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Abstract. Modelling spatial covariance is an essential part
of all geostatistical methods. Traditionally, parametric semi-
variogram models are fit from available data. More recently,
it has been suggested to use nonparametric correlograms ob-
tained from spatially complete data fields. Here, both estima-
tion techniques are compared. Nonparametric correlograms
are shown to have a substantial negative bias. Nonetheless,
when combined with the sample variance of the spatial field
under consideration, they yield an estimate of the semivar-
iogram that is unbiased for small lag distances. This jus-
tifies the use of this estimation technique in geostatistical
applications.

Various formulations of geostatistical combination (Krig-
ing) methods are used here for the construction of hourly pre-
cipitation grids for Switzerland based on data from a sparse
realtime network of raingauges and from a spatially complete
radar composite. Two variants of Ordinary Kriging (OK) are
used to interpolate the sparse gauge observations. In both OK
variants, the radar data are only used to determine the semi-
variogram model. One variant relies on a traditional paramet-
ric semivariogram estimate, whereas the other variant uses
the nonparametric correlogram. The variants are tested for
three cases and the impact of the semivariogram model on the
Kriging prediction is illustrated. For the three test cases, the
method using nonparametric correlograms performs equally
well or better than the traditional method, and at the same
time offers great practical advantages.

Correspondence to:R. Schiemann
(r.k.schiemann@reading.ac.uk)

Furthermore, two variants of Kriging with external drift
(KED) are tested, both of which use the radar data to esti-
mate nonparametric correlograms, and as the external drift
variable. The first KED variant has been used previously for
geostatistical radar-raingauge merging in Catalonia (Spain).
The second variant is newly proposed here and is an exten-
sion of the first. Both variants are evaluated for the three test
cases as well as an extended evaluation period. It is found
that both methods yield merged fields of better quality than
the original radar field or fields obtained by OK of gauge
data. The newly suggested KED formulation is shown to
be beneficial, in particular in mountainous regions where the
quality of the Swiss radar composite is comparatively low.

An analysis of the Kriging variances shows that none of
the methods tested here provides a satisfactory uncertainty
estimate. A suitable variable transformation is expected to
improve this.

1 Introduction

Raingauges yield comparatively accurate measurements of
precipitation at a given location, but even dense networks of
gauges cannot fully capture the spatial variability of precip-
itation fields on subdaily timescales. In contrast, weather
radars can provide dense measurements over an entire re-
gion and at high temporal resolution. Locally, however,
radar measurements tend to be associated with very large
uncertainties, in particular in mountainous terrain. Methods
that formally combine radar and raingauge measurements
aim at improved spatial precipitation estimates exploiting the
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strengths and compensating for the weaknesses of the two
measurement platforms. A number of such methods exist
and have been categorized byErdin(2009) into (i) simple ad-
justment techniques often used in postprocessing radar mea-
surements (e.g.,Gjertsen et al., 2004; Germann et al., 2006),
(ii) the disaggregation of gauge fields by radar information
(e.g.,DeGaetano and Wilks, 2009; Wüest et al., 2009), and
(iii) geostatistical combination methods (Seo et al., 1990;
Seo, 1998; Todini, 2001; Sinclair and Pegram, 2005; Haber-
landt, 2007; Erdin, 2009; Velasco-Forero et al., 2009). Geo-
statistical methods enjoy particular popularity and appear to
outperform simpler merging techniques (e.g.,Goudenhoofdt
and Delobbe, 2009).

Even within the area of geostatistical methods, a wide
range of choices have to be made when planning for a par-
ticular application. These choices regard, for example, the
actual combination method (e.g., kriging with external drift,
cokriging), the kriging neighbourhood (global vs. local), the
technique used to estimate the parameters of the geostatis-
tical model (e.g. least-squares, maximum-likelihood estima-
tion), and the transformation of the precipitation variable. In
addition to these issues, there are several options for mod-
elling spatial dependencies in the precipitation data. Correl-
ograms (or semivariograms) used for kriging are customar-
ily one-dimensional, but two- or higher-dimensional corre-
lation maps are also used and are one way of taking spatial
anisotropy into account. Furthermore, correlogram models
can be parametric or nonparametric, they can be obtained
from the radar or the raingauge data, and they can be esti-
mated flexibly on a case-by-case basis or with data from a
longer period of time.

Recently, nonparametric correlograms based on spatially
complete radar rainfall fields have been used in combining
radar and raingauge data (Cassiraga et al., 2004; Velasco-
Forero et al., 2009). The estimation of nonparametric correl-
ograms is fast and robust (in particular, no parametric model
has to be fit) and anisotropy is naturally taken into account.
The objective of this study is to compare the estimation of
nonparametric correlograms with the traditional estimation
of semivariograms, and to test their application in the geo-
statistical combination of hourly raingauge and radar data
in Switzerland. Additionally, the present application tests in
how far geostatisitical methods that traditionally rely, implic-
itly or explicitly, on a Gaussian data model, can be applied
to highly non-Gaussian and non-continuous hourly precipi-
tation data in complex terrain. This paper describes one of
several current activities in the MeteoSwiss project Combi-
Precip, which aims at the operational provision of spatial pre-
cipitation estimates for Switzerland on the subdaily timescale
based on the combination of radar and raingauge measure-
ments.

The structure of this paper is as follows: Sect.2 introduces
the study domain and data, compares the modeling of spatial
dependence with the nonparametric correlogram and tradi-
tional parametric semivariograms, presents the geostatistical

combination (Kriging) techniques tested here, and how the
quality of both the estimated precipitation fields and the es-
timated uncertainty in these fields is evaluated. Thereafter,
Sect.3 presents several examples and a systematic evalua-
tion of the combination methods. Section4 concludes this
study.

2 Methods and data

2.1 Study area and data

The study area is Switzerland and has a surface area of
41 285 km2. We combine raingauge and radar data on the
hourly timescale. On this timescale, data from 75 automatic
raingauges of the SwissMetNet (SMN) are available. These
gauges provide measurements at 10-minute intervals in real
time. They are fairly homogeneously distributed throughout
the country, but remote areas and high elevations are some-
what underrepresented. The gauge locations are indicated in
Fig. 5.

Radar data are taken from a composite of three Me-
teoSwiss radars (seeGermann et al., 2006, Fig. 1, for the
radar locations). The composite is available at 5-min inter-
vals as a gridded field of 1 km resolution covering Switzer-
land and adjacent areas. The construction of the radar com-
posite is discussed inGermann et al.(2006). In particular, the
radar precipitation field is adjusted to gauge measurements
using a single factor for each of the three contributing radars.
The factor is determined from radar-gauge agreement after
integration over a large time window (6 months) and several
gauges in the vicinity of the radar. This is a “climatological”
bias correction; it involves a small subset of the gauge net-
work considered in this study, and does not correct for the
substantial biases that can occur in the radar composite on
the hourly timescale. Further details concerning the charac-
teristics of the two measurement platforms and uncertanties
can be found inSevruk(1985); Frei et al.(2006); Germann
et al.(2006); MeteoSwiss(2006).

Apart from measured data, we use synthetic data to illus-
trate the behaviour of semivariogram and correlogram esti-
mators in Sect.2.2. These data follow a one-dimensional
Gaussian random process with unit variance and correlation

functionρ(u)= exp
(
−
u
φ

)
, whereu is the lag distance andφ

a constant that determines the decorrelation length. The dis-
tanceu? for whichρ(u?)= 0.05 is referred to as the practical
range of the process andu? ≈ 3φ. Samples from this pro-
cess are generated by means of Cholesky decomposition (see
Wood and Chan, 1994; Ribeiro Jr and Diggle, 2001; Diggle
and Ribeiro Jr, 2007, for details).

Hydrol. Earth Syst. Sci., 15, 1515–1536, 2011 www.hydrol-earth-syst-sci.net/15/1515/2011/
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2.2 Modelling spatial dependence

2.2.1 Estimation of parametric semivariograms

The semivariogram is the traditional tool for modelling spa-
tial dependence in geostatistical applications. The semivar-
iogram of a spatial processZ is defined as (for greater de-
tail seeSchabenberger and Gotway, 2005, whose notation
we largely follow):

γ (si,sj )=
1

2
Var

(
Z(si)−Z(sj )

)
, (1)

whereZ(si), Z(sj ) denote values of the process at locations
si , sj . For a second-order stationary processZ, it can be
shown that

γ (si−sj )=
1

2
E
((
Z(si)−Z(sj )

)2)
; (2)

and furthermore

γ (si−sj )= σ
2(1−ρ(si−sj )

)
, (3)

whereσ 2
=C(0)= Var(Z) andρ(si − sj ) are the variance

and the correlation function of the processZ, and E(·) de-
notes the expected value.

The widely-used Matheron-estimator for the semivariance
reads (we denote estimators with a hat to distinguish them
from theoretical quantities):

γ̂ (si−sj )=
1

2|N(si−sj )|

∑
N(si−sj )

(
Z(si)−Z(sj )

)2
, (4)

whereN(si− sj ) denotes the set of all pairs of observations
at a given lag distance and|N(si−sj )| is the number of such
pairs. For complete radar grids of dimensionsN1×N2× ...

this number is equal to(N1−k)× (N2− l)× ..., wherek, l,
... are the components of the lag distance vector in units of
the grid spacing.

The customary procedure for estimating a semivariogram
model is illustrated by means of synthetic data in Fig.1a–
c. Figure1a shows a single realization of a one-dimensional
Gaussian process with variance 1 and exponential correla-
tion function (the practical range equals 0.6 for this process).
The sample semivariogram (or the so-called semivariogram
cloud) is shown in Fig.1b. It shows semivariogram ordi-
nates for all pairs of observations. Since these values scatter
substantially, the sample variogram is usually smoothed by
calculating the estimate in Eq. (4) after pooling the semi-
variogram ordinates into a number of lag-distance classes.
This yields the so-called empirical semivariogram shown in
Fig. 1c (open circles). Finally, a parametric model is fit to
the empirical semivariogram. Here, a curve-fitting technique
(n-weighted least squares, seeDiggle and Ribeiro Jr, 2007,
Sect. 5) has been used to estimate an exponential semivari-
ogram model (dashed line in Fig.1c). Equation (3) yields the
parametric correlogram corresponding to the fitted semivari-
ogram model (Fig.1d, dashed line). The theoretical correla-
tion function is shown by the solid black line in Fig.1d. The
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Fig. 1. Semivariogram and correlogram estimation. (a) One-dimensional synthetic data sample, (b) semivari-

ogram cloud, (c) empirical semivariogram and fitted parametric model, (d) theoretical and estimated correlo-

grams.

26

Fig. 1. Semivariogram and correlogram estimation.(a) One-
dimensional synthetic data sample,(b) semivariogram cloud,
(c) empirical semivariogram and fitted parametric model,(d) the-
oretical and estimated correlograms.

difference between the estimated and the theoretical correla-
tion is due to sampling variability and a bias of the estimator
and will be discussed later. There are a number of reasons
for using a parametric model. First, the parametric models
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are chosen such that they fulfill the property of positive defi-
niteness of the covariance matrix. Correlation functions with
this property can be used in geostatistical prediction (Krig-
ing; see relevant texts such asSchabenberger and Gotway,
2005, for details). Additionally, the parametrization further
smoothes the empirical semivariogram and allows estimation
of the correlation at unobserved lag distances.

2.2.2 Estimation of nonparametric correlograms

The nonparametric estimate of the correlation function is
given by

ρ̂(si−sj )=
1

N

∑
N(si−sj )

Z(si)− Z̄√
Ĉ(0)

Z(sj )− Z̄√
Ĉ(0)

 where,

Z̄=
1

N

N∑
i=1

Z(si) and Ĉ(0)=
1

N

N∑
i=1

(
Z(si)− Z̄

)2 (5)

are the sample (also called plug-in) mean and variance, and
N is the number of observations (e.g., radar grid points). This
estimator can be conveniently computed in terms of the dis-
crete Fourier transform (DFT). In fact, the Wiener-Khinchin
theorem affirms that the magnitude of the DFT of the stan-
dardized observations is the spectral representation of the
correlation estimate computed in Eq. (5). Thus, Eq. (5) can
be obtained rather simply by computing the DFT, multiply-
ing with the complex conjugate and computing the inverse
DFT of the product. This has two main advantages. First, the
fast Fourier transform (FFT) allows computing Eq. (5) much
more rapidly than by means of explicit summation. There-
fore, the complete radar grid can be taken into account. In
contrast, the complete semivariogram estimator Eq. (4) can-
not be conveniently computed for sizeable two-dimensional
radar grids, and is practically obtained from “thinned-out”
subsamples of the entire field (see AppendixA, Fig. A1, for
an example). Second, the estimated correlation function has,
by construction, a real and positive spectral density. Accord-
ing to Bochner’s theorem, it is therefore a positive definite
function (termed “licit” in Yao and Journel, 1998). No fur-
ther fitting of a parametric covariance model or manipulation
of the spectral density is necessary.

In practice, the mechanics of the FFT requires that the data
be padded with zeros, and to switch to the so-called wrap-
around order of spectral densities/lag distances and back.
This is illustrated in Fig.2 by means of a one-dimensional
data sample; the details are explained inPress et al.(1992,
Chapt. 13). The data sample of lengthN = 140 is shown
in (Fig. 2a). The mean is subtracted and zeros are padded
such as to give a padded data vector (Fig.2b) whose length
is equal to the smallest power of 2 larger than or equal to
2N ; here equal to 512. Application of the FFT, multiplica-
tion with the complex conjugate, and normalization of the
power spectral densities yields the result shown in Fig.2c.
The power spectral densities are obtained in the typical wrap-
around order, i.e. the left part of the spectrum corresponds

to the zero frequency and positive frequencies, and the right
part of the spectrum to negative frequencies (in reverse or-
der). The spectrum is real, positive, and symmetric with re-
spect to the zero frequency. Finally, the inverse FFT yields
the estimate of the correlation function (Fig.2d).

The nonparametric estimate Eq. (5) of the correlation
function for the synthetic one-dimensional data sample of
Fig. 1a is shown in Fig.1d (dotted line).

2.2.3 Comparison of estimators and bias correction

Both estimates of the correlogram function in Fig.1d exhibit
shorter ranges than the theoretical correlation. Of course,
this could be completely due to sampling variability and we
cannot conclude from the estimates for a single realization
(Fig. 1a) on the behaviour of the estimators. Therefore, we
extend the experiment as follows: for each of three Gaus-
sian processes with unit variance and exponential correla-
tion function with practical ranges of 0.2, 0.6, and 1.5, we
draw 100 realizations and estimate a parametric (exponen-
tial) semivariogram model and the nonparametric correlation
for each of the realizations. Each realization is sampled in
the domain [0,1]. The median estimated parametric model
for the process with practical range 0.2 is shown by the black
dashed line in Fig.3. This line is very close to the theoretical
correlation (solid black line). As a matter of fact, the estima-
tor Eq. (4) is known to be unbiased. For finite-size samples of
correlated data, however, it is only approximately unbiased.
In the present example, the positive autocorrelation causes
the variance of the process (the semivariogram sill) to be un-
derestimated. As a consequence, also the range of the semi-
variograms is underestimated. This effect is the more pro-
nounced the larger the practical range is compared to the do-
main size, i.e. keeping the domain size constant (here equal
to 1), the bias will be larger for larger ranges (red and blue
dashed lines in Fig.3).

The dotted lines in Fig.3 show the nonparametric corre-
lation estimates from Eq. (5) based on the same 100 real-
izations of the three Gaussian processes. For small lags and
a practical range of 0.2, the estimate (black dotted line) is
still fairly close to the theoretical correlation. If the practical
range is on the order of the domain size, however, the non-
parametric correlation is strongly biased towards too small
values (red and blue dotted lines). The bias in the nonpara-
metric correlogram estimate is much larger than in the corre-
sponding parametric estimate. (Note: at least for small lags,
the different normalizationsN(si−sj ) vs.N in Eqs. (4) and
(5) are only a minor contribution to the difference between
both estimates.)

In order to understand this observation, we rewrite Eq. (5)
as follows:

ρ̂(si−sj )= 1−
(
1− ρ̂(si−sj )

)
= 1−

1−
1

NĈ(0)

∑
N(si−sj )

(
Z(si)− Z̄

)(
Z(sj )− Z̄

)
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Fig. 2. Correlogram estimation using the fast Fourier transform.(a) One-dimensional section through the radar comopsite for test case 3
(6.33–8.13◦ W at 46.39◦ N; mm), (b) centered and zero-padded data,(c) normalized power spectral density in wrap-around order,(d) non-
parametric estimate of the correlation function. Lags are in km.

= 1−

 Ĉ(0)

2Ĉ(0)
+
Ĉ(0)

2Ĉ(0)
−

1

NĈ(0)

∑
N(si−sj )

(
Z(si)− Z̄

)(
Z(sj )− Z̄

) .
For lag distances that are much smaller than the domain di-
mensions, we can approximate

Ĉ(0)≈
1

|N(si−sj )|

∑
N(si−sj )

(
Z(si)− Z̄

)2
and

N ≈ |N(si−sj )|.

Thus,

ρ̂(si−sj )≈ 1−
1

2Ĉ(0)|N(si−sj )|

∑
N(si−sj )

(
Z(si)− Z̄

)2
+

(
Z(sj )− Z̄

)2
−2

(
Z(si)− Z̄

)(
Z(sj )− Z̄

)
,

and finally

ρ̂(si−sj )≈ 1−
γ̂ (si−sj )

Ĉ(0)
. (6)

Equation (6) shows that the calculation of a nonparametric
correlogram is approximately equivalent to the estimation of
a semivariogram, and the subsequent conversion of the semi-
variogram to a correlogram using the simple plug-in estimate
of the variance. If the interest is in estimating the correlation
and variance of the processZ, the estimators Eq. (5) and
Ĉ(0) are a poor choice. For positively correlated data,Ĉ(0)
underestimates the variance much more than the semivari-
ogram sill, since the latter is largely determined by the semi-
variance values corresponding to the largest lag distances and

www.hydrol-earth-syst-sci.net/15/1515/2011/ Hydrol. Earth Syst. Sci., 15, 1515–1536, 2011
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Fig. 3. Behaviour of parametric and nonparametric correlogram es-
timators for Gaussian spatial processes of different ranges. Dashed
black line: Median fitted parametric model for a Gaussian process
of practical range 0.2. Dotted black line: Median nonparametric
correlogram estimate for a Gaussian process of practical range 0.2.
Red and blue lines: the same for processes of larger practical ranges
(0.6,1.5). All dashed and dotted lines show the median of estimates
of 100 realizations of the Gaussian process. Solid line: theoreti-
cal correlation (for all ranges; the abscissa is scaled by the practical
range).

the extrapolation performed by fitting the parametric semi-
variogram model. This explains the larger bias of the estima-
tor in Eq. (5) compared to Eq. (4).

In the present context, the more important consequence of
Eq. (6) is, however, that the nonparametric correlogram esti-
mator Eq. (5) and the plug-in variancêC(0) combine such as
to yield an estimate of the semivariogramγ that is approx-
imately unbiased for small lag distances. This is the justifi-
cation for using these estimators for geostatistical prediction
as done here as well as in earlier studies (notablyVelasco-
Forero et al., 2009). The semivariance provides a description
of both the spatial dependence and the variance of the spatial
field, and completely determines (jointly with the actual val-
ues of the predictors) the solution of geostatistical prediction
(Kriging).

Kriging will be the focus of the remainder of this paper.
Before, we briefly digress and show how the bias of the esti-
mator in Eq. (5) can be mitigated in situations where this is
of interest. Given an alternative estimateσ̂ 2 of the variance,
assumed to be superior to the sample varianceĈ(0), the cor-
responding estimate of the correlation function is according
to Eqs. (3) and (6):

ρ̂c(si−sj )= 1−
γ̂ (si−sj )

σ̂ 2
≈ 1−

Ĉ(0)
σ̂ 2

(
1− ρ̂(si−sj )

)
. (7)
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Fig. 4. As Fig.3 but for bias-corrected nonparametric correlograms
calculated according to Eq. (7).

For the synthetic data of our introductory example (Fig.1a),
we have used the sill of the parametric semivariogram
(Fig. 1c) for σ̂ 2 in Eq. (7) and the corrected correlation func-
tion obtained in this way is the dash-dotted line in Fig.1d.
Repeating the experiment described at the beginning of this
section with the bias-corrected estimator Eq. (7) yields the
results shown in Fig.4. Indeed, the correction works and the
bias-corrected correlograms are very close to the paramet-
ric correlograms for small lag distances. With increasing lag
distance, the approximation the bias correction is based on
deteriorates. This can be seen for the example with largest
practical range (blue dotted line in Fig.4). We have tested
the calculation of bias-corrected correlograms not only for
synthetic data but also for gridded radar precipitation fields.
The test confirms that the bias correction works, i.e. that the
bias-corrected nonparametric correlograms agree much bet-
ter with the parametric correlograms than the uncorrected
nonparametric correlograms (not shown).

2.3 Kriging formulations

In this study, we test four Kriging variants. We compare the
use of the classical semivariance estimator and of nonpara-
metric correlograms in ordinary Kriging (OK), and test non-
parametric correlograms in two versions of Kriging with ex-
ternal drift (KED). Here, the OK variants are gauge interpo-
lations where the radar composite is only used to model the
correlogram. Thus, the OK variants are illustrative prototype
methods for comparing the use of parametric and nonpara-
metric correlograms in Kriging, rather than “genuine” radar-
raingauge combination methods. In contrast, the KED meth-
ods more fully exploit the radar information and are candi-
dates for operational merging techniques.
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In all Kriging applications, we are givenk = 1,...,K
gauge measurementsZG(sk) andl= 1,...,L radar measure-
mentsZR(sl) at the grid points of the radar composite. We
associate all raingauges with the nearest radar pixel. The
prediction locations coincide with the grid of the radar com-
posite; for clearness we use superscripts whenever we refer
to prediction locations, e.g.,sl . Throughout this study, we
work with a global Kriging neighbourhood and do not ap-
ply any variable transformation to the predictors. Below we
shortly describe how to calculate OK and KED predictions
and variances; for more detailed descriptions of the methods
the reader is referred to standard texts (e.g.,Cressie, 1993;
Wackernagel, 2003).

2.3.1 Ordinary Kriging

In all Kriging formulations, the process of the interpolated
fieldZ(s) is modelled as the sum of a stochastic part, which
is a second-order stationary processY (s), and a deterministic
part. In OK, the deterministic part is assumed to be a constant
mean fielda, i.e.

Z(s)= a+Y (s). (8)

The OK prediction is a weighted average of raingauge values

Ẑ(sl)=

K∑
k=1

λlkZG(sk), (9)

and the optimal weightsλlk are the solution of the following
systems of equations:
Ĉ11 ··· Ĉ1K 1
...
. . .

...
...

ĈK1 ··· ĈKK 1
1 ··· 1 0

=


λ1

1 ··· λL1
...
. . .

...

λ1
K ··· λLK
µ1

··· µL



Ĉ1

1 ··· ĈL1
...
. . .

...

Ĉ1
K ··· ĈLK
1 ··· 1

 , (10)

where we have introduced the shorthand notationĈkk′ =

Ĉ(0)ρ̂(sk − sk′) for covariances between gauge locations,
Ĉlk = Ĉ(0)ρ̂(sk−sl) for covariances between gauge and pre-
diction locations, andµl denotes a Langrange multiplier that
ensures

∑
kλ
l
k = 1. The OK variance is given by

σ̂ 2
OK(s

l)= Ĉ(0)−µl−
K∑
k=1

λlkĈ
l
k . (11)

The covarianceŝC in Eqs. (10) and (11) correspond to
the stochastic model partY (s). In OK, it is natural to use
available measurements ofZ for the estimation of the spatial
covariance structure ofY . Here, the covariances are esti-
mated from the radar composites. We use a classical para-
metric semivariogram fit with anisotropy (see AppendixA)
as well as the nonparametric correlogram estimate (Eq. (5),
Sect.2.2.2). The corresponding OK versions are denoted by
OKp and OKnp.

2.3.2 Kriging with external drift

In KED, the deterministic part of the model is supposed to
be a linear function of an auxiliary field (here, the radar com-
positeZR):

Z(s)= a+bZR(s)+Y (s). (12)

Just as in OK, the prediction is a weighted mean of raingauge
values as in Eq. (9), but here the weights are the solution of
the following systems of equations:
Ĉ11 ··· Ĉ1K 1 R1
...
. . .

...
...
...

ĈK1 ··· ĈKK 1 RK
1 ··· 1 0 0
R1 ··· RK 0 0

=


λ1

1 ··· λL1
...
. . .

...

λ1
K ··· λLK
µ1

a ··· µLa
µ1

b ··· µLb




Ĉ1

1 ··· ĈL1
...
. . .

...

Ĉ1
K ··· ĈLK
1 ··· 1
R1

··· RL

 , (13)

where we writeRk =ZR(sk) andRl =ZR(s
l) for the radar

values at the gauge and at the prediction locations. The addi-
tional Lagrange multiplier ensures that

∑
kλ
l
kRk =Rl . The

KED variance is given by

σ̂ 2
KED(s

l)= Ĉ(0)−µla−µlbR
l
−

K∑
k=1

λlkĈ
l
k . (14)

A well known problematic issue in the application of KED
is that there is no straightforward choice for which data to
use to estimate the covariance structure ofY (s). The es-
timate would have to be based on residuals between an (a
priori unknown) linear function of the radar field and an (a
priori unknown) merged interpolated field. An elegant solu-
tion to this problem is to fit the parameters of the stochastic
and the deterministic part of the model jointly by means of
maximum-likelihood methods (Diggle and Ribeiro Jr, 2007;
Erdin, 2009); yet for sparse gauge networks and in situations
with few wet radar-raingauge pairs, this estimation might not
be very robust (In how far this is a problem for operational
implementations is open. These methods are being tested in
a separate activity within the CombiPrecip project.).

Here, we follow a different solution suggested byVelasco-
Forero et al.(2009) that consists of the following steps:

1. A spatially complete rainfall field is estimated by OKnp
using a sparse set ofradar values sampled at the gauge
locations.

2. Use the residuals between the radar field and the predic-
tion from step 1 to estimate the nonparametric correlo-
gram and the variance ofY (s).

3. Use the correlogram and variance obtained in step 2 for
the KED prediction according to Eqs. (13) and (14).

We refer to this method as KEDOK. Obviously, the resid-
uals used to estimate the spatial covariance structure in
KEDOK are chosen pragmatically for the lack of better al-
ternatives. Therefore, we also test the following extension of
the KEDOK method:
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Fig. 5. Test cases considered in this study. (a,c,e) Hourly raingauge accumulations, (b,d,f) hourly radar accu-

mulation; all in mm. (a,b) August 2005 floods (test case 1), (c,d) EURO 2008 flooding (test case 2), (e,f) fast

and heavy thunder cells with hail over the Swiss Plateau (test case 3).
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Fig. 5. Test cases considered in this study.(a, c, e)Hourly raingauge accumulations,(b, d, f) hourly radar accumulation; all in mm.
(a, b) August 2005 floods (test case 1),(c, d) EURO 2008 flooding (test case 2),(e, f) fast and heavy thunder cells with hail over the Swiss
Plateau (test case 3).

1. Use KEDOK to obtain a preliminary prediction.

2. Use the residuals between the radar field and the predic-
tion from step 1 to estimate the nonparametric correlo-
gram and the variance ofY (s).

3. Use the correlogram and variance obtained in step 2 for
the KED prediction according to Eqs. (13) and (14).

This is our second KED variant and we refer to it as
KEDKED. The estimation of the covariance ofY (s) is still
pragmatic (we use the preliminary KEDOK prediction as a
substitute of the interpolated target field and neglect the lin-
ear function of the radar field), but we hypothesize that it
yields a better description of the covariance ofY (s) than the
OK residuals used in KEDOK.

2.4 Evaluation

2.4.1 Test cases

Examples of results from the Kriging variants will be shown
for three test cases. Figure5 shows raingauge (left) and
radar (right) measurements for episodes of 1 h duration dur-
ing these cases.

Test case 1 (Fig.5a, b) is from the August 2005 floods
that affected several European countries. In Switzerland, this
event caused six casualties and the highest flood-related dam-
age on record since 1972. Raingauges registered totals of
up to 170 mm in 24 h. Figure5a, b as well as figures for
other hourly intervals and daily totals (not shown) show that
radar accumulations during this event systematically under-
estimate gauge measurements. A narrow band of intense pre-
cipitation in the northeast of Switzerland, which can be seen
on the radar composite (Fig.5b), causes large differences in
measured precipitation between nearby gauges.
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Test case 2 (Fig.5c, d) is characterized by intense, short-
lived, and localized precipitation cells in the northern part
of Switzerland. One of these cells gained a certain fame be-
cause of its interference with the football match Switzerland-
Turkey at EURO 2008 in Basel. As far as the raingauge
and radar accumulations for the corresponding hour are con-
cerned, however, the effect of this cell is not very pro-
nounced. The Basel gauge (at the northern border of Switzer-
land, Fig.5c) merely registered a value 1 mm for that hour.
Much larger hourly accumulations can be seen in two sepa-
rate regions in the northwest and the northeast of Switzer-
land. Quite clearly, the gauge network is not sufficiently
dense to capture the local precipitation maxima within these
regions that are evident on the radar composite (Fig.5d).

During the event of test case 3, heavy convective hail-
storms moved over the Swiss Plateau at a speed of more than
60 kmh−1. The comparison of the daily radar and gauge data
(not shown) shows that the spatial pattern is very similar be-
tween both measurements, but the magnitude of the radar
measurements is considerably higher than that of the gauges.
This is a well-known phenomenon for radar measurements of
hail (Doviak and Zrnc, 1993). Again, the gauges of the sparse
real-time network do not capture the regions of strongest pre-
cipitation for the selected hour (Fig.5e, f). A closer inspec-
tion of the radar composite shows an artificially rugged struc-
ture due to the fact that precipitation cells displace substan-
tially between consecutive full scan periods of the radar (see
alsoFabry et al., 1994).

2.4.2 Cross validation

We use cross validation for the quantitative evaluation of the
different merging techniques. One gauge is removed from
the data in turn, and the prediction of the method under con-
sideration is then compared to the value measured by the re-
moved gauge. Since correlograms or semivariograms are es-
timated from the radar field for all methods considered here,
the correlograms and semivariograms are the same in cross
validation as for the complete set of gauges. In the KEDOK
and KEDKED methods that involve auxiliary initial steps for
the construction of a residual field used to estimate nonpara-
metric correlograms, the cross-validated gauge is only re-
moved in the final Kriging step.

This kind of leave-one-out cross validation with compari-
son to gauges is probably the most popular procedure in the
evaluation of combination techniques for raingauge and radar
data. Among the numerous studies that have applied cross
validation areSeo(1998), Haberlandt(2007), andDeGae-
tano and Wilks(2009). Nevertheless, some critical issues
should be born in mind in this analysis:

– Gauge values are assumed to be true values at their spe-
cific locations, but include measurement errors for sev-
eral reason (Sevruk, 1985). These errors are assumed to
be small compared to the prediction errors in the precip-
itation fields at short time scales. For particular cases

(snowfall, strong wind), however, these errors can be
substantial and should be considered in principle (Al-
though a quantitative correction is hardly possible.).

– A representative spatial distribution of gauges is neces-
sary to assess the average performance of a method in
the study area. As far as the distribution over differ-
ent parts of the country is concerned, the MeteoSwiss
raingauge network reasonably meets this requirement.
Remote and high-altitude locations, however, are some-
what underrepresented.

– The spatial and temporal support of radar and rain-
gauges is different. Spatially, raingauges can be approx-
imated as point measurements, whereas the radar values
correspond to averages over the volume of a grid cell.
This yields to a smoothing of radar values compared to
gauges (Zawadzki, 1975). Thus, differences between
raingauge and radar measurements are not solely due to
radar errors, but also due to differences in representa-
tiveness.

– Additional uncertainty is introduced by associating the
location of a raingauge with the centre of the nearest
radar grid cell (nearest-neighbour approximation).

These issues illustrate that care should be excercised when
interpreting radar-raingauge differences. Nevertheless, under
the assumption that these effects lead primarily to a random
component in the radar-raingauge differences, comparisons
over a large sample of raingauges still provide useful guid-
ance on the relative performance of different merging tech-
niques.

2.4.3 Quality measures

Skill statistics are calculated from gauge observation/cross-
validation prediction pairs{Zi,Ẑi}, wherei,...,I enumerates
all such pairs either for a single test case or for an extended
validation period. We use the following skill measures:

1. The BIAS assesses overall systematic errors of a
method. We express it in terms of a logarithmic scale,
as customary in radar meteorology,

BIAS = 10 log10

∑
i Ẑi∑
iZi

. (15)

2. The root-mean-square error (RMSE) is a widely-used
skill measure to assess the overall quality of a method.
We use it on a square-root scale,

RMSE=

√√√√1

I

∑
i

(√
Ẑi−

√
Zi

)2

. (16)
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Table 1. 2× 2 contigency table for the calculation of HK from
observation-prediction pairs{Zi ,Ẑi}.

Z wet Z dry Sum

Ẑ wet a b a+b

Ẑ dry c d c+d

Sum a+c b+d I

3. The median absolute deviation (MAD) is a robust mea-
sure of dispersion, i.e. it is less influenced by outliers
than the RMSE:

MAD = median
i

(
|

√
Ẑi−

√
Zi |

)
. (17)

4. SCAT (Germann et al., 2006) evaluates the performance
of a method to quantify precipitation for locations where
rain is actually predicted and observed. SCAT is based
on the cumulative error distribution function (CEDF),
defined as the contribution to total precipitation as a
function of the logarithmic prediction-observation ratio
(in dB) at locations where both, observation and pre-
diction are wet (≥ 0.5 mm). SCAT is defined as half
the distance between the 16 % and 84 % quantiles of the
CEDF, which makes it robust to outliers with large over-
or underestimation. The observed CEDF points are in-
terpolated linearly to determine the required quantiles;

SCAT=
1

2
(CEDF84−CEDF16) . (18)

5. The Hansen-Kuipers Discriminant (HK) is a skill score
to assess dichotomous predictions. In our context, it can
be used to measure the ability of a method to distinguish
between dry and wet areas. We define a dry observation
to correspond to< 0.5mm and a wet observation to≥
0.5mm. Observation-prediction pairs{Zi,Ẑi} can then
be used to construct a 2×2 contigency table (Table1)
and HK is calculated as

HK =
ad−bc

(a+c)(b+d)
. (19)

This is equal to the Probability of Detection (POD)
minus the Probability of False Detection (POFD), and
−1 ≤ HK ≤ 1. HK = 0 means that the forecast is as
skillful as a random forecast, HK= 1 is a perfect fore-
cast, and a negative HK implies a forecast worse than
random.

We compute all of the above skill measures for the three
test cases, and throughout an extended evaluation period.
All hourly intervals in 2008 with at least one wet gauge
(≥ 0.5mm) and without missing values in the radar com-
posite are included into the extended evaluation. We find

that the first four scores, especially MAD, are hard to in-
terpret if many observation-prediction pairs with very small
values are included into the evaluation. Therefore, we only
include pairs with gauge observationZ≥ 0.5mm in the cal-
culation of the scores 1–3. For these three scores, this leaves
52/13/30 pairs of values for test cases 1/2/3. The calculation
of HK is based on all observation-prediction pairs (75 for
the test cases). As far as the results for the extended evalu-
ation period are concerned, the scores are calculated from
a large number of pairs (37 416 for BIAS, RMSE, MAD,
and SCAT; and 222 013 for HK). The constraint of allow-
ing radar fields without any missing radar pixel only reduces
the evaluation period to 10 months (there are missing values
in April and May 2008). Nonetheless, the results from the
extended evaluation are highly significant and approximately
represent averages across all seasons.

2.4.4 Evaluation of Kriging uncertainty

A potential advantage of geostatistical merging techniques
is that they are based on a stochastic concept. They not
only yield an interpolated field, but also an estimate of the
uncertainty in this interpolation at each grid point. In par-
ticular, following the cross-validation approach described in
Sect.2.4.2, a measure of uncertainty – the cross-validation
Kriging variance – can be calculated at the location of the
removed gauge. This can be used to assess how useful the
uncertainty estimate provided by the different methods is.
More specifically, we test if the Kriging variance along with
a Gaussian assumption on the distribution of errors can be
used to construct an accurate confidence interval at a point.
To this end, we calculate for each gauge and throughout the

extended evaluation period az-score
(
Ẑi−Zi

)
/σ̂i , where

Ẑi and σ̂ 2
i are the cross-validation prediction and variance,

andZi is the value measured by the removed gauge. Then,
the frequency of threshold exceedances ofz can be compared
with the frequency that is expected under the assumption of
a standard Gaussian distribution ofz.

3 Results

3.1 Test case 1

The methods OKp and OKnp are compared in Fig.6 for test
case 1 (see Fig.5a, b for the corresponding raingauge and
radar input data). We first discuss the results of method OKp
shown on the left. The empirical semivariogram obtained
from the thinned-out radar field (Fig.6a) clearly captures the
anisotropy of the rainfall field for this case. It can be seen that
the orientation of the axis with strongest spatial dependence
changes with the lag distance. It is aligned in a southwest-
northeasterly direction for all lags, but is much more zonally
(west-east) oriented for small lags than for large lags. The
parametric model fit to the empirical semivariogram is shown
in Fig. 6b. Our parametrization (see AppendixA) cannot
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Test case 1 (2005-08-21 17:00 - 18:00 UTC)
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Fig. 6. Ordinary Kriging for test case 1 with a parametric semivariogram (OKp) and a nonparametric correl-

ogram (OKnp). (a) Empirical semivariogram from subsampled radar field (mm2), (b) exponential anisotropic

semivariogram fit (mm2), (c) nonparametric correlogram from complete radar field (expressed as a semivari-

ance, mm2), (d) OKp prediction, (e) OKnp prediction (mm).
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Fig. 6. Ordinary Kriging for test case 1 with a parametric semivariogram (OKp) and a nonparametric correlogram (OKnp). (a) Empirical
semivariogram from subsampled radar field (mm2), (b) exponential anisotropic semivariogram fit (mm2), (c) nonparametric correlogram
from complete radar field (expressed as a semivariance, mm2), (d) OKp prediction,(e)OKnp prediction (mm).

accomodate different directions of anistropy. Instead, the fit-
ted semivariogram model is a compromise between different
directions (expressed by means of a single anisotropy angle)
and strengths (expressed by means of a single anisotropy ra-
tio). In this particular example, the fit result appears to be in-
fluenced more by the larger lag distances than by the values
of the empirical semivariogram near the origin. In Ordinary
Kriging from a sparse network, the semivariogram model has
a very strong influence on the Kriging prediction, and indeed
we can clearly see its imprint in Fig.6d. The comparison to
the radar field for this case (Fig.5b) suggests that the OKp
prediction does not represent the spatial characteristics for
this rainfall field very well. The dominant rainfall patterns
and their orientation, in particular the narrow band of in-
tense precipitation in the northeast of Switzerland, are not
captured.

The result of the nonparametric correlogram fit – con-
verted into a semivariogram using the plug-in estimate of the
variance of the radar field – is shown in Fig.6c. The non-
parametric semivariogram naturally represents the change of

the anisotropy angle with lag distance and no decisions about
which lags to give preference have to be made, since the non-
parametric semivariogram is used directly in Kriging. Even
though radar information is only incorporated via the semi-
variogram, the OKnp prediction (Fig.6e) is able to reproduce
the narrow precipitation band and compares much better to
the original radar field. The cross-validation results corrobo-
rate what the visual inspection of the results suggests for this
example: all skill measures yield a better score for OKnp than
for OKp (Table2).

For both the OKp and the OKnp methods we see that the
Kriging prediction is strongly influenced by the semivari-
ogram throughout the domain. Even in areas with no ap-
parent anisotropy in the centre/southwest of Switzerland, the
Kriging prediction exhibits a strong anisotropy due to the fact
that the semivariogram estimate is largely determined by the
radar measurements in the northeast of the country. This is
the downside of estimating a semivariogram globally for the
whole domain as done throughout this study.
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Fig. 7. Kriging with external drift for test case 1 (left: KEDOK, right: KEDKED). (a) Nonparametric correlogram for KEDOK expressend
as a semivariogram (mm2), (b) nonparametric correlogram for KEDKED expressed as a semivariogram (mm2), (c) KEDOK prediction,
(d) KEDKED prediction (mm).

Table 2. Cross-validation skill measures for the original radar field
and different merging techniques for the three test cases.

radar OKp OKnp KEDOK KEDKED

case 1
BIAS −2.88 −0.90 −0.54 −0.29 −0.23
RMSE 0.73 0.83 0.67 0.62 0.50
MAD 0.46 0.45 0.39 0.34 0.21
SCAT 2.19 3.62 2.73 2.00 1.16
HK 0.61 0.45 0.51 0.56 0.52

case 2
BIAS 0.47 −4.51 −3.23 −0.61 −0.01
RMSE 0.44 1.03 0.95 0.50 0.31
MAD 0.18 0.62 0.77 0.27 0.18
SCAT 1.79 3.52 3.03 2.90 2.32
HK 0.93 0.48 0.56 0.87 0.93

case 3
BIAS 4.18 −0.57 −0.43 −0.02 0.26
RMSE 1.47 0.83 0.82 0.66 0.73
MAD 0.94 0.69 0.61 0.48 0.48
SCAT 3.49 3.38 3.85 3.42 2.97
HK 0.67 0.67 0.52 0.69 0.74

Figure7 shows results from the two KED variants. The
nonparametric semivariograms determined from radar resid-
uals (Fig.7a,b) are quite different from one another in terms
of their description of the range and variance of the residual
field. This comes as no surprise, as the residual fields used
for correlogram estimation are obtained in rather different
ways (see Sect.2.3.2). Nonetheless, the Kriging predictions
from both methods look quite similar (Fig.7c, d). This is due
to the fact that the radar field is used as external drift variable
here and the correlogram is less decisive for the predicted
field than in OK. Both methods yield merged fields that ex-
ploit the fine-scale spatial detail of the radar composite, but
are also much closer in magnitude to the values registered
by the raingauges. In spite of the qualitative similarity of
the predictions of the KED methods, the comparison of both
methods in terms of cross-validation analysis gives a quite
clear result for this case: all four skill measures that depend
on the precipitation amount at wet gauges favour KEDKED
(Table 2), only the distinction of wet and dry locations is
slightly better for KEDOK as expressed by the higher HK
score. In fact, this property of the precipiation field is better
represented in the original radar field than in any of the radar-
raingauge combinations. This agrees with the findings of
Erdin (2009) who showed for daily fields and several Swiss
test cases that raingauge-radar combination techniques yield
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Fig. 8. As Fig.6 but for test case 2.

improved estimates in many respects; but that the distinction
of wet and dry areas is best in the pure radar measurements.

3.2 Test case 2

The isolated patches of high precipitation in the radar com-
posite for test case 2 (Fig.5d) suggest that the spatial depen-
dence is of short range. This is well captured by the paramet-
ric semivariogram fit (Fig.8b) and also by the semivariogram
based on the nonparametric correlogram estimate (Fig.8c).
While the parametric semivariogram is completely isotropic,
the nonparametric semivariogram exhibits some short-range
anisotropy the orientation of which again changes with lag
distance. The dominant anisotropy of this semivariogram at
short lags appears to reproduce that of three adjacent patches
of high precipitation at the northern border of Switzerland.
All in all, however, anisotropy is not as important here as
in the other two test cases as evident in the OK predictions
(Fig. 8d, e). The fit of a simple monotonously decaying
function (here exponential) for the parametric semivariogram

yields a smoother prediction by OKp than by OKnp. The
more irregular character of the OKnp prediction better agrees
with the original radar composite, even though, of course, the
precise location and shape of precipitating areas is not cap-
tured well since the radar is not a proper predictor variable
in the OK methods. The skill measures for OKp and OKnp
do not differ greatly for this test case. Compared to other
methods/test cases, both OK methods exhibit a large nega-
tive bias, arguably due to the fact that areas of high precipi-
tation are simply “overlooked” in interpolation from a sparse
gauge network and for a case with small-scale precipitation
patterns.

As in the previous test case, the skill measures somewhat
favour the KEDKED prediction over the KEDOK prediction
(Table2). Both KED methods score distinctively better than
the OK methods, and in particular they have a much smaller
bias because of their better exploitation of the radar infor-
mation. The KEDOK and KEDKED predictions (Fig.9c, d)
are remarkably similar to the original radar field for this test
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Fig. 9. As Fig.7 but for test case 2.

case, and also quite similar to one another. Consequently, the
evaluation results are also quite similar for these three fields.

3.3 Test case 3

The spatial dependence structure for this test case is largely
determined by three bands of intense precipitation that are
aligned fairly similarly in a southwest-northeasterly direction
(Fig. 5f). Here, the assumption of a domain-wide spatial de-
pendence model and the description of anisotropy in terms
of a single anisotropy ratio and angle, appears to be much
better suited than for the test cases discussed above. Indeed,
the parametric semivariogram model agrees quite well with
the semivariogram based on the nonparametric correlogram
estimate for small lag distances (Fig.10b, c), even though the
range is larger for the latter. Consequently, also the OK pre-
dictions are all in all rather similar (Fig.10d, e), yet for OKnp
the impact of individual raingauge values on the interpolated
field can be discerned at larger lag distances. This can be
seen clearly for the station Bern (“BER”) in the centre/west
of Switzerland that registered an accumulation of 14 mm of
rain during the hour of this test case (Fig.5e) and the band of
high precipitation to its west in the OK predictions (Fig.10d,
e). This band is more pronounced for the OKnp prediction
than for OKp and remarkably similar in shape to the cor-
responding band actually observed in the radar composite
(Fig. 5f). The cross-validation results for the two OK predic-

tions (Table2) are in line with the apparent similarity of the
two fields: while some of the skill measures yield favourable
results for OKnp (BIAS, MAD), others give preference to
OKp (SCAT, HK).

As in the previous test cases, the KED combination meth-
ods succeed to incorporate the fine-scale spatial detail of the
radar and at the same time correct for the substantial bias
(here positive) of the radar with respect to the gauges. This is
evident from the inspection of the predicted fields (Fig.11c,
d) and also from the quantitative evaluation (Table2). In
cross-validation, the KED methods score better than the OK
predictions and also than the original radar field, even in
terms of the distinction of dry and wet locations measured
by HK. While for the previous test cases the KEDKED pre-
dictions receive higher scores than KEDOK predictions, there
is no clear picture for this test case. The semivariograms for
KEDOK and KEDKED (Fig. 11a, b), determined from differ-
ent residual fields, have an anisotropy similar to the semivar-
iograms for OKp and OKnp (Fig. 10b, c), but quite naturally,
the semivariogram sills and ranges are smaller than for the
OK semivariograms, which are based on the original radar
field. This observation holds also for the other two test cases.

3.4 Systematic evaluation

As illustrated for the test cases above, each case is unique
and it is not possible to draw conclusions on the average
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Fig. 10. As Fig.6 but for test case 3.

performance of a merging technique from the consideration
of one or a few examples. Therefore, we have also conducted
the evaluation through an extended period of time both for
the Kriging prediction (best estimate) and the Kriging vari-
ance as described in Sects.2.4.2–2.4.4. Due to the compara-
tively slow estimation of the empirical semivariogram in the
OKp method, this method is not included into the extended
evaluation.

3.4.1 Kriging best estimate

The evaluation results for the original radar field and the three
merging techniques are summarized in Table3. The skill
measures in this table assess the performance of the tech-
niques in average terms across a large number of cases as
well as across different regions of Switzerland. The evalua-
tion results are unequivocal. The average performance of the

merging techniques is better than that of the radar alone, the
KED methods outperform the OKnp method, and KEDKED
performs better than KEDOK. With the exception of a higher
bias for OKnp than for the pure radar, all skill measures im-
prove from left to right in the columns of Table3. Somewhat
surprisingly, this includes the HK score, i.e. the distinction
of wet and dry conditions. The radar has been shown to rep-
resent this feature of the precipitation field very well for a
number of relevant test cases (seeErdin, 2009and also Ta-
ble 2). In the present “climatological” evaluation, the skill
of the radar deteriorates because there are some regions in
Switzerland (in the south of the country; in the Valais and
Grisons cantons), where the currently available radar com-
posite is of comparatively lower quality due to the very com-
plex topography of these regions and their relatively long dis-
tance from the nearest radar. In particular, the radar misses

www.hydrol-earth-syst-sci.net/15/1515/2011/ Hydrol. Earth Syst. Sci., 15, 1515–1536, 2011



1530 R. Schiemann et al.: Geostatistical radar-raingauge combination with nonparametric correlograms

d

36

32

28

24

20

16

12

8

4

0.5

a

c

b-50 0 50
0

5

10

15

−50

0

50

0

5

10

15

20

25

−50

0

50

-50 0 50

Test case 3 (2009-07-23 15:00 - 16:00 UTC)

KEDOK KEDKED

Fig. 11. As Fig. 7 but for test case 3.

36

Fig. 11. As Fig.7 but for test case 3.

Table 3. Cross-validation skill measures for the original radar
field and different merging techniques for the extended evaluation
in 2008.

radar OKnp KEDOK KEDKED

BIAS −1.16 −1.29 −0.92 −0.60
RMSE 0.61 0.51 0.47 0.39
MAD 0.38 0.27 0.26 0.20
SCAT 2.86 2.61 2.35 1.91
HK 0.59 0.64 0.68 0.73

many precipitation occurrences in these regions, which ap-
pears to be the reason for the rather low HK score. (In fact,
the spatially varying radar skill also partly explains the dif-
ferences between the radar skill for the different test cases.
The radar skill is much higher for test case 2 than for the
other two cases, arguably because in this case it did not rain
in regions where the radar skill is typically rather low.).

Figure12 shows the results of the extended evaluation for
the RMSE on a station by station basis. In accord with the
above discussion, the radar skill is comparatively low in re-
mote regions of complex topography (Fig.12a). The OKnp
method (Fig.12b) introduces an improvement in the skill that
is fairly homogeneous throughout the country. It is interest-

ing to compare the two KED methods the RMSE of which
is shown in Fig.12c, d. Both methods have markedly bet-
ter skill (lower RMSE) than OKnp in regions where the radar
performs well, in the Swiss middleland in the centre/north
of the country. For KEDKED however, RMSE is also sub-
stantially reduced in the mountainous regions in the south of
Switzerland, much more so than for KEDOK. This observa-
tion appears to justify the hypothesis we made when intro-
ducing the KEDKED method in Sect.2.3.2. In regions where
the radar is a powerful predictor variable, the stochastic part
of the geostatistical model is less decisive for the prediction
skill and, accordingly, the KEDOK and KEDKED methods
perform similarly. In regions where the quality of the radar
is lower, the quality of the prediction will depend more on
the specification of the stochastic part of the model. This is
consistent with the clearly superior performance of KEDKED
in these regions.

3.4.2 Kriging uncertainty

The mere inspection of the Kriging variances for individual
test cases reveals considerable shortcomings. An example
for test case 1 and the OK and KED methods is provided in
Fig. 13. For all four methods, the Kriging variances are un-
realistically homogeneous throughout the domain (they are
very similar for dry and wet regions), reflect the domain-wide
anisotropy of the correlogram model, and are equal to zero at
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Fig. 12. RMSE (mm0.5) for extended evaluation in 2008 by gauge station.

the gauge locations due to the fact that no nugget effect is
taken into account by the correlograms used herein.

The results of evaluating the Kriging variance for the OKnp
method are shown in Fig.14. In the cross-validation analy-
sis, we have computed a series ofz-scores for each gauge as
explained in Sect.2.4.4. Figure14a shows for each gauge,
how often thez-score is found to be smaller than the 5 %-
quantile of the standard Gaussian distribution, which is ap-
proximately equal to−1.64. This corresponds to situations
where the value predicted by OKnp substantially underesti-
mates the actually observed value (by more than 1.64 times
the Kriging standard deviation). Under the assumptions of
a well estimated Kriging variance and a Gaussian distribu-
tion of errors, this is expected to occur in 5 % of the cases.
But in fact the probability of underestimating is drastically
larger than expected under these assumptions (Fig.14a). In
other words, if a confidence interval was constructed from
the Kriging variance and under the assumption of Gaussian
error distribution, the upper end of this confidence interval
would be too small. The OKnp method misses the peaks of
the gridded field more often than suggested by the geosta-
tistical model. As far as overestimations are concerned, the
observed occurrence frequencies differ substantially from the
expected value at a few gauges, yet this effect is less severe
than for the underestimations (Fig.14b).

We have also assessed the uncertainty estimates provided
by the KEDOK and KEDKED methods. The results (not
shown) are very similar to those shown for OKnp in Fig. 14,
but the overestimation occurrence frequencies are somewhat
‘worse’ (higher) than the corresponding frequencies shown
in Fig. 14a for OKnp. Several reasons must be expected to
contribute to the poor quality of the uncertainty estimate of

the methods tested here. In all methods, we have used the
radar and raingauge dataas is, i.e. we have made no effort
to apply a variable transformation (e.g., the Box-Cox trans-
formation) such as to make the residuals of the geostatistical
models follow a Gaussian distribution. In fact, given the high
skewness of hourly precipitation data it would be quite sur-
prising to find that the residuals of the untransformed data
are Gaussian. It is our current working hypothesis, that the
missing data transformation is a major reason for the poor
uncertainty estimate. Accordingly, the choice of an appro-
priate transformation family and the estimation of the trans-
formation from the data on a case-by-case basis constitute
a separate effort within the CombiPrecip project running in
parallel to this study. Further issues that may contribute to
the deterioration of the uncertainty estimate are the quality
of the approximation in Eq. (6) and, for the KED methods,
the pragmatic choice of residual fields used to estimate the
nonparametric correlogram. The fact that the assessment of
the Kriging uncertainties yields rather similar results for the
OKnp, KEDOK, and KEDKED methods, indicates that the ef-
fect of the last issue is comparatively small.

4 Findings summary and discussion

In this study, we have tested using nonparametric correlo-
grams for the construction of hourly gridded precipitation
fields obtained from the geostatistical combination of rain-
gauge and radar data in Switzerland.

First, the estimation of a parametric semivariogram, as
customary in geostatistical applications, has been compared
with the estimation of nonparametric correlograms. Appli-
cation of the two estimation techniques to synthetic data of

www.hydrol-earth-syst-sci.net/15/1515/2011/ Hydrol. Earth Syst. Sci., 15, 1515–1536, 2011



1532 R. Schiemann et al.: Geostatistical radar-raingauge combination with nonparametric correlograms

1

0.8

0.6

0.4

0.2

c d

Test case 1 (2005-08-21 17:00 - 18:00 UTC)

KEDOK KEDKED

a b

OKP OKNP

Fig. 13. Square root of the Kriging variance for the test case 1 and OK and KED method variants (mm).

38

Fig. 13. Square root of the Kriging variance for the test case 1 and OK and KED method variants (mm).

0.01

0.1

0.2

0.5

P(z < -1.64) P(z > 1.64)

a b

OKNP

31
24

19

21

16

26

25

26

23

30

13

35

24

19

28

26 29

24
18

54

29

22

28

36

38

28

16

49

59

37

19

28

34

30

24

12
27

29

25

30

19

22

19

34

3126

48

16
53

22

28

34

35

15

44
67

16

62

2742

47

26

23

18

25 2926

29

14

22

26

39

20

22

22
3

3

10

2

1

16

2

3

4

3

25

6

4

12

36

14 17

14
10

3

8

7

3

4

16

7

8

6

0

8

7

3

13

4

6

9
6

19

19

14

13

7

2

1

45

13

5
6

17

3

10

2

10

1
1

10

6

58

11

2

5

7

5 115

13

17

8

3

6

5

5

9

Fig. 14. Assessment of the Kriging variance for the OKnp method. At each gauge location the color and

numbers (%) show (a) the relative frequency of underestimating the precipitation by 1.64 standard deviations

or more, (b) the relative frequency of overestimating the precipitation by 1.64 standard deviations or more. The

analysis includes all gauge observations ≥ 0.5 mm.

39

Fig. 14. Assessment of the Kriging variance for the OKnp method. At each gauge location the color and numbers (%) show(a) the
relative frequency of underestimating the precipitation by 1.64 standard deviations or more,(b) the relative frequency of overestimating the
precipitation by 1.64 standard deviations or more. The analysis includes all gauge observations≥ 0.5 mm.

known correlation structure has shown that the nonparamet-
ric correlograms may severly underestimate the decorrelation
length (the range of the correlogram). This estimation bias is
greater, the smaller the dimensions of the data sample are in
relation to the actual range of the spatial dependence. The
bias in the correlogram is mostly due to the fact that the cor-
relogram estimate is based on the sample (“plug-in”) vari-
ance as an estimate of the variance of the spatial field. For
positively correlated data, the sample variance may substan-
tially underestimate the process variance, much more so than
the semivariogram sill traditionally used in geostatistical ap-
plications.

It is important to note, however, that the above does not
preclude the nonparametric estimation of correlograms from
being used in geostatistical prediction (Kriging). We have
also shown that the nonparametric correlogram and the sam-
ple variance (both substantially biased in many cases) com-
bine into an estimate of the semivariogram that is approxi-
mately unbiased for small lag distances. This provides the
justification for using nonparametric correlograms here as
well as in previous studies, since the values of the semivari-
ogram at small lags are known to be decisive for the Kriging
prediction.
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We have also compared the nonparametric correlogram
estimation with the traditional semivariogram estimation by
using them in Ordinary Kriging of gauges for three Com-
biPrecip test cases. The estimation of nonparametric cor-
relograms (more precisely, of semivariograms based on the
nonparametric correlograms) is very attractive from an oper-
ational point of view since (i) the entire spatially complete
radar field can be taken into account, (ii) no parametric semi-
variogram model has to be fitted, and (iii) the estimation of
the nonparametric correlogram is fast and robust. For the
three test cases considered here, OK in terms of the nonpara-
metric correlogram (method OKnp) successfully captures the
spatial dependence structure of the radar field. A quantitative
comparison of the OKnp method with OK in terms of the tra-
ditional parametric semivariogram (method OKp) has shown
that OKnp performs similarly to or better than OKp for the
three test cases.

Furthermore, two variants of Kriging with external drift
have been tested in this study. The first variant is the
method suggested byVelasco-Forero et al.(2009), termed
here KEDOK. The second variant builds on the KEDOK
method and constructs a more realistic residual field used
to estimate the nonparametric correlogram of the stochastic
part of the KED model. Both variants have been assessed
by means of cross-validation and a range of skill measures
through an extended evaluation period of one year. The re-
sults clearly show that KEDKED yields better merged pre-
cipitation fields than KEDOK on average. Additionally, the
extended evaluation shows that both KED methods perform
better than the original radar composite or the gauge interpo-
lation OKnp.

We have also assessed the uncertainty estimate provided
by the OKnp, KEDOK, and KEDKED methods. All three
methods underestimate the precipitation amount more often
than expected from the Kriging variances and the assump-
tion of a Gaussian error distribution. Consequently, uncer-
tainty estimates for the methods presented here should be
based on the empirical error distribution rather than on the
Kriging variances.

A number of issues have not been addressed in this study
and remain for current and future work. It is conceivable that
the failure of the uncertainty estimate of the present imple-
mentations is largely due to the fact that no variable transfor-
mation is applied to the precipitation data. Finding a suitable
transformation on a case-by-case basis constitutes a part of
the CombiPrecip project in its own right. Given the practi-
cal advantages of the nonparametric correlogram estimation,
it appears promising to test if a data transformation can be
incorporated into the methods presented here (in particular
KEDKED).

As explained in Sect.2.4.2, the cross-validated gauge is
only removed in the final Kriging step in cross validation of
the KEDOK and KEDKED methods. We do not expect this to
have a substantial influence on the evaluation results. Even
though somewhat involved, the whole purpose of steps 1 and

2 of the KEDOK and KEDKED methods is to yield residual
fields from which the nonparametric correlograms forY (s)
(Eqs.8 and12) can be estimated. The presence or absence
of a single gauge should only have a minor influence on the
general character of these correlograms. On a similar note,
Erdin (2009) found for the combination of daily Swiss radar
and raingauge data, that re-estimating a parametric semivari-
ogram for each gauge removed in leave-one-out cross valida-
tion differs negligibly from the result obtained using the full
set of raingauges. Nonetheless, the sparser gauge network
used herein, the characteristics of the spatial distribution of
hourly precipitation, and the ability of nonparametric correl-
ograms to capture much of the actual spatial structure, might
have some impact on how a single gauge can influence the
estimated correlogram. We plan to quantify this in future im-
plementations.

A potential disadvantage of nonparametric correlograms
is that they can only be used when a complete spatial field is
available for estimating the spatial dependence structure of
the stochastic part of the geostatistical model under consider-
ation. While this is straightforward for Ordinary Kriging, we
have shown that in other Kriging formulations the choice of
an appropriate field is much less clear. Moreover, the meth-
ods tested in this study assume that the estimation of the spa-
tial dependence structure and the parameters of the determin-
istic part of the geostatistical model can be carried out in two
consecutive independent steps. This appears to be at odds
with modern geostatistical estimation techniques (maximum-
likelihood or reduced maximum likelihood), where both the
parameters of the deterministic part of the model and of the
spatial covariance structure are estimated jointly. An itera-
tive approach such as the KEDKED method suggested here
may be a first step towards methods that self-consistently es-
timate both the deterministic part of the geostatistical model
and the spatial covariance of the stochastic part, but still take
advantage of the computational convenience offered by the
nonparametric estimation of correlograms.

Appendix A

Estimation of parametric semivariograms with
anisotropy

The procedure used for the estimation of parametric semivar-
iograms with anisotropy consists of five steps. It is illustrated
in Fig. A1 for test case 3.

1. A random subsample of radar pixels is drawn from the
full composite for the sake of computational feasibility.
In the present implementation, we draw a larger sam-
ple if there are more pixels with zero precipitation in
the composite. This is to avoid poor sampling of wet
areas in situations where these areas are small. In the
example provided here, 3370 radar pixels are sampled
(Fig. A1a).
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Fig. 15. Estimation of a two-dimensional parametric semivariogram. (a) Subsample of 3370 random radar

pixels from the full composite of CombiPrecip test case 8 (Fig. 5f; mm). (b) First-guess one-dimensional

semivariogram from the subsample, (c) two-dimensional sample variogram, (d) two-dimensional variogram

restricted to small lags, (e) exponential anisotropic variogram model fitted to the central part of the sample

variogram.

40

Fig. A1. Estimation of a two-dimensional parametric semivariogram.(a) Subsample of 3370 random radar pixels from the full composite
of CombiPrecip test case 8 (Fig.5f; mm). (b) First-guess one-dimensional semivariogram from the subsample,(c) two-dimensional sample
variogram,(d) two-dimensional variogram restricted to small lags,(e) exponential anisotropic variogram model fitted to the central part of
the sample variogram.

2. As described in Sect.2.2.1, a one-dimensional omnidi-
rectional semivariogram is fit to the sample variogram
obtained from the radar subsample drawn in step 1
(Fig. A1b). We choose an exponential model

γ̂ (u)= σ̂ 2
fg

(
1−exp

(
u

φ̂fg

))
, (A1)

whereu= |si − sj | is the lag distance; and thus ob-
tain first-guess estimates of the varianceσ̂ 2

fg and of the

range parameter̂φfg. The one-dimensional sample var-

iogram is calculated from data pairs of a maximum lag
distanceumax= 150km, and the exponential model is
fit to the sample variogram by means of ann-weighted
least-squares method (Diggle and Ribeiro Jr, 2007, sec-
tion 5.3.1). The practical range isû?fg.

3. A two-dimensional sample semivariogram is calculated
from the radar subsample according to Eq. (4), here un-
derstood as a function of a two-dimensional lag vec-
tor u = (u,v). The sample variogram is computed
with a lag-distance tolerance of 5 km in the horizon-
tal and vertical. The maximum lag taken into account
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for the calculation of the sample variogram is equal to
min(û?fg,150km). The result for the case considered is
shown in Fig.A1c.

4. Only the central part of the two-dimensional sample
semivariogram is considered in fitting a parametric
model (Fig.A1d). In the present implementation, we
retain sample semivariogram valuesγ̂ (u) that fulfil the
ad-hoc condition

γ̂ (u)≤
1

e
σ̂ 2

fg . (A2)

5. A parametric model is fit to the sample semivariogram
values retained in step 4:

γ̂ (u) = σ̂ 2
(

1−exp

(
−

‖SRu‖

φ̂

))
,where (A3)

S =

[
1 0
0 ψ̂−1

R

]
, (A4)

R =

[
cos(ψ̂A) −sin(ψ̂A)

sin(ψ̂A) cos(ψ̂A)

]
. (A5)

This is the usual exponential model applied to a lag-
distance vectoru′

= SRu transformed to isotropic co-
ordinates by a rotationR and a differential stretching
S. The additional parameters are referred to as the
anisotropy angleψ̂A and theanisotropy ratioψ̂R. ψ̂A is
the angle between a vertically aligned lag vector and the
direction of largest spatial correlation.̂ψR is the ratio
of correlation lengths in the direction of largest spatial
correlation and the perpendicular direction of smallest
correlation.

The estimation is carried out such as to minimize the
sum of the squared differences between the retained
sample semivariogram values and the estimated semi-
variogram modelγ̂ (u;σ̂ 2,φ̂,ψ̂A,ψ̂R). To this end, we
use the optimization algorithm byByrd et al.(1995) that
allows to specify lower and upper bounds of the param-
eters. The optimization procedure requires start values
for each of the parameters. These start values are deter-
mined as the best (in a least-square sense) combination
of parameters allowed to vary within a set of plausible
values. Here, these sets of plausible start values are the
following:

σ 2
start ∈ {0.8,0.9,1,1.1,1.2} σ̂ 2

fg , (A6)

φstart ∈ {0.1,0.2,0.5,1,2,5,10} φ̂fg , (A7)

ψA,start ∈ {−3,−2,...,4}
π

8
, (A8)

ψR,start ∈ {1,2,4,6} (A9)

and the lower and upper bounds for the parameters are

σ 2
bounds∈ {0.5,3} σ̂ 2

fg , (A10)

φbounds∈ {0,50} φ̂fg , (A11)

ψA,bounds∈ {−
π

2
,
π

2
}, (A12)

ψR,bounds∈ {1,20}. (A13)

Figure A1e shows a countour plot of the fitted
anisotropic semivariogram. The estimated parameter
values for this example arêσ 2

= 115mm2, φ̂= 56.6km,
ψ̂A = 0.81π2 , andψ̂R = 4.35.
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J. J.: geoENV IV – Geostatistics for Environmental Applica-
tions Proceedings of the Fourth European Conference on Geo-
statistics for Environmental Applications held in Barcelona,
Spain, 27–29 November 2002, chap. Automatic Modeling of
Cross-Covariances for Rainfal Estimation Using Raingage and
Radar Data, 391–399, Springer Netherlands,doi:10.1007/1-
4020-2115-133, 2004.

Cressie, N. A. C.: Statistics for spatial data, Wiley, revised Edn.,
1993.

DeGaetano, A. T. and Wilks, D. S.: Radar-guided interpolation of
climatological precipitation data, Int. J. Climatol., 29, 185–196,
doi:10.1002/joc.1714, 2009.

Diggle, P. J. and Ribeiro Jr, P. J.: Model-based geostatistics,
Springer, 2007.

Doviak, R. J. and Zrnc, D. S.: Doppler radar and weather observa-
tions, Academic Press, 2 Edn., 1993.

Erdin, R.: Combining rain gauge and radar measurements of a
heavy precipitation event over Switzerland: Comparison of
geostatistical methods and investigation of important influ-
encing factors, Ver̈offentlichungen der MeteoSchweiz, 81,
108 pp., available at: http://www.meteoswiss.admin.ch/web/
de/forschung/publikationen/allepublikationen/veroeff81.html,
2009.

Fabry, F., Bellon, A., Duncan, M. R., and Austin, G. L.: High res-
olution rainfall measurements by radar for very small basins:
the sampling problem reexamined, J. Hydrol., 161, 415–428,
doi:10.1016/0022-1694(94)90138-4, 1994.
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