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A model-based groupware solution for distributed real-time 

collaborative 4D planning via teamwork 

  

Wei Zhou1; Panagiotis Georgakis2; David Heesom3; Xiandong Feng4 

 

Abstract 

Construction planning plays a fundamental role in construction project management that 

requires team working among planners from a diverse range of disciplines and in geographically 

dispersed working situations. Model-based four-dimensional (4D) computer-aided design (CAD) 

groupware, though considered a possible approach to supporting collaborative planning, is still short of 

effective collaborative mechanisms for teamwork due to methodological, technological and social 

challenges. Targeting this problem, this paper proposes a model-based groupware solution to enable a 

group of multidisciplinary planners to perform real-time collaborative 4D planning across the Internet. 

In the light of the interactive definition method, and its computer-supported collaborative work (CSCW) 

design analysis, the paper discusses the realization of interactive collaborative mechanisms from 

software architecture, application mode, and data exchange protocol. These mechanisms have been 

integrated into a groupware solution, which was validated by a planning team in a truly geographically 

dispersed condition. Analysis of the validation results revealed that the proposed solution is feasible for 

real-time collaborative 4D planning to gain a robust construction plan through collaborative teamwork. 

The realization of this solution triggers further considerations about its enhancement for wider 

groupware applications.  

 

Keywords: 4D CAD; collaborative construction planning; CSCW design; distributed groupware; 

teamwork 
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Introduction 

 

Extensive studies have discussed four-dimensional (4D) computer-aided design (CAD) topics 

in the construction field (Koo and Fischer 2000; Li et al. 2003; Dawood et al. 2005; Jongeling and 

Olofsson 2006; Golparvar-Fard et al. 2009; Kim et al. 2010). Collier and Fischer (1996) initially 

proposed to link a project plan with its 3D project model for simulating a construction sequence. In 

such a way, potential conflicts can be discovered before the project delivery. Some industrial projects 

such as the Walt Disney Concert Hall (Goldstain 2001) have demonstrated benefits adopting this 4D 

(3D plus time) notion. Following this direction, research efforts have extended to the nD modeling 

(University of Salford 2005) by applying advanced building information modeling (BIM) technology. 

A series of case studies also discussed the effectiveness of BIM applications in the 

Architecture/Engineering/Construction (AEC) field (Manning and Messner 2008; Khanzode et al, 

2008; Pazlar and Turk 2008). Undoubtedly, these investigations are valuable in construction to analyze 

multifactor relationships among the logical, temporal, and spatial dimensions using information 

communication technology (ICT) tools. Despite their advancements in cutting-edge applications using 

3D models (both CAD and BIM), none of the above examples have discussed model-based groupware 

for distributed collaboration, which still remains challenges particularly in the fragmented construction 

field for promoting multidisciplinary teamwork.  For the purpose of investigating this area of work, this 

paper discusses a model-based groupware solution targeting distributed real-time collaborative 4D 

construction planning. 

 

The construction industry has a multidisciplinary characteristic because of different specialties 

involved before and during project delivery. 3D CAD/BIM technologies provide subcontractors with 

possibilities to utilize a unique 3D building model throughout the project for multidisciplinary 

collaboration (Ku et al. 2008). To enable this multiparty collaboration, synchronous and asynchronous 

data access/control for the 3D model is essential. BIM solution providers demonstrate different 

approaches to this functionality in their authoring tools. Autodesk creates worksets in its Revit products 

such that project team members can work on different parts of a project at the same time (Autodesk 

2010), while Bentley uses ‘i-model’ as a container for open information exchange (Bentley 2011). 
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Multidisciplinary collaborators can hence access this to share project information for integrated project 

delivery. Gehry Technologies adopts the version control system of Subversion in its Digital Project 

with which project models can be controlled over independent parts for team members’ read/write 

operations (Gtwiki 2009). Tekla Structures applies the master/working model to realize model control 

in its server/client applications (Tekla 2010). Although these model-based solutions allow multiple 

users to concentrate on the 3D building model for collaboration, they merely aim at the low level of 

model data integration and sharing. Beyond this data level’s collaboration, limited features are 

available from them to promote multidisciplinary collaborators’ teamwork, which is more concerned 

about human issues particularly in the distributed context (Grudin 1994; Shelbourn et al. 2007).  

 

Construction project management calls for effective teamwork and synergy (Uher and 

Loosemore 2004) whilst construction planning plays a fundamental role in project management 

(Hendrickson 1998). However, a significant phenomenon in construction is that multidisciplinary 

subcontractors of a project are often geographically dispersed before on-site work starts. Taking 

construction planning into account, multidisciplinary planners in a planning team usually focus on their 

own specialty work in different places. Their independent planning work inevitably causes conflicts 

when integrated for the project delivery (Kang et al. 2007; Zhou et al. 2009). For overcoming this kind 

of teamwork obstacle, 4D technology is highlighted for collaborative construction planning (Heesom 

and Mahdjoubi 2004). An empirical study (Kang et al. 2007) shows that 4D simulation across the 

Internet can help detect more conflicts in a construction plan. Thus networked collaborative 4D CAD 

can benefit geographically dispersed planners’ work. The collaborative approach applying 4D is also 

envisaged to improve other knowledge based work, e.g. 4D-BIM construction safety planning 

(Sulankivi et al. 2010). Based on these initiatives, it is evident that a model-based 4D-planning 

groupware can support a group of geographically dispersed planners to achieve a robust construction 

plan through collaborative teamwork. Nevertheless, the realization of this groupware has three 

challenges in methodological, technological and social aspects.  

 

The methodological challenge is to properly address the relationship between 4D modeling 

and planning in a networked environment. Since the initiation of 4D technology over a decade ago, 

almost all studies and application solutions target stand-alone systems for individual planners. Their 
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typical methods of 4D CAD creation are to manually link an inputted 3D model with a developed 

project plan. In such a way, elements of the 3D model – the product breakdown structure (PBS) can 

connect with plan tasks – the work breakdown structure (WBS). 4D dynamic sequence simulation then 

can be generated to review the plan using some third party toolkits such as Autodesk Navisworks, 

Bentley ProjectWise Navigator, etc. This 4D CAD creation method needs separate tools for 3D 

modeling, planning and 4D simulation. Despite adopting a 4D CAD functionality into 3D modeling 

environments, commercially available BIM authoring tools, such as Tekla, Digital Project and others, 

still require the user to input developed plan data to generate 4D CAD. Such a fragmented working 

process is obviously inconvenient and ineffective, particularly in networked situations to integrate 

various plan data from different planners. Targeting this problem, Sriprasert and Dawood (2003) 

created the multi-constraint planning system that integrates plan data via a central database. The system 

enables multiple users to access the database from the web and mobile platforms to remotely operate 

plan data. Nonetheless, it applies the typical 4D CAD creation method to connect the developed plan 

database with the inputted 3D model. This methodological limitation makes the system a collaborative 

review system where multiple users can examine the developed plan being presented by the 4D CAD, 

rather than a collaborative planning system where multiple users can engage in planning. Integrating 

4D modeling into the planning process could be a viable approach to networked collaborative planning 

for the 4D groupware creation. 

 

Integrating 3D planning and 4D simulation gives rise to the technological challenge in the 

network condition. Related studies show the possibility of using 3D CAD model directly for planning 

(Frohlich 1997; Vries et al. 2007) and BIM model for 5D (4D plus cost) modeling (Tanyer and Aouad 

2005) in the stand-alone situation. These research achievements invoke a further consideration that 

collaborative 4D construction planning could be achieved by applying a 3D model underpinned by the 

network infrastructure. Networked multidisciplinary planners can thus concentrate on a unique 3D 

model to collaboratively perform construction planning, and generate 4D simulation to examine the 

robustness of the plan during the planning. To satisfy these needs, the 4D groupware should own the 

features of identifying and handling different data types, which come from multiple users when they 

perform concurrent planning and take collaborative actions across the Internet. Synchro 4D as a 

commercial application demonstrates its capability for concurrent planning. It uses a server/client 
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software architecture where the client application enables individual planners to perform 3D planning 

and 4D modeling while the server application can integrate all plan data from clients (Synchro 2010). 

Similar to the model-based BIM authoring tools discussed above, Synchro 4D only enables the user to 

update and integrate plans at a data level. This system limitation hampers users from gaining sufficient 

information with each other, and thus it is unlikely to turn their individual concurrent planning and 4D 

modeling into collaborative teamwork.  

 

Social dynamics brings challenges for collaborative teamwork in groupware development 

(Grudin 1994). 4D groupware creation is particularly about supporting users’ tasks, behaviors and their 

social activities as teamwork for problem solving in a shared 3D context. Zhou et al. (2009) highlighted 

three levels of collaboration in the interactive definition method to deliver collaborative 4D planning 

via teamwork. At a low level, generated plan and simulation data from multiple users can be integrated 

similarly to Synchro 4D. At middle and high levels, multidisciplinary planners can use computer 

systems to communicate and interact with each other directly and indirectly. In such a way, they can 

organize and coordinate their individuals’ tasks and behaviors in the networked environment. This kind 

of computer-supported collaborative work (CSCW) is essential to foster and motivate effective 

collaboration across multidisciplinary boundaries to be interdisciplinary work (Fischer et al, 2005). 

Fruchter (1999) highlighted that computer supported collaborative teamwork needs to be integrated 

into system development to enhance networked information exchange and communication. Due to 

these CSCW requirements from teamwork, the 4D groupware thus needs to provide a set of 

mechanisms to satisfy team-based collaborative features and functionalities in analyzing a 3D model 

for planning strategy exploration, coordinating planners’ communications and actions, etc. 

Nevertheless, a survey shows that CSCW in the construction industry does not get deeper from the 

current information-rich multidisciplinary work to the more creative interdisciplinary work (Garner 

2003). The majority of popular model-based 3D/4D CAD/BIM solutions are usually short of related 

collaborative mechanisms to support intimate teamwork. This disadvantage hampers the creation of 

groupware solutions for more creative applications. 

 

The aim of this paper is to discuss a model-based groupware solution for distributed real-time 

collaborative 4D construction planning. It can enable multidisciplinary planners to focus on a unique 
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3D model to perform interdisciplinary collaborative planning across the boundaries of time, space, and 

specialty. The innovation of this groupware solution lies in its collaborative mechanisms to handle 

multilevel data for interactive and collaborative teamwork. Combining both social and technical 

considerations, the paper firstly discusses the method and its underlying CSCW design of the 

interactive collaboration in 4D construction planning. On the basis of this discussion, it further 

proposes the groupware solution to disclose its collaborative mechanisms in terms of software 

architecture, application mode and data flow, as well as data exchange protocol. This is accompanied 

by the implemented prototype named 4DX and its application features. Furthermore, the paper 

delineates the validation of the proposed solution conducted by a planning team in a truly 

geographically distributed condition. Some unveiled insights in the validation contribute to the 

discussion of further enhancement of the solution. 

 

Method of Collaborative 4D Construction Planning 

 

Collaborative 4D construction planning asks for multidisciplinary planners to perform, as a 

team, planning work based on the network infrastructure. It needs contributions from individual 

creativity and social creativity (Fischer et al. 2005). In order to achieve this aim, the interactive 

definition method was created to involve individual planners for a real-time collaboration (Zhou et al. 

2009). The method emphasizes an open shared social-technical context, social interaction, user-system 

interaction and plan data incorporation. This section highlights the essence of 4D interactive 

collaboration in the interactive definition method and further clarifies the principle of CSCW design in 

the method. 

 

Interactive Collaboration in 4D Planning 

 

Collaborative 4D planning is a correlated social-technical activity. Its correlation includes 

three levels of interaction in a social-technical context, in which inputting a unique 3D model is 

essential to achieve this aim. Within such a context, social interaction among collaborators is available 

via human-human communication at a high level. Multidisciplinary planners can communicate with 

each other to discuss planning strategies and formulate planning solutions. User-system interaction, at a 
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middle level, enables planners to interactively explore the 3D model and perform planning via artifacts 

in their local systems. It can also promote planners’ social interaction at this level. In view of the 

multidisciplinary collaborative nature in this multiparty planning, a proper CSCW design can ensure 

planners’ work is open-ended and motivated. Based on the on-line connectivity, created plan tasks by 

different planners are incorporated to be a complete plan at a low level. 4D simulation, as a plan 

conflict detector, is generated during plan task definition. Combining these aspects, distributed 

collaborative planning can lead to a synthesized plan and 4D simulation (Figure 1).  

 

In order to realize this collaborative planning, inputting a 3D model (either entity-based or 

BIM-based) can foster both social interaction and user-system interaction for effective teamwork. This 

unified 3D model permits access to all planners such that they obtain their own building information, 

namely PBS, through 3D navigation and direct manipulation. These operations include zoom in/out, 

pan, rotate, decompose, and pick up/off, etc. in a 3D environment. Planners can thus define associated 

tasks on related 3D elements, and further generate 4D simulation. In the interactive definition method, 

a set of established parameters called simulation (SIMU) items can help planners define plan tasks and 

related simulation on 3D elements. This method is thus named PBS-create-WBS (PBSWBS). Its 

feasibility has been verified in a local area network (LAN) situation (Zhou et al. 2009), in which related 

CSCW design in the method plays an irreplaceable role in the collaboration process. 

 

4D CSCW Design 

 

Greenberg (1991) stated that "CSCW is about how people work together, and how the 

computer and related technologies affect group behavior." For the purpose of effectively supporting 

geographically distributed planners for collaborative 4D planning, any related CSCW design ought to 

facilitate the planners’ mental process, social interaction and task performance. It strives to make their 

planning process open-ended, synchronous and communicated through teamwork. According to the 

enumerated features of communication, configuration, coordination, information access, interaction, 

and usability in CSCW design (Mills 2003), the interactive definition method involves a series of 

collaborative teamwork sessions in its application processes. Individual planners hence can team up for 
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co-creating a robust plan across the Internet. These sessions are co-navigate, co-sort, co-plan, co-

simulate and co-talk (Zhou et al. 2009).  

 

Co-navigate and co-sort sessions are dedicated to analyzing spatial structure of a 3D building 

model. Planners can co-navigate and analyze the 3D model together via zoom, pan, rotate, and 

decompose to identify suitable 3D elements for defining plan tasks. The co-sort session enables 

planners to interactively pick out related PBS items together from the 3D model whilst the co-plan 

allows them to define simulation items on the co-sorted 3D elements for concurrent planning. The 

defined items are then broadcast to every online planner and synthesized to be a complete plan. In 

conjunction with online planners, co-simulate can help detect potential conflicts in the generated plan 

across the network. Involved online planners can check potential conflicts, not only in their own, but 

also the overall plan during the co-simulate session. In order to maintain a live social interaction in 

planning, the co-talk session is available for this purpose. Audio-video conferencing and text chatting 

are applicable choices in the session. 

 

These collaborative sessions have two types. One is a conditional session, which requires an 

invitation-acceptance agreement among collaborators. Co-navigate, co-sort, and co-simulate belong to 

this type. The conditional session has a specific lifecycle about creation, process, and termination. Its 

creation is dependent on the session holder and potential session attendees. The session holder is an 

online collaborator who creates a collaborative session by sending out an invitation. Other online 

collaborators are potential session attendees. Once accepting an invitation from a session holder, they 

become the session attendees and a live conditional session is then created for teamwork. During a live 

session through the processes of co-navigate, co-sort or co-simulate, the involved attendees and the 

session holder can collaborate together for planning work. The session holder plays a dominant role in 

controlling the session’s progress. Both the session holder and the attendees can perform related 

concurrent operations, which are synchronously reflected in their systems. A live session can be 

terminated at any time by either the session holder or the session attendees. Another session type is an 

unconditional session, which can be launched by any online collaborators at any situation. The co-talk 

session is a kind of unconditional session for communication using text chatting. The characteristic of 

the unconditional session is that online planners can conduct them freely and concurrently. It has no 
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specific lifecycle about creation and termination when applying it. The co-plan session can be either 

conditional or unconditional session depending on collaborators’ needs. 

 

Conditional and unconditional sessions have different features. The conditional session is 

close-ended that its collaborators are unable to join in another live conditional session at the same time. 

A live conditional session has no influence on other sessions and on non-invited collaborators, who 

also have no permission to join a created live session. Some synchronous operations and controlled 

data of the session, e.g. zoom, pan, rotate etc. are limited within the session holder and the attendees. 

The unconditional session, on the other hand, is open-ended that online planners can collaborate with 

each other whether they are in a session or not. In other words, once planners are connected with the 

network, they can perform unconditional sessions of text chatting and co-plan without constraints. It is 

possible that several conditional sessions co-exist during planning. In such a scenario, an unconditional 

session is a bridge to connect those parallel sessions and non-session planners for information exchange 

(Figure 2). These features provide planners with flexible choices in collaboration. Depending on 

specific planning situations, planners can choose related partners to create suitable conditional sessions 

for focus group collaboration. Thus the whole collaborative teamwork in planning can be organized 

dynamically and effectively.  

 

Proposed Solution 

 

In the light of foregoing discussion on 4D interactive collaboration and related CSCW design, 

the distributed 4D groupware ought to offer certain functionalities to underpin related social-technical 

activities to achieve collaborative planning. These functionalities are helpful to clarify the groupware 

solution from three aspects: software architecture, application mode and data flow, as well as data 

exchange protocol. The software architecture includes the main functional modules and components of 

the system to support collaborative activities. It also decides its application mode and data flow when 

performing those activities. In the meantime, stipulating a set of data exchange protocols is necessary 

for realizing effective data transmission in real time. In view of the current dominant situation of entity-

based 3D CAD model in the industry (Tse et al. 2005), the proposed 4D groupware targets non-BIM 

based 3D models to discuss its development in a more generic condition. 
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Software Architecture 

 

The proposed software architecture consists of a client tier and a server tier (Figure 3). These 

two tiers own the modules of 4D builder and 4D item pool respectively. Both tiers also contain a 

module of communication services with related management components. Among these modules, the 

4D builder in the client tier includes two components of 3D element container and SIMU item 

container. They can provide PBS information for simulation item generation and restoration. The 4D 

builder also involves three components including file management, plan browser and 4D player for 

those containers’ management and utilization. In the server tier, the 4D item pool module owns three 

components of 3D element container, SIMU item synthesizer, and role-attribute reactor to provide 

collaborative information to the client tier. It links several components of browsers and file 

management. These four fundamental modules are all connected with an event hub module in two tiers 

for data transmission. 

  

Event Hub 

 

The event hub module, being included in both the server tier and client tier, takes 

responsibility for exchanging data between two tiers. It has an event-based mechanism for identifying, 

sending, and receiving information to ensure effective data exchange. In order to achieve this aim, the 

event hub contains a set of components including event enumerator, event identifier, data carrier, and 

exchange centre (Figure. 4). The event enumerator defines a series of system events, which can deal 

with any data operations and updates from both system and users. They help describe specific requests 

for data sending or receiving internally and externally, and then choose corresponding operations. The 

event identifier functions by getting an incoming event internally or externally, and interprets it 

according to event definition by the event enumerator. As a result, the data carrier is triggered to 

choose a suitable data buffer for loading the coming data. These data then are passed to either the 

exchange centre for external transferring or internal components directly. Both event hubs in the client 

tier and server tier adopt the same event-based mechanism. The only difference lies in their converse 

operations for data exchange, e.g. an event can result in sending operation in the client tier whilst the 

same event can lead to receiving operation in the server tier. 
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Communication Services 

 

Both the client and server tiers contain a communication services module. In the server tier, 

the module has the component of role services to provide definition of specialty role for collaborators. 

Considering collaborative planning from multidisciplinary planners, collaborators need to explicitly 

decide their expertise in the planning process. The role services component in the server tier can record 

collaborators’ role choices and their states in collaborative processes. The role definition is managed by 

the communication management component, which allows input/output or directly edit operation to 

manage specialty roles. Besides these role services, the communication services module is also in 

charge of server start or stop as well as data dispatching among collaborators. Underpinned by the 

event hub, the communication services module can identify upcoming events’ sources and destinations, 

and thus dispatch carried data to the relevant collaborators.  

 

In the client tier, the communication services module consists of the components of the role 

register and the messenger. According to the user’s specialty, the role register component enables 

collaborators to select a state and a role provided from the role services component in the server tier. It 

is also used for recording and displaying other collaborators’ states. On the other hand, the messenger 

can support collaborators’ communication through text chatting. By receiving data from the server tier, 

the messenger displays incoming texts to local planners. It also ensures collaborators input text and 

send to targeted online planners via the server. Additionally, the conference centre component can host 

other advanced built-in components for audio-video conferencing if needed. Besides this option, 

commercially available audio and videoconferencing services are applicable for concurrent engineering 

as they can directly contribute value to team efforts (Pena-Mora 2000). 

 

4D Builder 

 

The 4D builder module in the client tier can synthesize simulation items with 3D model 

elements. Its SIMU item container component contains a series of text-based task items to record 

defined WBS items and their associated PBS elements. Another component of the 3D element 
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container possesses a series of 3D graphical elements to represent inputted PBS. Because a simulation 

item wraps PBS elements with WBS item together, the SIMU item container and the 3D element 

container are interrelated with each other. Every item in the SIMU item container can refer to its related 

3D elements in the 3D element container, and vice versa. In the offline condition, these two containers 

can be managed by their file systems to input and/or output 3D model files and simulation item files 

respectively. In the online condition, the containers can be filled in through retrieving data from the 4D 

item pool in the server tier. Additionally, both of them in the client tier have a browser to view their 

contents. The browser of the 3D element container is also a 4D player. It can not only assist 3D model 

analyzing and viewing, but also present 4D simulation when defined simulation items are synthesized. 

The browser of the SIMU item container can help view defined simulation items and hierarchal plan 

structure, which is generated by a plan editor. The planner can define simulation items via this editor 

by inputting appropriate values 

 

4D Item Pool 

 

The 4D item pool module in the server tier has three components of 3D element container, 

role-attribute reactor, and SIMU item synthesizer. As a central data repository, these three components 

in this module can supply the client tier with unique 3D elements and their attributes, as well as 

synthesized simulation items. All of them provide content management through their own file systems, 

and each of them owns a browser for checking its content.  

 

The applicable 3D model for this module adopts Autodesk .3DS and Microsoft .X formats. A 

simple 3D model browser can be used for checking a loaded 3D model in the 3D element container. It 

displays an overall 3D model profile for the administrator’s management. Specific spatial information 

of the loaded 3D elements is unnecessary to show in the server tier. Nevertheless, their names need to 

be listed in the role-attribute browser to build correspondence between defined specialty roles and the 

3D elements. This correspondence will help decide each 3D element’s attribute for every defined role. 

The planners can thus perform simulation item definition according to generated 3D elements’ 

attributes. The SIMU item synthesizer is applied for integrating defined simulation items from different 

planners. According to every defined item’s specification and overall plan situations, the synthesizer 
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will assign each item with a unique order to generate an integrated plan. Its browser can be applied for 

viewing the generated hierarchal plan. 

 

The role-attribute reactor takes the responsibility of generating 3D elements’ attributes – the 

PBS elements’ attributes for each collaborator. It also deals with PBS read/write access control. As 

collaborators focus on their own PBS elements for task definition, the reactor can thus lead to such a 

result that only writable PBS elements of a collaborator can be defined with tasks. It means that 

collaborators ought to decide PBS elements’ read-write privilege beforehand so as to suit their planning 

specialties. Such a mechanism was described as user’s perspective in the research of distributed virtual 

engineering (DVE) (Maxfield 1998). It applied an information mask, namely filter, to get meaningful 

information for different clients. A similar concept can be applicable for model-based collaborative 4D 

planning to identify planners’ interested information. In case an inputted 3D model owns building 

information, e.g. BIM model, its PBS items’ read-write privilege for collaborators can be decided 

simply according to its internal differentiation. However, an inputted 3D model without building 

information requires a mechanism to identify PBS, and then decide its privilege for collaborators. In 

the proposed groupware, visual identification is a feasible way to realize this aim. Given a 3D element 

without building information, the role-attribute reactor ought to consider four possible visual 

identification results for attribute generation: Free (F), Readable (R), Writable (W), and Conflict (C). A 

specific element attribute value is dependent on all collaborators’ selection results. This interrelated 

situation is illustrated in Table 1.  

 

Situation 1 in Table 1 shows a PBS element is of free attribute for all collaborators. It can be 

selected by the collaborators to set the writable attribute if the element belongs to their domains. Once a 

PBS element – a 3D element is set with the writable attribute by only one collaborator e.g. collaborator 

A, then this element’s attribute becomes readable for other collaborators. This condition is 

corresponding to the situation 2 in the table. In case a writable element is further picked out by another 

or more collaborators, this element then is in a conflict state. Its attribute is a conflict for those co-

owners but not other collaborators who do not select the element. It still has a readable attribute for 

them. This condition is corresponding to the situation 3 in the table. Given an element with the conflict 

attribute, co-owners could give up their selections so that the element can be of either writable attribute 
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for only one owner, or free attribute for all collaborators. This role-attribute reaction mechanism can 

dynamically generate a PBS element’s attribute for every collaborator depending on all collaborators’ 

selections. Its specific attribute is different from role to role. The administrator can monitor this 

assignment through the role-attribute browser. 

 

Application Mode and Dataflow 

 

The proposed distributed software architecture is based on the server/client paradigm. The 

server is a central data repository connecting with a series of clients (Figure 5). The connection 

between the server and the clients can be through the Internet or LAN depending on collaborative 

requirements. In view of adopting the file management system in the server side, one of clients, 

possibly the main contractor, needs to be located in the same place with the server. Besides a planner’s 

role in collaborative planning, the user of this client ought to play an administrator’s role in 

maintaining the server’s normal working.  

 

The shared repository structure of the server/client mode implies that any collaborative work 

among clients needs the server’s link. Involved data transmission between the server and the clients 

follows three approaches of updated broadcast, direct transfer, and automatic retrieve (Figure 6). The 

updated broadcast and the direct transfer follow several procedures. Firstly, an operation is performed 

via a user interface of 4D builder or communication services in client A. The conducted operation then 

carries some data from the 4D builder or communication services to the event hub. Secondly, it triggers 

its registered event to be dealt with by the event hub, and delivers the event and data via the network to 

the event hub of the server side. Afterwards, the server side can parse the transferred event and choose 

corresponding operations. These operations result in either updated broadcast or direct transfer to client 

B. The former causes data updating in the 4D item pool and broadcast to all clients whilst the latter 

causes data to be dispatched directly to target clients. Additionally, the automatic retrieve simply 

occurs when a client connects the server to get information from the 4D item pool. Its data flow is 

partly the same with that of the updated broadcast. The difference is that retrieved data are only 

transferred to the requested client but not to be broadcasted to other clients. 
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Real-Time Data Exchange Protocol 

 

Given three data transfer approaches between the server and the client, establishing a set of 

protocols can help the system choose suitable approaches to effective data exchange in real time. These 

protocols decide transferred data to follow right approaches and reach correct destinations. The 

protocols include automatic data flood and controlled data transfer. The former further consists of static 

data flood protocol and dynamic data flood protocol.  

 

The static data flood protocol has an effect on retrieving existing data directly from the 4D 

item pool of the server to the clients. Existing data, including the PBS elements, their attributes, defined 

roles, and generated simulation items, are usually recorded and stored in the server side. When the user 

connects the server to log in, these data will be automatically retrieved from the server to the client. 

This static data transfer protocol enables users to obtain existing data from the server following the 

automatic retrieve approach. Its transfer direction is singular from the server to the clients.  

 

The dynamic data flood protocol, on the other hand, follows the approach of the updated 

broadcast in order to transfer new generated information to the server for restore and synthesis, and 

further to broadcast to all online clients. This protocol takes effect during the user’s log in/off the server. 

When logging in the server, the user needs to input a user name, select a role and a working state. This 

new information is sent to and recorded in the server, and broadcasted to other online users. Similarly, 

when a user logs off the server, other online users are informed instantly. During collaboration periods, 

moreover, newly updated PBS attributes and defined simulation items by a client also apply this 

protocol to broadcast them to all clients. Its transfer direction is multiple for all online clients. Both 

static and dynamic data transfer protocols maintain a unified real-time environment whenever 

collaborators join in, leave, and participate in collaborative work. 

 

The controlled data transfer protocol works in the collaborative sessions of co-navigate, co-

talk, and co-simulate. A significant feature of this protocol is that exchanged data are assisting 

information without the needs of restore and display in the server. A session holder can control the 

session’s creation, termination, process, and contents whilst session attendees are passive to receive 
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these data. It has no influence on other online collaborators who are out of the session. Its data flow 

adopts the approach of direct transfer from the session holder to the session attendees. Therefore, its 

data transfer direction is limited within several related clients only.  

 

Nevertheless, the controlled data transfer protocol is usually overlapped with the automatic 

data flood protocol in the collaborative sessions of co-sort and co-plan. In view of overhead data such 

as simulation items and PBS attributes generated in these sessions, the automatic data flood protocol is 

applicable to broadcast these data to all online collaborators no matter they are in or out of 

collaborative sessions. 

 

Implemented Prototype 

 

In accordance with the rationale of the proposed solution, a prototype named 4DX was 

implemented at the University of Wolverhampton in the UK. Its development toolkits are Microsoft 

Visual C++ 8.0 (Visual Studio 2005), Direct3D 9.0, and Winsock 2.0. They are popular utilities for the 

Windows platform to create networked real-time 3D graphical applications, and compatible with most 

hardware. The object-oriented programming (OOP) approach is applied for the system development. 

The prototype consists of a server side application and a client side application running in the network 

condition. Its underlying communication is based on the TCP/IP protocol. The implementation results 

are presented as follows. 

 

Server Side Application 

 

The server side application constructs the server tier’s modules of event hub, communication 

services, and 4D item pool. It integrates necessary collaborative planning information in the 4D item 

pool for retrieving and updating from client sides. This collaborative planning information includes 3D 

elements and their attributes, simulation items, as well as specialty roles. The management of this 

information is performed through separate file systems of the components of 3D element container, 

role-attribute reactor, SIMU item synthesizer, and role editor respectively. Each of these components 

provides a browser integrated in the user interface for content checking and managing (Figure 7).  
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A thumbnail 3D model browser is dedicated to the 3D element container. It provides basic 3D 

navigation operations such as zoom, pan, and rotate for simply browsing a loaded 3D model. 3D 

elements’ names are displayed in the browser of the role-attribute reactor when a 3D model is loaded in 

the server. The role-attribute browser can combine defined specialty roles to show the attribute of each 

3D element while collaborators decide PBS items’ read-write privileges in their clients. The definition 

of specialty role is through the role editor. Each defined role with its user name and working state is 

displayed in the role browser. Moreover, the browser of the SIMU item synthesizer displays a 

synthesized result of simulation items in a text-based hierarchal structure. Additionally, the 

communication services component ensures the server communicate with its external clients. The 

administrator in the server side needs to specify an unoccupied communication port for data exchange 

with the clients. Once the server is started, system states such as server start /stop, and collaborator’s 

log in/off etc. are reported in an event window. Based on these transparent features, the administrator 

can effectively manage the server and monitor its working situations. 

 

Client Side Application 

 

The client side application builds the client tier modules of 4D builder, communication 

services, and event hub. It enables multidisciplinary planners to conduct planning work in their local 

systems while communicating and collaborating with each other. Among these modules, the 4D builder 

supports planning activities including 3D model analysis, simulation item definition, as well as 4D 

sequence generation. The communication services module allows planners to communicate with 

remote collaborators, such as server connection, role registration, text charting etc. The event hub 

module at a low level undertakes all data transmission to underpin high-level operations from planners.  

 

The client side application integrates the user interfaces of all the modules’ components 

(Figure 8). A communication panel is prepared for the user to connect the server, select a predefined 

specialty role, and list all online collaborators and their states. An instant messenger is also available 

for the planner to communicate with other online collaborators. A 3D-based planning environment is 

created as the 4D player for 3D model browsing and analyzing, 3D elements picking, simulation item 
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defining, and 4D simulation player. The loaded 3D model and plan from a local system can fill in the 

3D element container and the SIMU item container. They are displayed in the 4D player and the plan 

browser respectively. The same result can be achieved by retrieving data from the 4D item pool in the 

server side when planners log in the server. 

 

Applying the 4DX client application for creating a plan, planners can navigate and analyze the 

3D model in the 4D player via zoon, pan, and rotate operations. In view of the overlapped nature of 3D 

elements in the model, a topology displaying control is devised to help planners decompose the 3D 

model. It is able to control the 3D model’s elements, displaying one by one in a bottom-up or top-down 

order. Planners thus have the opportunity to scrutinize every 3D element of the model. On deciding a 

task definition, planners can pick up related 3D elements to specify the task via the SIMU item 

definition panel. The defined task is then synthesized with picked 3D elements to be a simulation item. 

The newly created simulation item is automatically sent to the server for integration with other defined 

simulation items, and then received and recorded in the local SIMU item container. With created 

simulation items, the 4D player is thus able to detect potential conflicts in the plan by 4D simulation. 

Leveraging the network support, all these planning activities can be conducted across the network by 

the collaborative sessions of co-navigate, co-sort, co-plan, co-simulate, and co-talk. Therefore, 

planners’ work is open-ended, communicated, and it is possible to achieve a robust plan. 

 

Through a user-centered design, the user interface/interaction (UI) design of the 4DX client is 

further adapted to be collaboration oriented (Figure 9). In this circumstance, some graphical user 

interfaces (GUIs), such as the instant messenger and logging panel, are removed or hidden. The 

planners hence can focus on the main planning tasks independently or collaboratively depending on 

whether or not they involve online collaborators. In case of no other online planners selected or 

available, the planner can perform planning individually through the operations of navigate, sort, plan 

and simulate. In case of selecting online planners, these operations become available in the 

collaborative sessions of co-navigate, co-sort, co-plan and co-simulate. This flexibility enables 4DX 

client to be applicable for both offline and online conditions. 
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System Validation 

 

The system validation was performed in a truly geographically distributed condition. Four 

planners were involved to apply 4DX clients in different locations to collaborate with each other 

simultaneously across the Internet. A commercially available multiparty video conferencing system 

named ooVoo was leveraged to bridge the gap among these geographically dispersed planners, who 

could communicate with each other face-to-face in real time during the planning process. The 

validation applied several multimedia PCs with dual monitors and connections to the Internet. The 

dual-monitor setting was dedicated to displaying both 4DX and ooVoo in one client. A prepared entity-

based 3D building model (Figure 9) was adopted in the validation. According to the availability of 

building elements in the 3D model, four roles were correspondingly defined as structure planner, 

window planner, door planner, and glass planner in the server side. During the testing process, the team 

members located in different buildings within the University of Wolverhampton, which provided 

unlimited wireless Internet access for all users.  

 

Process and Result 

 

The overall validation process followed a serial workflow of co-sort and co-plan. In the co-

sort session, team members engaged in sorting building information concurrently to customize their 

specialty-oriented planning context. Subsequently, the team members performed concurrent planning in 

their own contexts. During these two procedures, co-navigate was utilized to help the plan team 

analyze the 3D model while co-talk provided communication services using the ooVoo throughout the 

whole process. Co-simulate contributed to the co-plan when the plan team wanted to detect potential 

conflicts during the planning. Both co-navigate and co-simulate were used by the team for concurrent 

individual work in client sides and collaborative teamwork across the Internet.  

  

When starting the validation planning, all team members signed in the ooVoo first. The server 

administrator started the 4DX server, and sent the server IP address as well as a communication port to 

other collaborators via the ooVoo. All the team members then logged in the server and retrieved the 3D 

model from the server to their local systems. The control tester initiated the co-sort so that all 
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collaborators could pick up their 3D elements from the 3D building model. A set of filters for 

controlling 3D element display state was designed in the UI so that collaborators could use them to 

filter out relevant 3D building information and obtain their own PBS elements. Taking the advantages 

of created building information visualization by the system as well as real-time multiparty video 

conferencing from ooVoo, all planners successfully sort their own 3D elements collaboratively and 

concurrently across the Internet. Its result is illustrated in Figure 10. As indicated in the illustration, the 

3D elements with black mesh in the model are readable whilst the 3D elements in the grey solid state 

are writable for defining simulation items. 

 

After obtaining their own 3D building elements, the collaborators proceeded to the co-plan to 

conduct planning together. They focused on their own 3D elements to define simulation items. During 

this procedure, the collaborators still maintained social interaction via ooVoo to exchange planning 

strategy, adjust their own definition, and give suggestions to other collaborators simultaneously. As 

they shared the same plan context, updates by any collaborator were reflected on the client machines of 

other users via server broadcasting in real time. Co-simulate was also conducted in the co-plan process 

across the Internet so that to identify and eliminate potential conflicts in the co-created plan. A robust 

plan therefore could be guaranteed under the monitoring from collaborators. The screen shot of this co-

plan working is illustrated in Figure 11. 

 

The final construction plan that was generated was shown in a hierarchal structure, and could 

be exported into MS Project to gain the same structured plan with a bar chart (Figure 12). This result 

kept consistency with that of the verification test. Its complete 4D simulation sequence is presented in 

Figure 13. These results indicate the effectiveness of the proposed 4D groupware, and further verify the 

applicability of the interactive definition method. Combining the commercial multiparty video 

conferencing system of ooVoo, the proposed 4D groupware solution is feasible for geographically 

dispersed planners to collaboratively conduct planning and simulation across the Internet. 
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Findings in Validation 

 

The validation confirms that the proposed 4D groupware solution is applicable for distributed 

collaborative planning through teamwork. Applying the server-client mode, geographically dispersed 

planners can collaborate with each other from their own clients connected by the server. The devised 

functional modules effectively supported multidisciplinary planners’ CSCW sessions across the 

Internet. They interactively held collaborative sessions during their concurrent planning. This suggests 

that the underlying real-time data exchange protocols and data flow in the CSCW design were 

successful to underpin diverse data transmission for team-based collaborative planning. The design of 

the 4D item pool in the server side demonstrated feasibility and flexibleness to use a file-based 

structure to supply the clients with collaborative information. Particularly, the mechanism of role-

attribute reactor enables multidisciplinary planners to perform interactive collaboration targeting a 

unique 3D model even without building information. This feature brings convenience for collaborators 

to filter out their interested building components which may not belong to BIM.  

 

The use of 3D BIM model will be an important compensation for the proposed solution. The 

proposed solution aims at a 3D CAD model condition because the entity based 3D CAD model is still 

prevalent in the construction industry. Since the entity-based 3D CAD model has no building 

information, a 4D item pool (acting as a central building information repository) is populated by 

applying several separate files, which supply necessary information for planning. Such a loose 

information management is flexible to customize collaborative information for different situations. 

Nevertheless, it increases management burden in the server. A BIM-based file structure such as 

Industry Foundation Classes (IFC) for the 4D item pool is possible to integrate all parts into a complete 

information repository. The benefit of adopting BIM into the system lies not only in simplifying the 

server management, but also possibly automating PBS filter out rather than interactive co-sort in the 

client side. As BIM-based file has already owned classified building information, collaborators could 

directly obtain desired PBS information from the server. However, it is reasonable to believe that 3D 

CAD model and BIM model will always co-exist in the AEC industry. In some circumstances, 3D 

CAD models are useful to simply represent some temporary elements, e.g. formwork or scaffolding, 
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which may not necessarily use BIM. Combining interactive co-sort with automated filtering can be 

effective and convenient for users to deal with both situations of 3D CAD and BIM models. 

 

The concurrency feature of the prototype needs to be reinforced. A requirement for the 

collaborators in the validation is that their defined plan tasks comply with an ideal top-down order 

according to their start time. It needs the planners to define their tasks one by one according to the real 

temporal and logical construction sequences. This collaborative planning strategy is positive to gain a 

robust plan and helpful to expose and identify potential conflicts in the 4D simulation. It can also be 

applicable for real project practice. However, planners are able to define their plan tasks freely and 

concurrently once obtaining their own 3D elements in normal situations. This freedom and concurrency 

may cause some earlier tasks to be defined later because of time difference in concurrent work. The 4D 

simulation of this study excludes this possibility for the purpose of controlling the validation 

experiment. In a real situation, this exclusion can cause later defined tasks with early start time to be 

neglected in the simulation. In order to satisfy the concurrent operation’s need, the implemented 4D 

simulation generation mechanism needs modification to become fully time oriented. The remedy of this 

pitfall would be positive for this groupware to suit concurrent planning situation. 

 

The dual-monitor configuration for the prototype provided convenience in the validation. 

Because of using multiple applications of the 4DX and the ooVoo at the same time, a clear and ease-of-

use arrangement for the system is important to achieve good usability. Real-time collaborative 4D 

planning has high demands for user tasks’ performance including 3D operation, interactive definition, 

and social interaction. These mixed user tasks ask for suitable operation schemes to support user’s task 

performance. Dual-monitor configuration permits users to easily conduct main task operations instead 

of frequently switching user interfaces among different applications. It thus can be helpful to improve 

the usability of the whole system. Interestingly, it is an attractive topic regarding the interaction design 

for the promotion of user performance in the condition of multiple monitors and applications. Some 

research efforts have been invested into this human factor field. It is anticipated combing related 

achievements with current distributed 4D groupware for further study.  
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Finally the validation further verifies the applicability of the interactive definition method for 

collaborative 4D planning in a truly geographically distributed condition. The validation result shows 

that geographically dispersed multidisciplinary planners are able to co-create a robust plan via the team 

worked social interaction, user-system interaction, and plan data incorporation in an open shared 

social-technical context. The use of 3D model for creating the social-technical context is positive to 

foster collaborative planning and caters for the planner’s mental process. Within this context, the 

planners are motivated to ponder planning strategies, exchange information with collaborators, and 

formulate solutions to define simulation items. Meanwhile, the application of commercially available 

tool of ooVoo is helpful to achieve social interaction. As the interactive definition method permits the 

planners to gain external information inputs from collaborators during planning, its 4D planning 

process hence features open-ended, communicated, and collaborative characteristics. Additionally, the 

co-created construction plan and generated 4D simulation in the validation is evidence that the use of 

simulation item parameters provided by the method is effective to define 4D construction plan. They 

show convenience and efficiency for network transmission, plan synthesis, and simulation generation. 

 

Conclusion and Future Work 

 

This paper proposed a model-based groupware solution that was validated to be effective for 

distributed real time collaboration. Its collaborative mechanisms, including software architecture, 

application mode and data flow, as well as data exchange protocol, are applicable for synchronous 

model-based teamwork environments. Applying the proposed 4D groupware, multidisciplinary 

planners can effectively perform collaborative planning across the boundaries of time, location and 

specialty. The applicability of collaborative mechanisms in the proposed groupware can be useful for 

equivalent applications in the AEC industry and other industries. Given the social-technical context for 

collaborative planning, paying attention to only technical aspects such as data integration and 

interoperability is constructive in groupware development but insufficient to guarantee collaborative 

teamwork when applying it. This study takes both social and technical issues into account to explore a 

successful 4D groupware development. Although its validation was performed in a simulated 

construction project, it still highlighted essential issues of applying the 4D groupware in a distributed 

condition. The validation also revealed the need for future functionality that will enhance CSCW 
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design, social coordination, awareness, and user interface/interaction design. The discussion of these 

sort of issues is out of the scope of this paper, and be expected a further clarification in another report. 

The demonstrated benefits and exposed weaknesses in the current solution will be positive to nurture 

more practical 4D groupware solutions. It is meaningful to turn construction planning from a 

multidisciplinary activity to be an interdisciplinary practice. Its industry project validation will further 

verify its effectiveness, advancement and disclose potential pitfalls. More insights about applying the 

model-based groupware for distributed collaborative teamwork are expected to be gained in the future. 
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Figure 1:Rationale of interactive collaboration for 4D ...
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Figure 2: Scenario of conditional session A and B with other ...
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Figure 3: Software architecture
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Figure 4: Event hub structure
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Figure 5: Server/client mode
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Figure 6: Data flow between the server and the clients
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Figure 7: User interface of 4DX server application
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Figure 8: User interface of 4DX client application
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Figure 9: Collaboration oriented UI design of 4DX client ...
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Figure 10: Co-sort results of four planners ...
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Figure 11: Client side dual-monitor screen shot of 4DX and ooVoo
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Figure 12: Consistent construction plan created by 4DX ...
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Figure 13: Generated 4D simulation sequence in the validation
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