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Abstract 8 

 9 

Estimating snow mass at continental scales is difficult, but important for understanding land-10 

atmosphere interactions, biogeochemical cycles and the hydrology of the Northern latitudes.  11 

Remote sensing provides the only consistent global observations, but with unknown errors.  We test 12 

the theoretical performance of the Chang algorithm for estimating snow mass from passive 13 

microwave measurements using the Helsinki University of Technology (HUT) snow microwave 14 

emission model. The algorithm’s dependence upon assumptions of fixed and uniform snow density 15 

and grainsize is determined, and measurements of these properties made at the Cold Land Processes 16 

Experiment (CLPX) Colorado field site in 2002-2003 used to quantify the retrieval errors caused by 17 

differences between the algorithm assumptions and measurements. Deviation from the Chang 18 

algorithm snow density and grainsize assumptions gives rise to an error of a factor of between two 19 

and three in calculating snow mass. The possibility that the algorithm performs more accurately 20 

over large areas than at points is tested by simulating emission from a 25km diameter area of snow 21 

with a distribution of properties derived from the snow pit measurements, using the Chang 22 

algorithm to calculate mean snow-mass from the simulated emission. The snow mass estimation 23 

from a site exhibiting the heterogeneity of the CLPX Colorado site proves only marginally different 24 

than that from a similarly-simulated homogeneous site. The estimation accuracy predictions are 25 
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tested using the CLPX field measurements of snow mass, and simultaneous SSM/I and AMSR-E 26 

snow pit measurements. 27 

 28 

Keywords: snow, remote sensing, passive microwave 29 

 30 

1. Introduction 31 

 32 

Remote sensing is the only feasible way to monitor the global distribution of snow mass, which is 33 

important for water resource management, environmental risk assessment and to determine the 34 

sensitivity of climate to change (Randall et al., 2007). Comparisons between global models, 35 

reanalysis data and satellite observations have revealed differences in distribution and magnitude of 36 

snow water equivalent (Clifford, 2010), but errors in the observations must be quantified in order to 37 

assess the accuracy of the models. Chang et al. (1987) used a simple model of soil/snow microwave 38 

emission to devise a means for estimating snow water equivalent (SWE) in mm from passive 39 

microwave measurements, by multiplying the difference between the horizontally-polarised 19GHz 40 

and 37GHz emission by a factor of 4.77, assuming snow density of 300kgm
-3
. This technique, 41 

which we refer to here as the Chang algorithm, was recommended for snow no deeper than a metre, 42 

approximately equivalent to a snow water equivalent of 300mm, due to increasing non-linearity in 43 

the relationship around this depth. The Chang algorithm has, with minor variations, been 44 

operationally used since 1987 to estimate snow mass globally from satellite observations from 45 

instruments such as SSM/I and AMSR-E.  46 

 47 

There have been a few comparisons between snow mass measured by the Chang algorithm and by 48 

ground-based observation, showing both substantial over- and underestimation. Armstrong & 49 

Brodzik (2000) found a substantial underestimation around 20-40% in SWE when applying the 50 

Chang algorithm to snow in the former Soviet Union in the Winter 1988-89 season, for SWE 51 
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between 10mm and 100mm. Pardé et al. (2007) found the Chang algorithm to overestimate snow 52 

mass with an RMSE of 40mm over Winter in 2002-2003 in Central Canada, for a range of SWE 53 

between about 20mm and 150mm. They improved this to an RMSE of 12mm by incorporating a 54 

simultaneous retrieval of snow grain size into an inversion of the Helsinki University of Technology 55 

(HUT) model (Pulliainen et al., 1999). Butt (2009) demonstrated that a retrieval applying the Chang 56 

algorithm to SSM/I observations of snow in the UK with a mean depth of 90mm (so a SWE 57 

approximately 30mm), with depths up to 500mm, underestimated snow depth by a mean of 51%. 58 

He also demonstrated an approach to resolving this by a simultaneous retrieval of snow grain size, 59 

improving performance to a mean 11% overestimate. This seems to indicate a considerable range of 60 

performance of the Chang algorithm, apparently dependent upon the physical characteristics of the 61 

snow local to each study. We aim here to explore more generally the relationship between the 62 

physical characteristics of snow and the efficacy of the Chang algorithm, illustrate how simulating 63 

the retrieval can identify the flawed assumptions, and validate the approach by estimating snow 64 

mass from remotely-sensed data in an area with an extensive set of physical measurements. 65 

 66 

By modelling the emission of microwave radiation by a snowpack and the underlying ground, we 67 

firstly test the dependence of the microwave emission of a snowpack/ground combination upon the 68 

physical characteristics of the snow, using the Helsinki University of Technology (HUT) snow 69 

microwave emission model, and use this to estimate how the Chang algorithm performance would 70 

be affected by variation in snow properties. To evaluate the effects of this variation on snow mass 71 

estimation, we also need to know how much variability in these properties is typically found in 72 

snow. We study this by using the planimetrically extensive measurements made at snow pits in the 73 

CLPX Colorado site in 2002-3. We examine how accurately the Chang algorithm would retrieve 74 

snow mass from snow with these characteristics by simulating emission with the HUT emission 75 

model driven by measured snow properties. Finally, we compare our predictions of the accuracy of 76 
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the Chang algorithm over the CLPX area to the application of the algorithm to SSM/I and AMSR-E 77 

measurements. 78 

 79 

2. Methods 80 

 81 

2.1. The sensitivity of the Chang algorithm to snow grain diameter and density 82 

 83 

Most SWE retrievals make use of an empirical retrieval first derived by Chang et al. (1987), 84 

consisting of a linear fit to brightness temperatures at 18GHz and 37GHz, equation (1): 85 

 86 

SWE(mm) = 4.77 (TB18H – TB37H) Equation (1) 

   87 

where TB18H refers to the microwave brightness temperature measured at 18GHz at horizontal 88 

polarization, and TB37H refers to the microwave brightness temperature measured at 37GHz at 89 

horizontal polarization. The gradient of the linear fit, in this equation 4.77, depends on the density 90 

and grain diameter of the snowpack. Whilst it is clear that a density of 300 kg m
-3
 was used to 91 

determine the gradient, the grain diameter used is uncertain. Chang et al. (1987) refer to a figure 92 

which shows brightness temperature curves as a function of SWE for two different grain radii, 93 

0.3mm and 0.5mm, and describe the algorithm as a linear fit from the data shown in the figure, but 94 

it is not clear which grain radius, or whether a combination of both, were used. Many authors (e.g. 95 

Foster et al., 1997, Kelly et al., 2003, Butt, 2009) have assumed this algorithm relates to a grain 96 

radius of 0.3mm.  97 

 98 

To test the effect of variation in grain diameter, we use the Helsinki University of Technology 99 

emission model (Pulliainen et al., 1999) driven by a range of snow water equivalents and grain 100 

diameters to simulate emission at 19 and 37GHz, 53˚ from vertical, and apply the Chang algorithm 101 
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to estimate snow mass from this emission, indicating how the algorithm is affected by snow grain 102 

diameter. To investigate the effects of variation in snow density, we use a fixed grain diameter and 103 

range of snow water equivalents and densities, and apply the Chang algorithm to the emission to 104 

retrieve snow water equivalent. For the purposes here, some parameters have a negligible effect 105 

(Parde et al., 2007), and are kept constant, eg. soil moisture is assumed 0.1 m
3
m

-3
, soil temperature 106 

272.15K, snow temperature 263.5K, and snow salinity set to zero.  107 

 108 

2.2  The dependence of snow variability on planimetric scale 109 

 110 

A semi-variance analysis is used to examine the characteristic length scale of variability of 111 

measured snow properties, to test for evidence that certain spatial scales are more suitable than 112 

others for averaging snow properties and estimating snow mass.  It is possible that the increased 113 

variability of snow properties over large areas mean that the remote sensing relationships with areal 114 

snow mass are different, possibly better, than the relationships found at an individual field site. We 115 

attempt to identify whether the range of snow properties measured has a strong dependence upon 116 

spatial scale by geostatistical analysis of snow properties.  The semivariance γ(d) for distance d of a 117 

set of spatially distributed measurements of z(x) is given by comparing all pairs of measurements of 118 

z separated by d, of which there are n(d), using equation (2). 119 

 120 
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 121 

The NASA Cold Land Processes Experiment (CLPX) experiment produced a large number of 122 

measurements of snow properties, mass, and other variables in Colorado over 2002-2003 (Cline et 123 

al., 2002, Cline et al., 2002a, Elder et al., 2009).  Figure 1 shows a map of the area of the 124 

experiment, and the locations of the main field sites. There were four Intensive Observation Periods 125 

(IOPs) during the snow seasons, over the periods February 2002, March 2002, February 2003 and 126 
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March 2003. Anisotropic distance semivariograms were calculated from the measurements of mean 127 

snow grain diameter in the top 5cm snow layer, snow water equivalent, snow depth, and mean snow 128 

density throughout the pack, using the North Park Meso-cell Study Area (MSA) measurements 129 

made during IOP3 over 20-23 Feb 2003. Three small intensive sets of measurements within this 130 

area were excluded from this analysis, since when analysed separately they showed semivariance 131 

consistently around double that of the rest of the measurements, suggesting a different measurement 132 

technique with a higher measurement error. 133 

 134 

2.3.  Calculation of mean snow properties 135 

 136 

The snow pit measurements made during all four Intensive Observation Periods over the entire area 137 

of the CLPX experiment in Colorado were used to calculate the mean snow grain diameter and 138 

density within a number of SWE classes. These classes were designed to each encompass snow 139 

with a range of SWE with similar properties. Each snow pit measurement set included the minor 140 

and major axis diameters of medium size grains, and the mean of these measurements down through 141 

the snow layers is used here as representative of the site grain diameter. The depth-integrated mean 142 

snow density at each site was used to calculate the mean density within each SWE class.  143 

 144 

2.4. The effects of measured snow properties on snow mass retrieval via the Chang algorithm  145 

 146 

To assess the effects of measured values of density and grain diameter on the accuracy of the Chang 147 

algorithm, microwave emission at 19 and 37GHz at 53˚ from the vertical was simulated using the 148 

HUT model, driven by the mean snowpit measurements of SWE, density and grain diameter within 149 

the SWE classes described in Section 2.3. For each SWE class, we applied the Chang algorithm to 150 

the modelled emission, and compared the SWE estimated by the algorithm to the SWE driving the 151 

emission model. To distinguish between the effects of grain diameter and density, they were 152 
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separately changed within the forward model from the Chang algorithm assumptions to the 153 

measured class mean values. This demonstrates, for any given SWE, how accurately the Chang 154 

algorithm would estimate snow mass, depending on whether its assumptions of grain diameter and 155 

snow density are correct, or whether one or both more closely correspond in reality to the 156 

measurements on the CLPX site. 157 

 158 

2.5. The effect of heterogeneity in snow properties on snow mass retrieval via the Chang algorithm  159 

 160 

To test the hypothesis that the spatial heterogeneity in snow properties over a large area improves 161 

the accuracy of the Chang algorithm, the microwave emission from a snowpack with the 162 

distribution of SWE found within CLPX site was modelled. Having considered the case of a simple, 163 

homogeneous snowpack, where the density and grain diameter are a function of SWE in Section 2.4 164 

above, we here consider a more realistic heterogeneous snowpack, with the range of density and 165 

grain diameter occurring in the CLPX site within each SWE class. We simulated this by estimating 166 

probability density functions (PDFs) of these properties within each class, rather than, as in 167 

Section 2.4, simply using the mean of class measurements. In this case, the relationship between 168 

modelled and retrieved SWE was calculated for each class by modelling the emission for a range of 169 

density/grain diameter combinations, 20 density values between 40kgm
-3
 and 400kgm

-3
, and 27 170 

grain diameter between 0.2mm and 5.4mm, and weighting the mean emission according to the 171 

PDFs. This allows us to predict for a site with any given SWE, what the algorithm estimate of SWE 172 

will be, if the site has a plausible distribution of grain diameter and density. The effect on the 173 

overall SWE estimation from a site with the distribution of SWE measured within North Park MSA 174 

during IOP3 was also calculated. 175 
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 176 

2.6. Comparison of snow mass estimates from satellite data to ground measurements. 177 

 178 

We empirically tested the accuracy of the Chang algorithm by calculating the remotely-sensed SWE 179 

for the site for each of the IOPs, using the SSM/I (Brodzik, 2003) and AMSR-E (Brodzik, 2003a) 180 

measurements taken within the ground measurement time span. Armstrong & Brodzik (2001) show 181 

that reducing the brightness temperature difference in this equation by 5K provides more accurate 182 

results with SSM/I data, primarily because the algorithm was designed for 18GHz and 37GHz 183 

measurements, rather than the 19GHz and 37GHz used by SSM/I and AMSR-E, and we apply this 184 

correction in applying the algorithm. 185 

 186 

3. Results 187 

 188 

3.1.  The sensitivity of the Chang algorithm to snow grain diameter and density 189 

 190 

The Figure 2(a) ordinate shows the SWE used to simulate snowpack emission, the abscissa shows 191 

the SWE that would be retrieved from this emission using the Chang algorithm, and the 1:1 line 192 

represents a perfect retrieval. The retrieval which assumes a grain diameter of 0.8mm follows the 193 

perfect retrieval 1:1 line closely for low SWE, which suggests that the algorithm constant proposed 194 

in Chang et al. (1987) was chosen to work with a snow grain diameter of 0.8mm, or a radius of 195 

0.4mm, mid-way between the two radii 0.3mm and 0.5mm showed in the figure. Using 196 

Chang et al. (1987)’s Figure 1, it is easy to show that if only the 0.3mm radius emission curves had 197 

been used to calculate the constant, as has been widely assumed, the ratio between SWE and 198 

(TB18H - TB37H) would have been around 6, rather than the 4.77 given (after assuming snow density 199 

of 300kgm
-3
), yielding SWE estimates 26% higher than an estimate based on the 0.3mm radius 200 
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assumption. The coefficient given seems to derive from the mean of the ratio between SWE and 201 

(TB18H - TB37H) at 40cm SWE, averaged across both 0.3mm and 0.5mm snow grain radii. 202 

 203 

Figure 2(b) shows the algorithm’s sensitivity to variation in density assuming the grain diameter is 204 

fixed at 0.8mm. The effect ranges from underestimation at density of 400kgm
-3
 to overestimates of 205 

a factor of six at a density of 50kgm
-3
. It can be seen that the algorithm is most accurate where the 206 

density and grain diameter exactly match the values used to formulate the algorithm, and that it 207 

starts to fail above about 150mm SWE. The suggestion in Chang et al. (1987) that the algorithm not 208 

be applied to snow depth greater than 1 meter, equivalent to approximately 300mm SWE given a 209 

snow density of 300kgm
-3
, seems to be a judgment based on the degree of acceptable error, possibly 210 

around a SWE estimation error of 10%.  211 

 212 

The relationships between modelled and estimated SWE shown in Figure 2 strongly suggest that the 213 

Chang algorithm constant was formulated to fit snow with a grain diameter of 0.8mm, rather than 214 

the 0.6m diameter, 0.3mm radius often assumed. The impact of this misinterpretation on subsequent 215 

work is probably small, as the range of snow grainsize found in work citing it (e.g. Foster et al., 216 

1997, Kelly et al., 2003, Butt, 2009) is far larger than this discrepancy. 217 

 218 

3.2.  The dependence of snow variability on planimetric scale 219 

 220 

The data density in the IOP measurements allowed semivariograms with reasonable uncertainty to 221 

be calculated between lags of 5km and 25km. These showed negligible change in semivariance of 222 

mean grain diameter, density and snow water equivalent over this lag range. Mean grain diameter 223 

showed a semivariance around 0.27mm
2
, regardless of distance lag, suggesting a standard deviation 224 

in measurements of 0.7mm which is invariant with sample spacing within the 5km-25km range. 225 

SWE semivariance varies little from 500mm
2
, snow depth semivariance is around 70cm

2
, and mean 226 
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density semivariance 3000kg
2
m

-6
.  This suggests that heterogeneity is scale-independent over the 227 

5km-25km distance range. We have therefore not considered further the effect of spatial scale 228 

within this work, as the sampling density within these data will not provide reliable results outside 229 

this range.  230 

 231 

The only other comparable work in geostatistical analysis of snow properties covers the northern 232 

Great Plains region of the USA (Chang et al., 2005), and indicates that ground-measured snow 233 

depth has a nugget (minimum) semivariance of about 100cm
2
, and reaches a sill (maximum) of 234 

approximately 400cm
2
 at a lag of 500km. The 70cm

2
 snow depth semivariance in the CLPX 235 

measurements indicates that they are more consistent than those taken during the Great Plains 236 

fieldwork, possibly reflecting a more accurate measurement system. Assuming this to be the case, 237 

the lack of a trend in semivariance across the 5km - 25km lag range would not be inconsistent with 238 

the semivariance behaviour within the Great Plains data, which varied little over the same distance 239 

range. The implication that might be deduced from this is that in order to estimate snow variability 240 

over a 25km scale, sampling a sub-area of 5km should prove adequate. This result may well not be 241 

globally applicable however, as the measurement sites in this experiment were of necessity close to 242 

roads rather than evenly distributed through the area, and the range of snow depth is not globally 243 

representative. 244 

 245 

3.3.  Calculation of mean snow properties 246 

 247 

The class SWE ranges, and means of snow density and grain diameter within the classes for the 248 

observations made over Intensive Observation Periods (IOPs) 1, 2, 3 and 4 at the CLPX Colorado 249 

site are shown in Table 1, and illustrated in Figure 3. Snow water equivalent measurements were 250 

made to the nearest whole mm. 251 
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 252 

The snow properties for snow mass in the sub-300mm SWE range where we expect the Chang 253 

algorithm to be effective show considerable deviation from the values assumed in the algorithm. 254 

Whilst measurements using different techniques can give a variety of snow grain size estimates, 255 

making the absolute grain size values subject to interpretation, the considerable variability in snow 256 

grain diameter in the low SWE range should be reflected by any self-consistent measurement 257 

system. In this data, snow diameter only reaches a value consistently close to that assumed by the 258 

Chang algorithm above 300mm SWE, in a regime where the algorithm is not applied because of 259 

nonlinearity in the modelled relationship. Similarly, there is a substantial variation in the range of 260 

snow density at low SWE, mostly more than 100kgm
-3
 below the 300kgm

-3
 algorithm assumption. 261 

The mean snow density over all pits during IOP3 was in fact 145kgm
-3
, less than half the algorithm 262 

assumed value. This dataset has limitations, since the pit locations are of necessity close to roads, 263 

and the snow depth is relatively low, however it remains the most appropriate for this work, and 264 

similar measurements taken at Reynolds Creek Experimental Watershed over thirty years (Marks el 265 

al, 2000) show a similar relationship between density and SWE, with density about 30kgm
-3
 higher 266 

than the CLPX measurements for SWE below 300mm. 267 

 268 

3.4.  The effects of measured snow properties on snow mass retrieval via the Chang algorithm 269 

 270 

The effect of using the mean snow grain diameter and density measurements from the CLPX site 271 

(Table 1, Figure 3) in the emission model is shown in Figure 4. The snow water equivalent used in 272 

the forward modelling is shown along the ordinate; the abscissa denotes the snow water equivalent 273 

calculated from the simulated microwave emission driven by the measured mean values of mean 274 

snow density and grain diameter. A line shows the 1:1 mapping expected if the Chang algorithm 275 

exactly calculated the snow water equivalent.  The other lines show the mapping between the input 276 
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SWE and that derived from applying the Chang algorithm to the HUT model driven by these 277 

different assumptions of snow grain diameter and density :-  278 

• Snow grain diameter of 0.8mm and density of 300kgm
-3
, both as assumed by the Chang 279 

algorithm 280 

• Snow grain diameter of 0.8mm as assumed by the Chang algorithm, snow density according 281 

to the CLPX measurements in Table 1  282 

• Snow grain diameter according to the CLPX measurements in Table 1, snow density 283 

300kgm
-3
, as assumed by the Chang algorithm 284 

• Snow grain diameter and density both according to the CLPX measurements in Table 1. 285 

 286 

For most of the range of SWE, the algorithm overestimates SWE by a factor of between 2 and 3. 287 

The relative effects of the deviation from the algorithm values of grain diameter and density can be 288 

seen by replacing the algorithm values used within the emission model individually. The dashed 289 

line shows that using the algorithm grain diameter of 0.8mm in the HUT model, and using only the 290 

density from the snowpit measurements gives rise to a small increase in the estimated SWE over the 291 

expected retrieval. Using the snowpit grainsize measurements with the 300kgm
-3
 algorithm density 292 

in the emission model gives a far greater estimated SWE difference, indicating that the difference 293 

between the grainsize assumed in the algorithm and that measured in the snow pits is the dominant 294 

cause of this SWE over-estimation. Below 300mm SWE, the mean departure from exact retrieval 295 

caused by the CLPX-measured grain size is just over five times greater than that caused by using 296 

the CLPX-measured density. 297 
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 298 

3.5.  The effect of heterogeneity in snow properties on snow mass retrieval via the Chang 299 

algorithm 300 

 301 

The Chang algorithm estimates of SWE from the HUT-simulated emission are shown in Figure 5, 302 

for each class for homogeneous snow, and heterogeneous snow where variability in individual pit 303 

measurements is incorporated. The mean simulated emission from the 109 North Park MSA pits 304 

measured during IOP3 would yield an overall retrieved SWE of 62.4mm assuming snow was 305 

homogeneous within the SWE classes, and 72.8mm for heterogeneous snow. The field 306 

measurements of SWE used to drive the emission model had a mean of 23.8mm. 307 

 308 

The heterogeneity does not seem to make a significant difference, though there is an apparent 309 

reduction for SWE above 150mm. This would imply, for example, that a snow pack with a mean 310 

SWE of 200mm with the range of snow properties seen at this site for such a SWE would have a 311 

retrieved SWE of 370, whereas a snowpack with a SWE of 200mm and appropriate uniform mean 312 

properties would have a retrieved SWE around 500mm. For most of the SWE regime, this indicates 313 

that the variation in properties seen on this scale does not give rise to a substantial improvement in 314 

soil moisture retrieval from the Chang algorithm.  315 

 316 

3.6. Comparison of snow mass estimates from satellite data to ground measurements. 317 

 318 

Whilst SSM/I measurements were available for all four IOPs, AMSR-E measurements were only 319 

available for IOPs 3 and 4. Snow liquid water content was assessed qualitatively on-site by those 320 

taking the physical measurements for a number of pits as either ‘dry’, ‘moist’ or ‘wet’, and the 321 

results are tabulated in Table 2. These indicate that during IOP2, the snow was judged to be far 322 
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wetter than during the other periods, and we expect the estimation accuracy to be poor in such 323 

conditions.  324 

 325 

The snow mass estimates calculated from the satellite-measured brightness temperatures and the 326 

mean of the snow water equivalent snow-pit measurements is plotted for each IOP in Figure 6; the 327 

temporal extent of the snow-pit lines indicates the time span of the pit measurement campaign. The 328 

SWE estimates based on applying the Chang algorithm to the mean brightness temperatures during 329 

each campaign are also given in Figure 6, with the mean of the pit SWE measurements for each 330 

IOP.  331 

 332 

These figures show an estimated mean snow mass calculated from SSM/I and AMSR-E 333 

measurements approximately twice the value measured on the ground, in line with the analysis of 334 

Section 3.4 and Figure 4. For IOP3, where AMSR-E measurements are also available, they are 335 

somewhat lower than those based on the SSM/I measurements, through it is difficult to draw 336 

conclusions from such a small set of observations. The estimation fails as expected for the IOP2 337 

measurements because the liquid water within the snow has substantially reduced penetration of the 338 

19GHz radiation through the snow pack.   339 

 340 

4. Conclusions 341 

 342 

Based on the physical properties of the snow measured at the CLPX Colorado site, and the HUT 343 

microwave emission model, snow mass calculations using the Chang algorithm overestimate snow 344 

mass by a factor of two or more, predominantly because of the assumption of fixed grain diameter, 345 

which shows substantial variation in the SWE range below about 300mm where the algorithm is 346 

usable. This overestimation does not appear to be significantly affected by the heterogeneity in 347 

snow properties exhibited at the site over a 25km distance.  348 
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 349 

While the CLPX measurements only indicate the range of variation of snow properties at one site, 350 

we have no reason to believe that this site is exceptionally heterogeneous, or that the snow found in 351 

the rest of the world corresponds more uniformly to the assumptions implicit in the Chang 352 

algorithm. The SWE overestimation found by Pardé et al. (2007) in Central Canada suggests a snow 353 

pack with similar grainsize characteristics to those found at the CLPX site. While the retrieved 354 

effective grain diameter fitted in their retrieval shows a mean diameter around 3mm, between 2mm 355 

and 4.5mm, ground measurements ranged between 1.3mm and 3.2mm. The sensitivity plot 356 

Figure 2(a) indicates that the underestimates found by Armstrong & Brodzik (2000) in data from 357 

the former Soviet Union, and Butt (2009) in the UK, could be attributed to a snow grain diameter 358 

around 0.6mm.  359 

 360 

Estimation of snow mass from its interaction with microwave radiation is strongly affected by other 361 

snow characteristics, and consequently any improvement in snow mass retrieval via passive 362 

microwave measurement will require grain size information. This could be acquired by a 363 

simultaneous retrieval from microwave observations or possibly from visible and infra-red snow 364 

surface reflectivity, which has been shown to be strongly dependent on grain diameter (Nolin and 365 

Dozier, 2000). Tedesco et al. (2007) developed an approach based on this, and using MODIS 366 

AQUA and TERRA near-infrared measurements of the CLPX area we have studied in this work, 367 

North Park MSA, estimated the grain diameter of the top snow layer with an accuracy of 368 

approximately 0.18 mm. This result should be considered in the context of the gap of a day between 369 

satellite data acquisition and ground truth due to cloud conditions, and the difference between the 370 

punctual ground measurements and the area-integrated estimates imposed by the 500m wide 371 

MODIS pixels.  372 

 373 
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While this approach will not provide explicit information on the grain diameter throughout the 374 

height of the snow pack, it is possible that a physical model of the snow pack, driven by a range of 375 

measurements such as reflectivity-derived surface grain diameter estimates from satellite 376 

instruments, and numerical weather predictions of temperature and precipitation, could provide the 377 

necessary grain size information. Improved characterisation of snow structure could be used to 378 

drive a multilayer version of the single-layer HUT model used here (Lemmetyinen et al., 2010). 379 

Such a system would serve not only to improve our ability to invert an emission model to derive 380 

snow mass from passive microwave emission, but also to indicate where the emission model, and 381 

therefore the inversion, will fail. For example, the temperature within the snow pack would indicate 382 

where melt and refreeze events are likely, flagging where the presence of ice lenses and liquid water 383 

will cause problems for the emission model. The dynamic relationship between the physical model, 384 

the emission model and the observations suggests the need for a data assimilation framework to 385 

improve snow mass estimation. Data assimilation can be used to provide estimates of the snow 386 

properties through physically-based simulations of the snow cover, constrained by independent 387 

remote sensing estimates of eg. the grain size. These snow properties are then used to drive a 388 

microwave emission model. Comparison between observed and simulated brightness temperatures 389 

can be used to update the state of the modelled snowpack, and should enable more accurate 390 

retrievals of snow mass. 391 

 392 



Chang algorithm paper 2, printed Tuesday, 12 April 2011, 16:57:50, page 17 of 28 

Acknowledgements 393 

 394 

This work was funded under the National Centre for Earth Observation, Natural Environment 395 

Research Council, UK. 396 

 397 

References 398 

 399 

Armstrong, R.L. &  Brodzik, M.J., (2000). Validation of passive microwave snow algorithms, Proc. 400 

IGARSS 2000, 24-28 Jul 2000, vol. 4, 1561-1563 401 

 402 

Armstrong, R. L. & Brodzik, M. J. (2001). Recent Northern Hemisphere snow extent: A 403 

comparison of data derived from visible and microwave satellite sensors. Geophysical Research 404 

Letters, 28, 2676– 3673. 405 

 406 

Brodzik., M.J., Editor. (2003). CLPX-Satellite: SSM/I Brightness Temperature Grids. Boulder, CO: 407 

National Snow and Ice Data Center. Digital Media. 408 

 409 

Brodzik, M.J., Editor. (2003a). CLPX-Satellite: AMSR-E Brightness Temperature Grids. Boulder, 410 

CO: National Snow and Ice Data Center. Digital Media. 411 

 412 

Butt, M.J., (2009). A comparative study of Chang and HUT models for UK snow depth retrieval, 413 

International Journal of Remote Sensing, Volume 30, Issue 24, 6361 – 6379 414 

 415 

Chang, A. T. C., J. L. Foster & D. K. Hall (1987). Nimbus-7 SMMR derived global snow cover 416 

parameters, Ann. Glaciol., 9, 39-44 417 

 418 



Chang algorithm paper 2, printed Tuesday, 12 April 2011, 16:57:50, page 18 of 28 

Chang, A. T. C., Kelly, R. E., Josberger, E. G., Armstrong, R. L., Foster, J. L., & Mognard, N. M. 419 

(2005). Analysis of ground-measured and passive-microwave-derived snow depth variations in 420 

midwinter across the northern Great Plains. Journal of Hydrometeorology, 6(1), 20–33. 421 

 422 

Clifford, D. (2010). Global estimates of snow water equivalent from passive microwave 423 

instruments: history, challenges and future developments. International Journal of Remote Sensing, 424 

31(14):3707-3726 425 

 426 

Cline, D., Elder, K., Davis, B.J., Liston, G.E., Imel, D., & Yueh, S.H.  (2003). Overview of the 427 

NASA cold land processes field experiment (CLPX-2002), Proc. SPIE, Vol. 4894, 361; 428 

DOI:10.1117/12.467766  429 

 430 

Cline, D., Armstrong, R., Davis, R., Elder, K. & Liston, G. (2002), Updated July 2004. CLPX 431 

LSOS Snow Pit Measurements. Edited by M. Parsons and M.J. Brodzik. In CLPX-Ground: Snow 432 

Measurements at the Local Scale Observation Site (LSOS), J. Hardy, J. Pomeroy, T. Link, D. 433 

Marks, D. Cline, K. Elder, R. Davis. 2003. Boulder, CO: National Snow and Ice Data Center. 434 

Digital Media. 435 

 436 

Cline, D., Armstrong, R., Davis, R., Elder, K., & Liston, G. (2002a), Updated July 2004. CLPX-437 

Ground: ISA Snow Pit Measurements. Edited by M. Parsons and M.J. Brodzik. Boulder, CO: 438 

National Snow and Ice Data Center. Digital Media. 439 

 440 

Elder, K., Cline, D., Liston, G.E., & Armstrong, R. (2009) NASA Cold Land Processes Experiment 441 

(CLPX 2002/03): Field Measurements of Snowpack Properties and Soil Moisture, Journal of 442 

Hydrometeorology, 10(1), 320-329 443 

 444 



Chang algorithm paper 2, printed Tuesday, 12 April 2011, 16:57:50, page 19 of 28 

Foster, J. L., Chang, A. T. C., & Hall, D. K. (1997), Comparison of snow mass estimates from a 445 

prototype passive microwave algorithm and a snow depth climatology. Remote Sens. Environ. 446 

62:132–142. 447 

 448 

Kelly, R. E., Chang, A. T., Tsang, L.  & Foster, J. L. (2003), A prototype AMSR-E global snow 449 

area and snow depth algorithm, IEEE Trans. Geosci. Remote Sens., 41(2), 230-242, doi: 450 

10.1109/TGRS.2003.809118. 451 

 452 

Lemmetyinen, J.;   Pulliainen, J.;   Rees, A.;   Kontu, A.;   Yubao Qiu;   Derksen, C. (2010), 453 

Multiple-Layer Adaptation of HUT Snow Emission Model: Comparison With Experimental Data, 454 

IEEE Trans. Geosci. Remote Sens., 48(7) 2781-2794, doi: 10.1109/TGRS.2010.2041357  455 

 456 

Marks, D., Cooley, K.R., Robertson, D.C., & Winstral, A. (2000), ARS Technical Bulletin NWRC-457 

2000-5, August 11, 2000, Snow monitoring at the Reynolds Creek Experimental Watershed, Idaho, 458 

USA 459 

 460 

Nolin, A., & Dozier, J., (2000). A hyperspectral method for remotely sensing the grain diameter of 461 

snow, Remote. Sens. Environ., 74(2), 207– 216 462 

 463 

Pardé, M., Goïta, K., & Royer, A. (2007). Inversion of a passive microwave snow emission model 464 

for water equivalent estimation using airborne and satellite data, Remote Sensing of Environment 465 

111 (2007) 346–356 466 

 467 

Pulliainen, J. T., Grandell, J., & Hallikainen, M. T. (1999). HUT snow emission model and its 468 

applicability to snow water equivalent retrieval, IEEE Trans. Geosci. Remote Sens., 37(3), 1378-469 

1390, doi: 10.1109/36.763302. 470 



Chang algorithm paper 2, printed Tuesday, 12 April 2011, 16:57:50, page 20 of 28 

 471 

Randall, D.A., & Wood, R.A., 2007, Climate models and their evaluation, in Climate Change 2007: 472 

The physical science basis. Contribution of working group 1 to the fourth assessment report of the 473 

intergovernmental panel on climate change, edited by Solomon, S. and et al., Cambridge University 474 

Press, Cambridge, UK and New York, NY, USA.  475 

 476 

Tedesco, M., & Kokhanovsky, A. A. (2007). "The semi-analytical snow retrieval algorithm 477 

and its application to MODIS data." Remote Sensing of Environment, 111(2-3), 228-241. 478 

 479 



Chang algorithm paper 2, printed Tuesday, 12 April 2011, 16:57:50, page 21 of 28 

 481 

Table 1. Classes defined by SWE ranges, and mean snow properties within the ranges 

over all pits for IOPs 1,2,3,4 

SWE range (mm) 

Class 

Lower Upper 

Mean density 

(kg/m
3
) 

Mean grain 

diameter (mm) 

Number of 

pits used 

1 3 7 122 0.46 66 

2 8 10 120 0.58 33 

3 11 13 138 0.59 29 

4 14 17 152 0.76 32 

5 18 24 191 1.21 32 

6 25 44 225 1.21 53 

7 45 68 235 1.25 29 

8 69 86 223 1.46 5 

9 87 104 244 1.35 12 

10 105 163 230 1.36 55 

11 164 221 235 1.40 28 

12 222 290 253 1.00 36 

13 291 433 281 0.99 69 

14 434 570 298 0.96 65 

15 571 700 318 0.93 38 

16 701 825 341 0.80 21 

17 826 1029 354 0.72 11 

18 1030 1282 336 0.73 6 

 482 
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 483 

Table 2. Snow moisture assessment as a 

percentage of the number of pits with an 

estimate. 

Period Dry Moist Wet 

IOP1 55% 35% 9% 

IOP2 40% 10% 50% 

IOP3 49% 49% 3% 

IOP4 58% 42% 0% 
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 486 

 

Figure 1. Nested study areas for the Cold Land Processes Field Experiment  

(after http://www.nohrsc.nws.gov/~cline/clpx.html) 

COLOUR, ONLINE VERSION 

 487 
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Figure 1. Nested study areas for the Cold Land Processes Field Experiment  

(after http://www.nohrsc.nws.gov/~cline/clpx.html) 

GREYSCALE, PRINT VERSION 
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(a) Retrieval error caused by deviation of snow grain diameter from ideal value of 0.8mm while 

snow density is fixed at 300 kg m
-3
. 

 

(b) Retrieval error caused by deviation of snow density from ideal value of 300 kg m
-3
 while snow 

grain diameter is fixed at 0.8mm. 

Figure 2. Chang algorithm retrieval error caused by deviation of snow grain diameter and density 

from ideal values. 
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 (a) Snow grain diameter 

 

(b) Snow density 

Figure 3. Mean snow properties within SWE classes calculated from CLPX measurements. 
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Figure 4. The effect of CLPX snow grain diameters and densities on the accuracy of snow water 

equivalent retrieval from the Chang algorithm, using the HUT model to calculate microwave 

emission. 

 

Figure 5. Snow water equivalent retrieved from microwave emission simulated by using CLPX 

measurements in the HUT model. Mean snow characteristics within each SWE class are used for 

the homogeneous line, the heterogeneous line uses a distribution of snow characteristics within 

each class derived from the CLPX measurements to reflect measured snow variability. 
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(a) IOP1, 20-24 Feb 2002, mean pit-measured 

SWE 33.1mm, SSM/I 70.6mm 

(b) IOP2, 27-28 March 2002, mean pit-measured 

SWE 56.8mm, SSM/I 9.5mm 

  

(c) IOP3, 20-23 Feb 2003, mean pit-measured 

SWE 23.8mm, SSM/I 52.2mm, AMSR-E 

32.9mm 

(d) IOP4, 28
th
 March, 2003, mean pit-measured 

SWE 14.1mm, SSM/I 32.4mm, AMSR-E 25.1mm 

Figure 6. Snow water equivalent in CLPX North Park MSA during the four Intensive 

Observation Periods, measured during ground campaigns and estimated from SSM/I and 

AMSR-E satellite data using the Chang algorithm. 
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