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Abstract 

A description is given of the global atmospheric electric circuit operating between the 

Earth’s surface and the ionosphere. Attention is drawn to the huge range of horizontal 

and vertical spatial scales ranging from 10-9 m to 1012m, concerned with the many 

important processes at work. A similarly enormous range of time scales is involved from 

10-6>s to 109s, in the physical effects and different phenomena that need to be 

considered. The current flowing in the global circuit is generated by disturbed weather 

such as thunderstorms and electrified rain/shower clouds, mostly occurring over the 

Earth's land surface. The profile of electrical conductivity up through the atmosphere, 

determined mainly by galactic cosmic ray ionisation, is a crucial parameter of the 

circuit. Model simulation results on the variation of the ionospheric potential, ~ 250kV 

positive with respect to the Earth's potential, following lightning discharges and sprites 

are summarized. Recent experimental results comparing global circuit variations with the 

neutron rate recorded at Climax, Colorado, are then discussed. Within the return (load) 

part of the circuit in the fair weather regions remote from the generators, charge layers 

exist on the upper and lower edges of extensive layer clouds; new experimental evidence 

for these charge layers is also reviewed. Finally, some directions for future research in the 

subject are suggested.  

  

Keywords: global circuit; thunderstorms; electrified cloud generators; cosmic rays; 

atmospheric electrical conductivity profile; fair weather regions; ionospheric potential; 

lightning; sprites; layer cloud electrification   

 

1. Introduction 
 

This paper is concerned with atmospheric electrical coupling from near the Earth’s 

surface up into - and down from - the ionosphere at ~ 80 km altitude and higher. This 

coupling takes place rapidly, at, or close to, the speed of light c (Rycroft 2006), as 

opposed to coupling mechanisms involving mechanical waves of one type or the other 

which propagate at speeds much slower than c, and which are discussed in other papers in 

this volume. As outlined by Aplin et al. (2008), the subject of atmospheric electricity had 

its origins in the eighteenth century, grew into the concept of the global atmospheric 

electric circuit in the early twentieth century with the seminal papers of Wilson (1921, 

1929, 1956), and matured considerably in the first decade of the twenty first century.  
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The global circuit is formed between the surface of the Earth and the ionosphere, both of 

which are good electrical conductors in comparison with the insulating atmosphere 

between them. D.C. and A.C. electric generators exist in the atmosphere, for example in 

thunderstorms, creating currents flowing up to the ionosphere. The current circuit closes 

through fair weather parts of the atmosphere that are remote from the generators.  Useful 

background papers on different aspects of the global atmospheric electric circuit have 

been written by Vonnegut (1973), Makino and Ogawa (1984, 1985), Roble and Tzur 

(1986), Volland (1987), Hays and Roble (1979), Roble aand Hays (1979), Roble (1991), 

Bering et al. (1998), Rycroft et al. (2000, 2007, 2008), Williams (2002, 2009), Harrison 

(2004), Siingh et al. (2005, 2007, 2011), Aplin (2006), Markson (2007), Tinsley et al. 

(2007), Harrison et al. (2008) and Tinsley (2008). The present paper complements these 

papers and those which they cite. The D.C. global atmospheric electric circuit has been 

considered in the context of the changing climate of planet Earth by Williams (1992), 

Price (1993), Tinsley et al. (1994), Gray et al. (2010) and Siingh et al. (2011).  

 

When considering a subject in physics, and its mathematical representation, the treatment 

conventionally begins simply, using linear theory. However, as the subject develops, it is 

usually appreciated that a more complex representation is appropriate. At larger 

amplitudes nonlinearities can arise and the system may even become chaotic on the small 

scale, or on the local, moderate (regional) or largest (global) scales. An important 

characteristic of such complex systems is that they simultaneously need to consider a 

wide range of spatial scales and temporal scales. Up to the present, the treatment of 

atmospheric electricity has remained linear, whereas nowadays climate studies often 

involve multi-scale and nonlinear behaviour (Donner et al. 2009; Slingo et al. 2009; 

Palmer and Williams 2010). The global electric circuit may be involved in climate 

change via non-linear electrical effects on cloud microphysical processes (Aplin et al. 

2008; Carslaw 2009; Harrison and Ambaum 2008, 2010; Nicoll and Harrison 2010), as 

discussed later in this paper. 

 

Fig. 1 shows the huge range of horizontal and vertical scales involved in the diverse 

phenomena and processes of interest which occur in the atmosphere and in the near-Earth 

space environment (Rycroft 2010). The horizontal scale extends over 18 orders of 

magnitude, and the vertical scale over 12 orders. At the Earth’s surface, point discharge 

currents (Chalmers 1962; Ette and Utah 1973; Marcz and Bencze 1998) emanate from 

sharp-ended vertical conductors, such as grass and the spiky needles of coniferous trees, 

which have scales of millimetre size. Pointed hills and ridges have scales of kilometres to 

hundreds of kilometres, and the oceans longer scales, although sea spray has dimensions 

of millimetres.  

 

In the lowest part of the atmosphere over continental surfaces, ionisation is generated 

from the escape of radon isotopes (Harrison et al. 2010) and by galactic cosmic rays 

arriving from beyond the solar system (Bazilevskaya et al. 2000, 2008; Velinov et al. 

2009). In clean air, water vapour condenses onto these ions to form cluster ions ~ 1 nm in 

size (Aplin et al. 2008, Rycroft et al. 2008). Some cluster ions are removed by ion-ion 

recombination and others are lost to aerosol particles (Harrison and Tammet 2008, 
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Hirsikko et al. 2011). In some circumstances in which condensable vapours such as 

sulphuric acid are abundant, the cluster ions may eventually grow into ~ 100 nm sized 

cloud condensation nuclei (CCN) onto which cloud droplets can form; raindrops, which 

are up to three orders of magnitude larger, result from coalescence of the cloud droplets. 

It is worth mentioning here that Enghoff et al. (2011) have recently studied sulphuric acid 

aerosol nucleation in an atmospheric pressure reaction vessel where a 580 MeV electron 

beam has ionised the gas. They found clear evidence for an ion-induced effect on aerosol 

nucleation under conditions which resemble those of the Earth’s atmosphere.        

 

Also shown in Fig. 1 are low level stratiform clouds (SCs) such as stratocumulus, where 

the electric charges at the cloud edges are important (Nicoll and Harrison 2009, 2010), 

and thunderstorm cells (TCs) which can grow into large thunderstorms (Williams and 

Yair 2006), termed mesoscale convective systems (MCSs). Thunderstorms produce 

lightning discharges which radiate electromagnetic waves across a broad range of 

frequencies; these constitute the A.C. part of the global electric circuit, discussed later.  

 

Above large thunderstorms transient luminous events (TLEs), such as sprites, elves and 

blue jets (Fullekrug et al. 2006), may occur just below the ionosphere. The lower 

ionosphere responds to activity from above, in the form of wave-particle interactions 

between whistler-mode waves from lightning and energetic electrons trapped in the 

magnetosphere (Rycroft 2010); extra ionization is then produced in the lowest ionosphere 

(Rodger et al. 2001). The magnetosphere is stimulated by activity on the Sun, that 

information travelling through interplanetary space in the form of coronal mass ejections 

(CMEs); these phenomena are generically termed space weather (Bothmer and Daglis 

2007). Such phenomena (Rycroft 2010) are important in terms of possible damage to 

satellites and other assets in space and to humans aboard spacecraft. 

 

Fig. 2 shows the broad range of temporal scales that are involved in the many phenomena 

of importance. On the shortest time scales of microseconds are electrical discharge 

phenomena. These are leader processes which occur as a lightning discharge progresses 

in steps from a thundercloud towards the ground, the cloud-to-ground (CG) return stroke 

which is a large (~ 30 kA) current to the cloud, and intra-cloud (IC) discharges (Rakov 

and Uman 2003). Lightning radiates all radio frequencies from MHz (associated with 

leader processes) to ~ 10 kHz (where the spectrum peaks (Smith et al. 2010)) to “slow 

tails” (~ 100 Hz, Mullayarov et al. 2010), and to the longest wavelength electromagnetic 

waves occurring in the Earth’s environment (~ 10 Hz). These latter waves excite 

Schumann resonances of the spherical shell cavity between the good conducting Earth 

and ionosphere, the fundamental of which is at 8 Hz (Williams 1992; Price et al. 2007; 

Simoes et al. 2008; Yang et al. 2009; Shvets et al. 2010; Nickolaenko et al. 2010; 

Golkowski et al. 2011). 

 

A few stations around the world can record the radiation of various frequencies generated 

by lightning and by sprites in order to find their location. Williams et al. (2010) did this 

for radio signals produced over Africa, investigating their dependence on the charge 

moment changes of the parent lightning. Whitley et al. (2011) have recently shown that 

with four stations around the world sources can be geolocated to an accuracy of ~ 10 km, 
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which is a remarkable achievement. Shvets et al. (2009, 2010), Nakamura et al. (2010), 

Shvets and Hayakawa (2011) and Yamashita et al. (2011) have also presented several 

interesting results on these topics. 

 

Runaway breakdown (Roussel-Dupre et al. 2008; Fishman and Chilingarian 2010) is 

believed to occur for some lightning discharges, possibly intra-cloud discharges 

(Williams et al. 2006), or active leader channels (Carlson et al. 2010). This runaway 

breakdown produces upward-going beams of runaway relativistic electrons which may be 

accelerated to a high enough energy to create a terrestrial gamma ray flash (TGF – see 

Fig. 2; Miller 2011). This is believed to be created as upward-going Bremsstrahlung 

radiation when the electrons collide with the nuclei of atmospheric atoms.  

 

Fig. 2 also shows that, on the time scale from seconds to hundreds of seconds, blowing 

space charge associated with turbulence in the boundary layer from the Earth’s surface up 

to ~ 2 km altitude generates electrical fluctuations. The space charge can be primarily 

ionic, in clean air, or particulate, in polluted air. Particulate space charge is subject to 

turbulent motions, which results in electrical fluctuations.  All the processes shown in 

figure 2 ultimately contribute to the generation of A.C. variations in the global circuit. 

 

The electromagnetic pulse from a very large CG discharge, which transfers positive 

charge to ground (termed a +CG discharge), deposits energy in the mesosphere and 

creates a rapidly expanding ring of light at ~ 90 km altitude, termed an elve. The 

consequent large electrostatic field above the thundercloud exceeds the conventional 

threshold field for electrical breakdown, creating a sprite from about 80 km at the base of 

the ionosphere down to about 55 km (Fullekrug et al. 2006; Rycroft and Odzimek 2009, 

2010; Pasko 2010; Pasko et al. 2011). Rarely, blue jets appear from the top of the 

thundercloud. Extremely rarely, gigantic jets reach from the top of the thundercloud right 

up to the ionosphere – they will short circuit the gap between the Earth and the 

ionosphere over some area as yet to be determined. 

 

Also shown in Fig. 2 are D.C. variations; on time scales of a fraction of an hour, these are 

linked to the development and evolution of thunderstorm cells. Mechanical waves occur 

in the form of upward propagating gravity waves, tidal variations (e.g., semi-diurnal, 

diurnal and two day waves), and longer period planetary waves. At even longer time 

scales are variations associated with the changing energy input to the stratosphere and 

thermosphere over the 27 day solar rotation period, annual variations, variations over the 

11 year solar cycle and long term trends. The boundary between D.C. and A.C. 

phenomena is here shown at 200 s, as this is the electrical time constant of the global 

atmospheric electric circuit, namely its resistance R multiplied by its capacitance C. The 

capacitance is that of the spherical capacitor formed between the Earth and the 

ionosphere, with the dielectric atmosphere being mostly concentrated near the Earth’s 

surface, due to gravity (Rycroft et al. 2000).  
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2. Properties of the global electric circuit 
 

(a) Generator and load regions 

Fig. 3 is a schematic representation of the circuit taken from Rycroft et al. (2000). In the 

upper part the bold arrows show the flow of electric current generated by thunderstorms 

(on the left), and occurring over < ~ 1% of the Earth’s surface, up to the ionosphere. A 

tiny part of the electric current flows up into the magnetosphere along geomagnetic field 

line, up to the apex of each particular field line. In the fair weather part of the circuit 

remote from thunderstorms, the current flows down to the Earth’s surface (with negative 

ions moving upwards). The circuit is completed by the good conductivity of land and sea 

surfaces and up to the base of thunderstorms by point discharge (corona) currents from 

sharp-tipped objects in the boundary layer. It is evident that electric charge is distributed 

throughout the insulating atmosphere, but most of the electric charge resides near the 

surface where, as is apparent from the density profile, most of the atmosphere is.  

 

The lower part of Fig. 3 shows the equivalent circuit. It is generally believed that about a 

thousand thunderstorms are active globally at any one time; these are represented by a 

current generator (of ~ 1 to 2 kA) which acts as a D.C. battery in the circuit. The 

electrical resistance of the atmosphere is appreciable, especially below the thunderstorms, 

whereas the ionospheric resistances shown are by comparison extremely small, 

effectively ensuring that the ionosphere is an equipotential; its potential, VI, is ~ 250 kV 

positive with respect to the Earth’s surface.  

 

As well as thunderstorms, there is another significant generator in the global circuit. This 

is due to electrified rain/shower clouds which generally bring negative charge to the 

ground on raindrops (Liu et al. 2010), as was first discussed by Wilson (1921). Rycroft at 

al. (2007) estimated that thunderstorms contribute about 60% of the upward current to the 

ionosphere, with electrified rain/shower clouds being responsible for ~ 40%. Odzimek et 

al. (2010) deduced that these percentages are 80% and 20%, respectively. A very recent 

paper by Mach et al. (2011) has, for the first time, used experimental data from aircraft 

and satellites to deduce that thunderstorms over the land contribute 1.1 kA to the global 

circuit and, over the oceans, 0.7 kA. The contributions to the global circuit made by 

rain/shower clouds are 0.22 kA for ocean storms and 0.04 kA for storms over the land. 

Thus, Mach et al. (2011) consider that thunderstorms contribute 90% and rain/shower 

clouds 10% to the total ~ 2 kA flowing in the global circuit.  

 

In the return (or load) part of the circuit in the fair weather region (over ~ 98% of the 

Earth’s surface in area) the downward current density Jz flowing is ~ 2 pAm
-2 
(Wilson 

1921). Most of the resistance is near the surface, due to the exponential distribution of the 

atmospheric density with a scale height H of ~ 7 km. The equivalent load resistor of the 

entire circuit, R, is ~ 200 Ohms. The lower right corner shows that the capacitance C of 

the circuit is the value calculated by the standard electrostatics method. Here, RE is the 

Earth’s radius, and the separation between the two conductors is taken as the scale height 

H of the dielectric atmosphere rather than their physical separation, which is almost 12 

times greater. The negative charge on the Earth’s surface is – 2 x 10
5
 Coulombs, and the 

electric energy stored in the circuit is ~ 2 x 10
10 
J. 
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The conductivity and the electric current density Jz flowing in the fair weather regions 

determine the vertical electric field E. Near the Earth’s surface away from aerosol 

pollution in fair weather E = -130 V/m; the minus sign indicates that the electric field is 

directed downwards. Meteorologists refer to this as the potential gradient (PG) rather the 

electric field; the PG and E have the same magnitude, but by convention the PG is 

positive in fair weather.   

 

     (b) Vertical variations 

The cosmic ray fluxes at different altitudes and for different rigidities (i.e. for different 

momenta) have been reported by Bazilevskaya et al. (2000, 2008) and Stozhkov et al. 

(2001). In the presence of the geomagnetic field, protons with rigidities < 0.6 GV can 

only gain access to the Earth’s environment in the polar regions; those with rigidities 

between 2.5 and 6 GV are found at middle latitudes, and only those with rigidities of 

13.5 GV or more can enter the magnetosphere at equatorial latitudes. Fig. 4, from 

Bazilevskaya et al. (2000), shows, in panel (a), long term observations of the fluxes (J) of 

cosmic rays of different rigidities (Rc) at 33 degrees magnetic latitude (6.7 GV), 51 

degrees magnetic latitude (2.4 GV) and 64 degrees (0.6 GV) at 25 to 30 km altitude in the 

middle atmosphere; panel (b) shows similar data in the upper troposphere between 6 and 

12 km altitude.  

 

There is a strong solar cycle variation, with large fluxes near the solar minima around 

1965, 1976, 1987 and approaching 1998. In the troposphere the cosmic ray flux at high 

latitudes is typically ~ 20% larger in solar minimum conditions that near solar maximum; 

it is ~ 10% larger at 33 degrees magnetic latitude. The ion-pair production rate at 

different altitudes varies by ~ 2.5 as one moves from the geomagnetic equator to the 

magnetic poles. The principal nuclear species contributing to the cosmic ray spectrum 

have been presented recently by Nakamura et al (2010) and Schwarzschild (2011). 

 

Because the conductivity of the atmosphere is least near the Earth’s surface, most of the 

electrical resistance of the circuit lies there. Harrison and Bennett (2007) and Rycroft et 

al. (2008) have published diagrams showing that ~ 95% of the atmospheric columnar 

resistance Rc lies at altitudes below 10 km, with half of the columnar resistance being 

within the lowest 1.6 km. Fig. 5 displays a graph of the percentage of the columnar 

resistance calculated at height increments of 1 km from the surface up to 10 km height; 

its value is 156 POhms.m
2
. The value of Rc all the way up to the ionosphere is 

167 POhms.m
2
. In the fair weather part of the circuit, it is obvious from Ohm’s Law that 

Jz = VI/Rc. Inserting the model values which we have presented, Jz is found to be 

250kV/167 POhms.m
2
 = 1.5 pAm

-2
, which is consistent with many experimental 

determinations, such as the original direct measurements of Wilson (1906). 

 

Thus, it is evident that the atmospheric (or planetary) boundary layer is the most 

important load in the fair weather part of the global circuit. When considering how the 

global circuit operates, it is most important to realise this fact. Also, as mentioned earlier, 

most of the positive charge distributed through the atmosphere resides near the surface; it 
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is not on the ionospheric upper conductor of the capacitor. Nogueira (2009) has 

constructed a finite element model of the fair weather electric circuit. 

 

In order to perform model calculations, Rycroft et al. (2007) and Rycroft and Odzimek 

(2010) plotted a realistic average model of the electrical conductivity profile through the 

Earth’s atmosphere. The conductivity increases by seven orders of magnitude from the 

surface, where the conductivity is ~ 10
-14 

S/m, to ~ 10
-7 
S/m at ~ 80 km altitude; Odzimek 

et al. (2010) have presented more complicated models displaying geographic variations. 

Using the simpler conductivity model, Rycroft et al. (2007) and Rycroft and Odzimek 

(2009, 2010) constructed an electrical engineering model of the global atmospheric 

electric circuit, which they used to evaluate the effects of lightning having different 

charge moment changes and of sprites on the potential of the ionosphere and also to show 

how sprites develop. 

 

Rycroft et al. (2007, 2008) and Rycroft and Odzimek (2010) briefly discussed some 

relevant experimental observations of atmospheric electric fields, currents and air 

conductivities made from different balloons at altitudes up to 35 km. Thomas et al. 

(2009) reviewed the literature on these topics. Further, they presented the results of 

making such observations in the stratosphere (between 30 and 35 km) above an active 

thunderstorm in southeastern Brasil. They found that the conductivity was about 8.5 x 10
-

12 
S/m; for their model thunderstorm of radius ~ 60 km, they estimated that the upward 

current above this active thunderstorm was ~ 2.5.A. In relation to the results presented in 

the previous section (a), they reported that “the overall charge removal contribution of 

large +CG flashes to the global circuit was small”.And, “moreover, since the –CG flashes 

provide charging and +CG flashes provide discharging of nearly equal magnitudes, we 

conjecture that the combined contribution due to all lightning could be very small. These 

results are in good agrement with those presented by Rycroft et al. (2007) and Rycroft 

and Odzimek (2010).  

 

Inside an active thundercloud, the electrical conductivity is not well-constrained, but 

observations discussed by Rycroft et al. (2007) show that it is at least a factor of six less 

than its value in the clear air surrounding the thundercloud; Rycroft et al. (2007, 2008)  

showed  values for a model thundercloud. Fig. 3 of the Rycroft and Odzimek (2010) 

model considered the effect on the global circuit of reducing the conductivity within the 

thundercloud by a factor ranging from 2 to 29. They reported that the ionospheric 

potential would then increase from ~ 150 kV to ~ 415 kV. 

 

Similarly, but inside a stratiform cloud in the fair weather region of the global circuit, the 

conductivity is less that just outside the cloud. By Gauss’ law of electrostatics, there has 

to be an electric charge at the top and bottom edges of a uniform stratiform cloud, and the 

current flows through the cloud with the same current density value as above and below 

it. This topic is the subject of recent experimental studies by Nicoll and Harrison (2010) 

which are discussed in section 3(d). 

 

With the increase in conductivity with height, the vertical electric field becomes so small 

with increasing height that the potential in the model atmosphere at 60 km is only 24 V 
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less than the 250,000 kV ionospheric potential (Rycroft et al. 2007). Since these 

potentials are the same to within one part in 104, we may say that the 60 km level is the 

height of the electrosphere. Chalmers (1967) defined the electrosphere as being at the 

level at which, horizontally, essentially the same electric potential exists. 

 

However, this concept does not allow for the presence of electric fields arising from 

magnetospheric sources (Tinsley 2008), such as the flow of the solar wind past the 

magnetosphere (Rycroft 2010). This value of this additional electric field depends 

strongly on the value (~ some nT) of the southward component of the interplanetary 

magnetic field (often called the IMF). It also depends, to a lesser extent, on the sign and 

magnitude of the dawn-to-dusk component of the interplanetary magnetic field. Tinsley 

(2008) splits the atmospheric columnar resistance into two parts – a tropospheric part and 

a stratospheric part – the latter is much smaller than the former. The magnitude of the 

stratospheric part varies markedly with latitude, because of the latitudinal variation of the 

ionisation source. Tinsley et al. (2007) and Zhou and Tinsley (2010) emphasise the 

generator provided by coupling from the solar wind. 

 

Electric currents flowing in the atmosphere find it easier to continue upwards into a 

region of ever-increasing conductivity than to flow horizontally. This statement is true, 

above the electrosphere, up to and through the lower ionosphere. It is even true through 

the ionospheric dynamo field region at ~ 100 to ~ 130 km altitude (Rishbeth and Garriott 

1969; Kelley 2009). Thus, small currents flow up to the apex of the geomagnetic field 

line at that particular L-value (McIlwain 1961). (The McIlwain parameter L is, 

essentially, the distance measured (in Earth radii) from the centre of the Earth to where 

that magnetic field line crosses the equatorial plane. The geomagnetic latitude of the foot 

of the field line on the Earth’s surface, λ, is related to L by the equation L.cos
2
λ =1.) 

Stansbery et al. (1993) estimate that half of the current that reaches the ionosphere flows 

into the geomagnetically conjugate hemisphere. 

 

Fig. 6 plots some results of the Rycroft et al. (2007) model on properties of the fair 

weather field. Panel a) on the left shows the height variation of the electric potential, 

from which the vertical electric field is calculated; that is shown in panel b). The 

consequent electric charge density is found from Gauss’ law, and plotted in panel c) on 

the right hand side of the figure. In the free atmosphere, at a few km altitude, the charge 

density is only ~ 0.1 pC/m
3
. 

 

3. Recent findings concerning the global circuit 
 

(a) Source term 

Fig. 7 shows the position of the RHESSI satellite when it detected a TGF (taken from 

Smith 2009; more results are given by Smith et al. 2010). The TGFs occur over land and 

sea, preferentially over tropical thunderstorms where the troposphere can be as high as 18 

km. This indicates that the TGFs may well originate in or above IC discharges up to the 

positive charge at the top of an energetic tropical thundercloud (Stanley et al. 2006; 

Willams et al. 2006; Lu et al. 2010). The lack of events observed over Brazil and to the 

East is due to the instrument being switched off as the satellite travels through the inner 
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van Allen radiation belt (Rycroft 2010) in the vicinity of the South Atlantic Geomagnetic 

Anomaly (SAGA); here, the intense radiation may otherwise cause the satellite’s 

electronic systems to fail.                  

 

Whilst it is not proven that TGFs play a role in maintaining the global circuit, it is 

important to consider the impact of relativistic processes taking place above 

thunderstorms on the global circuit. Carlson et al. (2009, 2010) suggest that TGF 

production is associated with current pulses (~ 1 ms) in lightning leader channels and 

runaway processes, and they have produced promising simulations. The three brightest 

TGFs observed aboard the Fermi satellite (Briggs et al. 2011) have relativistic electron-

positron beams associated with them. Fishman (2011) has discussed the behaviour of 

these electrons and positrons moving along geomagnetic field lines at low L-shells. 

Fullekrug et al. (2011) have simulated the production of relativistic electrons above a 

thundercloud and below a sprite, which casn radiate radio waves with frequencies up to 

400 kHz. They note that such “relativistic electron beams are a new form of impulsive 

energy transfer between thunderclouds and the middle atmosphere which need to be 

considered as a novel element in the global atmospheric electric circuit”. 

 

The long term global distribution of lightning discharges, derived at latitudes up to 38 

degrees North and South from data from the Lightning Imaging Sensor (LIS) on a 

satellite, is shown in Fig. 8. Three centres of activity lie over South East Asia (sometimes 

called the maritime continent), central Africa and South America. At these three different 

meridians, their activity peaks daily at around 1500 local time, as a result of daytime 

solar heating of the Earth’s surface which stimulates enhanced atmospheric convection. It 

is clear that over the land the number of lightning discharges is typically a hundred times 

greater than over the tropical oceans. Earlier satellite data (Christian et al. 2003) gave the 

number of flashes per square km per year. Globally, there are about 44 flashes per 

second, of which less than one is over the oceans. For these discharges, in one second, 33 

are likely to be intra-cloud (IC) discharges, 10 –CG discharges and 0.7 a +CG discharge 

(Christian et al. 2003).  

 

Price (2006) plotted (his Fig. 8) the Universal Time variation of the thunderstorm area of 

the three tropical continental regions. The sum of these three UT curves gives the global 

thunderstorm activity as a function of UT. It has a minimum at 03 UT and a broad 

maximum from 14 to 19 UT. Measurements made during the 1920s aboard the research 

ship Carnegie showed that the mean PG under fair weather conditions of clear sky varied 

in a very similar way to the global thunderstorm activity, thereby demonstrating that 

thunderstorms are an important driver of the global atmospheric electric circuit. The UT 

variation of thunderstorm activity is called the Carnegie Curve, and shown as Fig. 8(b) of 

Price (2006). 

 

(b) Current flow and ionospheric potential 

Integrating the vertical electric field profile measured aboard aircraft or balloons up to the 

troposphere essentially determines the ionospheric potential. At 12 UT this has the value 

250 kV, and it rises to 310 kV at 16 and 20 UT; it then falls to 200 kV at 24 UT. The 

curve closely resembles the Carnegie Curve (Markson 1986), which is one of the 
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“confirming ideas” (Aplin et al, 2008) supporting the behaviour of the Earth-atmosphere 

global circuit system. A significant generator of the conduction currents up to the 

ionosphere (also known as Wilson currents) is due to the action of thunderstorms which 

act as batteries. 

 

Harrison and Bennett (2007) considered the observations made on some days, in different 

years from 1966 to 1971, using electric field sensors carried on balloons launched from 

Weissenau, Germany, from which the ionospheric potential was derived by vertical 

integration. The results were compared with fair weather observations made on the same 

days at the Kew observatory, on the outskirts of London. A good fit to a linear model, 

plotting the ionospheric potential normalised by the PG at Kew against the derived 

surface air conductivity at Kew, was found. This indicates that global circuit concept 

holds over an area at least as great as the size of Europe. 

 

     (c) Global circuit modulation 

Next, we investigate studies of the response of the global atmospheric electric circuit to 

changes of the flux of cosmic rays in order to test our understanding of the global circuit. 

Measurements of the conduction current show a positive response to cosmic ray changes, 

driven by the solar cycle (Markson, 1980; Harrison and Usoskin, 2010). Panel (a), from 

Harrison and Usoskin (2010), demonstrates the response observed in VI.  It shows as 

individual symbols the ionospheric potential observed from several different investigators 

on specific days; this usually lies between 150 and 300 kV.  

 

At the bottom of the panel is plotted the daily neutron count rate as observed at Climax, 

Colorado, USA. This indicates the flux of galactic cosmic rays with rigidities > 3 GV. At 

solar maximum, around the year 1970, the cosmic ray flux is ~ 12% less than nearer solar 

minimum (1966 and 1972-1973). This is because the scattering of cosmic rays by 

irregularities in the solar wind and the interplanetary magnetic field which it carries out 

into the heliosphere is enhanced at solar maximum. If the conductivity varies as the 

square root of the ion production rate (Rycroft et al. 2008), as expected in marine air 

where there is no radon contribution, nor appreciable ion removal by aerosol, it will be ~ 

6% less near solar maximum. 

 

The straight line fit presented in panel (b) of Fig. 9 (Harrison and Usoskin 2010) shows 

that the ionospheric potential is ~ 17% less at solar maximum (when the Climax neutron 

rate is ~ 4100 (x10
2
s
-1
)) than at solar minimum (count rate ~ 3600 (x10

2
s
-1
)). The 

atmospheric conductivity is less at solar maximum than at solar minimum and the 

ionospheric potential is accordingly less. Also the fair weather current density is ~ 23% 

less at solar minimum than at solar maximum (Harrison and Usoskin 2010); that result is 

in good agreement with the 6% conductivity change and the 17% potential change. The 

conclusion that can be drawn without doubt from these figures is that the flux of cosmic 

rays affects the global circuit. 

 

(d) Global circuit cloud coupling 

This modulation of the fair weather current density by solar activity and associated 

cosmic ray changes provides a potential mechanism whereby the properties of clouds at 
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low heights in fair weather regions could be changed by the currents passing through 

them, with implications, currently not quantified, for changes in weather and climate as a 

result. Theory indicates that, at the edge of a horizontal layer cloud, the transition from 

low conductivity air within a cloud to air of greater conductivity outside the cloud will be 

accompanied by a region of enhanced space charge, when the current flows vertically 

through the cloud boundary. Nicoll and Harrison (2009) have confirmed empirically that 

current flow passes through layer clouds. 

 

Nicoll (2010) and Nicoll and Harrison (2010) have described an ingenious cloud edge 

charge detector (CECD) carried aloft by a meteorological balloon to investigate layer 

cloud edges at high vertical resolution. At the bottom of a low level cloud, an 

instrumented aircraft detected cloud droplets, as indicated in panel (a) of Fig. 10. From 

the balloon data, in a region where Jz is ~ 2 pAm
-2
, the air conductivity was calculated 

using the observed droplet properties. This is shown in panel (c) of Fig. 10 as the dark 

curve, with the lower scale. In this stratiform cloud in the fair weather part of the circuit, 

the conductivity is found to be three times less than that outside it. At the cloud edge, the 

negative space charge as a result of Gauss’ law is up to 35 pCm-3. The equivalent mean 

charge per droplet would be that of a few elementary electronic charges, but this would 

vary with droplet size size. It is believed that these charges are sufficient to influence 

collision processes between small cloud droplets in stratiform clouds. 

 

The difficulty in determining the sensitivity of clouds to such changes, empirically at 

least, is the need to remove the substantial natural variability commonly present in cloud 

and clearly evident from satellite images of planet Earth. In one approach, Kniveton et al. 

(2008) investigated changes of the cloud cover at Vostok, Antarctica, and extreme 

increases of the vertical electric field there. Harrison and Ambaum (2010) reported a 

median 10% reduction in cloud amount at Lerwick Observatory, on the Shetland Islands 

to the north-east of Scotland, at L ~ 4, during Climax neutron rate reductions of at least 

10% (Fig. 11).  However, at a single site there is always substantial variability in the 

cloud data, which, even with averaging over multiple events, usually dominates. This 

result is not inconsistent with a cosmic ray effect on the global circuit which also 

influences clouds through a conduction current mechanism, and the analysis indicates 

rapid time scales of ~1day or less.  

 

Other than cosmic ray step changes, an alternative method of identifying cloud and global 

circuit responses to cosmic rays is to use spectral analysis methods to identify 

periodicities which are unique to cosmic rays. For example, a 1.68 year quasi-periodicity 

is known to occur from time to time in cosmic ray data (Valdes-Galicia et al. 1996), 

which is generated in the heliosphere rather than the photosphere (Rouillard and 

Lockwood, 2004). A similar periodicity is apparent in surface PG data at Nagycenk 

Observatory, Hungary (Harrison and Marcz 2007), during fair weather conditions but 

absent during disturbed weather when global circuit influences would be masked.  

 

Applying this spectral approach to a long series of cloud data from Lerwick, Harrison 

(2008) showed that a 1.68 year quasi-periodicity was also present during 1978-1990 

when the periodicity was strong in neutron counter data. Specifically, this periodicity was 
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found on days which were overcast. Hence, if the signal detected in the clouds originated 

in cosmic rays, this would not be inconsistent with a cloud edge response to modulation 

of the conduction current.  

 

As common periodicities can arise by chance, a further requirement is for phase matching 

of the similar periodicities observed. Fig. 12 shows a combination of neutrons (a) and 

Lerwick cloud data (c), filtered as in Harrison (2008), but with the short period of 

conduction current data available from Lerwick around the same time (Harrison and 

Nicoll, 2007), panel (b). As must be expected with an intermittent and short data series, 

the periodicity after filtering the conduction current is well within the range expected to 

be produced by noise. However, a similar phase response is apparent in each of the 

neutron counter, conduction current and cloud data series, which, at the periodicity 

considered, is not inconsistent with a heliospheric signal propagating through the global 

circuit into cloud. Further work (Harrison et al. 2011), has shown that the cloud base at 

Lerwick also varies with cosmic rays, as might be expected from changes in the lower 

edge of clouds. This response was apparent in clouds identified by a trained 

meteorological observer as layer clouds. 

 

(e) Applications of global atmospheric electricity 

The potential gradient (PG) in surface air is sensitive to aerosol pollution, because of the 

removal of ions by aerosol particles. In severely polluted air, the PG can be substantially 

raised and, since historically many measurements were made in urban regions, this 

provides a method by which past urban pollution information can be reconstructed 

(Harrison and Aplin 2002, 2003; Harrison, 2006, 2009). 

 

At a regional scale Harrison et al. (2010) have discussed how radon emanating from the 

land (but not the oceans) in larger amounts than usual before a major earthquake 

increases the atmospheric conductivity in the surface layer, the lowest 250 m of the 

atmosphere. This reduces the columnar resistance to the ionosphere and, in a fair weather 

region, the current to the ionosphere increases. The PG before a major earthquake should 

therefore be reduced, as has previously been observed (Kondo, 1968). The associated 

increased current, i.e. the increased upwards flow of negative ions, has the effect of 

lowering the ionosphere and so increasing the cut-off frequency (~ 1.7 kHz) for radio 

waves propagating in the Earth-ionosphere waveguide.  

 

This mechanism accounts for the observations of the changed radio noise observed by the 

Demeter satellite over regions before major earthquakes occur (Nemec et al. 2009). It 

would be interesting to observe the cut-off frequency of “tweeks” (Reeve and Rycroft 

1972), signals from distant lightning propagating at night over the earthquake-affected 

region in order to test the prediction of this mechanism where precursors to major 

earthquakes occurring over land affect the ionosphere. Pulinets and Ouzounov (2010) 

have presented a more complex mechanism relating these observable phenomena, and 

others. Mechanical (i.e. acoustic or gravity wave, or tidal, mechanisms to account for 

such effects have been considered by Hayakawa (2011). Hayakawa et al. (2005, 2008) 

have reported some anomalous third and fourth harmonic Schumann resonance effects 

associated with earthquakes. 
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4. Concluding remarks 

 

In this paper we have outlined the physical processes operating in the D.C. and A.C. 

global atmospheric electric circuit which rapidly couple phenomena occurring near the 

Earth’s surface with the ionosphere and the near-Earth space environment.  

 

Finally, we suggest some studies which could advance the subjects discussed further. It 

seems to be desirable to: 

(i) investigate in more detail the relative contributions made by thunderstorm 

generators and by rain/shower cloud generators as drivers of the global 

electric circuit (Liu et al. 2010; Mach et al. 2011), 

(ii) study the effects of cosmic rays (especially Forbush decreases) on lightning 

(Chronis 2009), low level clouds (Harrison et al. 2011), and their effects in the 

fair weather (load) part of the global circuit, 

(iii) investigate land/ocean differences in greater detail (Kulkarni 2009), 

(iv) study the energy densities of the many different physical processes involved 

(see Feldstein et al. 2003), 

(v) continue the search for signatures in the vertical electric field observed near 

the Earth’s surface and throughout the atmosphere due to  

            (a) solar flares (see Cobb 1967; Holzworth 1981; Kasatkina et al. 2010) or 

            coronal mass ejections (see Kumar et al. 2008), 

            (b) Forbush decreases (see Roble 1985; Sapkota and Varshnaya 1990; Marcz    

            (1997), 

            (c) solar proton events (see Willett 1979; Farrell and Desch 2002),  

            (d) auroral activity (see Hale and Croskey 1979; Belova et al. 2001; 

            Kleimenova et al. 2010), and 

            (e) gigantic jets (see Riousset et al. 2010),  

(vi)      conduct a variety of novel observations in space (ASIM, Chibis, Firefly, 

            GLIMS, Sprite-sat, and TARANIS), and  

(vii) test experimentally the hypothesis that radon emanating from the land before a 

major earthquake lowers the ionosphere. 
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Fig. 1. Diagram indicating the very large range of horizontal and vertical scales involved 

in various electrical phenomena of interest in the Earth’s atmosphere and near-Earth 

space environment. Words appearing horizontally show different regions at different 

altitudes where different physical processes make their presence felt and Words 

appearing vertically show features with a certain horizontal scale which are important 

over the altitude range indicated. (Here, TCs is an abbreviation for thunderclouds – other 

such terms are explained in the text.)  
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Fig. 2. Diagram showing the enormous range of time scales involved in important 

processes (horizontal words) occurring at different altitudes. Vertical words represent 

different phenomena which occur on different temporal scales over different altitude 

ranges – see the text for a fuller discussion. The boundary between A.C. and D.C. 

variations is placed at ~ 200 s, the RC time constant of the poorly conducting 

atmospheric region between the good conducting Earth and the ionosphere.  
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Fig. 3. Taken from Rycroft et al. (2000), the upper panel illustrates a part of the global 

atmospheric electric circuit. On the left is shown a representative thunderstorm, one of 

the ~ thousand which are active at all times and which occur over only a small part of the 

Earth’s surface. Huge potential differences are generated inside thunderclouds; acting as 

giant batteries, they drive an upward (Wilson) current to the ionosphere at an altitude of ~ 

80 km. The ionosphere is essentially an equipotenial surface at ~ + 250 kV with respect 

to the Earth’s surface, but small currents reach up into the magnetosphere. In fair weather 

regions remote from thunderstorms, over most of the Earth’s surface, downward currents 

~ 2 pA/m
2 
flow vertically (radially) to the ground. Much more positive charge resides 

near the Earth’s surface than in the stratosphere or mesosphere, as indicated by the 

density of the + symbols. The lower panel outlines a simple electrical engineering 

representation of the circuit. Over mountainous regions, the atmospheric columnar 

resistance is much less than it is elsewhere. Values for the RC (or Cr) time constant are 

shown at the lower right. 
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Figure 4 

Fig. 4. Taken from Bazilevskaya et al. (2000), the upper (lower) panel plots the monthly 

average values of the omnidirectional flux of cosmic rays J at altitudes between 25 and 

30 km (6 to 12 km) at geomagnetic latitudes of 33 degrees (cut-off rigidity Rc = 6.7 GV), 

51 degrees (2.4.GV) and 64 degrees (0.6 GV), showing a clear 11 year solar cycle 

variation. 
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Figure 5 

 

 

 

Fig. 5. The variation of the percentage of the columnar resistance up to 10 km altitude in 

fair weather regions, for the model atmospheric conductivity profile given by Rycroft et 

al. (2008). About 93% of the total resistance from the ground up to the ionosphere at 80 

km altitude is at altitudes below 10 km (taken from Rycroft et al 2008). 
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Figure  6  

 

 

 
 

Fig. 6. In fair weather regions of the Earth’s atmosphere are plotted the variation with 

altitude of (a) the electric potential, (b) the downward electric field, termed the potential 

gradient (PG), and (c) the electric charge density, taken from the model of Rycroft et al 

(2007). 
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Figure 7 

 

 
Fig. 7. Map showing the positions of the RHESSI satellite when its instrument observed 

terrestrial gamma-ray flashes (TGFs) – the TGF itself may occur a few hundred km from 

the dot shown. There are no dots at latitudes above 38 degrees, the orbital inclination of 

the satellite. The dots are concentrated in the tropics, but not over Brazil, the region of the 

South Atlantic Geomagnetic Anomaly (SAGA), where the instrument is disabled due to 

the presence of a high radiation dose from the inner Van Allen belt (taken from Smith 

2009). 
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Figure 8 

 

Fig. 8. Map showing the positions of lightning discharges, in number of flashes per km
2 

per year, as observed in the infrared part of the spectrum by the Optical Transient 

Detector (OTD) and Lightning Imaging Sensor (LIS) instruments on two Earth-orbiting 

satellites. The lightning is concentrated over the three tropical land masses, with rather 

few occurring over the tropical oceans, taken from National Space Science and 

Technology Center (NSSTC), Huntsville, Alabama, USA, data (taken from 

http://www.science.nasa.gov).  
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Figure 9 
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Fig. 9. Taken from Harrison and Usoskin (2010), the left panel (a) shows the ionospheric 

potential (Vi) from various data sets, with larger circles showing monthly averages for 

months having four or more Vi values, and the neutron count rate at Climax, Colorado, as 

the grey line, observed from 1966 to 1972. The right panel (b) plots the monthly-

averaged Vi values against the monthly average neutron count rate; the error bars show ± 

two standard errors. 
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Figure 10 
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Fig 10. Observations are shown of atmospheric electricity parameters and deduced 

electric charges at the lower edge of a low-level stratiform cloud at heights from 3.2 to 

3.5 km, taken from Nicoll and Harrison (2010). Panel (a) shows the number 

concentration of cloud droplets, with an interpolating spline curve. Panel (b) plots the 

electrode voltage of a balloon-borne cloud edge charge detector (CECD); panel (c) shows 

the calculated conductivity (solid curve) in fSm
-1 
(lower scale) from the droplet 

concentrations, and the vertical conductivity gradient (dashed line curve, upper scale). 

Panel (d) shows the space charge density derived from the sensor voltages (points, with 

uncertainty), and the calculated space charge density, for a range of conduction current 

density assumptions (dashed line, solid line and dotted lines). The altitude of the space 

charge maximum, at 3.35 km, is shown by the grey dashed horizontal line. 
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Figure 11 
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Changes in (de-seasonalised) Lerwick diffuse fraction (DF, a measure proportional to 

cloud) around Climax neutron counter decreases of 10% or greater. (a) Median of neutron 

counter changes of 10% or greater (black line) (b) Median anomalies in diffuse fraction 

(black line) for the same times. For both (a) and (b), the 95% confidence range has been 

shaded. 
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Figure 12 
 

 
Daily raw (grey points) and filtered (black lines) data for (a) Climax neutrons, (b) 

Lerwick conduction current density (c) Lerwick cloud “thickness” (opaqueness) on 

overcast days. The black lines represent the bandpass filtered versions of the raw data, 

passband 1.55 to 1.81 years with phase relationships preserved, as a percentage of the 

mean value of the raw data. Randomly selected points from the relevant series have been 

substituted for missing data, and the mean filtered version (thick line) is determined from 

multiple realisations of the random data replacements, with 95% confidence limits shown 

(dashed lines). Dotted thin lines show the 95% confidence limits on the variability in 

multiple realisations obtained by passing randomly chosen points through the bandpass 

filter. Dashed-dotted lines show a fitted sine wave with period 1.68 years, beginning at 

1981.5. The median phase angles for the duration of the fitted sine wave are (a) 166 ± 0.2 

degrees, (b) 153 ± 6 degrees and (c) 160 ± 6 degrees, with the 95% confidence range 

found from fitting to each of the multiple realisations. 

 


