rates are retrieved using new algorithms and the SSMIS data have been 75 

carefully intercalibrated on the brightness temperature level with the previous SSM/I (see 76 

http://www.ssmi.com/ssmi/ssmi_description.html for details). It is noted that both F16 and F17 datasets 77 

have some calibration problems and are under reprocessing (Smith, personal communication, 2011); we 78 

include them here for comparison purposes only. 79 

HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) dataset [Andersson et 80 

al., 2010] contains a completely reprocessed time-series of global ocean freshwater flux related parameters 81 

using variables derived from SSM/I data over the ice free global ocean ranging from 1987 to 2005. 82 

 The AMSRE (Advanced Microwave Scanning Radiometer - Earth Observing System) [Lobl, 2001] 83 

instrument measures geophysical fields related to the earth's water cycle including precipitation rate over 84 

the global ice-free ocean. The AMSRE dataset is retrieved from a twelve-channel, six-frequency, passive 85 

microwave radiometer which has a spatial sampling interval from 5 km to 10 km. The spatial resolution of 86 

AMSRE data is double that of SSM/I data.  87 

The TRMM 3B42 (Tropical Rainfall Measuring Mission) [Huffman et al., 2007] dataset is a TRMM 88 

adjusted merged-infrared (IR) precipitation dataset using multi-satellite datasets including TMI (TRMM 89 

Microwave Imager), SSM/I, AMSR and AMSU (Advanced Microwave Sounding Unit). It covers both the 90 

tropical ocean and the tropical land (50
o
N - 50

o
S). The TMI is a nine-channel passive microwave 91 

radiometer based on SSM/I and has spatial sampling resolution about 14km. The TMI dataset is well-92 

calibrated and contains precipitation rate over the tropical ocean only (40
o
N - 40

o
S) 93 

[http://www.ssmi.com/tmi/tmi_description.html]. The global ocean and land are only covered by the 94 

http://www.ssmi.com/ssmi/ssmi_description.html
http://www.ssmi.com/tmi/tmi_description.html
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merged GPCP (Global Precipitation Climatology Project) dataset containing data from land-based rain-95 

gauges, sounding observations, microwave radiometers (such as SSM/I) and infrared radiances from the 96 

Global Precipitation Climatology Centre [Adler et al., 2003]. 97 

The data period available for this study and their properties are listed in Table 1. Not all of these datasets 98 

listed in Table 1 are independent. For example, the SSM/I dataset is used by the GPCP, HOAPS and 99 

TRMM 3B42 datasets and the TMI dataset is also used by the TRMM 3B42 dataset. On the other hand, 100 

the TRMM satellite is not sun-synchronous and is on a low inclination orbit, the SSM/I and SSMIS 101 

satellite are on sun-synchronous and near-polar orbits. The AMSRE satellite is also on a sun-synchronous 102 

orbit. The sun-synchronous orbiter only dataset can simply miss some parts of the diurnal cycle, which can 103 

be significant even over the ocean. All datasets used in this study provide daily data including zero 104 

precipitation rates. However, the satellite measurements do not provide daily averaged quantities and 105 

rather sample instantaneous rainfall rates over 2 overpasses per day and therefore may be considered as 106 

instant snap-shots of the precipitation fields averaged over the satellite footprints, averaged up to the 107 

regular grids. 108 

Table 1. Precipitation datasets and their properties. 109 
 110 

Dataset Period Description 

 

GPCP 1DD 

v1.1 

 

1996 – 2009 

 

Combined observed precipitation from satellite and 

rain gauges. Daily data, global ocean and land, 1
o
 

resolution. (SSM/I) 

(http://www.gewex.org/gpcpdata.htm )  

AMSRE v5 2002 – present 

 

Twice a day, global ice-free ocean, 0.25
o
 resolution. 

(http://nsidc.org/data/amsre/) 

SSM/I v6 

F08 

F11 

F13 

 

1987 – 1991 

1992 – 2000 

1995 – 2009 

 

Twice a day, global ice-free ocean, 0.25
o
 resolution. 

(http://www.remss.com/ssmi/ssmi_description.html) 

SSMIS v7 

F16 

F17 

 

2003 – present 

2006 – present 

Twice a day, global ice-free ocean, 0.25
o
 resolution. 

(http://www.remss.com/ssmi/ssmi_description.html) 

TMI v4 1997 – present 

 

1 to 2 times per day, Twice a day, tropical ocean only 

(40
o
N -40

o
S), 0.25

o
  resolution. 

(http://www.remss.com/tmi/tmi_description.html) 

HOAPS v3 1987 – 2005 

 

Twice a day, global ice-free ocean, 1
o
 resolution.  

(SSM/I) (http://www.hoaps.zmaw.de/) 

 

TRMM  3B42 

v6 

 

 

1998 – present 

 

Tropical ocean and land (50
o
N -50

o
S), 0.25

o
 

resolution. (TMI, SSM/I, AMSR, AMSU, IR), daily 

and 3 hourly. (http://trmm.gsfc.nasa.gov/3b42.html) 

GPCP v2.2 

monthly 

1979 - 2008 As GPCP v1.1, but it is monthly,  2.5
o
 resolution. 

ERA INTERIM 1989 - present 6 hourly, global, 0.25
o
 resolution. 

http://www.gewex.org/gpcpdata.htm
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 111 

All products considered have a spatial resolution of 0.25
o
 except for GPCP and HOAPS datasets which 112 

have a resolution of 1
o
. The low resolution (2.5

o
) monthly GPCP dataset is also listed for comparison 113 

purpose because it is available over a longer time period (1979-2008). We only consider the period 114 

containing microwave measurements since 1987. The SSM/I dataset used in this study consists of joint 115 

data from three satellite platforms, F08, F11 and F13, and they are treated as one time series without any 116 

adjustment. Since the time when F13 satellite passes the equator drifts least, so all F13 data from 1995 to 117 

2009 are used, together with all F08 data from 1987 to 1991 [Gastineaux and Soden, 2011]. The gap 118 

between F08 and F13 (1992-1994) is filled by F11 data. The surface temperature considered is air  119 

temperature at 2m from the European Centre for Medium-range Weather Forecasts (ECMWF) INTERIM 120 

reanalysis [Dee et al., 2011] which is accumulated from six hourly data having resolution of 0.25
o
 121 

interpolated from the original N128 reduced Gaussian grid (~ 0.7
o
). 122 

In order to study the precipitation (P) variation and its relationship with the surface temperature (T), P is 123 

also divided into percentile bins in ascending order calculated from all valid data points in a month, and 124 

the anomaly time series of P averaged over the percentile bin is calculated for each percentile bin. The 125 

anomaly time series of the global or tropical area average T is also calculated and the linear least squares 126 

fit gradient, dP/dT, is computed using a similar approach to Allan et al. [2010]. The precipitation 127 

percentile bin intervals used for this study are 10% from 0 to 60% (6 bins), then 5% from 60 to 80% (4 128 

bins) and then every 1% from 80 to 100% (20 bins). This choice was made to account for the substantial 129 

number of dry grid points that dominate the lowest percentiles and also to contain a sufficient number of 130 

bins to capture the long tail in the distribution at high rain rates.  131 

To study the effect of temporal resolution on the observed P-T relationships, the daily data is also 132 

integrated to 3 days, 5 days, 10 days and monthly data respectively. Then the integrated precipitations over 133 

a month are used for the percentile bin calculation. dP/dT  is then obtained from the gradient of the P and 134 

T anomaly regression. For the spatial integration, the 0.25
o
 data are integrated to 1

o
, 2

o
 and 4

o
 resolutions 135 

respectively. In both temporal and spatial integrations, the total mean precipitation rates are kept same.  136 

 137 

3. Seasonal and interannual variability in global and tropical Precipitation 138 

To check the consistence of the precipitation rate in the observed datasets from different satellite 139 

platforms, the mean precipitation over the whole globe, the tropical ocean and the tropical land, are 140 

calculated from each dataset based on the reference period of 2003-2008, except for the HOAPS dataset 141 

(based on 2000-2005), SSMIS F16 dataset (based on 2004-2009) and the SSMIS F17 dataset (based on 142 

2007-2010), due to data period limitations. Zero precipitations are all included in our calculations.  143 



6 
 

Only the GPCP dataset covers both the global ocean and land. In order to test the sensitivity of global 144 

precipitation variability to dataset, we also generated some hybrid global datasets using global ice-free 145 

ocean data from the AMSRE, SSM/I, HOAPS and SSMIS F16 datasets. The high resolution (0.25
o
) ocean 146 

data are integrated to 1
o
 resolution and all missing values (including those over the land and  the ice-147 

covered oceans) are simply filled with daily GPCP data. The mean precipitation and the corresponding 148 

anomalies are calculated at 1
o
 resolution for hybrid datasets and at original resolutions for other datasets 149 

listed in Table 1. It is not our aim here to construct new datasets but merely to assess the sensitivity of 150 

global precipitation and its variability to the choice of satellite dataset applied over the oceans. 151 

Mean surface temperature from ERA INTERIM and mean precipitation from all datasets listed in Table 152 

1 are plotted in Figure 1. Both global and land temperatures (Figure 1a) show strong seasonal variations.  153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

Figure 1. Mean seasonal cycle of. (a)  temperatures over the globe, the tropical ocean and the tropical land based on 173 

the reference period of 2003-2008 (10
o
C  is added to the global temperature to improve the clarity of the plot) and 174 

precipitation for different datasets based on the reference period of 2003-2008 except for HOASPS (based on 2000-175 

2005), SSMIS F16 dataset (based on 2004-2009) and the SSMIS F17 dataset (based on 2007-2010) over (b) 176 

the globe, (c) the tropical ocean, and (d) the tropical land. 177 
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The global mean precipitation calculated from GPCP and the four hybrid global datasets (Figure 1b) show 178 

little coherent seasonal variation. There is good agreement between GPCP and the hybrid GPCP+SSMIS 179 

F16 dataset and to a lesser extent the GPCP+HOAPS dataset; their mean values are between 2.6 to 2.8 180 

mm/day.  Mean precipitation from GPCP+SSM/I and GPCP+AMSRE hybrid datasets are systematically 181 

lower than the previous three, and their mean values are around 2.5 and 2.3 mm/day respectively. Because 182 

data over the land are the same, so the difference is from the global ice-free ocean. Mean precipitation over  183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

Figure 2. Deseasonalised anomalies of temperature and precipitation relative to the mean values of Figure 1: (a) 207 

temperature anomalies at 2m from ERA INTERIM dataset over the globe, the tropical ocean and the tropical land . 208 

Precipitation anomalies (b) over the globe, (c) over the tropical ocean, and (d) over the tropical land for all datasets. 209 

All curves are plotted with three month running mean. The amplitude of HOAPS precipitation anomalies are scaled 210 

down by a factor of 3 to improve the clarity of the plot. 211 
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the tropical ocean (30
o
N-30

o
S) vary with datasets from 2.5 to 3.4mm/day (Figure 1c). There is good 212 

agreement between SSM/I and SSMIS, and they are close to the mean values of all dataset mean 213 

precipitation. The seasonal variation for each dataset is small compared with the variation among the 214 

datasets. The SSM/I mean precipitation (solid green line) over the tropical ocean is close to that of SSMIS 215 

F16, but over the global, it is systematically lower, implying that the difference is from the measurement 216 

over the ocean at higher latitude. 217 

There are only two datasets (GPCP and TRMM 3B42) that cover both the tropical ocean and the tropical 218 

land. The seasonal variability over the tropical land (30
o
N-30

o
S) in Figure 1d is much larger than that over 219 

the tropical ocean. Both datasets show similar variability with maximum precipitation around March and 220 

minimum precipitation between October and November, though the TRMM 3B42 dataset produces 221 

precipitation that is systematically lower by between 0.2 to 0.4 mm/day. 222 

The deseasonalized anomaly time serieses for both temperature and precipitation are plotted in Figure 2. 223 

All anomalies are plotted as three month running means. Figure 2a shows the temperature anomalies for 224 

the global, tropical ocean and tropical land mean relative to the reference period described in Figure 1. 225 

There are strong correlations among them (about 0.7). It clearly shows the decrease after the Pinatubo 226 

eruption in June 1991, and the peaks coinciding with El Niño around 1998 and 2005. The temperature 227 

increases from 2000 to 2002 and then remains more or less the same for the rest of the period, except 228 

during El Niño around 2005 and La Niña around 2008. This covers the most important period of satellite 229 

precipitation observations. 230 

The deseasonalized precipitation anomalies (relative to mean precipitations in Figure 1) from different datasets 231 

are plotted in Figures 2(b-d). Figure 2b shows the anomalies over the globe. Global mean anomalies from GPCP 232 

daily and GPCP monthly datasets are plotted in Figure 2b with the additional four hybrid datasets. Only the GPCP 233 

monthly dataset samples prior to 1996. All datasets agree well for the period after 1996, except for the HOAPS 234 

dataset which shows a higher amplitude variation and is scaled down by a factor of 3 in the plot. The reasons for this 235 

larger variability are currently not clear. The global precipitation anomaly variations have strong correlation with the 236 

temperature anomalies in Figure 2a associated with El Niño Southern Oscillation (ENSO).  237 

Over the tropical ocean, there are only three datasets available before 1996, the SSM/I and the HOAPS daily 238 

datasets and the GPCP monthly dataset, all of which use the SSM/I data [Andersson et al., 2010; Adler et al., 239 

2008]. There are large differences among datasets before 1992, even between SSM/I and HOAPS datasets. 240 

This may because we only used F08, F11 and F13 datasets and HOAPS used all available SSM/I data. All datasets 241 

show consistent variability (after the HOAPS anomalies are reduced by a factor of 3) after 1997 except for 242 

the TRMM 3B42 dataset which is at odd with the other datasets. This has been reported by Huffman et al. 243 

[2007] (see their Figure 8) and it is mainly due to the AMSU-B rain estimates because the existing AMSU-244 

B algorithm failed to detect light rain over oceans, particularly in the subtropical highs. This bias will be 245 
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corrected in the future dataset version 7 which is expected to be available at the end of 2011 (personal 246 

communications, Huffman). Both ENSO events in 1998 and 2005 can be clearly seen from the tropical 247 

mean anomalies. Again, the HOAPS anomaly shows higher variability compared to the other datasets and 248 

is scaled down by a factor of 3 in the plot. 249 

Over the tropical land shown in Figure 2d, both anomalies from GPCP and TRMM 3B42 datasets follow 250 

each other and generally have opposite sign to those over the tropical ocean. The opposite changes in 251 

tropical land and ocean precipitation appears to correspond with ENSO, which increases precipitation over 252 

the central Pacific and decreases precipitation over South East Asia and Central America, and so may not 253 

be simply related to relationships relevant for global warming of climate. The correlation coefficients for 254 

GPCP precipitation and ERA INTERIM surface temperature are 0.68 over the tropical ocean and -0.43 255 

over the tropical land. Comparing Figures 2c and 2d  implies that the precipitation oscillates between the 256 

tropical ocean and the tropical land due to ENSO oscillation. The variations of the anomalies over both the 257 

tropical ocean and the tropical land have similar amplitudes. 258 

In order to illustrate the relations between the total P and T anomalies, the scatter plot is shown in Figure 259 

3. The datasets and the period used for this plot are listed in Table 2, together with the gradient dP%/dT 260 

(dP/dT divided by the mean precipitation from Figure 1) and the correlation coefficient (r) which is in bold 261 

when significant after applying the two tailed test using Pearson critical values at the level of 5%. For 262 

global means (Figure 3a), GPCP and other three hybrid datasets all show positive correlations and the 263 

correlations are all significant. The dP%/dT  of these four datasets are between 3.3-8.8%/K. This is 264 

consistent with the sensitivity estimated by Wentz et al. [2007] who combined SSM/I and GPCP data for 265 

the period 1987-2004. The value from our calculations using the monthly mean GPCP dataset over the 266 

longer period 1989-2008 is 3.6 %/K, similar to values found by Adler et al. [2008] who considered GPCP 267 

data for 1988-2006. The value is reduced from 6.0 %/K to 3.6 %/K using the longer GPCP record; this may 268 

relate to the data quality before 1998 but also highlights the limitations of considering short records. Our detailed 269 

analysis (not shown here) shows the correlation between P and T is strong after 1998 for the monthly GPCP data, 270 

but it is very weak before 1998. So the correlation for the longer dataset is reduced. The dP%/dT values also 271 

depend on the corresponding mean precipitation defined in Figure 1 which shows large discrepancies 272 

among different datasets. 273 

Over the tropical ocean, the correlations from all five datasets are significant. The values are higher than 274 

those for global means. The dP%/dT values are all above 10%/K and as much as 30%/K for SSMIS F16, 275 

similar to but a little higher than the sensitivities calculated by Allan et al. [2010] for the 1988-2008 period. 276 

John et al. [2009] also found a strong dependence of these relationships to dataset and time period 277 

considered. Over the tropical land, the correlations are also significant and very close, but they are 278 

negative and slightly lower in magnitude than that over the tropical ocean (dP%/dT is around -8 to -11%/K)  279 
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Table 2. Datasets for the scatter plot and the relations between temperature and precipitation anomalies. 280 

 Dataset Period dP%/dT (%/K) r 

G
lo

b
al

 

GPCP 1998-2008 6.0 0.56 

GPCP + AMSRE 2003-2008 4.3 0.56 

GPCP + SSM/I F13 1998-2008 8.8 0.71 

GPCP + SSMIS F16 2004-2008 3.3 0.30 

GPCP monthly 1989-2008 3.6 0.38 

 

T
ro

p
ic

al
 o

ce
an

 

GPCP 1998-2008 14.9 0.68 

AMSRE 2003-2010 12.1 0.62 

SSM/I F13 1998-2008 25.6 0.75 

SSMIS F16 2004-2010 30.9 0.47 

TMI 1998-2008 14.9 0.61 

GPCP monthly 1989-2008 10.2 0.48 

 

T
ro

p
ic

al
 

la
n

d
 

GPCP 1998-2008 -8.2 -0.43 

TRMM 3B42 1998-2008 -10.6 -0.46 

GPCP monthly 1989-2008 -1.1 -0.07 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

Figure 3. Scatter plot showing correlations between precipitation and temperature anomalies (a) over the global, (b) 297 

the tropical ocean and (c) the tropical land. 298 

 299 
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although do not show significant coupling over the 1989-2008 period using monthly GPCP data due to 300 

very weak correlation before 1998. 301 

 302 
 303 

4. Mean Precipitation over the percentile bins 304 
 305 

The influence of atmospheric warming upon precipitation extremes is of importance for climate impacts and this 306 

motivates the detailed assessment of how the observed precipitation distributions (dry up to the most intense rainfall) 307 

respond to temperature [O’Gorman and Schneider, 2009; Allan et al., 2010; Sugiyama et al., 2010; Lenderink and 308 

van Meijgaard, 2010; Haerter et al., 2010]. In order to quantify changes in the precipitation rate distribution, the 309 

mean precipitation for each percentile bin over the tropical ocean is calculated based on the reference period defined 310 

for Figure 1. The results are shown in Figure 4. The top row is the mean precipitation from different datasets and 311 

integration periods (1 day, 5 day and monthly). All high resolution (0.25
o
) datasets are spatially integrated to 1

o
 312 

resolution in order to compare them consistently. The SSMIS F17 dataset is not used here due to its short 313 

observational period. Since zero precipitation is included in all our calculations, for most of the observational 314 

datasets, the first few percentile bins contain all zero precipitation. The mean precipitation is not calculated for those 315 

bins having zero precipitation at both sides of the bin boundaries. The starting point of each curve in the top row 316 

shows where non-zero boundary is reached. The population of zero precipitation points is dataset dependent due to 317 

different retrieving algorithms. The difference also becomes smaller as the integration period increases but is 318 

particularly prominent for the daily time-scale where the data actually consists of satellite swaths, more comparable 319 

to 30-minute sampling [Wilcox and Donner, 2007]. 320 

The difference in precipitation intensity distributions among datasets becomes smaller as the temporal integration 321 

period increases, but they are separated into two groups. The purely microwave-based retrievals from AMSRE, TMI 322 

and SSM/I produce systematically lower daily precipitation than the blended datasets from GPCP, HOAPS and 323 

TRMM 3B42. This discrepancy does not rely on the satellite orbits as discussed in section 2. A possible explanation 324 

is that the blended products contain a certain degree of implicit averaging in time and space, thereby increasing the 325 

frequency of light rainfall and decreasing the intensity of heavy rainfall. Indeed the differences diminish with greater 326 

temporal averaging. There is a near linear increase in logarithmic scale at high percentile bins, but drops quickly at 327 

the smaller percentile bins. Of course, this will depend on the definition of bin width. On the other hand, the passive 328 

microwave algorithm cannot detect rainfall less than 0.1mm/hr which is why the cut-off values for AMSRE, SSM/I 329 

and SSMIS in Figure 4a are much higher than those for blended datasets (GPCP and TRMM 3B42).  The small 330 

precipitation values in the plot are generated artificially from the average process.331 
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 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

Figure 4. Mean tropical ocean precipitation over the reference period of Figure 1 in different precipitation 345 
percentile bins. The upper row is for different datasets at 1o resolution and the lower row is for TMI dataset at 346 
different spatial resolutions.  347 

 348 

The spatial integration effect on the mean precipitation from the TMI dataset is plotted in the lower row 349 

(Figures 4d-f) and it shows that for high resolution (0.25
o
) the precipitation is zero for most of the light 350 

precipitation bins; non-zero precipitation only occurs at very high percentile bins (from the 92nd percentile 351 

bin for TMI). Both temporal and spatial integrations reduce the percentage of zero precipitation points. 352 

The spatial resolution effect on mean precipitation is also tested for AMSRE and SSM/I datasets (not 353 

shown here); they all show similar results to those of TMI. The influence of spatial averaging on the TMI data 354 

is to narrow the precipitation distribution, as discussed by Field and Shutts [2009]. The mean precipitation values 355 

selected from Figure 4, for different precipitation percentile bins of 88-89, 95-96 and 99-100 and 356 

integration periods of one day, five days and one month, are listed in Table 3 for the seven datasets in 357 

Figure 4. The value for the spatial integration effect of TMI dataset is also listed. For daily data, the mean 358 

precipitation varies substantially over different bins and for different datasets. The heaviest precipitation of 359 

SSM/I and HOAPS at bin 99-100 are twice that of GPCP. When the time integration period increases, the 360 

difference is reduced due to the averaging process. For TMI, the spatial integration greatly reduces the 361 

heavy precipitation rate as shown in Table 3: for daily data over the percentile bin of 99-100, the 362 

precipitation is reduced from 142 mm/day to 44 mm/day. Figure 4 and Table 3 show that both the temporal 363 
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and spatial integrations of the dataset have a profound effect on the precipitation rate distributions as 364 

anticipated [Field and Shutts, 2009]. Therefore care must be taken in comparing satellite-based estimates 365 

of the changes in precipitation percentile distributions with general circulation models. Using an 366 

integration period of 5-days produces a more consistent precipitation distribution between datasets with 367 

only a small sensitivity to spatial averaging for resolutions of 1 degree and coarser.  368 

 369 

Table 3. Mean precipitation (mm/day) in percentile bins for 1 day, 5days and 1 month integration. 370 
 371 

 1 day 5 days 1 month 

Percentile bins 88-89 95-96 99-100 88-89 95-96 99-100 88-89 95-96 99-100 

  

GPCP         (1
 o
 ) 

AMSRE     (1 o ) 

SSM/I         (1 o ) 

TMI            (1
 o
 ) 

HOAPS      (1 o ) 

TRMM 3B42   (1
 o
 ) 

SSMIS f16 (1
 o
 ) 

8.0 

2.5 

0.7 

2.0 

5.6 

6.1 

2.0 

20.5 

12.2 

14.2 

13.0 

14.1 

18.1 

12.5 

52.5 

88.6 

110.8 

93.1 

127.5 

61.9 

75.5 

8.8 

6.7 

3.9 

4.7 

7.1 

8.1 

4.9 

15.0 

14.8 

9.5 

10.2 

15.6 

14.6 

11.5 

31.0 

42.1 

27.7 

27.3 

56.6 

33.2 

31.6 

7.6 

7.0 

4.2 

4.8 

8.1 

7.4 

5.1 

10.6 

10.6 

6.6 

7.1 

12.8 

10.6 

7.8 

16.4 

19.9 

12.3 

12.4 

24.4 

17.5 

14.3 

 

TMI  (0.25
 o
 ) 

TMI  (1
 o
 ) 

TMI  (2
 o
 ) 

TMI  (4
 o
 ) 

 

2.0 

2.9 

3.2 

8.8 

13.0 

12.0 

10.4 

142.2 

93.1 

67.6 

44.2 

4.5 

4.7 

4.7 

4.5 

12.5 

10.2 

9.2 

8.0 

34.5 

27.3 

23.0 

18.2 

5.2 

4.8 

4.5 

4.2 

8.0 

7.1 

6.6 

5.9 

14.6 

12.4 

11.0 

9.4 

 372 
 373 

5. Response of precipitation intensity distribution to surface temperature 374 
 375 

The response of the intensity distribution of precipitation to climate variability is analyzed in this section. We use 376 

the linear least squares sensitivity (dP/dT) of P and T anomalies across percentile bins of P to quantify the response. 377 

The relative dP/dT is named dP%/dT defined as: 378 

dP%(bin)/dT=(1/P(bin))(dP(bin)/dT)          (1) 379 

where the mean precipitation intensity distribution, P(bin) is displayed in Figure 4 and T is the mean 380 

temperature (global or tropical, land or ocean). The GPCP data is used to study the dP%/dT variations globally 381 

and over the tropics, over ocean and land. The dP%/dT response over the tropical ocean is fully investigated in the 382 

next section.  383 

The dP%/dT is calculated using the daily 1o resolution data and the results are shown in Figure 5. Figure 5a is for 384 

the whole globe, the global ocean and the global land respectively. The solid dots represent the significant 385 

correlations after applying a two-tailed test using Pearson critical values at the significance level of 5%. All three 386 

areas show a positive precipitation response to warming over the higher percentile bins and negative responses over 387 

the lower bins. However, only the global and global ocean responses for the heavier precipitation bins are 388 

statistically significant. There is no significant response over the global land at all and the response over the highest 389 

percentile bins is close to zero, due to complicated response mechanisms over different land areas [Trenberth and 390 



14 
 

Shea, 2005; Haerter et al., 2010]. Specifically, cause and effect is ambiguous: for some regions, less cloud and 391 

rainfall with lower soil moisture is associated with enhanced surface heating by solar radiation while over other 392 

regions, with ample moisture availability, warmer temperatures may be associated with more low level water vapor 393 

and higher precipitation intensity. The response over the global ocean is thus higher than that over the whole globe. 394 

 395 

  396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 
Figure 5. dP%/dT over precipitation percentile bins. (a) over the global, the global ocean and the global land; (b) 408 
over the Tropics, the tropical ocean and the tropical land. They are calculated using the daily data at the 1o 409 
resolution of GPCP dataset from 1998 to 2008. 410 
 411 

The tropics show a similar behavior to the global response although the threshold separating the positive and 412 

negative responses is over higher percentile bins (approximately 88%) than that for the global (around 75%). The 413 

land response is predominantly negative (warmer tropical land temperature is associated with less rainfall) and 414 

statistically significant; similar results are given by the TRMM 3B42 dataset (not shown here). 415 

 416 

6. Influence of temporal and spatial averaging on observed precipitation responses over the tropical ocean 417 

 418 

Over the tropical oceans, there are many satellite-based observational precipitation datasets available which 419 

display contrasting precipitation responses [John et al., 2009]. Therefore it is important to understand the reasons for 420 

discrepancies and, if possible, identify the most physically robust dataset. Based upon the analysis of the 421 

precipitation percentile distributions, one hypothesis is that varying temporal and spatial resolutions may affect the 422 

analysis results, since this fundamentally impacts the precipitation intensity distribution. In order to investigate these 423 

resolution effects on the precipitation response to the surface temperature change, the dP%/dT values over the 424 

tropical ocean are calculated for different datasets at different temporal and spatial resolutions, where P is the 425 

precipitation for each percentile bin and T is tropical ocean mean temperature. For comparison purpose, the data 426 

period used for the calculation in this section is from 1998 to 2008, except for AMSRE which is from 2003-2010. 427 

 428 
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 429 

 430 

 431 
 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

Figure 6. Relative precipitation changes over the tropical ocean at different percentile bins. Temporal 444 
integrations are one day, five days and one month respectively and all datasets are at 1o resolution. The dots show 445 
the points where the correlations between precipitation and temperature anomalies are significant after applying a 446 
two-tailed test using Pearson critical values at the level of 5%. The data period used for this calculation is from 447 
1998 to 2008, except for AMSRE dataset which is from 2003-2010. 448 
 449 
 450 

a. Temporal resolution effect 451 
 452 

To investigate the temporal resolution effect on the dP%/dT calculation, only four datasets (GPCP, AMSRE, 453 

SSM/I and TMI) are considered since the observational period of SSMIS datasets (F16 and F17) are too short and 454 

the TRMM 3B42 and HOAPS datasets displays inconsistent variability (Figure 2c). 455 

They are all integrated to 1o resolution and also to 1 day, 5 days and a month, respectively. The dP%/dT is 456 

calculated and the results are plotted in Figure 6. The solid dots are significant points as stated before. For daily 457 

data, three out of four datasets lines show negative response at lower percentile bins though the negative response 458 

from GPCP dataset is not significant due to weak correlations. All datasets show positive response at high percentile 459 

bins. This is consistent with the dry region becoming drier and the wet region is becoming wetter with warming 460 

[John et al., 2009; Allan et al., 2010; Zhou et al., 2011] due to enhanced moisture transports [Held and Soden, 2006]. 461 

The dP%/dT from SSM/I is always positive because the SSM/I data are less sensitive to light precipitation and have large 462 

percentage of zero precipitation grid points (see Figure 4a). 463 

For both AMSRE and TMI datasets, there are significant negative correlations and the threshold points separating 464 

the positive and negative correlations for those two datasets are very close, but in general the threshold point 465 

position depends on the datasets and the integrations. 466 

Averaging from 1 to 5-days increases the consistency precipitation distribution response to tropical warming 467 

between datasets. The threshold bin position separating the positive and negative correlations shifts from high 468 
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percentile bins to low percentile bins due to the averaging effect. For the one month integration, the results are 469 

similar to the five day integration, but it becomes noisier over the low percentile bins, presumably due to averaging 470 

over contrasting dynamical situations. 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

Figure 7. Spatial integration effect on precipitation and temperature relations over the tropical ocean from daily 485 
datasets of TMI, AMSRE, SSM/I and GPCP. 486 

 487 

 488 

 489 

b. Spatial resolution effect 490 

 491 

The spatial integration effect on dP%/dT is also investigated using the daily data and plotted in Figure 7. For TMI, 492 

AMSRE and SSM/I datasets, there are four resolutions of 0.25o, 1o, 2o and 4o, but there are only three resolutions of 493 

1o, 2o and 4o for GPCP. For the TMI data (Figure 7a), the spatial integration effect on the precipitation response to 494 

the temperature is obvious, the threshold bin position shifts to the smaller percentile bins and the negative 495 

correlation over the dry regions becomes significant. The results for AMSRE (Figure 7b) are similar to that of TMI. 496 

Spatial averaging has a similar effect to the temporal averaging shown in Figure 6. The spatial integration effect on 497 

SSM/I data (Figure 7c) is also profound, particularly between the 0.25o and 1o resolutions, but the effect on GPCP 498 

data is relatively small (Figure 7d). This may be because the GPCP dataset combines multi-satellite products and 499 

some spatiotemporal integration may have been implicitly applied during processing. Based on this analysis, it 500 

appears that the GPCP, TMI and AMSRE datasets are reasonably consistent in their characteristics. 501 

502 
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c. Threshold 503 

 504 

Both temporal and spatial integrations have profound effects on the study of precipitation response to temperature. 505 

The threshold precipitation percentile bins separating the negative and positive responses are plotted in Figure 8. 506 

Figure 8a is the threshold variation with time integration period for three datasets (GPCP, AMSRE and TMI) over 507 

the tropical ocean at 1o resolution. Both AMSRE and TMI agree well, but the GPCP has a lower threshold, again 508 

thought to relate to the more complex methodology applied to this dataset. The spread of the threshold value due to 509 

time integration is comparable with that of using different datasets. Figure 8b is from TMI for different spatial 510 

integrations. The spatial integration effect is smaller than that of time integration. The influence of resolution on the 511 

precipitation percentile threshold below which negative dP/dT occurs is strong for the daily data (Figure 8b, inset). 512 

As expected, both temporal and spatial integrations reduce the frequency of high and zero precipitation rates, 513 

therefore shifting the threshold bin to the lower end of the precipitation distribution. 514 

  515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

Figure 8. Threshold separating the negative and positive precipitation response to the temperature. The left panel 528 
is from three daily datasets at 1o resolution and the right panel is from TMI daily data at different resolutions. 529 

 530 

d. Dry and wet regions  531 
 532 

Previous studies have highlighted the contrasting responses of the tropical wet and dry regions [Chou et al., 2007; 533 

Allan et al., 2010] although the precise threshold in the distribution below which negative dP/dT occur appears to be 534 

sensitive to time-averaging (previous sections; Pall et al., 2007). Here, we extend the analysis of the previous 535 

section to analyse in more detail the influence of time-integration upon the precipitation percentile threshold and the 536 

results are plotted in Figure 9. The calculations are carried out using daily, 5-day and monthly data at 1o spatial 537 

resolution from the TMI dataset. The integration on the left panel (Figure 9a) is from the first precipitation percentile 538 

bin (0%) to a variable percentile bin used as the x-axis (hereafter 0-bin integration). The integration on the right 539 

panel (Figure 9b) is from a variable percentile bin to percentile100 (hereafter bin-100 integration). For the 0-bin 540 
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integration, the first few data points represent the relationship between precipitation and temperature over the dry 541 

regime. It is clear that the correlation is negative until percentile 96% for the daily integration, slightly higher than 542 

the value found by Pall et al. [2007] for climate model data. The temporal integration greatly reduces the negative 543 

correlation and shifts the threshold location to the much lower percentile bins, as suggested by Allan et al. [2010]. 544 

For daily integration there is big jump over the first few valid data points where the non-zero precipitation begins. 545 

The variation of this location causes the big jump due to lower value of mean precipitation and big standard 546 

deviation over these percentile bins (75-82%). 547 

 548 
 549 
 550 
 551 
 552 
 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 
 562 
 563 
 564 
 565 
 566 
 567 
 568 
Figure 9. dP%/dT calculated from TMI data with 1o resolution for integration period of 1 day, 5days and one 569 
month. Left panel is integrated from the first percentile bin (0%) to a variable percentile bin, the right panel is 570 
integrated from a variable percentile bin to percentile 100. The X axis is the variable percentile bin. As before, the 571 
symbols represent points having significant correlations between precipitation and the temperature. 572 
 573 
For the bin-100 integration, the first data points are identical to the last data points of 0-bin integration (both are 574 

tropical ocean mean). They are the relations for total precipitation and temperature. Over the big percentile bins on 575 

the right end, the relations are for the heaviest precipitation and they are significantly positive as shown in Figures 6 576 

and 7. As explained, the jumps happen when non-zero precipitation rate starts for daily integrated data. It is clearly 577 

seen that time-integration of the data explains the reduction of this critical threshold from around the 96th percentile 578 

for daily data down to around the 60th percentile for monthly data (Figure 9a). Again, the “daily” satellite data may 579 

behave more like hourly snap-shots; using model daily data, Pall et al. [2007] found the threshold to be closer to the 580 

90th percentile of precipitation intensity. 581 

 582 

583 
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 584 
7. Summary 585 

 586 
Climate model projections of substantial future changes in intense precipitation and drought are of immediate 587 

concern to society [Meehl et al., 2007]. Though the variations and responses of precipitation on the interannual time 588 

scale might be quite different from those on the decadal and long-term time scales given likely different physical 589 

mechanisms, it is still important to be able to verify and understand the physical processes responsible for these 590 

anticipated changes through careful use of well-calibrated and well-characterized observing systems. While rain 591 

gauge data provides “ground truth” [Zhang et al., 2007; Min et al., 2011] their global coverage is somewhat limited 592 

and increasingly the use of satellite measurements in detecting rainfall changes is becoming an essential component 593 

of the verification process [Huffman et al., 2009; Maidment et al., 2011]. However, substantial discrepancies exist 594 

between satellite datasets [Quartly et al., 2007; John et al., 2009] and this motivates detailed analysis of the reasons 595 

for uncertain rainfall responses to current climate variability [Wentz et al., 2007; Liepert and Previdi, 2009; Arkin et 596 

al., 2010]. In the present study, interannual variability of precipitation from multiple satellite datasets and blended 597 

satellite data products are compared to attempt to understand the causes of discrepancies and to detect robust, 598 

physically reasonable responses. Our main focus is on interannual co-variability of precipitation and surface 599 

temperature over the globe and tropical land and oceans. 600 

Over the period 1998-2008, global P is found to increase at around 6%/K from SSM/I-based products (e.g. GPCP), 601 

of similar magnitude to that found by Wentz et al. [2007] but larger than estimated by Adler et al. [2008]. The time 602 

period is too short to reliably detect responses relevant for climate change [Liepert and Previdi, 2009] yet is a useful 603 

and physically-based metric to consider [Held and Soden, 2006]. Much of the response is determined by strong co-604 

variability in tropical ocean P and T (dP/dT ranges from 10-30%/K depending upon time-period and dataset) which 605 

is offset by anti-correlation over land of around –10%/K, consistent with previous analysis [Wang et al., 2008]. In 606 

agreement with previous studies, warming during El Nino is associated with greater precipitation over the tropical 607 

oceans and less rainfall over land [Adler et al., 2008; Gu et al., 2007; Wang et al., 2008]; cause and effect over land 608 

is ambiguous since over some regions, less cloud and rain is conducive to enhanced surface heating while over moist 609 

tropical regimes, warmer temperatures may be associated with more convective rainfall [Trenberth and Shea, 2005].  610 

Variability between TRMM TMI, SSM/I, GPCP and AMSRE datasets is generally consistent over the tropical 611 

ocean over the period 1997-2008 but the HOAPS dataset appears to overestimate the magnitude and the TRMM 612 

3B42 dataset produces unrealistic variability. It will be useful to include TRMM radar precipitation data in future 613 

studies as both TRMM TMI and TRMM PR have good agreement [Lau and Wu, 2011]. Over the land, GPCP and 614 

TRMM 3B42 are in reasonable agreement. However, it is noted that many of the datasets are not independent of one 615 

another.  616 

Comparing the intensity distribution of P and its response to interannual changes in surface temperature between 617 

datasets reveals large differences. The heaviest percentiles of P over the tropical ocean become more intense with 618 

warming in all datasets at the rate of about 15-20%/K, consistent with some land-based estimates [Lenderink and 619 

van Meijgaard, 2010] and with modeling studies [Sugiyama et al., 2010]. At lower P percentiles there are large 620 
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differences between datasets although below the 80
th

 percentile of daily P intensity the AMSR-E and TMI estimates 621 

exhibit a significant decline in P intensity with warming. The GPCP, TMI and AMSRE datasets appear reasonably 622 

consistent in the characteristics of rainfall intensity responses to surface temperature changes. 623 

To understand the reasons for the differing responses amongst datasets, the time and space averaging is analysed, 624 

motivated by the sizable differences in mean precipitation intensity distributions amongst datasets and its 625 

dependence upon spatial and temporal resolution. Time-averaging of the data, and to a lesser extent, spatial 626 

integration of the data leads to (i) greater agreement between datasets and (ii) a reduction of the critical precipitation 627 

percentile threshold, below which precipitation intensity generally declines with warming. Based upon this analysis, 628 

there is some indication that blended products such as GPCP have introduced an implicit spatial and temporal 629 

averaging effect upon the data, such that the 1 degree daily data may in reality represent a larger spatial and 630 

temporal average. It should also be noted that although we term the 0.25 degree satellite estimates as daily data, in 631 

fact these are snap-shots coinciding with satellite overpasses and are therefore closer to hourly estimates [Field and 632 

Shutts, 2009; Wilcox and Donner, 2008]. 633 

We find that choosing a spatial resolution of 1 degree and time-averaging of 5-days increases consistency between 634 

datasets, compared to 0.25 degree daily data, and may be the most useful scales to consider in comparing with the 635 

climate model outputs. For this configuration, the precipitation intensity bin threshold, separating the contrasting 636 

wet and dry regime responses to warming/cooling cycles is around the 80
th
 percentile for AMSR-E and TMI but is 637 

less coherent and lower (30%) for GPCP data. Considering the wet and dry regimes separately, separated by the 60
th
 638 

P percentile, the 5-day average, 1 degree TMI data exhibits a coherent drying of the dry regime at the rate of  -639 

20%/K and the wet regime becomes wetter at a similar rate (just below 20%/K). In future work we hope to apply 640 

these techniques to assess the responses of climate model simulations of daily precipitation using the GPCP and 641 

microwave-based datasets (e.g. TMI, AMSR-E) described in the current paper. It will also be important to consider 642 

the physical basis for such changes, for example, relating to moisture transport [Held and Soden, 2006; Sohn and 643 

Park, 2010; Zahn and Allan, 2011] and energetic considerations [Muller and O’Gorman, 2011] including the 644 

influence of aerosol [Andrews et al., 2010; Ming et al., 2010].  645 
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Figure captions 809 

 810 
Figure 1. Mean seasonal cycle of. (a)  temperatures over the globe, the tropical ocean and the tropical land based on 811 

the reference period of 2003-2008 (10
o
C  is added to the global temperature to improve the clarity of the plot) and 812 

precipitation for different datasets based on the reference period of 2003-2008 except for HOASPS (based on 2000-813 

2005), SSMIS F16 dataset (based on 2004-2009) and the SSMIS F17 dataset (based on 2007-2010) over (b) 814 

the globe, (c) the tropical ocean, and (d) the tropical land. 815 

Figure 2. Deseasonalised anomalies of temperature and precipitation relative to the mean values of Figure 1: (a) 816 

temperature anomalies at 2m from ERA INTERIM dataset over the globe, the tropical ocean and the tropical land . 817 

Precipitation anomalies (b) over the globe, (c) over the tropical ocean, and (d) over the tropical land for all datasets. 818 

All curves are plotted with three month running mean. The amplitude of HOAPS precipitation anomalies are scaled 819 

down by a factor of 3 to improve the clarity of the plot. 820 

Figure 3. Scatter plot showing correlations between precipitation and temperature anomalies (a) over the global, (b) 821 
the tropical ocean and (c) the tropical land. 822 

 823 
Figure 4. Mean tropical ocean precipitation over the reference period of Figure 1 in different precipitation 824 
percentile bins. The upper row is for different datasets at 1o resolution and the lower row is for TMI dataset at 825 
different spatial resolutions.  826 

Figure 5. dP%/dT over precipitation percentile bins. (a) over the global, the global ocean and the global land; (b) 827 
over the Tropics, the tropical ocean and the tropical land. They are calculated using the daily data at the 1o resolution 828 
of GPCP dataset from 1998 to 2008. 829 
 830 

Figure 6. Relative precipitation changes over the tropical ocean at different percentile bins. Temporal integrations 831 
are one day, five days and one month respectively and all datasets are at 1o resolution. The dots show the points 832 
where the correlations between precipitation and temperature anomalies are significant after applying a two-tailed 833 
test using Pearson critical values at the level of 5%. The data period used for this calculation is from 1998 to 2008, 834 
except for AMSRE dataset which is from 2003-2010. 835 
 836 

Figure 7. Spatial integration effect on precipitation and temperature relations over the tropical ocean from daily 837 
datasets of TMI, AMSRE, SSM/I and GPCP. 838 

 839 

Figure 8. Threshold separating the negative and positive precipitation response to the temperature. The left panel is 840 
from three daily datasets at 1o resolution and the right panel is from TMI daily data at different resolutions. 841 

 842 

Figure 9. dP%/dT calculated from TMI data with 1
o
 resolution for integration period of 1 day, 5days and one month. 843 

Left panel is integrated from the first percentile bin (0%) to a variable percentile bin, the right panel is integrated 844 
from a variable percentile bin to percentile 100. The X axis is the variable percentile bin. As before, the symbols 845 
represent points having significant correlations between precipitation and the temperature. 846 
 847 


