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ABSTRACT

In this paper, sequential importance sampling is used to assess the impact of observations on an ensemble

prediction for the decadal path transitions of the Kuroshio Extension. This particle-filtering approach gives

access to the probability density of the state vector, which allows the predictive power—an entropy-based

measure—of the ensemble prediction to be determined. The proposed setup makes use of an ensemble that,

at each time, samples the climatological probability distribution. Then, in a postprocessing step, the impact of

different sets of observations is measured by the increase in predictive power of the ensemble over the cli-

matological signal during one year. The method is applied in an identical-twin experiment for the Kuroshio

Extension using a reduced-gravity shallow-water model. This study investigates the impact of assimilating

velocity observations from different locations during the elongated and the contracted meandering states of

the Kuroshio Extension. Optimal observation locations correspond to regions with strong potential vorticity

gradients. For the elongated state the optimal location is in the first meander of the Kuroshio Extension.

During the contracted state it is located south of Japan, where the Kuroshio separates from the coast.

1. Introduction

Our view of the oceans and atmosphere comes from

remote sensing measurements and from still relatively

sparse observations. Data assimilation combines the in-

formation gained from observations with computer simu-

lations to obtain a three-dimensional representation of the

current state of the ocean and atmosphere. An accurate

estimate of the current state is particularly important for

forecasting the future evolution. Because of the chaotic

nature of these dynamical systems, uncertainties present in

the initial state grow rapidly, reducing the utility of the

forecast. In this paper, we describe an ensemble-based

method for measuring the effect of observations. Using

model-generated velocity and sea surface height (SSH)

observations, we apply the method to determine the

best location for monitoring the decadal variability of

the Kuroshio Extension (KE).

The Kuroshio Extension is the eastward-flowing free

jet formed when the Kuroshio detaches from the Japanese

coastline. The KE region has the largest SSH variability

on subannual and decadal time scales in the extratropical

North Pacific Ocean (Qiu 2002). The decadal variability is

related to transitions of the KE from a highly energetic

elongated path to a weaker contracted and more convo-

luted path (Qiu and Chen 2005). Prediction of the path of

the Kuroshio is very important for local fisheries and hence

local economies (Kagimoto et al. 2008). The position of the

Kuroshio strongly determines the regions where phyto-

plankton and hence fish is located. The KE variability has
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been the subject of a number of experimental studies, like

the observational programme of the Intergovernmental

Oceanographic Commission (IOC) of the United Na-

tions Educational, Scientific and Cultural Organization

(UNESCO) sub-commission for the western Pacific

(WESTPAC) at 1528E (Schmitz et al. 1982), the Kuroshio

Extension Region Experiment (KERE) at 1438E (Hallock

and Teague 1995), and the Kuroshio Extension System

Study (KESS) at 1468E (Donohue et al. 2008).

Pierini (2006) obtained a reasonably successful com-

parison of satellite SSH observations and the results from

a reduced-gravity shallow-water model of the western

Pacific Ocean. The model is forced by a steady wind stress

forcing and has only one active layer. In this model, not

only the decadal transitions between contracted and

elongated Kuroshio paths are found (Pierini et al. 2009),

but the migration of the northward extension of the

Kuroshio corresponds well with that determined from ob-

servations (Qiu and Chen 2005). Important to note is that

the model also captures the high-frequency variability

during the northward migration of the KE. The observed

temporal variability is, however, higher than the modeled

one and on smaller time scales. This is not surprising be-

cause the model does not capture baroclinic instability.

The physics behind the bimodality of the KE are not

well understood and are still open for discussion. Pierini

et al. (2009) explain the two states of the KE, its decadal

period, and the changing high-frequency variability in

terms of nonlinear dynamical systems theory. The success

of the reduced-gravity shallow-water model suggests that

the internal ocean mechanics are responsible. Another

explanation is sought in the variable atmospheric forcing

(Miller et al. 1998; Deser et al. 1999; Qiu 2003; Qiu and

Chen 2005). Here, westward-propagating SSH anoma-

lies, generated in the eastern North Pacific by wind stress

anomalies at different phases of the Pacific decadal os-

cillation, cause the positional shifts of the KE jet.

Objective measures for the impact of observations on

analysis uncertainties are important for both the design

of persistent observation networks (e.g., mooring arrays)

and the deployment of supplementary or targeted obser-

vations (e.g., airplane reconnaissance and dropsondes).

Targeted observations are used to decrease the forecast

uncertainty of high-risk events, like hurricanes. For an

overview on targeted observations procedures and issues,

see Langland (2005). An objective procedure, based on,

for example, singular vectors, is used to determine re-

gions with fast-growing initial errors. A targeted obser-

vation is considered, when the forecast error can be

decreased by assimilating additional observation data.

Baker and Daley (2000) argued that none of the tradi-

tional techniques consider the characteristics of the data-

assimilation systems used. As such, interaction with the

background field of the analysis and interactions with

other observations are ignored. For this reason, objective

procedures for adaptive observations are developed that

incorporate the data-assimilation techniques (e.g., the

ensemble transform Kalman filter; Bishop et al. 2001).

Objective procedures for targeted observations are

not necessarily good for optimizing array designs. These

methods aim to improve the forecast at a given time,

whereas mooring arrays are operated over longer times.

Sakov and Oke (2007) used an ensemble of system states

from a long model run or from observation-based grid-

ded fields to represent the time-averaged statistics of the

system. The system states ensemble is used to obtain the

background error covariances, which describe the un-

certainty in the model state when no observational data

is available. The optimal set of observations is then ob-

tained by minimizing the analysis error covariance using

Kalman filter theory. Problems arise when the time-

averaged statistics are strongly non-Gaussian, which

makes an analysis based on covariances meaningless.

As such, the bimodality of the Kuroshio Extension will

present an obstacle for this method.

In this paper, we want to answer the question what is

the best measurement location to monitor the Kuroshio

Extension system for optimal prediction of its decadal

transitions. The general idea is to perform an ensemble

model forecast, which in our case is obtained with the

reduced-gravity shallow-water model of Pierini (1996,

2006). The ensemble samples the time-averaged proba-

bility distribution of the system state. Observations are

then used to update the ensemble using a particle-filtering

technique. For this approach, neither the assumption of

Gaussian error statistics nor the linearization of the model

is required. The general methodology is described in

section 2. The setup allows us to find which measure-

ments are most successful in increasing the predictive

skill or power of the ensemble forecast. In section 3,

results of an identical-twin experiment for the KE region

are presented. We use this experiment to investigate the

assets and drawbacks of the methodology. The test is done

by assimilating velocity observations at four preselected

locations. Thereafter, we use the method to find the opti-

mal location for following the decadal transition in the KE.

Final comments and conclusions are made in section 5.

2. Methodology

a. Reduced-gravity shallow-water model

In this paper, we utilize the reduced-gravity shallow-

water model and setup used by Pierini (2006) to investigate

the decadal oscillations of the Kuroshio Extension. The

model describes the flow on a Cartesian grid in the upper

layer with density r of the ocean and assumes the second
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layer to be infinitely deep and quiescent. The shallow-

water equations describing the flow in the upper layer

are

›u

›t
1 u � $u 1 f k 3 u 5 2g9$h 1 AH=2u

1
t

rh
2 gujuj and (1a)

›h

›t
1 $ � (hu) 5 0, (1b)

where u 5 (u, y) is the horizontal velocity vector, h is the

upper-layer thickness, h is the interface displacement

(positive downward), and k is the unit vector in vertical

direction.

The equations include the Coriolis term (the Coriolis

parameter f 5 2V sinf at latitude f, where V is the

earth’s angular velocity) and a dissipation term with

horizontal eddy viscosity AH. The flow is driven by a wind

stress t exerted on the free surface. A density difference

between the upper and lower layers results in a reduced-

gravity constant g9. The friction between the two fluid

layers is modeled by a quadratic stress weighted by the

coefficient g. At each time, the flow is fully described by

the state vector X 5 (u, h).

The specific domain Pierini (2006) used to model the

KE is presented in Fig. 1. A schematic implementation

of the Japanese coastline proved to be essential for cap-

turing the dynamics of the KE (Pierini 2008). The flow is

driven by a constant-in-time wind stress (with an ampli-

tude of 5 3 1022 N m22), which is an analytical approx-

imation of the climatological double-gyre wind field. In

our study, the wind stress field is perturbed by a stochastic

wind field (with an amplitude of 2.3 3 1022 N m22),

which is Gaussian correlated in space with a correlation

length of 2000 km. The amplitude of the stochastic

wind field is uncorrelated in time (white noise). The

parameter values can be found in Table 1, and further

details on the model formulation and implementation

are in Pierini (2006).

b. Particle filtering

The shallow-water model can be used to give a fore-

cast for the Kuroshio Extension, when an initial state

X0 is provided. Pierini et al. (2009) showed for realistic

parameter values that the system has a positive Lya-

punov exponent. The chaotic nature of the system

limits the prediction time, as initial perturbations grow

over time. The uncertainty in the initial state is as-

signed to probability density function (pdf) p(X0).

Moreover, the model is not an exact representation of

reality as imperfections are present in the model

equations, parameters, and boundary conditions. We

model these uncertainties with stochastic perturba-

tions to the wind stress field. The shallow-water model

described in the previous section can be considered as

a discrete time estimation problem. The evolution of

the state vector Xk is described by the following system

model:

Xk11 5 Mk(Xk, zk), (2)

where Mk is the system’s propagator and zk is a zero-

mean, white-noise sequence.

Observations Yk become available at discrete times.

The aim of a data-assimilation technique is to obtain

a conditional probability density function of the current

state at t 5 tk given all available information, p(Xk jY1:k).

Taking a Monte Carlo approach, p(Xk) is randomly

sampled by a weighted ensemble of N model realizations

Xi
k (also called particles),

pN(Xk) 5 �
N

i51
wi

kd(Xk 2 Xi
k), (3)

FIG. 1. The computational domain zonally spans 10 700 km from

1228E to approximately 1208W at 358N and ranges from 58S to 558N

(Pierini 2006). At the western side, a schematic implementation of

the Japanese coastline is used. The climatological wind stress curl is

given by the contour map, with negative values in the light gray

area (contour spacing is 1.5 3 1028 N m23).

TABLE 1. Settings for the reduced-gravity shallow-water model.

The equations are solved numerically on a Cartesian grid with

spacing (Dx, Dy) and time step Dt. The upper layer has a mean

depth H and density r. The friction between the upper and lower

layers is quadratic with a friction coefficient g.

Dx 20 km

Dy 20 km

Dt 20 min

AH 220 m2 s21

H 500 m

r 1023.5 kg m23

g9 4.41 3 1023 m s22

g 5.0 3 1024 m21

JANUARY 2012 K R A M E R E T A L . 5



with weights wi
k. The initial state of each ensemble

member is uniformly drawn (wi
0 5 1/N) from the initial

pdf p(X0). In a particle-filtering method, pN(Xk jY1:k) is

obtained recursively in a prediction step and an update

step. Assume that pN(Xk21 jY1:k21) is known: that is, the

particle states Xi
k21 and the weights wi

k21 are known.

Now, the next observation Yk becomes available. In the

prediction step, each particle Xi
k21 is integrated forward

in time to obtain the state vector at the new time Xi
k. The

probability pN(Xk j Y1:k21) follows from

pN(Xk jY1:k21) 5 �
N

i51
wi

k21d(Xk 2 Xi
k). (4)

In the update step, Bayes’ theorem is exploited to get

pN(Xk jY1:k) 5
p(Yk jXk)pN(Xk jY1:k21)

p(Yk)
. (5)

Inserting the pdf (3) for p(Xk jY1:k) in Eq. (5) yields, for

the new weights,

wi
k 5

p(Yk jX
i
k)

p(Yk)
wi

k21. (6)

Here, the probability of the observation p(Yk) can be

considered as a normalization factor. This normalization

can also be accomplished by demanding that �N

i51wi
k 5 1.

The probability of the observation given the model

p(Y
k
jXi

k) is directly linked to the (known) observational

error. For example, for an univariate measurement Yk

with a Gaussian distribution for the measurement error

(with standard deviation sobs), this probability follows

from p(Yk jXk) ; expf2[H(Xi
k) 2 Yk]2/2s2

obsg. Here,

H(Xi
k) is the model equivalent of the observation calcu-

lated using the observation operator H.

For an overview of particle filtering in geophysical

systems the reader is referred to Van Leeuwen (2009).

The particular particle filter method described here is

known as sequential importance sampling (SIS) (see,

e.g., Doucet et al. 2001). In contrast with other data-

assimilation techniques, particle filtering does not re-

quire a linearization of the model around the current

state, nor does it assume Gaussian statistics for the state

variables. An advantage of SIS is that assimilating ob-

servations changes the weight but leaves the particle Xi
k

itself unchanged. Hence, the ensemble can be run be-

forehand, and the impact of different sets of observa-

tions can be calculated afterward. A major problem of

SIS is that after a number of observations the weight is

concentrated on a small number of particles. The ef-

fective number of particles can be estimated by Neff 5

1/�N

i51(wi
k)2. The traditional solution of this degeneracy

of the ensemble is to resample p(Xk jY1:k) with an altered

set of particles. A common technique of resampling con-

sists of making copies of particles with a high weight and

discard particles with a low weight. Because of the sto-

chastic forcing and chaotic dynamics, a particle and its

copy will diverge over time and become uncorrelated.

Resampling, however, breaks the desired property of

evaluating observations as a postprocessing step after

the time integration of the ensemble is completed.

c. Entropy-based predictability measures

The application of the particle filter method allows us

to sample the non-Gaussian probability distribution of

the state vector. To specify the amount of uncertainty in

the probability density function, entropy-based mea-

sures are favorable. In this paper, we use two measures

that are adopted to quantify the predictability of an

ensemble forecast. The first is the predictive power (PP)

introduced by Schneider and Griffies (1999), which is

a measure of the uncertainty relative to the climato-

logical variance. The second is the potential prediction

utility (PPU), as introduced by Kleeman (2002), which

additionally incorporates a signal-to-noise component

in the measure (see also Xu 2006).

The predictive power is based on the entropy Sp(X),

a measure for the uncertainty associated with the pdf

p(X) of variable X (Shannon 1948). The differential

entropy is defined as

SX [ 2k

ð
p(X) lnp(X) dX. (7)

Here, k is a constant that determines the unit of entropy.

The particle filtering allows one to obtain an approxi-

mation to the probability density function p(Xk jY1:k) of

the state vector. With the pdf available, the entropy Sp(X)

of the ensemble forecast can be calculated. Schneider

and Griffies (1999) defined the predictive power aX of

an ensemble forecast as

aX [ 1 2 exp(2Sq(X)
1 Sp(X)

). (8)

The entropy Sq(X) is calculated from the pdf of the cli-

matology q(X), and it can be considered as the un-

certainty when only the climatological mean is known.

Note that differential entropy (7) is not scaling invariant

and cannot be compared directly to the discrete entropy.

Two differential entropies can be compared as long as

the reference scales are the same. The PP is limited to

the range 0 # aX # 1. If the ensemble analysis is equal to

the climatological mean [Sp(X) 5 Sq(X)], its PP is zero.

When the entropy of the ensemble forecast reduces

6 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 42



(e.g., by assimilating observations), the predictive power

will increase. Note that because of the exponential form

PP is most sensitive in the lower part in the scale, if Sp(X)

is close to Sq(X). Schneider and Griffies (1999) defined

the predictive power to measure the decrease in un-

certainty of the full state vector and set k 5 1/m with m

the dimension of the state vector. This makes it possible

to compare entropies of random state vectors of different

dimensions.

The potential prediction utility is based on the relative

entropy for p(X),

RX [

ð
p(X) ln

p(X)

q(X)
dX, (9)

which is the information gain over the reference pdf

q(X). The relative entropy for a continuous pdf is scaling

invariant. For the predictive utility, this reference dis-

tribution is the climatological or equilibrium probability

distribution. Like the predictive power, the PPU is zero

when the probability distribution of the analysis is equal

to the climatological distribution. The PPU of the anal-

ysis increases when the spread in probability distribution

decreases, but also when the analysis relates to a rela-

tively rare event. There is no theoretical upper limit for

the PPU. Kleeman and Majda (2005) point out that PPU

calculated over the full state vector RX decreases mono-

tonically over time as uncertainty increases (see also

Cover and Thomas 1991).

In this paper, we opt to calculate the predictive power as

for a single scalar quantity s (e.g., the kinetic energy E

integrated over the KE region), following Pierini (2006).

The reasoning behind determining the predictive power

for the kinetic energy is that one is not always interested in

reducing the uncertainty in the full state vector space. Our

design aim is to follow the path transitions of the Kuroshio

Extension and hence we optimize for the kinetic energy in

the KE region. The entropies Sq(s) and Sp(s) are calcu-

lated from the univariate pdf q(s) and p(s) and we set k 5

1 in (7). If p(s) and q(s) are Gaussian probability distri-

butions with variances s2
p and s2

q, the predictive power is

given by as 5 1 2 s2
p/s2

q. This formulation (or its multi-

variate counterpart) is often used in predictability studies

that are based on the analysis error covariance.

d. Setup of the identical-twin experiment

Instead of forecasting the actual Kuroshio Extension

by assimilating real observations in the shallow-water

model, an identical-twin experiment will be performed.

Here, one model realization is considered to be the

‘‘true’’ evolution of the KE. Equivalent observations are

produced by taking measurements from this synthetic

truth and adding observational errors. This allows us

to produce observations for different variables, like the

SSH or the velocity field, with different error distribu-

tions. Then, an analysis is performed by assimilating the

observations in an ensemble run of the shallow-water

model using the particle-filtering technique.

The advantage of the identical-twin experiment is that

we are sure that the evolution of the true KE is captured

by the ensemble run with the shallow-water model. A

failure to describe the truth is then not caused by the

model, but is caused by either insufficient observations

or the inadequacy of the data-assimilation method.

In this study, we use a particular setup for the ensemble.

At each time, the ensemble samples the climatological

probability density function q(X). This is achieved by

drawing the initial conditions Xi
0 from the climatological

distribution. In practice, we obtained the initial states by

taking snapshots, 2 yr apart, of the state vector from a long

model run. For each particle (N 5 512) the shallow-water

model driven by the stochastic wind stress is integrated

over 40 yr.

Assimilating the synthetic observations using the

particle filter (6) will change the weight of the ensembles

members. Starting with a uniform distribution of the

weights (wi
0 5 1/N), the initial probability distribution is

equal to the climatology probability distribution. This

initial state has zero predictive power and zero potential

prediction utility. Hence, any increase of the PP of the

ensemble is due to the information the observations

provide.

3. The impact of observations on the predictability

a. The predictive power of an ensemble forecast

As an illustrative example, we first use the predictive

power and potential prediction utility to determine the

predictability time of an ensemble prediction with the

shallow-water model under stochastic wind forcing. Es-

sentially, this is a predictability study of the second kind

(Lorenz 1975), where the influence of uncertain bound-

ary conditions—in our case in the wind stress—on the

predictability is determined. For this purpose, we have

run a 96-member ensemble that starts from identical

initial conditions. The initial state Xi
0 is obtained from

a 50-yr spinup model run. With no uncertainty present

in the initial conditions (i.e., the differential entropy is

infinite) the ensemble starts with a predictive power equal

to unity. This is similar to the setup used by Griffies and

Bryan (1997) to study the predictability of the North At-

lantic multidecadal climate variability. Their study then

motivated Schneider and Griffies (1999) to introduce the

predictive power as a measure for the uncertainty in en-

semble model forecasts.

JANUARY 2012 K R A M E R E T A L . 7



In Fig. 2a, the time evolution of the kinetic energy of

the Kuroshio Extension is plotted. This kinetic energy is

defined by E 5 (1/2)
Ð

A
juj2 dS, where A is the region of

the free jet as defined in Fig. 1. The energy signal clearly

reveals the decadal transitions of the KE between a low-

energy state and a high-energy state. The two KE states

are less clear from time series of potential vorticity or

enstrophy integrated over the same region. With knowl-

edge of the kinetic energy, one could already provide a

good estimate for the pathlength and the mean latitude of

the jet (Pierini et al. 2009). The first strong divergence of

the ensemble occurs after 5 yr, when the transition from

the low-energy state to the high-energy state starts. Then,

after 8 yr, the signals branch. The main branch relates to

a fast transition to the low-energy state, whereas the other

branch reveals a slow decay of the kinetic energy for 2, 4,

or 6 yr. As the signals become desynchronized, the pre-

dictability of the system is limited to a certain time period.

In Fig. 2b, the predictive power of the ensemble is

given for a time span of 40 yr. Here, the PP (8) is calcu-

lated using p(E) instead of the probability density func-

tion p(X) of the full state vector. This indicates that we

investigate the PP of the energy signal and not of the

complete information the forecast provides. An estimate

for the climatology pdf q(E) is obtained by binning the

time series of the N 5 512-particle ensemble (described

in the previous section) over 23 bins. The approximation

for p(E) is obtained over the same bins. Note that the

maximum PP is limited by the bin spacing DE as the

minimum entropy SP(E) 5 lnDE (Cover and Thomas

1991): that is, when all the particles fall within one bin.

During the first 5 yr, the predictive power in Fig. 2b

remains high. Then, over a one-year period the pre-

dictive power drops to aE 5 0.5. Subsequently, the PP

rises and ranges between aE 5 0.6 and 0.8 for years 6–13.

This rise of aE is the result of the energy plateaus in the

signal. This causes a smaller uncertainty in E, while the

signals clearly become desynchronized. In this period,

the weighted ensemble pdf for E is strongly bimodal or

trimodal. Schneider and Griffies (1999) defined the pre-

dictability life span as the lead time for which the 95%

confidence interval of the predictive power does not

include zero. This requires detailed information on the

error in the prediction probability distribution p(E),

which is not available from one ensemble. In reality, an

ensemble prediction loses its usefulness at an earlier

time, because there are more strict requirements for

the forecast uncertainty. For simplicity, we define the

predictability life span of the ensemble as the time aE

drops below 0.25. This definition results in a pre-

dictability life of 13 yr. During this time, it is possible to

predict whether the KE is in the high-energy state or in

one of the other states.

b. Measuring the impact of observations

Now, we return to our objective of measuring the im-

pact of observations. For this purpose, we solely use the

512-particle ensemble, which samples the climatology

FIG. 2. Ensemble forecast for the KE with a stochastic forced shallow-water model starting

from a single initial state. (a) Evolution of the kinetic energy E of the KE for the 96 ensemble

realizations and (b) PP aE for the kinetic energy signal of the forecast.
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distribution at any time. The energy evolution for all the

particles is given in Fig. 3. The unweighted mean of this

ensemble is always equal to the climatological mean field,

and its predictive power is equal to zero. Clearly, the

climatological pdf is bimodal. As the analysis starts from

the climatological distribution, a data-assimilation method

that can handle non-Gaussian statistics is required.

One particle is selected and is considered to be the

true behavior of the Kuroshio Extension (e.g., the white

curve in Fig. 3). From this synthetic truth, almost any

observation can be produced, because we have access to

the full state vector. For now, we opt to limit our studies

to four different locations, or moorings, where obser-

vations of both velocity components are obtained. The

velocity components are directly available from the

shallow-water model. For this setup, the observation

operator H(Xi
k) simply selects the velocity components

from the state vector at the mooring location.

The selection of the four locations is based on the

climatological mean and variance of the SSH (see Fig. 4).

In practice, sea surface height fields are readily available

from satellite observations. The moorings are located in

the circulation cell to the south of Japan (A) and at the

positions where the local maxima of SSH variance occur

(B, C, and D). Here, mooring B is located at the absolute

maxima, mooring C is in the KE near the first meander,

and mooring D is at a more eastern location in the KE

region. The synthetic velocity observations for the four

moorings are given in Fig. 5. Observations for the zonal

and meridional velocity components are produced at a

monthly data rate (each 28 days) and have a Gaussian

measurement error with a standard deviation of sobs 5

0.1 m s21. Observation errors for the zonal and meridi-

onal velocity are not correlated; as such they can be as-

similated sequentially.

With the particle-filtering technique (SIS) described

in section 2, the observations are used to improve our

ensemble forecast. Cycling through the observations in

a sequential order, the weights of each particle are

adjusted according to Eq. (6). The resulting analysis is

the weighted ensemble of all the particles. The prob-

ability density function p(E) of the analysis is given in

Fig. 6. It becomes immediately clear that observations

from mooring B are most effective in reducing the un-

certainty. With observations from mooring C we cannot

determine whether the KE is in the high- or low-energy

state for the first 3 yr. Assimilating data from mooring A

rightly puts the system in the high-energy state, but with

a large uncertainty in the initial years. If the first KE

FIG. 3. Data from the ensemble run for the identical-twin experiment. The gray lines indicate the kinetic energy E for the

511 particles, whereas the white curve corresponds to the synthetic truth. (right) The climatological pdf q(E) is given.

FIG. 4. (a) Climatological mean SSH field and (b) PV calculated

from the ensemble. The gray scales represent the standard de-

viation with respect to the climatological mean. Contour spacing is

5 cm for the SSH and 1028 s21 m21 for the PV. The thick contours

give the 10-cm SSH level and the 1.6 3 1027 s21 m21 PV level.

Observations are produced for the positions labeled A, B, C, and D.
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transition occurs, results improve for moorings A and

C. The analysis using data from mooring D is the worst.

During the first 10 yr, we are unable to determine the

state of the KE from the analysis.

For times longer than 3 yr, the ensemble becomes

degenerated for all cases. Then the analysis does not

capture the true behavior nor does it give an accurate

representation of the probability distribution. The ob-

servations at location B have a high signal-to-noise ratio.

The first few observations will rapidly reduce the un-

certainty from its initial value. As a consequence, a large

number of particles is discarded after each observation

and the ensemble rapidly degenerates. In Fig. 7, the

effective number of particles Neff is given for the four

moorings. For mooring B all the weight effectively col-

lapses to a few particles after 2 yr. The analysis still

follows the first transitions of the KE, because of the slow

divergence of particle trajectories: the predictability life is

13 yr. One particle close to the truth will follow the true

evolution for a few years. A degenerated ensemble does

not accurately capture the real uncertainty, and it is not

guaranteed that it can track the true evolution. For in-

stance, the degenerated analysis for mooring B fails to

describe the KE transitions between years 12 and 20.

At each time, a discrete probability distribution for

the kinetic energy can be obtained by binning the weighted

ensemble. The number of bins used to obtain the histo-

gram of p(E) and q(E) is
ffiffiffiffi
N
p

. The probability density

pj(E) is the sum over the weights from particles that fall in

bin j divided by the bin size DE. An estimate is obtained

for SP(E) (with k 5 1) by numerical integration over the

discrete histogram: that is, (1/k)�jpj(E) lnpj(E)DE. The

FIG. 5. Observations (plus signs) for the identical-twin experiment are produced by adding a Gaussian measure-

ment error to the synthetic truth (drawn). Observations for u and y are produced for the four locations A, B, C, and D

as shown in Fig. 4.

FIG. 6. Analysis of the kinetic energy E of the KE resulting from assimilating velocity observations from location

A, B, C, or D. The grayscale plot gives p(E) of the ensemble analysis, with the darkest gray related to highest

probability density. The black line corresponds with the synthetic truth.
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unweighted ensemble gives an estimate for the clima-

tology pdf of Sq(E) 5 20.45. The predictive power aE is

given in Fig. 7. The graph nicely shows that assimilating

observations from mooring B raises the predictive power

of the ensemble rapidly from zero to its limiting value

after 3 yr. Note that reaching the limiting value for PP

means that all the particle weights fall within one bin.

Observations from the other mooring raise the predictive

power at a slower rate. For moorings C and D, the sudden

increase in predictive power is related to the transition

from the high-energy state to the low-energy state. This

gives a clear signal in the velocity at these locations.

Although a single analysis gives already much insight

into the impact of different observations, a number of

problems arise. The selected synthetic truth might show

some sporadic, unrepresentative behavior. Moreover,

this synthetic truth starts from a state that might be more

or less sensitive to perturbations. This can produce a dif-

ferent initial increase of the predictive power. Picking

another particle to act as the synthetic truth, creating new

observations, and performing a new analysis will give

different results. We exploit this by selecting each of the

512 model realizations to be the synthetic truth at a time.

This leads to 512 different evolutions of the entropy SP(E).

The average entropy Sp(E) is then used to define the

predictive power aE 5 1 2 exp(2Sq(E) 1 Sp(E)). In Fig. 8,

the predictive power is given up to 20 yr. By assimilating

data from mooring B, the predictive power rapidly in-

creases to a value of 0.7 in one year. For mooring C the

same aE is reached after 2 yr, whereas 5 yr are required

when assimilating data from mooring A or D.

In the special context of sequential importance sam-

pling and the specific discrete approximations (3) for p(X)

and q(X), there is an accurate way of calculating the PPU

for the full state vector. For an ensemble where the initial

states are drawn from q(X), the discrete approximation is

qN(X0)�N

i51wi
0d(X0 2 Xi

0), with wi
0 5 1/N. If this en-

semble is integrated forward in time, it still represents the

climatological pdf; that is, q
N

(X
k
) 5 �N

i51wi
0d(X

k
2 Xi

k)

is also an approximation of q(X). Assimilating k obser-

vations changes the weights and an approximation for

p(Xk j Y1:k) is given by pN(Xk jY1:k) 5 �N

i51wi
kd(Xk 2

Xi
k). Inserting these approximations in (9) yields

RX ’ �
N

i51
wi

k ln
wi

k

wi
o

. (10)

FIG. 7. PP aE (black line) for the analysis (given in Fig. 6) resulting from assimilating velocity observations from

location A, B, C, or D. The limit on the PP due to the used bin size is depicted by the dotted line. The effective number

of particles Neff is denoted by the gray curve.

FIG. 8. (a) Average PP aE and (b) average PPU for the analysis

calculated by repeating the algorithm with other particles being

selected as the synthetic truth. The quantity is given for the four

locations: A (asterisk), B (plus), C (circle), or D (diamond).
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Note that this equation is only valid at the time an

observation is made. It does not capture the decrease

of RX, which occurs between observations. The

practical limit for the relative entropy with an en-

semble size N is RX 5 lnN, which we can use to nor-

malize the PPU.

The normalized PPU averaged over 512 realizations

of the synthetic truth is presented in Fig. 8b. The behavior

of RE is similar to aE. The differences between the two

measures mainly originate from the different sensitivity

along their range. Because of the exponential term in the

PP, its sensitivity is larger in the lower part of the scale,

whereas the PPU is more sensitive in the higher region of

the scale. These results validate the use of a
E

to measure

the impact of observations.

The degeneracy of the ensemble weights and the nu-

merical limit to the predictive power essentially invalidate

any results on predictive power after 3 yr. The sampling

of the probability distribution is too poor to obtain ac-

curate values for the entropy. Increasing the numbers of

particles could alleviate both problems. A more realistic

option is to restrict the analysis to a time span of one year.

This essentially yields the increase of predictive power

after assimilating observations over a one-year period.

For this approach the ensemble time span can be re-

duced from 40 to 1 yr. In the following sections, we split

the original ensemble (N 5 512) into a single synthetic

truth and in 20 440 one-year segments. This larger en-

semble can be used for an uncertainty analysis over a

one-year period. Choosing this approach does not allow

to perform data assimilation over a number of decades,

which would give an analysis of several Kuroshio Ex-

tension path transitions. The one-year analysis can be

used, however, to target the specific states of the KE

FIG. 9. One-year increase in the PP aQ(x, t). Velocity observations from mooring (left)–(right) A, B, C, and D are

assimilated during one year, starting at years (top)–(bottom) 4, 8, and 12. Red contour lines depict the PV mean from

the analysis. Black lines give the PV field from the synthetic truth. For each analysis, the effective number of particles

is given in the top-left corner.
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and determine which observation locations decrease the

uncertainty in the analysis.

4. Optimal monitoring of the Kuroshio Extension

a. The spatial decrease of uncertainty in the potential
vorticity

The energy of the jet E is a spatially integrated signal,

and hence the analysis does not give any information

where the uncertainty is decreased by the assimilation of

the observations. Hence, we take another approach by

investigating how the uncertainty in the potential vor-

ticity (PV) field Q(x, t) 5 (z 1 f )/h is decreased by as-

similating observations. Here, z is the vertical component

of the relative vorticity, $ 3 u. Potential vorticity is a

conservative advective tracer only influenced by forcing

and dissipation. Distributions of PV contain nearly all the

information about the flow dynamics.

To investigate the uncertainty in the PV the predictive

power is defined as

aQ(x, t) 5 1 2 exp[2Sq(Q)
(x, t) 1 Sp(Q)

(x, t)]. (11)

The climatological entropy of the PV at point x, Sq(Q)(x, t),

is calculated using the Qi(x, t) from the unweighted en-

semble members. The climatology mean and variance of

the PV are given in Fig. 4. Observations within a time

span of one year are assimilated, yielding a reduction

of the entropy Sp(Q)(x, t) in the weighted ensemble. This

result is dependent on the time period for which ob-

servations are taken. Hence, three different time ranges,

starting after 4, 8 and 12 yr, are considered (for refer-

ence, see Fig. 6). The results of the analysis are pre-

sented in Fig. 9.

The previous section revealed that, on average, veloc-

ity observations taken at locations B and C are successful

for reconstructing the kinetic energy of the Kuroshio

FIG. 9. (Continued)
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Extension. The study of aQ(x, t) reveals that there are

differences in the performance of the moorings, de-

pending on the state of the KE. For mooring B, we

obtain good results for years 8 and 12. In year 8, the KE

is in the high-energy state, whereas during year 12 a

transition from high- to low-energy state occurs. The

analysis is particularly good for the first meander of the

KE, which is also indicated by the high PP in these

regions. Note that the PP is large in quiescent regions

with small PV gradients. Regions where PV is more

variable, like for the eastern meandering part of the KE

or where the Kuroshio boundary current detaches from

the Japanese coastline, are less predictable. The eastern

part of the Kuroshio Extension is actually more strongly

influenced by the stochastic wind forcing. Thus, part of

the variability here is not correlated with the state of the

KE. When the KE has just switched to the low-energy

state (year 4) the recirculation gyre is well retrieved but

the reconstruction of the KE path is less successful. Low

values for PP are thus either due to large short-time

variability of the KE in the current state or due to dy-

namics that are not correlated to the observations. On

the other hand, a region with high PP is correlated with

the observations and the analysis has a small uncertainty.

The analysis for year 4, which uses observations from

mooring C, is more successful in retrieving the first

meander of the KE. Note that the analysis for mooring

B actually captures the detachment of the Kuroshio

boundary current and its path quite well upstream of

mooring C. This indicates that information from mooring

C is essential for retrieving the path of the KE in the

meandering, low-energy phase. During the elongated-jet,

high-energy state of the KE (year 8), it does not give good

results because mooring C is located south of the KE path

in a quiescent region. The success in reconstructing the

eastern KE for the transition in year 12 is a bit sur-

prising, because the first meander itself is not accurately

recovered.

The analysis using data taken at location D yields bad

results for all the stages of the KE decadal oscillation.

The poor results are mainly due to the bad signal-to-

noise ratio of the observed velocity signal. Data from

mooring A yield bad results overall but lead to a good

reconstruction of PV during the elongated-jet state of

the KE (year 8). In this case, the southern recirculation

gyre is stronger than in the other periods. In these other

stages, the variation in the observed signal at mooring A

is below the noise level.

b. The optimal measurement location

The four mooring locations chosen were based on

the variance of the SSH field for a long climatological

run. Assimilating the velocity data from these different

locations yielded varying results for reconstructing the

path and kinetic energy of the KE. Mooring B yielded

good results for most phases of the decadal oscillation,

but its resolution of the eastern part of the KE path is

somewhat lacking. Overall mooring C gives good re-

construction of the KE path but completely fails to

capture the position of the recirculation gyre and first

KE meander during the high-energy state. The opposite

is true for the analysis with observations from mooring

A yielding bad results overall, except for the elongated-

jet state. Assimilating data over a longer period favors

data from mooring B or C (Fig. 8). Most likely none of

these mooring positions is the optimal location. What

is the single optimal location for reconstructing the de-

cadal oscillations in the kinetic energy of the KE? Is this

location also optimal when sea surface height observa-

tions are assimilated instead of velocities?

Our answer to these questions is presented in Fig. 10.

Instead of producing observations for the four locations,

we apply our method to each and every grid point. As-

similating the observations for a given point yields a pre-

dictive power of a
E

(averaged over 40 synthetic truths). In

Fig. 10, this value is mapped to the location where

the observations originate. The optimal measurement

FIG. 10. A color map of the one-year increase of aE when (a)

velocity observations or (b) SSH observations are assimilated for

the given location. The star gives the optimal observation location,

and the plus signs give the locations of the synthetic moorings A, B,

C, and D. The diamonds give the position of the current meter

moorings used in KERE (Hallock and Teague 1995), KESS

(Donohue et al. 2008), and WESTPAC (Schmitz et al. 1982).
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location is simply the one tagged by the highest pre-

dictive power. For an analysis based on velocity obser-

vations, the optimal location is at (338N, 1398E).

Instead of using observations of the two velocity com-

ponents, we can opt to assimilate sea surface height.

Because we now assimilate only one variable, the ob-

servation frequency was doubled (biweekly) to obtain

the same number of observations. The observational er-

ror added to the synthetic truth is 10 cm s21. These set-

tings result for moorings A, C, and D in an average

increase of PP with a similar rate as found for velocity

observations (Fig. 8). Assimilating velocity observa-

tions from location B increases the PP faster than using

sea surface height. Another difference is that, by using

SSH observations (instead of velocities) from mooring

C, it accurately reconstructs the PV field for year 8,

whereas it fails for year 12. When assimilating SSH ob-

servations the optimal location is at (328N, 139.58E). For

both velocity and sea surface height observations, the

optimal location is located in the region where the Kur-

oshio boundary current detaches from the coast and has

a large meander.

The question remains if the optimal observation loca-

tion is optimal for both the high-energy elongated state of

the KE and for the low-energy contracted state. To check

this, we selected the synthetic truths that correspond to

one of the KE states and calculated the average PP.

The result is presented in Fig. 11 for both the low- and

high-energy states. For the low-energy state, the opti-

mal location coincides with the overall optimal location

determined from Fig. 10. However, during the high-

energy state, the optimal location is at (368N, 145.58E),

at the point where the energetic jet starts to meander.

Measuring velocity observations in the detached Kur-

oshio or in the first meander of the Kuroshio Extension

gives good predictive power. Note that measuring SSH

along the KE path during the elongated-jet state does

not give good results (Fig. 10).

Note that the optimal locations for both phases co-

incide with regions of strong potential vorticity gradients

(see Fig. 9). These regions are susceptible to barotropic

instability, and hence strong growth of perturbations can

be expected. This also confirms with our finding that

only a small increase of aQ(x, t) is obtained in regions

with large PV gradients. For the high-energy elongated

state, the largest PV gradients are south of Japan, where

the Kuroshio first separates and in the first meander of

the KE. Pierini (2006) argued that during this state the

recirculation gyre and the KE are virtually isolated dy-

namically by the presence of the strong cyclonic mean-

der. This view is supported by our findings that the

optimal location is then in the KE itself (Fig. 11) and that

observations from moorings B and C do not yield

a significant decrease of the uncertainty in the southern

circulation gyre (Fig. 9). Note, that after the cyclonic

meander the Kuroshio reattaches to the coast, where

lateral friction provides a source of cyclonic PV. This is

not the case in the low-energy contracted state, where

the Kuroshio remains a free jet (KE) after it detaches

from the coast. Hence, there is a stronger coupling be-

tween the KE and the southern circulation gyre.

5. Summary and conclusions

A general method is proposed to find which observa-

tion is most effective in decreasing the uncertainty in

an ensemble model forecast of the Kuroshio Extension

chaotic dynamics produced by a reduced-gravity shallow-

water model. At all times, the unweighted ensemble

represents the climatological mean and the probability

distribution. As such, the ensemble itself has no pre-

dictive skill. Using a particle filter approach the weight

of each ensemble member (particle) is changed according

to the likelihood of the observation given the current

particle state. Using the basic sequential importance

sampling technique, assimilating observations is a post-

processing step. As a result, the impact of a variety of

observations on the forecast uncertainty can be inves-

tigated. Assimilating a series of observations changes the

FIG. 11. A color map of the one-year increase of aE when ve-

locity observations are assimilated during (a) the low-energy con-

tracted state or (b) the high-energy jet state for the given location.

For each synthetic truth, a single PV contour is used as a proxy for

the KE trajectory. The star gives the optimal observation location

and the plus signs give the locations of the synthetic moorings A, B,

C, and D.
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uncertainty in the weighted ensemble. The decrease in

uncertainty relative to the changeability of the climatol-

ogy is measured using the predictive power. The search

for an optimal observational strategy is then quantified in

terms of predictive power.

On average, each subsequent observation reduces the

uncertainty in the weighted ensemble. In the long term,

the uncertainty converges to a value determined by the

accuracy and effectiveness of the observation and by the

divergence rate of the model state. The desired accuracy

for sampling the long-term probability distribution pre-

scribes the required ensemble size. In practice, the

required number of model integrations is not feasible

and all the weight becomes concentrated on a few

particles. The traditional resolution for the degeneracy of

the ensemble—resampling—would require a separate

ensemble run for each set of observations. Instead, we

limit the analysis of the predictive power to the short

term: that is, before the ensemble degenerates.

This methodology is applied to find the optimal loca-

tion to follow the path transitions of the KE in the context

of a reduced-gravity model. Specifically, an identical-twin

experiment is used, where the true evolution of the KE

is synthetically produced by the numerical model. The

kinetic energy of the KE is a good proxy to follow the

chaotic decadal transitions of the KE. We have looked

for the observation location that allows for the recon-

struction of the kinetic energy with the lowest uncertainty,

as measured by the predictive power. The optimal loca-

tion for following the KE is south of the Boso Peninsula.

Here, the Kuroshio typically has a large meander before

entering the Pacific as a free jet. The shift of this meander

and the recirculation gyre along the Japanese coastline is

a clear indicator of the state of the KE. At a good mea-

surement location, the signal-to-noise ratio has to be good

and there are no elongated periods where the signal is

flat. These criteria are satisfied in a region where strong

PV gradients are continuously shifting.

In our study, observations of the velocity components

or sea surface height at a single location are assimilated,

yielding an increase of predictive power defined for

a univariate quantity (the kinetic energy of the KE).

The applicability of the methodology is, however, much

broader. Particle filtering allows for the simultaneous as-

similating multivariate observations (e.g., SSH and ve-

locities) at multiple locations. We have seen that the

success of observations in improving the forecast depends

on the current state of the KE. Combining observations

that are successful during different states lead to an

even better observational system. Predictive power is

an entropy-based measure equally suitable for measuring

the uncertainty in multivariate probability distributions.

This allows us to optimize the observational strategy for

multiple conditions: for example, the kinetic energy of

the jet and the strength of the recirculation gyre.

Optimal observation locations correspond to regions

with strong potential vorticity gradients. Such PV gradi-

ents are a condition for barotropic instabilities to occur,

which can lead to fast growth of perturbations. Measuring

at these locations would prevent this potential growth of

uncertainty. During the contracted state of the KE the

strongest PV gradient is located south of Japan, where

the Kuroshio detaches from the coast. The optimal lo-

cation is in the elongated jet during the high-energy state

of the KE. This seems to confirm that during this state the

KE is dynamically decoupled from the southern circula-

tion gyre (Pierini 2006).

The regional experiments of the Kuroshio Extension

(WESTPAC, KERE, and KESS) were situated at dif-

ferent locations (Fig. 10). In the context of our reduced-

gravity model, the WESTPAC study at 1528E would be

situated too far east to adequately capture the transitions

of the KE. The variability related to the KE path transi-

tions is simply too small here to yield a good signal-

to-noise ratio. In reality, this region is characterized by

strong variability, which is caused by baroclinic insta-

bilities. Close to Japan, where the KERE and KESS are

situated, the KE is dominated by barotropic and equiv-

alent barotropic dynamics. The KESS study captures the

dynamics of the first large meander of the KE, a region

with strong PV gradients. As such, observations from

KESS should capture the decadal KE transitions. For the

elongated state, the path of the KE can be discerned

in KERE observations. Because the path is quite stable

there, it would be difficult to predict it when the tran-

sition to the contracted state occurs. Our study suggests

that it is also worthwhile to monitor the detachment of

the Kuroshio to determine the decadal transitions of

the KE.
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