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 

Abstract — Aircraft Maintenance, Repair and Overhaul 
(MRO) agencies rely largely on row-data based quotation 
systems to select the best suppliers for the customers 
(airlines). The data quantity and quality becomes a key 
issue to determining the success of an MRO job, since we 
need to ensure we achieve cost and quality benchmarks.  
This paper introduces a data mining approach to create 
an MRO quotation system that enhances the data quantity 
and data quality, and enables significantly more precise 
MRO job quotations. 

Regular Expression was utilized to analyse descriptive 
textual feedback (i.e. engineer’s reports) in order to 
extract more referable highly normalised data for job 
quotation. A text mining based key influencer analysis 
function enables the user to proactively select sub-parts, 
defects and possible solutions to make queries more 
accurate. Implementation results show that system data 
would improve cost quotation in 40% of MRO jobs, would 
reduce service cost without causing a drop in service 
quality.    

I. INTRODUCTION 

aintenance, Repair and Overhaul in the airline 
industry involves the fixing of out of order or 
broken mechanical or electrical devices. MRO 

activity also includes routine scheduled maintenance to 
minimize the risk of a future fault. A standard MRO 
process involves: the customer (i.e. an airline) 
delegating an MRO job to an MRO agency. The agency 
references a MRO database of completed jobs and 
quotes two critical pieces of information. Firstly the 
MRO agency provides information about the ‘cheapest’ 
price. Secondly the MRO agency provides information 
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about the ‘best’ supplier to fulfil that MRO job. The 
customer then chooses and grants a quote. Once a quote 
is granted, the part is sent, checked, repaired, and 
returned to the MRO agency. The customer is billed for 
the work and payment is cleared.  

The key issue during this MRO process is the 
creation of accurate and appropriate quotes. Incorrect 
quotation significantly impacts the chance of either a 
quote being granted (i.e. because the quote is too high), 
or may lead to a reduction in customer trust (i.e. the 
quote is too low and the bill is therefore perceived to be 
too high). How can MRO agencies ensure that the 
‘cheapest’ price is quoted, as all jobs are uniquely 
different? Moreover, how can we promise that the 
‘best’ supplier is recommended? These issues depend 
on the historical MRO database containing enough 
relevant information to answer these questions. 
Traditionally MRO quotes were based solely on 
normalized feedback data. Normalized feedback, 
however, is unable to provide information about the 
many more descriptive factors; that are important when 
comparing complex engineering jobs. An engine repair 
cost may vary from a few hundred USD to more than 
several hundred thousand USD depending on the sub-
parts involved or warranty status. An average price 
therefore will clearly be very inaccurate. Capture of 
more precise historical data is clearly important to 
ensure the best possible quotation for customers. This 
paper offers a text mining solution to improve capture 
of both data quality and quantity within the 
maintenance and service domain. 

II. A CONCEPTUAL FRAMEWORK 

A. Text Mining 

Textual data mining relates to the process of 
extracting high-quality information from large 
quantities of textual content [1]. The purpose of Text 
Mining is to automate the processing of unstructured 
(textual) information [2], so that meaningful semantic 
value can be obtained, i.e. by defining structural 
patterns within the text, normalised forms of 
information can be derived. This normalized 
semantically rich data can be used by common data 
mining (statistical and machine learning) algorithms to 
support the identification of clusters, associations and 
sequences in MRO activity. 

In its most basic form, text mining allows words in 
the text to be catalogued in a dictionary and counted. 
This allows us to determine a matrix of how many 
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