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RESEARCH ARTICLE Open Access

Biomarker Discovery and Redundancy Reduction
towards Classification using a Multi-factorial
MALDI-TOF MS T2DM Mouse Model Dataset
Chris Bauer1*, Frank Kleinjung1, Celia J Smith4, Mark W Towers4, Ali Tiss4, Alexandra Chadt2, Tanja Dreja2,
Dieter Beule1, Hadi Al-Hasani2, Knut Reinert3, Johannes Schuchhardt1 and Rainer Cramer4

Abstract

Background: Diabetes like many diseases and biological processes is not mono-causal. On the one hand multi-
factorial studies with complex experimental design are required for its comprehensive analysis. On the other hand,
the data from these studies often include a substantial amount of redundancy such as proteins that are typically
represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and
technological) makes data analysis a challenge for Bioinformatics.

Results: We present a comprehensive work-flow tailored for analyzing complex data including data from multi-
factorial studies. The developed approach aims at revealing effects caused by a distinct combination of
experimental factors, in our case genotype and diet. Applying the developed work-flow to the analysis of an
established polygenic mouse model for diet-induced type 2 diabetes, we found peptides with significant fold
changes exclusively for the combination of a particular strain and diet. Exploitation of redundancy enables the
visualization of peptide correlation and provides a natural way of feature selection for classification and prediction.
Classification based on the features selected using our approach performs similar to classifications based on more
complex feature selection methods.

Conclusions: The combination of ANOVA and redundancy exploitation allows for identification of biomarker
candidates in multi-dimensional MALDI-TOF MS profiling studies with complex experimental design. With respect
to feature selection our method provides a fast and intuitive alternative to global optimization strategies with
comparable performance. The method is implemented in R and the scripts are available by contacting the
corresponding author.

Background
Diabetes mellitus is one of the most common chronic
diseases in nearly all countries and subject to intensive
biomedical research. The prevalence of diabetes is for-
cast to increase from 285 million in 2010 to 439 million
in 2030 [1]. Diabetes imposes an increasing economic
burden on national health care systems world wide as
12% of the health expenditures are anticipated to be
spent on diabetes in 2010. The global costs of treatment
will raise from 418 billion USD in 2010 to 490 billion in

2030 [2]. The major part of the prevalence is due to
obesity related type 2 diabetes (T2DM).
Multiple studies have been performed assessing the

diversity of the disease at the transcriptomic level reveal-
ing lists of candidate genes and associated pathways
[3,4]. At the proteomic level different techniques have
been applied including gel-based [5] and mass spectro-
metry (MS)-based quantitative approaches [6]. However,
in most cases the study design is rather simple and
restricted to the comparison of healthy versus diseased
animal or human samples. No comprehensive proteo-
mics study covering multiple experimental factors and
comprising a multitude of samples has been published
so far.* Correspondence: chris.bauer@microdiscovery.de
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In this manuscript we investigate a multifactorial
matrix-assisted laser desorption/ionization (MALDI) MS
plasma profile data set based on a T2DM mouse model,
using NZO (New Zealand Obese) and SJL (Swiss Jim
Lambert) mouse strains. The NZO mouse is an estab-
lished polygenic model for studying obesity-related dia-
betes as it rapidly develops symptoms of diabetes
characterized by early onset obesity, insulin resistance
and eventually destruction of insulin-producing pancrea-
tic beta cells [7]. In contrast, the lean SJL mouse strain
is resistant to diet-induced obesity and diabetes, pre-
sumably due to a mutation in the Tbc1d1 gene that
causes elevated lipid use in skeletal muscle [8].
MALDI MS, particularly in combination with time-of-

flight (TOF) instruments, is characterized by simplicity,
good mass accuracy and high resolution [9] and hence a
promising tool in proteomics [10]. It allows for proces-
sing a significant number of samples in a short time and
therefore enables studies encompassing a multitude of
samples [11-13]. MALDI-TOF MS profiling has been
used extensively for investigating different types of can-
cer like breast cancer [14], lung cancer [12,15], ovarian
cancer [16] or colon cancer [17,18], to name a few. Bio-
marker identification and classification are the typical
objectives in MALDI profiling studies of disease models.
Various different methods have been applied addressing
these two objectives. For feature selection commonly
used methods comprise the classical t-test or Wilcoxon
rank sum test [19] as well as more advanced techniques
such as genetic algorithms and swarm based intelligence
[20]. With respect to classification Wu et al. [21] pub-
lished a summary comparing statistical methods for
ovarian cancer. In 2006, Zhang et al. [22] compared the
performance of R-SVM and SVM-RFE using MALDI
MS data sets and more recently, in 2009, Liu et al. [23]
compared additional feature selection and classification
approaches.
In general, proteomic data has two different types of

replications, (1) biological and (2) technical, leading to
two different types of errors, and therefore requires
proper statistical analysis. The standard approach of
handling technical replicates is to calculate a mean value
in order to reduce the technical noise. Unfortunately,
this can lead to loss of information [24]. A more sophis-
ticated way to handle technical replicates without loss of
information are mixed-effects models [25,26]. They
incorporate fixed-effects parameters applied to the entire
population and random effects applied to particular
experimental units or sub-units (e.g. technical repli-
cates). However, for the high number of biological repli-
cates in this study the results for both methods are
similar.
Although many approaches have been developed for

biomarker identification from MALDI MS profile data,

only some studies were performed for assessing the
influence of correlation in these datasets [27]. As corre-
lation within large MS data sets can confound statistical
analyzes, we developed statistical methods that exploit
data correlation and integrated these into a comprehen-
sive work-flow designed for the analysis of multi-factor-
ial experimental MALDI-TOF MS data. Merging
similarity and significance information our approach
allows for the interpretation of complex biological data
in an intuitive manner. The soundness of the statistical
methods is demonstrated and a special plot for easy
visualization and understanding. Furthermore the pre-
sented methods provide a natural way of feature selec-
tion for classification and prediction. The complete
work-flow of the analysis is shown in Figure 1.

Methods
Data
The study design involved the experimental factors gen-
otype, diet and time.
Genotype
Three different mouse strains were examined: C57BL/6J
(B6), NZO (New Zealand Obese) and SJL (Swiss Jim
Lambert). The New Zealand Obese mouse strain exhi-
bits polygenic obesity associated with hyperinsulinaemia
and hyperglycaemia and presents additional features of a
metabolic syndrome, including hypertension, and ele-
vated levels of serum cholesterol and serum triglycerides
[28]. NZO mice are highly susceptible to weight gain
when fed a high-fat diet, resulting in the development of
morbid obesity, with fat depots exceeding 40% of total
body weight and the development of type 2 diabetes
[29]. In contrast, the Swiss Jim Lambert (SJL) mouse
strain is lean and resistant to diet-induced obesity and
diabetes [30]. B6 mice represent an intermediary pheno-
type between NZO and SJL at later age (> week 12)
with respect to sensitivity to diet-induced obesity and
diabetes. While the genetic and molecular basis for the
different diabetes susceptibilities of polygenic mouse
strains is largely unknown, we recently identified a natu-
rally occurring loss-of-function mutation in the Tbc1d1
gene in SJL mice that increases lipid oxidation in skele-
tal muscle and as a result confers leanness and protects
from diet-induced obesity and diabetes [8].
Diet
After weaning at week 3, male B6, NZO and SJL mice
were raised on three different diets, a low fat diet (SD;
8% calories from fat) and two different high fat diets,
one containing carbohydrates (HF; 35% calories from
fat) the other one a carbohydrate-free (CHF; 72% cal-
ories from fat). We have shown previously that HF diet
strongly induces insulin resistance and may lead to dia-
betes, whereas CHF equally induces peripheral insulin
resistance but protects from diabetes [7,31]. At week 8,
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mean body weight of SJL mice was 18.81 g (+/- 1.46 g)
on SD, 20.04 g (+/-0.99 g) on HF and 21.24 g (+/- 2.31
g) on CHF. In contrast, mean values for NZO mice
were 31.94 g (+/- 1.36 g) on SD, 33.72 g (+/- 4.39 g) on

HF and 36.6 g (+/- 4.83 g) on CHF, respectively. Mean
values for B6 mice were 20.1 g (+/- 2.56 g) on SD, 20.54
g (+/- 0.78 g) on HF and 22.32 g (+/- 1.38 g) on CHF,
respectively.

Figure 1 Work-flow. Complete work-flow of the cluster-based ANOVA approach with feature selection for multi-factorial MALDI MS profiling
data in biomarker discovery.
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Time
Blood samples were collected at an age of 3, 4, 6 and 8
weeks from the mouse tails.
Sample Preparation
Blood samples were obtained by cutting the tip of the
mouse tail and collecting the blood from the dorsal and
lateral tail veins into a Li-heparin-coated microcuvette.
Immediately after blood collection each sample was cen-
trifuged at 4°C for 5 min at 13,000 rpm. The blood
plasma was then transferred into 200L-microcentrifuge
tubes, shipped on dry ice to the mass spectrometry
laboratory and stored at - 80°C prior to further sample
preparation and MS analysis.
The amount of plasma obtained at each blood collec-

tion varied between 0 and 12 μl. Essentially the same
procedures were applied as reported previously for the
MALDI sample preparation of blood serum samples
[16,32], taking into account the partly lower sample
volumes available.
Since 5 μl were needed for each sample preparation, it

was possible to perform up to two sample preparations.
In a few cases only one or no sample preparation could
be performed. From each sample preparation 4 replicate
MALDI MS profile spectra were acquired, resulting in a
total of up to 8 technical replicates per sample. The
number of samples and spectra for each combination of
experimental factors is stated in Table 1.
MALDI MS spectra were obtained using an Ultraflex

MALDI-TOF/TOF mass spectrometer (Bruker Dal-
tonics, Bremen, Germany). Spectra were acquired auto-
matically for the m/z range of 700-10,000. MS profile
peak identification was achieved similarly to the meth-
ods described in reference [33] using a Q-Tof Premier
mass spectrometer (Waters, Manchester, UK).

Pre-Processing
The pre-processing work-flow of the MS data aims at
transforming the large number of data points in raw
spectral data (typically > 30, 000) into a much smaller,
statistically manageable set of peaks. Mass spectrometry
data is inherently noisy due to underlying chemical pro-
cesses (interference from matrix material, sample con-
tamination, degradation) and the physical measurement
process [34]. Various algorithms differing in

methodology, implementation and performance have
been proposed to deal with the noise. Several reviews
[35-38] describe and evaluate the pre-processing steps.
A widely accepted standard sequence of pre-processing
steps is:

1. Log transformation
2. Smoothing
3. Baseline correction
4. Peak alignment
5. Peak picking

A multitude of software packages implementing the
complete work-flow is available. Commonly used public
domain software tools are R and Bioconductor [39]
packages like msProcess or PROcess [40], Matlab
packages like LIMPIC [41] or Cromwell [42] and the
comprehensive C++ library OpenMS [43,44].
Statistical tests such as ANOVA require intensity

data for each feature to be normally distributed and
the variance to be independent of the intensity (addi-
tive error behavior). We tested different variations of
pre-processing methods and finally chose the following
procedure leading to stabilized variance: log transfor-
mation, smoothing using a median filter (windowSize
= 9) and baseline correction with a tophat filter [45]
(see Figure 1).
For peak alignment we used a heuristic approach: We

began with the identification of 43 reference peaks from
the mean spectrum of all 1122 spectra using continuous
wavelet transform (CWT) peak picking algorithm
[46,47]. Peak picking was performed for each individual
spectrum to be aligned. If a peak was found in an envir-
onment of 30 index positions around a reference peak
we calculated their distance. The distances to reference
peaks are constant for a spectrum and thus, the final
index shift value for a spectrum is calculated by aver-
aging the corresponding distances (for detailed visualiza-
tion of index shift values and a pseudo-code notation of
the alignment algorithm see Additional file 1: Peak
alignment).
Peak picking was done using CWT implemented in

Bioconductor [39] package msProcess employing second
derivative of a Gaussian function (Mexican Hat Wavelet)

Table 1 MALDI Number of Samples

week 3 week 4 week 6 week 8

SD HF CHF SD HF CHF SD HF CHF SD HF CHF

B6 36/5 31/4 12/2 36/5 40/5 37/5 38/5 38/5 32/5 39/5 34/5 28/5

NZO 35/5 35/5 32/4 40/5 36/5 40/5 37/5 38/5 40/5 28/5 34/5 34/5

SJL 4/1 0/0 16/3 12/2 0/0 40/5 32/4 40/5 32/5 36/5 40/5 40/5

Number of MALDI mass spectra and biological replicates for each factor combination. The first number indicates the number of spectra, the second states the
number of biological replicates. In total there are 1122 spectra for 155 different biological samples derived from 31 different mouse individuals.
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as mother function (parameters: scale.min = 3, length.
min = 7, noise.fun = “quantile”). Although CWT is
somewhat complicated and slow, it is very stable against
noise due to internal data smoothing and shows good
and reliable performance (see Bauer et al. [48] for a
detailed evaluation and comparison of different peak
picking algorithms). Furthermore, the internal data
smoothing of CWT makes the whole pre-processing
robust to changes of the smoothing parameters. Using
CWT we successfully identified 261 peaks.
The effects of log transformation, baseline correction

and peak matching are depicted in Figure 2. After apply-
ing logarithmic transformation to the spectra the corre-
lation between variance and intensity is still strong.
However even the combination of log transformation,
baseline correction and peak mapping does not lead to a
stabilization of the variance which is necessary for
applying our statistical analysis methods. Hence, in
order to assure homoscedasticity additional steps were
required. Obviously, there is still a linear dependency
between variance and intensity indicating a multiplica-
tive error model (see Figure 2). In order to account for

this, we applied another log transformation. We added a
pseudo-count of 0.1 to avoid the singularity at 0. Finally
we added an offset for convenience. After this transfor-
mation the data are homoscedastic (see Figure 3).
While the input for the complete pre-processing

work-flow consists of 1122 continuous spectra each with
32,000 data points, the output is a list comprising inten-
sities for 261 discrete peak positions for all 1122 spectra
(see Figure 1).
Technical replicates are not independent and hence

violate an assumption of ANOVA. Because of this, tech-
nical replicates were averaged prior to statistical analysis
(see Figure 1). By averaging, the 1122 individual spectra
were reduced to 155 mean spectra.

ANOVA
The main idea of ANOVA (ANalysis Of VAriance) [49]
is to partition the variance into subcomponents with
respect to one or more explanatory variables. The fol-
lowing types can be distinguished: One-way ANOVA,
Multi-way ANOVA, and ANOVA with mixed effects
model [50].
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Figure 2 Preprocessing. MALDI MD profiling raw data (top), log data (middle) and after baseline correction and peak alignment (buttom). The
left column show the effect on the spectra itself while the right column shows the corresponding standard error plots including linear fit
(orange line) and lowess fit (black line). The different colors reflect different genotypes (red: B6, green: NZO, blue: SJL).
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One-way ANOVA
One-way ANOVA is used to test for differences in one
variable describing k (two or more) independent groups,
e.g. multi-stage disease. For k = 2 one-way ANOVA is
equivalent to the t-test. Let μi denote the mean of the
ith group containing ni elements then ANOVA tests for
the null hypothesis μ1 = μ2 = ... = μk. If the null hypoth-
esis is rejected than at least two of the means are not
equal. The result does not provide any information
about how many and which means differ. Performing
the corresponding k · (k - 1)/2 pairwise t-tests would

lead to a loss in significance due to the required multi-
ple testing corrections. Using the residuum sum of
squares (RSS) of any kind of fitted linear model
(describing the variable of interest), ANOVA defines an
f-value. Assuming normal distributions within the
groups the f-value distribution is now f ~ F (k - 1, N -
k) and allows for the definition of a corresponding
p-value.
Multi-way ANOVA
Multi-way ANOVA analyzes the effects of d (two or
more) independent variables containing kd (two or
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Figure 3 Error Plot to ensure homoscedasticity. Error plot after log transformation to ensure homoscedasticity including linear fit (orange
line) and lowess fit (black line). The different colors reflect different genotypes (red: B6, green: NZO, blue: SJL).
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more) independent groups, e.g. analyzing different treat-
ments and various disease states. In contrast to multiple
one-way ANOVAs the RSS is calculated from a single
model for all variables. Thus, the degrees of freedom
and the distribution of the f-values are different which
has to be accounted for in the calculation of the corre-
sponding p-values.
ANOVA with mixed-effects model
ANOVA with mixed-effects model looks for the effects
of several (not necessarily independent) variables and
also accounts for the effects coming from combinations
of variables, e.g. analyzing the effect of different treat-
ments for various disease states. The underlying model
can either relinquish group combinations (model 1 with
p1 parameters) or include group combinations (model 2
with p2 parameters). If the first model is nested within
the second one, the f-value can be calculated as (n =
sample size, RSS = Residuum Sum of Squares):

f =

(
RSS1 − RSS2

p2 − p1

)
(

RSS2

n − p2

) (1)

The f value is distributed as f ~ F (p2 - p1, n - p2).

Stratification and Clustering
After pre-processing each peak should represent a pep-
tide or peptide combination (for simplification we focus
on the case of one peptide only). The concentration of a
peptide varies in the diverse samples (diet-genotype
combinations). The list of peptide peak intensities (N =
number of samples) will be called intensity profiles
within this manuscript.
Due to fragmentation/degradation each protein can

split up into multiple peptides and lead to multiple
peaks in the mass spectrum. These peaks are not inde-
pendent and the corresponding intensity profiles are
therefore correlated. High correlation between intensity
profiles can indicate related peptides as in multimer for-
mations or post translational modifications (PTMs).
However, in order to benefit from this kind of correla-
tion or any technical redundancies various methods
have been proposed [27]. For this study, we apply hier-
archical clustering using average linkage [51] with 1- r
as distance measure, where r denotes the Pearson-corre-
lation coefficient [52]. Each node in the resulting cluster
dendrogram represents several intensity profiles and
similar intensity profiles are aggregated in close
proximity.
Clustering is a standard tool in data mining but there

are only a few studies using clustering in this context (e.
g. [53]). A great advantage of our approach is the com-
bination of the similarity information with significance

by assigning p-values to the nodes. For the question
under consideration the appropriate statistical test like
t-test or ANOVA defines a p-value for each leaf. For
aggregated nodes based on n leafs the p-value is calcu-
lated from the mean intensity profile of corresponding
peaks. For technical and biological reasons intensity pro-
files are on different absolute scales. Therefore prior to
averaging intensity profiles, they have to be z-trans-
formed [51].

Classification and Prediction
Proper feature selection is essential for building a classifier
that accomplishes good performance without overfitting.
One can distinguish three kinds of feature selection meth-
ods: filter methods, embedded methods and wrapper meth-
ods [20,54]. Filter methods are independent of the
classification and do not consider the feature similarity or
orthogonality. Embedded methods include the feature
selection process in the classification training. Wrapper
methods use non-linear global optimization strategies like
genetic algorithms or swarm based intelligence approaches.
Wrapper methods succeed in optimizing classification
results but they also tend to overfitting. Embedded meth-
ods require complex algorithm adaptations for most classi-
fiers. Filter methods are straight forward but are often
outperformed by the other methods [55].

Results
ANOVA with mixed effects
A major goal of this work is the analysis of the mutual
influence of diet and genotype on blood proteins within
a T2DM study. For the data presented here, a straight
forward approach for this analysis was a mixed-effect
ANOVA of the form:

Y ∼ Genotype + Diet + time + Genotype ∗ Diet

This model investigates effects derived from all three
single experimental factors as well as the combination
of genotype and diet (symbolized by the ‘*’). Time as a
further experimental factor was of minor biological
interest during this analysis. The ANOVA analysis was
performed as described in the Methods section.

Average Linkage Clustering
In parallel to ANOVA an average linkage clustering was
performed. The cluster dendrogram combining corre-
lated peptides and ANOVA p-values (see Figure 4) was
calculated as described in the Methods section. The
experimental factors have different impact on the data
(see Figure 4). The most significant p-values are
obtained for genotype (up to 10 -91 ). The different
mouse types can be easily distinguished using the profile
data. Diet and the combination of genotype and diet
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seem to have a much smaller but still substantial effect
on the data (p-values of up to 10 -14 ) whereas time has
an even greater effect (p-values of up to 10 -23 ). Nearly
one third of all peaks - the whole right part of the den-
drogram - is associated with the experimental factor
time. On this global level the dendrogram allows an
intuitive overview of the complete data set as both simi-
larity and significance information are shown in a uni-
fied representation.

Profile Similarity for Hemoglobin
Protein composition of blood is typically dominated by
albumin and other highly abundant proteins such as
hemoglobin. Albumin and hemoglobin are large proteins
represented by a multitude of peptides and thus should
be presented by multiple peaks in our dataset. Assuming
that many of their peptides are correlated they should
be located in close proximity in the dendrogram. MS-
based profile peak identification revealed one albumin
and three hemoglobin peptides. Mapping the three
hemoglobin peptide peaks in the dendrogram shows
that they are indeed in close proximity (see Figure 5)

verifying our assumption. The peak identified as albu-
min is located in the big cluster in the central part.

Identification of biomarker candidates in Multi-Factorial
Studies
Table 2 provides an overview of the three clusters
marked with a red circle in Figure 4 and their corre-
sponding peaks. Each cluster comprises peptide peaks
that have been partially analyzed and identified. Cluster
1 comprises three peaks with a mean correlation coeffi-
cient of 0.71 and is the most significant result for factor
diet (p-value of 10-10). Cluster 1 has also the most sig-
nificant p-value for the combination of diet and geno-
type (10-14) and a p-value of 10-19 for genotype. A
detailed illustration of the intensity profile for peak m/z
4075 can be seen in Figure 6. This peak shows high
intensities for the combination of SJL-genotype and
CHF-diet whereas it is almost constantly low for all
other factor combinations. This effect is also visible with
lower significance for diet or genotype only. However,
only the combination of the two experimental factors
assesses the proper biological mutual influence.

Dendrogram of expression patterns

1

2 3

Diet Genotype

Diet
Genotype Time

P Values (− log10)

0 0

0 0

1 8

1 2

2 15

3 4

3 22

4 6

4 29

6 8

5 37

7 10

6 44

8 12

7 51

10 14

8 59

11 16

9 66

13 18

11 73

14 20

12 80

15 22

Figure 4 Cluster Dendrogram. Cluster dendrogram of all peaks identified in this dataset (see the Methods section for details). Every node is
characterized by four ANOVA p-values shown as a color-coded box with four fields: diet (upper left), genotype (upper right), time (lower right)
and combination of diet and genotype (lower left). The different -log10 p-value colorscales for the four factors are shown at the bottom. Three
clusters for further discussion (see text) are marked with red circles.
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Cluster 2 consists of three peaks with a mean correla-
tion coefficient of 0.94. The p-values for genotype and
week are significant: 10-31 and 10-19 respectively. The
intensity is higher in NZO mice and this effect increases
during aging while there are only minor differences
between the diets.

As already mentioned the genotype has the strongest
effect in this dataset. The four peaks of cluster 3 are
strongly associated with genotype (p-value of 10-75). The
mean correlation of the six peaks is 0.95 and they are
only present in SLJ genotype mice independent of diet
or week. A detailed illustration of the intensity profile

Excerpt of the Dendrogram (Hemoglobin Peaks)
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Figure 5 Dendrogram Hemoglobin. Excerpt of the dendrogram in Figure 4 showing the three peaks identified as hemoglobin (colored red on
the x-axis).

Table 2 Table for clusters 1-3

p values

Cluster mean cor Peak Diet Genotype Week Diet * Genotype

1 0.71 2262 1.3e-10 0.00015 2e-19 3.8e-11 0.0018 0.97 4.6e-14 1.2e-05

3618 6.7e-07 2e-08 0.004 8.8e-13

4075 2e-14 1.5e-29 3e-08 7.9e-14

2 0.94 9305 0.96 0.0019 3.3e-31 4.3e-36 2.8e-19 2.4e-17 0.12 0.013

8720 0.38 1.2e-23 2.8e-16 0.2

8735 0.57 8.2e-29 5.5e-22 0.21

3 0.95 6329 0.0012 0.022 7.5e-75 6.7e-50 0.34 0.24 0.18 0.19

4237 9.5e-05 1.1e-70 0.61 0.022

5029 0.00014 1.3e-91 0.82 0.14

5822 0.0023 5.7e-81 2.3e-07 0.82

Table for clusters 1-3 of Figure 4. For every cluster and peaks aggregated within this cluster, the correlation of the peaks and the ANOVA p-values for the three
different experimental factors and the factor combination of Diet and Genotype are given. P-values are given for every peak separately and for the complete
cluster.
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for peak m/z 3388 can be seen in Additional file 2:
Results for Genotype.
In the middle of the dendrogram (of Figure 4) a big

cluster is visible containing 43 peaks of which one has
been identified as albumin. All 43 peaks in this cluster
have a mean correlation coefficient of 0.84. This cluster
is not associated with any of the experimental factors.
All p-values are given without multiple testing correc-

tion. Applying rigid Bonferoni multiple testing correc-
tion for 261 tests, the p-value threshold of 0.05 changes
to 0.05/261 = 0.0002. Hence all p-values discussed
above remain significant.

Classification and Prediction
The methods established in the previous section are
also well-suited for obtaining reliable and precise clas-
sifications and predictions. This can be demonstrated
by the example of diet and the classification perfor-
mance can be evaluated by cross validation. Thus the
task is to predict the diet applied from the data. The
other two experimental factors are less suited for pur-
pose of demonstration because genotype classification
is rather simple (c.f. Additional file 2: Results for

Genotype) and time is sampled from a continuous sup-
port and less suited for formulation of a classification
task. Using the method described above for feature
selection we avoid the shortcoming of typical filter
methods as clustering incorporates information about
similarity and orthogonality. We found it to be suffi-
cient to use one representative feature from the cluster
to achieve classification performance comparable to
wrapper methods.
In order to demonstrate the advantages of cluster-

based ANOVA we built a classification system with a
decision tree based classifier for the experimental factor
diet [56]. Since the optimal feature size for classification
strongly depends on the classifier and on feature-label
distribution [57], we performed classification with differ-
ent feature set sizes: 3, 5 and 8. The feature selection
itself was done three times by selecting top features
from:

1. ANOVA analysis without clustering: Selection of
peaks with the most significant p-values for experi-
mental factor diet (Peaks m/z: 1883, 3267, 3407,
4075, 4237, 5176, 5536, 8332).
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Figure 6 Peak 4075. Normalized peak intensities for the peak at m/z 4075 representing cluster 1 of the dendrogram in Figure 4. Peak
intensities for all 3 experimental factors are drawn as bar plots with error-of-mean error bars. Genotype and diet are given below the bars for
each week. The missing values for the SJL-HFD week 3 and 4 samples are due to the sample collection problems described in the Methods
section.
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2. Ant colony optimization strategy: Using an ant
colony optimization strategy [58,59], we identified a
set of features with optimized classification results in
a similar way to Ressom et al. [20] with 200 ants
and 100 iterations (Peaks m/z: 3267, 3437, 3575,
4041, 4237, 4965, 6569, 7058).
3. ANOVA analysis including clustering: Selection of
clusters or peaks with the most significant p-values
for the experimental factor diet. For every cluster,
the peak with the most significant p-value is selected
as representantive for the cluster (Peaks m/z: 1883,
3267, 3407, 3556, 3943, 4075, 5176, 8332).

Confusion matrices for 10-fold cross validation are
shown in Table 3 together with a p-value for the classi-
fication result calculated by comparing the performance
of the selected set of features with the performance of
randomly selected sets.
Using ANOVA without clustering for feature selection

leads to a 10-fold cross validation error of 53% for 3 fea-
tures (p-value: 0.0028), 52% for 5 features (p-value:
0.006) and 42% for 8 features (p-value: 1 · 10-06). As
expected the ant colony feature selection outperforms
the simple filter method with a cross validation error of
40% for 3 features (p-value: 1 · 10-08), 37% for 5 features
(p-value: 2 · 10-08) and 39% for 8 features (p-value: 5 ·
10-07). However, our improved feature selection techni-
que leads to performances comparable to wrapper
method in terms of cross validation errors (44%, 40%,
38% for 3, 5 and 8 features) and p-values(1 · 10-6, 7 · 10-
7, 3 · 10-7 for 3, 5 and 8 features).

Discussion
The ANOVA model applied analyzes the effects of sin-
gle experimental factors as well as the combination of
diet and genotype. Before applying ANOVA we ensured
that all required assumptions are fulfilled (e.g.

homoscedasticity and c2 distribution of errors). Hence,
ANOVA is the perfect candidate for the statistical analy-
sis and preferable to non-parametric Kruskal-Wallis test
since is has greater power.
Peaks identified in the analysis of feature combination

provide valuable additional information. For instance,
the most significant result found for the combination of
genotype and diet was identical with the most significant
result for diet (see Table 2). Looking solely at the factor
diet we would conclude that peak m/z 4075 is correlated
with diabetes-protective CHF diet [7,31]. An analysis of
the factor combination, however, shows that this corre-
lation with the CHF diet only stems from the SJL geno-
type (see Figure 6), which is completely invisible for
single factor analysis.
Another interesting outcome of our analysis is the fact

that the peak m/z 8735 in cluster two is associated with
the growing fat of NZO mice. First it is significantly
higher in NZO mice then in the other genotypes that
do not develop prominent diet-induced obesity. Sec-
ondly it increases with age and thus with body weight of
the NZO mice. Therefore the corresponding polypeptide
is a candidate biomarker and a potential target towards
T2DM disease mechanism. Thus, further in-depth func-
tional analysis of this marker, and its relation to diet-
induced obesity and insulin resistance may provide
important insights into the pathophysiology of diabetes
and its secondary complications.
As seen in the Results section, there is no direct over-

lap between the top eight features for classification of
diet selected with ant colony optimization and the top
features selected with ANOVA. However, the best fea-
tures of ant colony optimization are also characterized
by top ranked p-values. Both lists of top 50 features
show a rank correlation of 0.5 (Spearman correlation)
and hence both lists are not that different. Even the best
features have only low discriminative power and as a

Table 3 Confusion Matrices

CHF HF SD

nFeat Method CHF HF SD CHF HF SD CHF HF SD Error P-Value

3 ANOVA 33 14 18 17 24 24 16 16 36 0.53 0.0028

ACO 45 4 16 10 33 22 11 16 41 0.4 1e-08

Cluster ANOVA 40 12 13 15 28 22 9 16 43 0.44 1e-06

5 ANOVA 36 13 16 18 22 25 20 11 37 0.52 0.006

ACO 48 3 14 12 33 20 10 15 43 0.37 2.7e-08

Cluster ANOVA 40 13 12 15 38 12 4 24 40 0.4 6.7e-07

8 ANOVA 41 12 12 16 34 15 6 22 40 0.42 9e-06

ACO 45 5 15 12 30 23 4 18 46 0.39 5.5e-07

Cluster ANOVA 43 10 12 14 35 16 5 19 44 0.38 3.3e-07

Confusion matrix for 10-fold cross validation for experimental factor diet using random forest classifier. The feature selection was done by three different
methods: ANOVA, ant colony optimization (ACO) and cluster-based ANOVA. The feature selection was performed three times with different number of features: 3,
5 and 8. Numbers in bold print represents true positives.
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result there are multiple sets of features leading to simi-
lar classification results as seen in Table 3.
In the middle of the cluster dendrogram (Figure 4)

there is a cluster having many very good correlated
peaks. One possible reason for that is a large common
protein being the common source of all those peaks. A
perfect candidate for this role would be albumin as it
consists of 608 amino acids. This hypothesis is sup-
ported by the fact that one of the peaks was indeed
identified as belonging to albumin.
Table 4 shows the distinctive properties of our

approach compared with other methods. Standard t-test
is often the method of choice for statistical testing and
the selection of suitable features for classification and
prediction. However, standard t-test is not adequate for
multi-dimensional datasets since it investigates only one
variable with exact two independent groups at the same
time. F-test allows for testing multi-dimensional datasets
and ANOVA enables to investigate factor combinations.
Similarity of features is not considered by any of the sta-
tistical tests. Swarm intelligence or genetic algorithms
are a different group of algorithms aiming at biomarker
candidate identification. Although they are applicable to
multi dimensional datasets and take data redundancy
into account they often fail in producing deterministic
results and p-values. Our work is designed to retain all
capabilities of statistical testing while considering feature
similarities at the same time. In addition to having simi-
lar performances comparable with Swarm intelligence
methods, other great advantages of our system are
reduced complexity and computational requirements.
While feature selection with ant colony optimization
took roughly 5 h with both CPUs on a Intel Core2 Duo
CPU (2.66 GHz), the cluster based ANOVA took less
than 2 seconds.
Another advantage of our approach is the possibility

to use only one, representative peak from a cluster for
further analysis. We have seen that the peaks identified
as hemoglobin are located in close proximity in the den-
drogram. Hence, we can assume that many of the sur-
rounding peaks are also most likely derived from
hemoglobin. Nonetheless, it has to be kept in mind that
many peptides originating from the same parent protein

will often behave differently. Our approach aims at iden-
tifying co-occuring peptides and hence leads to a rea-
sonable reduction of the data. More complex interaction
(e.h. high abundance of a protein causes low abundance
of another peptide) would require other processing
methods, if predominant.

Conclusion
We have introduced a method that is suitable for identi-
fication of biomarker candidates in multi-factorial
MALDI-TOF MS profiling studies given an appropriate
pre-processing. Applying this method to our data set we
were able to identify peaks that are characteristic for the
combination of two factors as well as peaks that are sig-
nificant for single factors. These results are significant
even when applying rigid multiple testing corrections. It
is shown that ANOVA is an adequate approach for the
identification of biologically interesting biomarker candi-
dates from MS profiling data based on multi-dimen-
sional experimental design. Furthermore, classification
based on features selected with our approach perform
similarly well as those generated with more complex
global optimization methods.

Additional material

Additional file 1: Peak alignment. Visualization of the results of the
peak alignment method. The heuristic algorithm used for peak alignment
is presented in pseudo-code.

Additional file 2: Results for Genotype. Scatter plot of peak intensity
values for peaks 3388 and 5029 and peak intensities profile for peak
3388. The peaks are in the list of the most significant results for the
experimental factor genotype.
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