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Abstract

This paper investigates how the correlations implied by a first-order simultaneous au-

toregressive (SAR(1)) process are affected by the weights matrix and the autocorrelation

parameter. A graph theoretic representation of the covariances in terms of walks connecting

the spatial units helps to clarify a number of correlation properties of the processes. In par-

ticular, we study some implications of row-standardizing the weights matrix, the dependence

of the correlations on graph distance, and the behavior of the correlations at the extremes of

the parameter space. Throughout the analysis differences between directed and undirected

networks are emphasized. The graph theoretic representation also clarifies why it is difficult

to relate properties of W to correlation properties of SAR(1) models defined on irregular

lattices.
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1 Introduction

First-order simultaneous autoregressive (SAR(1)) processes are widely used to model inter-

action over a geographic, economic, or social space (e.g., Cliff and Ord, 1981; Anselin, 1988;

LeSage and Pace, 2009). Such processes postulate a simple relationship between each of its

two main components—the weights matrix W and the correlation parameter ρ—and the

inverse of their variance matrix. Due to the matrix inversion, however, the way in which

W and ρ affect the correlations implied by the model may be difficult to understand. Wall

(2004) discusses some unexpected correlation properties of SAR(1) models defined on irregu-

larly spaced lattices, and concludes that the models exhibit counterintuitive behavior. Apart

from that paper, there has not been much work attempting to clarify the correlation proper-

ties of SAR(1) models on irregular lattices. On the other hand, the correlation structure of

SAR(1) models is well-understood when the observational units form a regular lattice (e.g.,

Whittle, 1954; Besag, 1972; Bartlett, 1975). In economics, regular lattices are the norm in

the time-series case, but are extremely rare in higher dimensional spaces.

The present paper is a theoretical investigation of the correlation structure of SAR(1)

processes defined on general configurations of observational units. We provide a representa-

tion of the covariances between two variables observed at two spatial units as the sum of the

contributions coming from (a particular type of) walks connecting the two units. The repre-

sentation helps to understand several properties of SAR(1) models, and it clarifies the role of

ρ in shaping the correlation structure of the models. The parameter ρ controls the relative

importance of contributions coming from walks of different length. When |ρ| is small the cor-

relation structure is largely determined by short walks, but, as |ρ| increases, the importance

of longer walks increases. This implies that SAR(1) models may exhibit significantly differ-

ent correlation properties depending on the value of ρ. Since ρ is unknown, and is estimated

only after W has been fixed, it follows that in empirical applications it is difficult, or even

impossible, to control the correlation properties of a SAR(1) model through the specification

of W .

The rest of the paper is organized as follows. SAR(1) processes are presented in Section

2. Section 3 introduces some graph theoretic terminology, which is then used in Section

4 to formulate the representation of the covariance structure of SAR(1) models. Section 5

analyzes the correlation properties of SAR(1) models. In particular, we study the effect of

row-standardizing W , the dependence of the correlations on distance, and the behavior of

the correlations at the extremes of the parameter space. Throughout the analysis several

consequences of the common practice of row-standardizing W are pointed out. Particular

attention is paid to the case of directed networks, which is important in several economic

applications. Section 6 concludes. Proofs are collected in the Appendix.

2 Specification of the SAR(1) Model

Consider a fixed and finite set of n observational units. The units are labelled by the first n

integers in some arbitrary way, and the i-th unit has the random variable yi associated with
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it. Letting y = (y1, ..., yn)′ be a zero-mean random vector, a SAR(1) model is given by

y = ρWy + ε, (1)

where ρ is a real unknown parameter, W is an n× n weights matrix, ε is a vector of errors

such that E(ε) = 0 and var(ε) = σ2V , with σ2 > 0 and V a known n × n diagonal (and

positive definite) matrix. Because in this paper we are only interested in correlations, we do

not need to consider extensions of (1) to the case E(y) 6= 0.1

The matrix W is non-stochastic and known. It is chosen to reflect a priori information

on pairwise relations between the observational units (see, e.g., Bavaud, 1998, and Griffith

and Lagona, 1998). For example, the entries (W )ij may be taken to be a certain function of

some physical or economic distance between the i-th and the j-th observational units.

For the purpose of studying the correlation structure of SAR(1) models, we can set σ2 = 1

and V = In (the identity matrix of order n) without loss of generality.2 Accordingly, for any

ρ different from the reciprocal of the nonzero real eigenvalues of W , model (1) implies the

variance matrix

var(y) =
[
(In − ρW ′)(In − ρW )

]−1
=: Σ(ρ). (2)

For convenience, throughout the paper we maintain the following two assumptions, which

are usually satisfied in applications.

Assumption 2.1 For any i, j = 1, ..., n, (W )ij ≥ 0.

Assumption 2.2 For any i = 1, ..., n, (W )ii = 0.

Assumption 2.1 allows us to use results on nonnegative matrices (e.g., Horn and Johnson,

1985). Assumption 2.2 has consequences on the properties of the graph distance to be defined

in the next section.

Let λmax denote the spectral radius (i.e., the largest modulus of the eigenvalues) of W .

Since W is nonnegative, λmax is an eigenvalue of W (Horn and Johnson, 1985, Theorem

8.3.1). Also, when W has at least one (real) negative eigenvalue, we denote the smallest

negative eigenvalue by λmin. Then, the largest connected interval of values of ρ around the

origin where Σ(ρ) exists is (ρmin, ρmax), with ρmin := λ−1
min if W has at least one negative

eigenvalue, ρmin := −∞ otherwise, and with ρmax := λ−1
max if λmax > 0, ρmax := ∞ if

λmax = 0.3 In the literature, some authors take (ρmin, ρmax) as the set of admissible values

for ρ, whereas other authors choose its subset (−ρmax, ρmax). In Section 4 we shall see that

the latter choice has the advantage of guaranteeing a simple interpretation of the correlation

structure of the model.

3 Some Graph Theoretic Notions

For our analysis, it is useful to consider the graph underlying W , that is, the graph having as

vertices the n observational units, and as arcs the ordered pairs (i, j) such that (W )ij > 0.

For a general introduction to graph theory see, e.g., Harary (1969).
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In graph theory, a (directed) walk from a vertex i0 to a vertex ir is an alternating sequence

(i0, a1, i1, ..., ar, ir), r ≥ 0, of vertices and arcs in which each arc at is (it−1, it). For the

purposes of this paper, we need to modify the definition of a walk as follows.

Definition 3.1 A SAR-walk from i0 to ir is an alternating sequence (i0, a1, i1, ..., ar, ir) of

vertices and arcs in which, for some k = 0, ..., r, the first k arcs at are (it−1, it) and the

remaining r − k arcs are at = (it, it−1).

Note that a SAR-walk is a walk only for k = r. For k < r, the first k steps of a

SAR-walk are in the direction of the sequence (i0, a1, i1, ..., ar, ir) and the remaining ones

are in the opposite direction. A SAR-walk will generally be denoted using the notation

(i0 → i1 → ... → ik ← ... ← ir−1 ← ir). The following example illustrates the difference

between walks and SAR-walks.

Example 3.2 Figure 1 displays the graph underlying the weights matrix

W =


0 1 0 0 0

1 0 1 0 0

0 0 0 0 0

0 0 1 0 1

0 0 0 1 0

. (3)

A line with an arrowhead represents an arc, and a line joining two vertices i and j without

an arrowhead indicates that there is both an arc from i to j and an arc from j to i. Observe

that there are no walks from unit 2 to unit 4. However, there are SAR-walks joining 2 and

4: for instance (2→ 3← 4) is a SAR-walk of length 2 from 2 to 4.

Figure 1: The graph underlying the weights matrix (3).

We shall see in the next section that the notion of a SAR-walk is naturally suggested by

a SAR(1) model, and that all SAR-walks from a unit i to a unit j, not only those that are

walks, give a contribution to corr(yi, yj). Accordingly, in order for corr(yi, yj) to be nonzero

it is not necessary that i and j are joined by a walk, but that they are joined by a SAR-walk.

For a plot of corr(y2, y4) implied by a SAR(1) model with weights matrix (3) see Figure 4.

Next, we adapt a number of standard graph theoretic notions to our definition of a

SAR-walk. We say that a graph is connected if there is a SAR-walk from i to j, for all

i, j = 1, ..., n. The length of a SAR-walk is the number of arcs in it (r in the case of the

SAR-walk in Definition 3.1). The trivial sequence (i0) is to be regarded as a SAR-walk of

length 0 from i0 to i0.

The definition of a SAR-walk imposes the following distance on the set of observational

units.

Definition 3.3 The distance d(i, j) between any two units i and j is the length of a shortest

SAR-walk from i to j, if any. Otherwise, d(i, j) =∞.
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It is immediately clear that: (a) d(i, j) = 0 if and only if i = j; (b) d(i, j) = d(j, i) (which

is why we speak of the distance between i and j, rather than from i to j); (c) d(i, j) = 1 if

and only if (W )ij + (W )ji > 0. It is also easily checked that, if the graph is connected, then

d(·, ·) satisfies the triangle inequality, and hence is a metric.

SAR-walks and the induced distance d(·, ·) depend only on which entries of W are zero

and which are nonzero. It is also convenient to introduce a measure of the importance of

different SAR-walks, based on the magnitude of the nonzero entries of W . To each arc (i, j)

we assign the weight (W )ij . Then, based on a standard graph theoretic notion (e.g., Godsil,

1993, p. 56), we can define the weight of a SAR-walk as follows.

Definition 3.4 The weight of a SAR-walk is the product of the weights of its arcs if the

SAR-walk has positive length. Otherwise, it is 1.

We shall also use the following terminology. If (W )ij > 0, j is said to be a neighbor of i,

which we indicate in symbols by i→ j (or j ← i). When i→ j and j → i, we say that i and

j are neighbors. A graph such that (W )ij = 0 if and only if (W )ji = 0, for all i, j = 1, ..., n,

is said to be undirected ; otherwise, it is said to be directed.

4 A Graph Theoretic Representation of the Covariances

For r = 0, 1, ...,∞, let

Zr :=
r∑

k=0

W k(W ′)r−k, (4)

where, as usual, W 0 := In. The entries of the matrices Zr admit the following interpretation.

Lemma 4.1 (Zr)ij equals the total weight of the SAR-walks of length r from i to j.

The next lemma follows almost immediately.

Lemma 4.2 (Zr)ij = 0 if and only if r < d(i, j).

The matrices Zr play an important role in our analysis, because they appear in an

expansion of cov(yi, yj) in powers of ρ. When |ρ|λmax < 1, (In − ρW )−1 =
∑∞

r=0 (ρW )r,

and hence Σ(ρ) =
∑∞

r,s=0 ρ
r+sW r(W ′)s =

∑∞
r=0 ρ

rZr. Thus, by Lemma 4.2, we have that,

when |ρ|λmax < 1, and for any i, j = 1, ..., n,

cov(yi, yj) =
∞∑

r=d(i,j)

(Zr)ijρ
r. (5)

Let now Kij be the set of all SAR-walks from i to j, and let len(ω) and wei(ω) denote the

length and the weight of a SAR-walk ω. In light of Lemma 4.1, expression (5) leads to the

following graph theoretic representation of cov(yi, yj).
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Theorem 4.3 In a SAR(1) model, when |ρ|λmax < 1, and for any i, j = 1, ..., n,

cov(yi, yj) =
∑
ω∈Kij

wei(ω)ρlen(ω). (6)

Theorem 4.3 relates the covariance structure of a SAR(1) model to the walk structure of

the graph underlying W . More specifically, it asserts that cov(yi, yj) can be interpreted as

the sum of the contributions of all SAR-walks from i to j, the contribution of a SAR-walk

ω being wei(ω)ρlen(ω). Such an interpretation holds for |ρ|λmax < 1, or, equivalently, for

ρ ∈ (−ρmax, ρmax).

Example 4.4 Consider the very simple weights matrix

W =

[
0 1

0 0

]
. (7)

The underlying graph consists of the vertices 1 and 2, with an arc from 1 to 2. There is

only one SAR-walk from 1 to 2, with length and weight both equal to 1. Hence, by Theorem

4.3, cov(y1, y2) = ρ. This expression holds for any ρ, because λmax = 0 for matrix (7). An

alternative to the weights matrix (7) is

W =

[
0 1

1 0

]
, (8)

which specifies symmetric interaction between units 1 and 2, and has λmax = 1. The extra arc

from 2 to 1 implies that there are SAR-walks of any odd length contributing to cov(y1, y2).

More specifically, for any odd r, there are r + 1 SAR-walks of length r and weight 1 from

1 to 2 (for r = 1, they are: (1→ 2) and (1← 2); for r = 3, they are: (1→ 2→ 1→ 2),

(1→ 2→ 1← 2), (1→ 2← 1← 2), and (1← 2← 1← 2); and so on). Using Theorem 4.3

we then obtain that, for |ρ| < 1, cov(y1, y2) =
∑∞

r=0;r odd(r + 1)ρr = 2ρ(1− ρ2)−2.

Theorem 4.3 clarifies the role of ρ in shaping the correlation structure of a SAR(1) model.

Since the contribution of a SAR-walk ω depends on ρ only through ρlen(ω), it follows that: (i)

when |ρ| is “small”, the covariance structure of a SAR(1) model is mostly determined by short

SAR-walks; (ii) as |ρ| increases, longer walks yield increasingly more important contributions,

relative to shorter walks. In the rest of the paper we shall encounter several consequences of

the fact that ρ controls the relative importance of SAR-walks of different lengths.

More generally, Theorem 4.3 explains how correlations are formed in SAR(1) processes.

Such an explanation contrasts with the conclusions in Wall (2004) that “there is no systematic

structure to the SAR” model (p. 318) and that the correlation structure implied by the model

“does not seem to follow an intuitive or practical scheme” (p. 321). In fact, the properties

that are deemed to be counterintuitive in Wall (2004) can be understood using Theorem 4.3.

For example, referring to a SAR(1) model on the graph of the United States and with a

row-standardized W , Wall states that “there does not appear to be any reason in general

why a researcher would want to fit a spatial model that insists on Missouri and Tennessee
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being the least spatially correlated states in the land”. Observe that row-standardization of

W implies weights of arcs (i, j) that are inversely proportional to the number of neighbors

of i. Since both Missouri and Tennessee have several neighbors and are surrounded by states

with several neighbors, it follows that any SAR-walk joining Missouri and Tennessee must

have small weight. Thus, in any application where row-standardization is considered to be

appropriate, Missouri and Tennessee must have low correlation, compared to other states.

In Wall (2004) the fact that a correlation implied by a SAR(1) model between two fixed

units does not need to have the same sign for all ρ ∈ (−ρmax, 0) is also regarded as counter-

intuitive. Again, Theorem 4.3 explains the reason behind such a behavior of the correlations.

For any ρ ∈ (−ρmax, 0) the SAR-walks of even length between i and j yield a positive con-

tribution to cov(yi, yj), whereas SAR-walks of odd length yield a negative contribution. It

follows that whether corr(yi, yj) is positive or negative for a particular value of ρ depends

on whether the total contribution of the SAR-walks of even length between i and j is larger

or smaller than (minus) the total contribution of the SAR-walks of odd length. Which of

the two total contributions is larger may depend on ρ, because, as we have seen above, the

relative importance of SAR-walks of different lengths depends on ρ.4

Even though our perspective is different from that of Wall (2004), we do agree with one

of the remarks made in that paper, namely that it is impossible to fully understand the

correlation structure of a SAR(1) model just by looking at W .5 This point will be discussed

in detail in the next section.

5 The Correlations

5.1 An Expansion of the Correlations

Starting from expression (5), it is straightforward to derive an expansion of corr(yi, yj) in

powers of ρ.

Theorem 5.1 In a SAR(1) model, when |ρ|λmax < 1, and for any i, j = 1, ..., n,

corr(yi, yj) =
∞∑
r=0

[(Zr)ij − br(i, j)] ρr, (9)

with

br(i, j) :=
r∑
s=2

(Zr−s)ij
∑

(k2,...,ks)∈Φ

 αK
k2!...ks!

s∏
t=2

(
t∑

u=0

(Zt−u)ii(Zu)jj

)kt , (10)

where Φ is the set of nonnegative (s− 1)-tuples of integers (k2, ..., ks) such that
∑s

t=2 tkt = s,

K :=
∑s

t=2 kt, and αK :=
∏K
l=0(1/2− l).

Theorem 5.1 provides an exact expression for the correlations, in terms of ρ and the

entries of W . The two terms that lead the expansion as ρ → 0 are very simple. Indeed, by

application of Lemma 4.2, br(i, j) = 0 if r ≤ d(i, j) + 1, and hence one obtains

corr(yi, yj) = (Zd(i,j))ijρ
d(i,j) + (Zd(i,j)+1)ijρ

d(i,j)+1 +O(ρd(i,j)+2), (11)
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where, for two functions f(x) and g(x), we write f(x) = O(g(x)) to indicate that |f(x)/g(x)|
is bounded from above in some neighborhood of x = 0.

Because, being a power series, (9) is uniformly convergent in a neighborhood of ρ = 0,

(11) specifies the low-order derivatives with respect to ρ of the correlations at ρ = 0. That

is, we have dr

dρr corr(yi, yj)|ρ=0 = r!(Zr)ij , for any r = 1, ..., d(i, j) + 1. In particular,

d

dρ
corr(yi, yj)|ρ=0 = (Z1)ij = (W )ij + (W )ji, (12)

which says that corr(yi, yj) has positive derivative at ρ = 0 if d(i, j) = 1 (i.e., if i is a

neighbor of j or j is a neighbor of i), zero derivative otherwise. According to expression (12)

the magnitude of (W )ij + (W )ji provides a ranking of all pairs (i, j) such that d(i, j) = 1

in terms of their degree of correlation as ρ → 0. Note, however, that depending on W such

a ranking does not need to hold for a fixed value of ρ. More specifically, setting (W )ij +

(W )ji > (W )lm + (W )ml for some two pairs of units (i, j) and (l,m) does not necessarily

imply that |corr(yi, yj)| > |corr(yl, ym)| for some fixed value of ρ (see, for example, Figures

2 and 3 below). What is more, the width of the interval of values of ρ around 0 where

(W )ij + (W )ji > (W )lm + (W )ml does imply |corr(yi, yj)| > |corr(yl, ym)| depends in a

complicated way on i, j, l,m, and W . The practical implication of such observations is that

the specification ofW does not allow the user of a SAR(1) model to impose that two variables

yi and yj are more correlated than two other variables yl and ym, because whether |corr(yi, yj)|
is larger or smaller than |corr(yl, ym)| may depend on ρ, which is unknown and can only be

estimated after W has been fixed.

5.2 The Effect of Row-Standardization

In economic applications it is common practice to standardize W so that all its row sums are

1 (assuming that W does not have any zero rows). As pointed out by Kelejian and Prucha

(2010), some consequences of this practice are not completely understood. In this section

we study the effect of row-standardization on the correlation structure of SAR(1) models.

We focus on the correlations between units at distance 1, and on the case when, prior to

row-standardization, the weights matrix is a (0, 1) matrix (that is, a matrix containing only

zeros and ones) and is symmetric. Extensions of the results to other practically relevant cases

can be obtained by a similar analysis, but are omitted for brevity.

We define Ni := {j : (W )ij > 0}, ni := |Ni|, nij := |Ni ∩Nj |, and sij :=
∑

l∈Ni∩Nj
n−1
l .

Proposition 5.2 Consider a SAR(1) model with weights matrix W , and let i and j be any

two units such that d(i, j) = 1.

(a) If W is a symmetric (0, 1) matrix, then

corr(yi, yj) = 2ρ+ 3nijρ
2 +O(ρ3); (13)

(b) if W is a row-standardized version of a symmetric (0, 1) matrix, then

corr(yi, yj) =

(
1

ni
+

1

nj

)
ρ+

[
nij
ninj

+

(
1

ni
+

1

nj

)
sij

]
ρ2 +O(ρ3). (14)
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Despite their approximate nature, expressions (13) and (14) are helpful to clarify some

consequences of row-standardizing (0, 1) weights matrices. Two such consequences are de-

scribed next, and are then illustrated by means of a representative example.

Firstly, observe that the leading term in (13) is the same for each pair of neighbors,

whereas that in (14) can be very different for different pairs of neighbors. Thus, up to order

O(ρ2), different pairs of neighbors tend to be much more similarly correlated when W is

a symmetric (0, 1) matrix than when it is row-standardized. A second consequence of row-

standardization relates to the approximate ranking of neighbors correlations implied by (13)

and (14). Assuming that no edge corrections are implemented, the number of neighbors is

generally larger for vertices in the central part of a graph (say between 4 and 6 for the rook’s

definition of adjacency in geographical applications) than for vertices close to the borders of

the graph. Accordingly, the number nij of common neighbors is generally larger for pairs of

neighbors (i, j) in the central part of a graph than for pairs of neighbors close to the borders

of the graph, whereas the reverse holds for the quantity n−1
i + n−1

j . Thus, by expression

(13), when W is a symmetric (0, 1) matrix and up to order O(ρ3), neighbors correlations are

larger in the central part of the graph than at the borders. When W is row-standardized,

the situation is reversed: according to (14), neighbors correlations are larger at the borders

of the graph than in the central part, up to order O(ρ2). The intervals of values of ρ around

0 where such implications hold depend on W in a complicated manner, but it is clear that

the inequality |corr(yi, yj)| ≥ |corr(yl, ym)| is satisfied over a large interval if nij−nlm is large

(for a (0, 1) weights matrix) or if n−1
i + n−1

j − (n−1
l + n−1

m ) is large (for a row-standardized

weights matrix).

Example 5.3 Consider a random vector y observed over the map of the 48 continental

United States, and suppose that two states are taken to be neighbors if and only if they share

a common boundary or a common corner. Figure 2 displays all correlations implied by a

SAR(1) model between pairs of variables yi and yj such that states i and j are neighbors.

The correlations are plotted for ρ ∈ [0, λ−1
max), with λ−1

max being about 0.185 for a (0, 1) weights

matrix (panel (b)), 1 for the row-standardized case (panel (c)). Out of the 107 neighbor

correlations, we have emphasized those between Missouri (MI) and Tennessee (TE), and

between Maine (MA) and New Hampshire (NH). As predicted by our discussion above, when

ρ is small these two correlations are closer to each other when W is a (0, 1) matrix compared

to the row-standardized case (e.g., for ρ = .2λ−1
max the correlations between MI and TE and

between MA and NH are respectively 0.08 and 0.07 if W is a (0, 1) matrix, whereas they are

0.06 and 0.26 after row-standardization). The number nij of common neighbors is 2 for MI

and TE, 0 for MA and NH. Thus, by Proposition 5.2(a), MI and TE are more correlated

than MA and NH, when W is a (0, 1) matrix and for sufficiently small ρ. In fact, Figure

2(b) shows that this remains true for all ρ ∈ (0, λ−1
max). A similar observation applies to the

case of a row-standardized W . The quantity n−1
i + n−1

j equals 4/3 for MA and NH and 1/4

for MI and TE. Hence, by Proposition 5.2(b), MA and NH must be more correlated than Mi

and Te for sufficiently small ρ; in fact, Figure 2(c) shows that this remains true unless ρ is

8



very close to 1.
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Figure 2: The correlations, as a function of ρ, implied by a SAR(1) model with (0, 1) weights matrix

(panel (b)) and row-standardized weights matrix (panel (c)), for the 107 pairs of contiguous US, with

emphasis on Missouri and Tennessee (crosses) and Maine and New Hampshire (dark solid line).

Following the usual rules for division of power series, from Proposition 5.2 it is possible to

derive expansions for ratios of neighbors correlations. This may be useful to quickly compare

the degrees of correlation of different pairs of neighbors. For instance, whenW is a symmetric

(0, 1) matrix expression (13) yields corr(yi, yj)/ corr(yl, ym) = 1 + 3
2 (nij − nlm) ρ+O(ρ2). In

the case of Example 5.3, such an expression indicates that MI and TE (nij = 2) are 1 + 3ρ

times more correlated than MA and NH (nlm = 0), up to order O(ρ2).

5.3 Correlations as the Distance Changes

We now turn to analyze how the correlations implied by a SAR(1) model depend on the graph

distance d(·, ·). The following proposition establishes that, when |ρ| is sufficiently small, the

absolute value of corr(yi, yj) is inversely related to d(i, j) for any W .

Proposition 5.4 As ρ → 0 in a SAR(1) model, |corr(yi, yj)| > |corr(yl, ym)| if d(i, j) <

d(l,m), for any i, j, l,m = 1, ..., n.

Similarly to other correlation properties discussed earlier, the ordering established by

Proposition 5.4 does not need to hold over the whole parameter space of a SAR(1) model,

and the interval where it holds depends on W and on i, j, l,m. An example is given next.

Example 5.5 Figure 3 displays corr(yi, yj) when W is a (0, 1) matrix and i and j are

Maine and New Hampshire (darker line; d(i, j) = 1) and Oklahoma and Nebraska (lighter

line; d(i, j) = 2), for 0 < ρ < λ−1
max. For large values of ρ the correlation between the units at

distance 2 is much larger than the correlation between the units at distance 1.
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Figure 3: The correlations, as a function of ρ, implied by a SAR(1) model with (0, 1) weights matrix,

for a pair of neighbors (darker line) and for a pair of non-neighbors (lighter line).

Figure 3 shows that, for large enough ρ, the correlations implied by a SAR(1) model are

not guaranteed to be inversely related to the distance d(·, ·). In fact, it is generally impossible

to impose that the correlations implied by a SAR(1) process are monotonically decreasing

in some relevant distance. For the purpose of imposing correlation properties of this type,

models that specify the covariance function directly in terms of some relevant distance (such

as the so-called geostatistical models; see Cressie, 1993, Ch. 2) are clearly more suitable. It

should be noted, however, that in many networks (e.g., social networks) (i) there is no reason

why covariances should decrease monotonically in any distance, and (ii) no other relevant

distance is available other than that induced by contiguity. In such cases, SAR(1) models

may be more suitable than geostatistical models. For a comparison between SAR(1) models

and geostatistical models, see, e.g., Cressie et al. (1999), Griffith and Csillag (1993), Song et

al. (2008).

The possible nonmonotonicity of SAR(1) correlations in d(·, ·) originates from the fact

that the contributions to a covariance given by long SAR-walks increase with ρ (see Section

4). Recall however that the contribution of a SAR-walk depends not only on its length, but

also on its weight. In particular, a specification of W such that SAR-walks have weights

decaying quickly with their length may compensate for the effect of an increasing ρ. This is

what happens with a row-standardized W , because in that case the weight of a SAR-walk

ω is inversely related to ni, for each i in ω. Thus, one consequence of row-standardizing

W is that it attenuates the possible nonmonotonicity of corr(yi, yj) in d(i, j). Indeed, when

the weights matrix of Example 5.5 is row-standardized, there is no value of ρ such that a

correlation between non-neighbors is much larger than a correlation between neighbors.

5.4 Correlations at the Extremes of the Parameter Space

This section analyzes the behavior of the correlations as ρ approaches the extremes of the

largest connected interval around the origin where Σ(ρ) exists. For this purpose, we assume

λmax > 0 and that W has at least one negative eigenvalue, so that the extremes are λ−1
min and

λ−1
max.6

A natural question is whether two variables yi and yj approach perfect correlation as ρ

approaches λ−1
min or λ−1

max. Let us denote by gmin (resp. gmax) the geometric multiplicity of
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λmin (resp. λmax), and by qmin (resp. qmax) an arbitrary eigenvector of W associated to λmin

(resp. λmax). In most applications gmin and gmax are 1.7

Theorem 5.6 In a SAR(1) model, for any W and for any i, j = 1, ..., n,

(a) if gmin = 1 and (qmin)i(qmin)j > 0, then limρ→λ−1
min

corr(yi, yj)→ 1;

(b) if gmin = 1 and (qmin)i(qmin)j < 0, then limρ→λ−1
min

corr(yi, yj)→ −1;

(c) if gmax = 1 and (qmax)i(qmax)j 6= 0, then limρ→λ−1
max

corr(yi, yj)→ 1.

In the cases not contemplated by Theorem 5.6 the limiting behavior of the correla-

tions at λ−1
min and λ−1

max depends on W . More specifically, if (qmin)i(qmin)j = 0 or gmin >

1, then corr(yi, yj) can approach any value in [−1, 1] as ρ → λ−1
min, depending on W ; if

(qmax)i(qmax)j = 0 or gmax > 1, then corr(yi, yj) can approach any value in [0, 1] as ρ→ λ−1
max,

depending on W (cf. Martellosio, 2011, Lemma 3.3).

In the rest of this section we focus on the right extreme λ−1
max, because positive autocor-

relation is much more common in applications than negative autocorrelation, and because a

SAR(1) model with ρ close to λ−1
max has an intrinsic interest due to the analogy with the near

unit root case in an AR(1) model; see, e.g., Lee and Yu (2011). The following result gives a

sufficient condition for all pairs of variables to approach perfect correlation as ρ → λ−1
max. It

should be noted that the condition is given in terms of walks, not SAR-walks.

Corollary 5.7 If there is a walk from each unit to every other unit, then all correlations

implied by a SAR(1) model tend to 1 as ρ→ λ−1
max.

It easy to see that the condition in Corollary 5.7 is satisfied if and only if there is no

ordering of the units such that W is block-triangular. If such an ordering exists, which is

often the case in applications to directed networks, then there may be correlations that do

not approach 1 as ρ→ λ−1
max.

Example 5.8 Figure 4 displays corr(y2, y4) implied by a SAR(1) model with the block-

triangular weights matrix of Example 3.2, for 0 ≤ ρ < λ−1
max = 1. Observe that corr(y2, y4)

does not approach 1 as ρ→ 1.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1ρ

Figure 4: corr(y2, y4) implied by a SAR(1) model with weights matrix (3).
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In the case of an undirected graph a block-triangular W must be block-diagonal. Thus,

by Corollary 5.7, all correlations implied by a SAR(1) model on an undirected graph tend to 1

as ρ→ λ−1
max if there is no ordering of the units such thatW is block-diagonal. Block-diagonal

weights matrices are important in some econometric applications; see, e.g., Case (1992).8

Corollary 5.9 Let W be a block-diagonal weights matrix such that there is a walk from

each unit to every other unit in the same block. If W is row-standardized, then all SAR(1)

correlations relative to units within the same block tend to 1 as ρ→ 1.

We now point out an interesting connection between Theorem 5.6(c) (and its two corol-

laries) and a particular concept of centrality in a network. Such a connection rests on the

fact that (qmax)i is a relative measure of the involvement of i in the the walk structure of

the graph underlying W , known as the eigenvector centrality of vertex i; see, e.g., Bonacich

(1972). If (qmax)i and (qmax)j are nonzero but very close to zero (compared to all other

entries of qmax), then corr(yi, yj) approaches 1 slowly and therefore Theorem 5.6(c) may be

uninformative about the behavior of corr(yi, yj) in a neighborhood of λ−1
max. Since a small

(qmax)i indicates low centrality, this means that corr(yi, yj) approaches 1 slowly as ρ→ λ−1
max

if i and j have low centrality. For example, the correlation between Maine and New Hamp-

shire in Figure 2(b) does approach 1 as ρ→ λ−1
max, but remains less than 0.4 unless ρ is very

close to λ−1
max.9 Note that such nonsmoothness of corr(yi, yj) for ρ close to λ−1

max does not

occur when W is row-standardized, because in that case qmax is a vector of identical entries,

and hence all units have the same centrality.

6 Conclusion

Especially when defined on an irregular lattice, a SAR(1) process generates a complicated

correlation structure that can be interpreted as the equilibrium of an influence process be-

tween all spatial units. We have shown that the correlations implied by a SAR(1) model

can be understood in terms of a particular type of walks between the observational units,

which we have named SAR-walks. Each SAR-walk between two units gives a contribution to

the covariance between the random variables observed at those units, with the parameter ρ

controlling the relative importance of the contributions coming from SAR-walks of different

lengths.

A natural extension of our analysis is to study how the correlation properties of a SAR(1)

process are affected by the presence of group theoretic symmetries and combinatorial regu-

larities in the underlying graph. We will report our work on this theme elsewhere.

Finally, it is worth mentioning that all the results given in this paper can be readily

extended to first-order conditional autoregressive (CAR(1)) processes (e.g., Besag, 1974;

Cressie, 1993). CAR(1) processes share some similarities with SAR(1) processes, and are

very popular in many fields, for instance disease mapping and image analysis, but not in

economics. In fact, the analysis of CAR(1) processes is simpler, because in order to study

their correlation structure the weights matrix can be taken to be symmetric without loss of
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generality, and hence walks and their weights can be defined without regards to the direction

of their steps.

Notes

1There are several such extensions, e.g., the spatial lag, spatial error, or spatial Durbin models (see, for

instance, Anselin, 1988). All these models have variance matrix (2). For an interpretation of the marginal

effects in a spatial Durbin model that has some similarities with the interpretation of the correlation structure

developed in this paper, see LeSage and Pace (2009), Section 2.7.
2We can take V = In because the correlation matrix of y is invariant to transformations y → Ty, for any

diagonal matrix T with positive diagonal entries (if V 6= In, just take T = V −1/2). The results in this paper

continue to hold when V 6= In, with W replaced with V −1/2WV 1/2.
3The case ρmin = −∞ is relevant when W is nilpotent, or when each eigenvalue of W is either nonnegative

or complex. On the other hand, λmax = 0 occurs if and only if W is nilpotent. Thus, when W is non-nilpotent,

λmax can be taken to be equal to 1 without loss of generality, by a reparametrization of the model.
4It is worth noting that there always exists a left neighborhood of ρ = 0 where corr(yi, yj) > 0 if d(i, j) is

even, corr(yi, yj) < 0 if d(i, j) is odd. This is because the lowest power of ρ in (6) is d(i, j), by the definition

of d(·, ·).
5There are of course some correlation properties that can be inferred from W alone (e.g., for any ρ ∈

(0, ρmax), all correlations are nonnegative, and they are positive if the graph underlying W is strongly con-

nected), but these are all rather weak properties.
6When λmax = 0, the right extreme of the parameter space is ∞ (see Section 2). Similarly, when W does

not have any negative eigenvalues, the left extreme is −∞. We do not consider these two cases because the

behavior of the correlations as ρ→ ±∞ is not very interesting from a practical point of view.
7More precisely, gmin > 1 or gmax > 1 generally require W to satisfy some symmetries (e.g., Biggs, 1993,

Ch. 15), and gmax > 1 also requires reducibility of W . One example of a weights matrix that satisfies several

symmetries and is sometimes used in social network analysis is a block diagonal matrix whose main diagonal

blocks have off-diagonal entries equal to 1. For such a matrix, gmin = n − r and gmax = r, where r is the

number of main diagonal blocks.
8It is worth pointing out that in some cases it may be appropriate to use different autoregressive parameters

for different blocks.
9When qmax is normalized to have length 1, the entry of qmax corresponding to Maine is 1.39 · 10−7 and

that corresponding to New Hampshire is 4.08 · 10−6.

Appendix A Proofs

We first give an auxiliary lemma, and then prove all results stated in the main text.

Lemma A.1 Let λ be an eigenvalue of an n× n matrix M , with geometric multiplicity gλ.

Then, rank((In − λ−1M
′
)(In − λ−1M)) = n− gλ.

Proof. For any matrix B, rank(B′B) = rank(B) and rank(B) + dim(N (B)) = n, where

N (B) denotes the nullspace of B. The result follows, because gλ := dim(N (M − λIn)).

Proof of Lemma 4.1. The lemma is trivial for r = 0 or for r = 1, so let us assume r > 1.

On expanding the products of the k matrices W and r − k matrices W ′ that appears in

expression (4), the ij-th entry of Zr can be expressed as

(Zr)ij =
r∑

k=0

n∑
l1,...,lr−1=1

a(k, i, l1, ..., lr−1, j), (15)
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where, taking for notational convenience k ∈ (2, r − 2),

a(k, i, l1, ..., lr−1, j) = (W )il1(W )l1l2 ...(W )lk−1lk(W ′)lklk+1
...(W ′)lr−2lr−1(W ′)lr−1j

= (W )il1(W )l1l2 ...(W )lk−1lk(W )lk+1lk ...(W )lr−1lr−2(W )jlr−1 . (16)

The modification of (16) required for 0 ≤ k ≤ 2 or r − 2 ≤ k ≤ r is obvious. Observe

now that, for any k = 0, ..., r, a(k, i, l1, ..., lr−1, j) is equal to the weight of the SAR-walk

(i → l1 → ... → lk ← ... ← lr−1 ← j) if such a SAR-walk exists, to 0 otherwise. Thus, by

(15), (Zr)ij is equal to the sum of the weights of all SAR-walks of length r from i to j.

Proof of Lemma 4.2. Follows from the combination of Definition 3.3 and Lemma 4.1.

Proof of Theorem 4.3. Let K(r)
ij denote the set of all SAR-walks of length r from i to j,

so that, according to Lemma 4.1, (Zr)ij =
∑

ω∈K(r)
ij

wei(ω). Using expression (5), we obtain

that, when |ρ|λmax < 1, cov(yi, yj) =
∑∞

r=d(i,j)

∑
ω∈K(r)

ij

wei(ω)ρr =
∑

ω∈Kij
wei(ω)ρlen(ω).

Proof of Theorem 5.1. Let Σ∗ij(ρ) denote corr(yi, yj) in a SAR(1) model, Drf(x) denote

the r-th derivative of a function f : R→ R, and Drf(0) denote Drf(x) evaluated at x = 0. In

any neighborhood of ρ = 0 such that |ρ|λmax < 1,Σ∗ij(ρ) is an infinitely differentiable function

of ρ, and hence it admits the MacLaurin expansion
∑∞

r=0(r!)−1DrΣ∗ij(0)ρr. The bulk of the

proof consists of expressing the coefficients (r!)−1DrΣ∗ij(0) in terms of entries of the matrices

Z0, ...,Zr. Write Σ∗ij(ρ) = Σij(ρ)η(v(ρ)), with η(z) := z−1/2 and v(ρ) := Σii(ρ)Σjj(ρ). By

Leibniz’s formula,

1

r!
DrΣ∗ij(0) =

r∑
s=0

1

s!(r − s)!
Dr−sΣij(0)Dsη(v(0)), (17)

where, applying Faá di Bruno’s formula (e.g., Abramowitz and Stegun, 1979),

Dsη(v(0)) =
∑

(k2,...,ks)∈Φ

s!

k1!...ks!
(Dkη)(v(0))

s∏
t=1

(
Dtv(0)

t!

)kt
, (18)

with k :=
∑s

t=1 kt. Since v(0) = 1 and Dkη(z) =
∏k−1
l=0 (1/2 − l)z−1/2−k, it follows that

(Dkη)(v(0)) =
∏k−1
l=0 (1/2− l). In addition, from expression (5), we have that, for |ρ|λmax <

1, v(ρ) =
∑∞

r,s=0 ρ
r+s(Zr)ii(Zs)jj =

∑∞
r=0 ρ

r
∑r

u=0(Zr−u)ii(Zu)jj , and hence Dtv(0)/t! =∑t
u=0(Zt−u)ii(Zu)jj . Thus, since D1v(0) = 0, (18) yields Dsη(v(0)) = 0 if s = 1, and

Dsη(v(0)) =
∑

(k2,...,ks)∈Φ

s!αK
k2!...ks!

s∏
t=2

(
t∑

u=0

(Zt−u)ii(Zu)jj

)kt
(19)

if s > 1. Substituting expressions (19) and Dr−sΣij(0) = (r − s)!(Zr−s)ij into (17) gives

(r!)−1DrΣ∗ij(0) = (Zr)ij − br(i, j), which is the desired result.

Proof of Proposition 5.2. Both parts (a) and (b) are obtained by substituting the

relevant expressions for (Z1)ij and (Z2)ij into (11). If W is a symmetric (0, 1) matrix, then,

for any pair of neighbors (i, j), (Z1)ij = 2 and (Z2)ij = 3(W 2)ij = 3
∑n

l=1W ilW lj = 3nij .
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Consider now a row-standardized weights matrix W = D−1A, where A is a symmetric

(0, 1) matrix, and D is the diagonal matrix with (D)ii =
∑n

j=1(A)ij , i = 1, ..., n. For

any pair of neighbors (i, j), (Z1)ij = n−1
i (A)ij + n−1

j (A)ji = n−1
i + n−1

j and (Z2)ij =

(W 2)ji+(WW ′)ij+(W 2)ij , where (WW ′)ij = (D−1AAD−1)ij = (ninj)
−1∑n

l=1AilAlj =

(ninj)
−1 nij , (W 2)ji = n−1

j sij , and (W 2)ij = (D−1AD−1A)ij = n−1
i

∑n
l=1 n

−1
l (A)il(A)lj =

n−1
i sij .

Proof of Proposition 5.4. By Lemma 4.2 and Assumption 2.1, (Zd(i,j))ij > 0. Hence,

Theorem 5.1 implies that the larger d(i, j) is, the faster corr(yi, yj) goes to zero as ρ→ 0.

Proof of Theorem 5.6. For any ρ ∈ (λ−1
min, λ

−1
max), let γ1(ρ) < γ2(ρ) < ... < γs(ρ) denote

the distinct eigenvalues of Σ−1(ρ). Note that s does not depend on ρ except for a finite num-

ber of values of ρ (see Kato, 1995, p. 64). By Lemma A.1 in Martellosio (2011), the eigenspace

of Σ−1(λ−1
max) associated to γ1(λ−1

max) = 0 is equal to the eigenspace, say Eλmax , of W associ-

ated to λmax. Assume now that gmax = 1. Then the eigenspace of Σ−1(λ−1
max) associated to

γ1(λ−1
max) is 1-dimensional. This, together with continuity of the functions γl(ρ), implies that

Assumption 2 in Martellosio (2011) is satisfied. Thus, by Lemma 3.3 in Martellosio (2011),

γ1(ρ)Σ(ρ) → Eλmax as ρ → λ−1
max. Since Eλmax = (qmaxq

′
max)/(q′maxqmax), it follows that

γ1(ρ) cov(yi, yj) → (qmax)i(q
′
max)j/(q

′
maxqmax). Hence, provided that (qmax)i(qmax)j 6= 0,

and using corr(yi, yj) = cov(yi, yj)/(var(yi)var(yj))
1/2, one obtains

lim
ρ→λ−1

max

corr(yi, yj)→ (qmax)i(qmax)j/ |(qmax)i(qmax)j | = sgn((qmax)i(qmax)j). (20)

Part (c) of the theorem follows, because, by Assumption 2.1 and Theorem 8.3.1 of Horn and

Johnson (1985), gmax = 1 implies that qmax is entrywise nonnegative or nonpositive. By a

straightforward extension of the arguments above equation (20), one can easily see that, if

gmin = 1 and (qmin)i(qmin)j 6= 0,

lim
ρ→λ−1

min

corr(yi, yj)→ sgn((qmin)i(qmin)j),

which proves parts (a) and (b) of the theorem.

Proof of Corollary 5.7. If there is a walk from each unit to every other unit, then W is

an irreducible matrix. Since W is nonnegative, the Perron-Frobenius Theorem implies that

gmax = 1 and qmax is entrywise positive (see, Horn and Johnson, 1985). The desired result

follows from Theorem 5.6(c).

Proof of Corollary 5.9. A SAR(1) model with block-diagonal weights matrix can be

decomposed into the product of a number of submodels equal to the number of diagonal

blocks. Since there is a walk from each unit to every other unit in the same block, W does

not have any zero rows, and can therefore be row-standardized, which implies λmax = 1. By

Corollary 5.7, all correlations implied by each submodel tend to 1 as ρ→ 1.
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