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ABSTRACT 

 

Background/Aims: In cerebral arteries, NO release plays a key role in suppressing vasomotion. Our 

aim was to establish the pathways affected by NO in rat middle cerebral arteries. Methods: In isolated 

segments of artery, isometric tension and simultaneous measurements of either smooth muscle 

membrane potential or [Ca2+]SMC changes were recorded. Results: In the absence of L-NAME, 

asynchronous propagating Ca2+ waves were recorded that were sensitive to block with ryanodine, but 

not nifedipine. L-NAME stimulated pronounced vasomotion and synchronous Ca2+ oscillations with 

close temporal coupling between membrane potential, tone and [Ca2+]SMC. If nifedipine was applied 

together with L-NAME, [Ca2+]SMC decreased and synchronous Ca2+ oscillations were lost, but 

asynchronous propagating Ca2+ waves persisted. Vasomotion was similarly evoked by either IbTx, or 

by ryanodine, and to a lesser extent by ODQ. Exogenous application of NONOate stimulated 

endothelium-independent hyperpolarization and relaxation of either L-NAME-induced or spontaneous 

arterial tone. NO-evoked hyperpolarization involved activation of BKCa-channels via RYRs, with little 

involvement of sGC. Further, in whole cell mode, NO inhibited current through L-type VGCC (ICaL), 

which was independent of both voltage and sGC. Conclusion: NO exerts sGC-independent actions at 

RYRs and at VGCC, both of which normally suppress cerebral artery myogenic tone. 

Keywords: nitric oxide, membrane potential, calcium signaling, vascular smooth muscle, cerebral 

arteries, vasomotion 
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INTRODUCTION 

 

Cerebral arteries typically display spontaneous, submaximal constriction that is dependent on the level 

of intraluminal pressure or isometric stretch, termed myogenic tone. This myogenic tone is an essential 

mechanism in the local control of blood flow and tissue perfusion in the cerebral vasculature both in 

vivo and in vitro, and in many other vascular beds [1,2]. The development of myogenic tone is 

generally characterised by vascular smooth muscle cell depolarization, leading to an increase in the 

intracellular [Ca2+] ([Ca2+]SMC) and associated constriction of the artery [1,3]. Myogenic responses, by 

definition, can occur without a functional endothelial cell layer; however, the endothelium can 

considerably modulate the degree of myogenic tone by releasing a number of factors including nitric 

oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor. 

 

In addition to suppressing myogenic tone, endothelium-derived factors also modulate the vasomotion 

that often occurs in tandem with the development of myogenic constriction. Vasomotion describes 

rhythmic oscillations in tension or diameter that are normally synchronous with oscillations in Ca2+ and 

membrane potential (Em). In the brain, oscillations in middle cerebral artery blood flow velocity (as a 

result of vasomotion) have been observed in many species, including humans [4] and rats [5]. The role 

of the endothelium in the control of vasomotion is unclear; in some vascular beds the NO/cGMP 

pathway has been shown to augment vasomotion [6]. However in other beds, including the cerebral 

vasculature [5,7], NO/cGMP attenuates this response as NOS inhibitors stimulate vasomotion. This 

vasomotion manifests as a reduction in capillary blood flow, which tends to oscillate in synchrony 

within the bed [8]. Therefore any disruption of the ability to synthesize NO can potentially lead to 

vasomotion and/or spasm, as observed under pathophysiological conditions such as subarachnoid 

haemorrhage [9,10]. 
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In arteries isolated from both coronary [11,12] and cerebral [13-20] beds, a continual, basal release of 

NO suppresses myogenic tone, with inhibition of NO synthase (NOS) leading to depolarization and 

constriction in the absence of vasoconstrictor agents. NO can either stimulate hyperpolarization and 

closure of voltage-gated Ca2+ channels (VGCC), or directly close VGCC, both of which suppress 

myogenic tone. In terms of hyperpolarization, NO can activate smooth muscle cell BKCa-channels 

either directly [21-23] or via PKG-dependent mechanisms [24,25]. NO can also stimulate ryanodine-

sensitive calcium stores (by opening the ryanodine receptor, RYR) in the sarcoplasmic reticulum, 

evoking discrete calcium events termed ‘sparks’ that activate adjacent clusters of BKCa-channels. This 

mechanism has been suggested to underpin NO-dependent relaxation in the rat posterior cerebral artery 

[26] where the presence of NO is reported to be a prerequisite to activate the RYRs. Stimulation of 

RYRs by NO could be either direct or indirect, e.g. nitrosylation of thiol groups [27], or via cGMP 

mediated phosphorylation of the channel and the sarcoplasmic  reticulum calcium ATPase [28], 

respectively. In addition, NO can close VGCC in a membrane potential-independent manner, which 

can occur either via sGC/PKG [29-31], and/or by nitrosylation [32-34]. 

 

Therefore we investigated further the mechanisms underlying the modulation of myogenic tone and the 

development of vasomotion associated with the basal release of NO in the rat (middle) cerebral arteries. 

Although our data support the suggestion that NO does stimulate RYR channels to release calcium that 

drives BKCa-channel mediated hyperpolarization, they also suggest two further important aspects of 

NO activity. First, that inhibition of NO synthase masks (rather than inhibits) spontaneous oscillations 

in smooth muscle cell calcium due to activation of VGCCs and the appearance of vasomotion, which is 

consistent with activation of RYRs via NO-independent pathways. Second, a direct inhibitory action of 

NO on VGCCs can suppress cerebral artery myogenic tone. 
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MATERIALS AND METHODS 

 

Male Wistar rats (200-300 g) were euthanized using procedures defined by the Animals (Scientific 

Procedures) Act 1986, UK (Schedule 1 procedure) and the brain was rapidly removed and stored 

immediately in ice-cold physiological salt solution for a maximum of 30 min.  

 

Simultaneous measurement of tension and membrane potential 

 

A 2 mm segment of the middle cerebral artery (internal diameter of ~175 µm) was mounted in a 

Mulvany-Halpern myograph (model 410A, Danish Myotechnology) in Krebs solution containing 

(mM): NaCl, 118.0; NaCO3, 25; KCl, 3.6; MgSO4⋅7H2O, 1.2; KH2PO4, 1.2; glucose, 11.0; CaCl2, 2.5; 

and gassed with 95 % O2 and 5 % CO2 at 37 ºC. The vessels were allowed to equilibrate for 20 min and 

were then tensioned to 1-1.5 mN (approximates wall tension at 60 mmHg). Vessel viability was 

assessed by the addition of exogenous K+ (15-55 mM), only vessels developing tension ≥3 mN were 

used. Endothelial cell viability was assessed by the ability of SLIGRL (20 µM; a protease-activated 

receptor 2 ligand) to relax U46619 induced tone by >70 % and to hyperpolarize the smooth muscle cell 

membrane by >15 mV.  All blocking drugs were allowed to equilibrate for 20 min before study except: 

nifedipine and ryanodine which produced immediate responses or whose effects were studied over a 20 

min period. In some experiments, endothelial cells were removed by gently rubbing the luminal surface 

with a human hair; subsequent relaxation of <15 % to SLIGRL (20 µM) was considered as successful 

removal. Smooth muscle cell tension and Em were measured simultaneously as previously described 

[35] and were recorded with the use of Powerlab system (AD instruments, Australia). Briefly, 
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individual smooth cells were impaled with a glass electrode (filled with 2 M KCl, tip resistance 60-100 

MΩ) held perpendicular to the cells. 

 

Simultaneous measurement of changes in [Ca2+]SMC and tension 

 

A segment of middle cerebral artery was mounted as described above except in a Mulvany-Halpern 

myograph designed for use on a confocal microscope (Model 120CW, Danish Myotechnology) and in 

MOPS buffer containing (mM): NaCl, 145; KCl, 4.7; CaCl2, 2.0; MgSO4, 1.17; MOPS, 2.0; NaH2PO4, 

1.2; glucose, 5.0; pyruvate, 2.0; EDTA, 0.02; NaOH, 2.75 (the pH of the solution was adjusted to 7.39-

7.41 at 37ºC using NaOH or HCl, as appropriate). The arteries were loaded with the calcium-sensitive 

fluorescent dye, Oregon Green 488 BAPTA-1 AM (10 µM; dissolved in DMSO and 0.02 % (w/v) 

Pluronic F-127) for 1 hour. After excitation at 488 nm, the fluorescence emission intensity at 515 nm 

was recorded using a spinning disc confocal microscope (Yokogawa CSU22, Japan) fitted with an 

Andor iXON DV887ECS-BV camera (Andor, UK) mounted on an Olympus IX70 inverted microscope 

(Olympus, Japan) using a water immersion objective (x40, aperture 0.8, working distance 3.3 mm, 

Olympus, Japan) and images (512 x 512 pixels, 20 Hz) stored for offline analysis (iQ, Andor). 

Following background subtraction, average, relative changes in [Ca2+]SMC were calculated as changes 

in intensity of fluorescence divided by fluorescence at time = 0 s (F/F0), within selected cell regions 

(5x5 pixels). 

 

Isolated smooth muscle cell patch clamp experiments 

 

Freshly dissected middle cerebral arteries were placed in ice-cold Ca2+-free isolation solution 

containing (mM): NaCl, 140; KCl, 4.7; MgCl2, 1.2; glucose, 10; and HEPES, 10 (pH 7.4). After 
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incubation on ice for 20 min, the arteries were transferred to Ca2+-free isolation solution, containing 

1 mg/ml albumin, 1mg/ml papain (Sigma), and 1 mg/ml dithiothreitol, and allowed to digest for 20 min 

at 37°C. The tissue was then transferred into a solution containing 0.1 mM CaCl2 and 1 mg/ml 

collagenase type H (Roche) + 1 mg/ml collagenase type F (Sigma). Following digestion for 10 min at 

37°C, the tissue was washed in isolation solution containing 1 mg/ml albumin and 0.1 mM CaCl2. After 

gentle trituration, cells were centrifuged for 5 min at 1000 rpm, the supernantant removed, and 

resuspended in fresh isolation solution.  The concentration of extracellular calcium was increased over 

the next 30 mins to 750 µM. Freshly isolated cells were maintained on ice for use on the same day. 

 

Cells were placed in a heated recording chamber (RC-25F, Warner Instruments) and left for ~10 min to 

adhere to the cover glass.  Cells were then continually superfused (~1 ml/min) with heated solution 

(SH-27B Inline Heater, Warner Instruments) via a multi-barrel gravity-fed perfusion system. 

Experiments were performed using an agar bridge (2% agar filled with 3 M KCl).  During seal 

formation, cells were superfused with physiological saline solution (PSS) containing  (mM): NaCl, 

140; KCl, 4; CaCl2, 1.5; MgCl2, 1.2; HEPES, 10; glucose, 10; pH=7.4.  To record membrane potential, 

the pipette solution contained (mM): KCl, 130; NaCl, 10; HEPES, 10; MgCl2, 0.5; CaCl2, 0.5; and 

Amphotericin B (200 µg/ml). To record L type calcium current (ICaL), the whole cell mode was used 

and Ba2+ was used as the charge carrier. Cells were perfused with solution containing (mM): NaCl, 

120; CsCl, 4; TEA-Cl, 10; BaCl2, 10; MgCl2, 1.2; HEPES, 10; glucose (pH=7.4).  The pipette solution 

contained (mM): CsCl, 130; MgCl2, 0.4; HEPES, 10; EGTA 2; CaCl2, 0.4; GTP, 0.5; MgATP, 5; 

pH=7.3.  The osmolarity of all solutions was measured and corrected to 300 ± 5 mOsm using mannitol.  

All electrophysiological recordings were performed at 37°C. 
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ICaL was recorded using a 1 s ramp protocol, from –100 to +80 mV from a holding potential of –80 mV 

at a frequency of 0.05 Hz.  Nifedipine (1 µM) was applied at the end of the protocol, and subtracted 

from the current records obtained in barium containing solution, and the data presented as nifedipine-

sensitive current. Cell membrane capacitance was measured using a 10 mV hyperpolarizing step and 

used to correct ICaL currents for cell size. Currents were expressed as current density (pA/pF).   Any cell 

exhibiting current rundown in control conditions was excluded from the analysis.  NONOate was 

freshly diluted with PSS, and infused via an injection port in the superfusion line directly upstream 

from the recording chamber.  In experiments with the sGC inhibitor ODQ, cells were incubated in 10 

µM ODQ for 15 mins, and it was also included in the perfusion solutions. 

 

Data were analyzed and leak subtracted offline using pClamp 8 (Axon Instruments). Values are 

expressed as mean ± SEM of n cells (from at least 3 animals). The paired two-tail t-test was used to 

compare parameters obtained in control and test conditions in the same cell. A non-paired t-test was 

used to compare the differences between groups of data. 

 

Solutions and drugs 

 

Exogenous K+ was added as an isotonic solution, and expressed as the final bath concentration. 

Caffeine, L-NAME (NG-nitro-L-arginine methyl ester), nifedipine, ryanodine, BayK 8644 and 

papaverine were all obtained from Sigma (UK). IbTx was obtained from Latoxan (France); DEA-

NONOate from Alexis (UK); ODQ (1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one) from Tocris (UK); 

SLIGRL from Auspep (Australia); Oregon Green 488 BAPTA-AM from Molecular Probes (UK); 

TRAM-34 was a gift from Dr H. Wulff (University of California, Davis); and U46619 was from 

Calbiochem (UK). All drugs were made in 0.9 % NaCl except ryanodine, nifedipine, ODQ, U46619 
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and Amphortericin B in DMSO; NONOate in 0.01 M NaOH (and stored at -80 ºC); and (-) BayK 8644 

in EtOH. All subsequent dilutions of all drugs were made in 0.9 % NaCl and vehicle had no effect. 

NONOate dilutions were kept on ice in the dark and were discarded after 20 min. 

 

Statistical analysis 

 

Results are expressed as the mean ± SEM of n animals. Relaxation is expressed as the peak percentage 

reduction of the total vascular tone (from the myogenic tone to the tension/diameter following addition 

of papaverine, 150 µM) or as mN, as appropriate. Constriction is expressed in mN or as a percentage of 

maximal constriction induced by exogenous K+ (55 mM), as appropriate, all values were the peak 

values. When oscillations in membrane potential or tension were observed, values are the average of 10 

s. Graphs were drawn and statistical comparisons made using either Student’s t-test, or one-way 

ANOVA with Tukeys or Dunnetts post-hoc test using Prism software (Graphpad, USA). 

 

 

RESULTS 

 

Effect of inhibiting NO synthase, sGC, RYRs and BKCa-channels on myogenic tone 

 

Rat middle cerebral arteries exhibit myogenic tone in a wire myograph equivalent to ~15 % of the 

maximum tension the vessel can develop [18], and associated with a resting membrane potential (Em) 

of -50 ± 0.2 mV (n = 9). Addition of the NO synthase inhibitor, L-NAME (100 µM) evoked 

depolarization (to Em -43.7 ± 1.9 mV, n = 6) and constriction (increase in tension of 3.7 ± 0.5 mN, n = 
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7; Figure 1). In addition, oscillations in Em developed, temporally linked to oscillations in tension 

(Figure 1, Table 1). Fluorescence imaging revealed that in unstimulated control arteries, smooth muscle 

cells displayed spontaneous and asynchronous propagating Ca2+ waves (172 of 210 cells, Figure 1, 

online Movie 1). The oscillations occurred with a frequency of 0.27 ± 0.02 Hz (n = 21, Table 1) and 

were not associated with any change in tension (Figure 1). Addition of L-NAME increased the global 

[Ca2+]SMC (data not shown) associated with the development of synchronous Ca2+ oscillations between 

smooth muscle cells that clearly linked temporally to changes in tension (Figure 1, online Movie 2, 

Table 1). 

 

The BKCa-channel inhibitor iberiotoxin (IbTx, 100 nM) and the sGC inhibitor ODQ (10 µM) both 

mimicked this effect of L-NAME. Each caused depolarization (to Em -40.3 ± 1.8 and -35.5 ± 6.0 mV n 

= 5 and n = 3, respectively; Figure 2) and vasoconstriction (increases in tension of 3.7 ± 0.8 and 3.8 ± 

0.7 mN n = 6 and n = 3, respectively; Figure 2) associated with the development of oscillations in Em 

temporally linked to oscillations in tone (Table 1). Note that the vasomotion induced by ODQ was at a 

significantly lower frequency than that with either IbTx or L-NAME (Table 1). 

 

Inhibition of RYRs with ryanodine (10 µM) also mimicked the effect of L-NAME causing 

depolarization (13.5 ± 3.6 mV) and tension increases (2.3 ± 0.2 mN, n = 5), and associated 

development of synchronous Em oscillations temporally linked with tension oscillations (Figure 3, 

Table 1). Similarly, ryanodine stimulated synchronous Ca2+ oscillations in phase with tension changes 

(Figure 3, Table 1).  

 

Effect of L-NAME and ryanodine on oscillations in [Ca2+]SMC in the presence of nifedipine 
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As ryanodine and L-NAME each evoke constrictor responses associated with depolarization (and 

consequent calcium entry via VGCC) the effects of these drugs were assessed in the presence of the L-

type VGCC inhibitor, nifedipine (1 µM). Under control conditions, nifedipine alone hyperpolarized 

(6.4 ± 2.4 mV) and relaxed (0.76 ± 0.03 mN) myogenic tone (n = 4), associated with a slight but 

significant reduction in both the frequency (0.20 ± 0.02 Hz, n = 4, P < 0.01) and the number of cells 

exhibiting asynchronous propagating Ca2+ waves (to 70 %, 28 of 40 cells; Figure 4). Subsequent 

addition of L-NAME repolarized the smooth muscle Em (depolarization of 7.5 ± 3.8 mV, n = 4) and 

caused a small increase in tension (0.8 ± 0.01 mN, n = 4), returning Em and tension values close to 

values recorded in quiescent vessels. In the presence of nifedipine, L-NAME had no significant effect 

on the number of cells exhibiting asynchronous propagating Ca2+ waves (68 %, 27 of 40 cells) or the 

wave frequency (0.22 ± 0.02 Hz, n = 4; Figure 4). In contrast, ryanodine completely abolished these 

Ca2+ waves (to 0 in 60 cells; Figure 4). 

 

Effect of blocking VGCC and application of exogenous NO or caffeine on L-NAME-induced tone 

 

In vessels pre-constricted with L-NAME, nifedipine (1 µM) abolished oscillations in Em and caused a 

repolarization (hyperpolarization of 11.7 ± 1.9 mV, n = 3) to circa the resting membrane potential in 

the absence of NOS inhibition. This was associated with complete reversal of L-NAME induced tone 

(93.1 ± 1.6 %, n = 3). Furthermore, nifedipine caused a large decrease in [Ca2+]SMC (data not shown) 

and abolished the synchronous Ca2+ oscillations between SMC, unmasking the asynchronous 

propagating Ca2+ waves (compare Figure 4B to Figure 1B). 
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In vessels pre-constricted with L-NAME, application of caffeine (30 µM – 3 mM) induced 

concentration-dependent hyperpolarization and relaxation (log EC50: -3.43 ± 0.10; 3 mM: 16.4 ± 5.0 

mV and 91.8 ± 4.2 % relaxation, n = 8, Figure 5A). Hyperpolarization and relaxation to caffeine (1 

mM: 16.5 ± 2.0 mV and 82.6 ± 3.7 %, respectively, n = 6) were attenuated by IbTx (Figure 5A) and by 

ryanodine (1 mM: 4.4 ± 1.9 mV and 40.0 ± 30.9 %, respectively, n = 6). 

 

Application of the NO donor NONOate (3 nM – 1 µM) stimulated concentration dependent 

hyperpolarization and relaxation (log EC50: -7.48 ± 0.05; 1 µM: 13.3 ± 2.1 mV and 83.0 ± 2.5 % 

relaxation, n = 5, Figure 5B). The sGC inhibitor ODQ (1 µM) did not affect hyperpolarization to 

NONOate but significantly attenuated the relaxation (Figure 5B). Blockade of BKCa-channels with 

IbTx (100 nM) significantly inhibited both NONOate-induced hyperpolarization and relaxation (Figure 

5B). 

 

Effect of removing the endothelium on myogenic tone and the response to application of 

exogenous NO 

 

Following removal of the endothelium, cerebral artery smooth muscle cells were depolarized (Em -45.9 

± 2.2 mV, n = 12) and spontaneously developed tension (1.5 ± 0.2 mN, n = 12) sometimes (9 of 12 

records) associated with oscillations in both Em (amplitude: 4.5 ± 1.2 mV; frequency: 0.84 ± 0.20 Hz, n 

= 12) and tension. In these denuded cerebral arteries, L-NAME did not further increase tension (data 

not shown).  
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The NO donor, NONOate (3 nM – 1 µM) evoked concentration dependent hyperpolarization and 

relaxation in denuded arteries (logEC50: -7.50 ± 0.06; 1 µM: -9.2 ± 2.2 mV and 78.0 ± 7.9 % relaxation, 

n = 6, Figure 5C). Ryanodine (10 µM) caused a small increase in tone, which was associated with 

slight depolarization (Em -41.7 ± 1.0 mV, n = 12), and a significant increase in the amplitude of 

oscillations in Em (23.3 ± 2.7 mV; frequency: 1.24 ± 0.09 Hz, n = 12, Figure 5C). These oscillations 

were not coupled to a detectable tension change. Ryanodine markedly reduced the hyperpolarization 

produced by NONOate but did not significantly affect the relaxation. Interestingly, NONOate reduced 

the amplitude and frequency of ryanodine-mediated oscillations in Em (1 µM: Figure 5C). The addition 

of IbTx did not modify the effects of ryanodine, apart from further increasing the amplitude of 

oscillations by around 10 mV (amplitude significantly increased to 34.9 ± 3.4 mV, frequency 1.29 ± 

0.09 Hz, n = 8, Figure 5C). 

 

To further characterize the action of NO, experiments were performed to assess an action at VGCC. In 

endothelium-denuded arteries, IbTx had no significant effect on hyperpolarization and relaxation 

responses to NONOate (compare Figure 5C to Figure 6B). However in the additional presence of 

ODQ, the hyperpolarization and relaxation to NONOate were reduced (Figure 6A, 6B). Subsequent 

addition of the L-type VGCC opener BayK 8644 did not significantly alter membrane potential 

(hyperpolarization of 3.7 ± 3.8 mV) but contracted arteries (1.2 ± 0.2 mN, n = 5) and significantly 

increased both the frequency and amplitude of oscillations in Em (Figure 6C). In the presence of this 

combination of inhibitors, the hyperpolarization to NONOate was effectively abolished, and the 

relaxation to NONOate markedly reduced.  
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Direct action of NO on VGCC 

 

Isolated cells. The average resting Em of isolated smooth muscle cells was -51.1 ± 2.0 mV (n = 12). In 

these unstretched and unstimulated cells, Em tended to oscillate (amplitude of 15.4 ± 2.8 mV, n = 12), 

but a clear pattern was not observed (Figure 7A). In contrast, under similar conditions at 37ºC, the 

resting Em of smooth muscle cells isolated from mesenteric arteries tended to remain stable at -54.5 ± 

0.6 mV (with less frequent and lower amplitude oscillations of 5.2 ± 0.5 mV, n = 11). Addition of 1 

µM NONOate to the superfusion solution stimulated hyperpolarization and abolished the oscillations in 

Em (Figure 7A). In whole cell mode, steady state ICaL was recorded for 1 min using the ramp protocol. 

Application of NONOate (1 µM) to the bath induced a significant reduction in ICaL that was not 

inhibited by ODQ (Figure 7C, D, n = 6-7). The effect of NONOate on ICaL was time-dependent (Figure 

7D), so values were taken at 10 min following application of NONOate. 

 

 

DISCUSSION  

 

These data from the rat middle cerebral artery indicate that myogenic tone and vasomotion are 

normally suppressed by basal release of endothelium-derived NO that inhibits VGCC largely via sGC-

independent pathways. This can occur either through an effect at RYR and activation of smooth muscle 

cell BKCa-channels, or a direct action independent of voltage. The activation of BKCa-channels appears 

to involve in part an indirect action of NO due to stimulation of Ca2+ release from ryanodine-sensitive 

Ca2+ stores but also in part a direct action of NO on the KCa-channel. Therefore upon inhibition of 

NOS, smooth muscle cell depolarization due to closure of BKCa-channels and the removal of an 
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inhibitory influence, both lead to opening of VGCCs which is followed by a rise in [Ca2+]SMC and 

tension leading to arterial vasomotion. 

 

The finding that myogenic tone is normally suppressed by basal release of NO in rat middle cerebral 

arteries is consistent with previous studies using cerebral arteries [14-19] and a variety of other vessels 

that exhibit myogenic tone including small coronary arteries [11,12]. By suppressing myogenic tone, 

NO also suppresses vasomotion in the middle cerebral artery. Nifedipine fully reversed the effects of L-

NAME, reversing tension and abolishing synchronised oscillations in both Em and [Ca2+]SMC. Therefore 

it is apparent that opening VGCCs is essential for vasomotion to develop, consistent with many other 

vessels [1,36].  Despite this, we cannot rule out the involvement of ion other channels. Once the 

intracellular Ca2+ levels rise and the membrane depolarizes, other channels would be stimulated to 

open, including voltage-gated Na+-channels, Ca2+-activated Cl--channels, and KCa-channels. 

Furthermore, as both the endothelial and smooth muscle cells are coupled by homocellular and 

heterocellular gap junctions in this artery [37], it remains possible that the endothelium influences 

membrane potential through NO or other mediators. For example, changes in endothelial cell Ca2+ are 

responsible for the release of NO, so endothelial cell KCa-channels may also play a role in the observed 

changes in membrane potential. 

 

While basal release of NO is known to suppress myogenic tone (and vasomotion), the precise 

mechanisms are unclear. However, it is likely that NO acts via multiple mechanisms, a few of which 

are shown in Figure 8. NO can suppress the contractile apparatus of the smooth muscle cells via the 

cGMP pathway. Indeed, ODQ produced increases in tension and depolarization (similar to L-NAME, 

albeit with a lower frequency of vasomotion), suggesting that sGC somehow stimulates 

hyperpolarization, perhaps via an action at BKCa-channels through PKG-dependent mechanisms 
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[24,25] or by an action on RYRs [27,28]. In addition, our data are consistent with a cGMP-independent 

action of NO at BKCa-channels, because BKCa-channel-mediated hyperpolarization induced by the NO 

donor, NONOate, was not significantly attenuated by ODQ. This suggests that endogenous NO 

activates BKCa-channels either directly [21,22] or via stimulation of Ca2+ release (e.g. sparks) from 

ryanodine sensitive stores (by opening RYRs). Evidence for the latter comes from the ability of 

ryanodine to block NONOate induced hyperpolarization in endothelium-damaged vessels. Despite this 

block, NONOate was still able to reduce the frequency and amplitude of the depolarizing spikes 

(oscillations in Em) linked with the vasomotion generated by ryanodine. This suggests that NO acts to 

prevent the opening of the ion channel responsible for the depolarization. Further evidence consistent 

with a cGMP-independent action of NO on RYRs, was the ability of ryanodine to (a) stimulate 

vasomotion, mimicking the effect of NOS inhibition; and (b) inhibit the IbTx-sensitive 

hyperpolarization to caffeine.  

 

Although it is likely that a major component of NO-induced suppression of myogenic tone involves a 

stimulation of Ca2+ release events, our data argue against an essential role for NO in the activation of 

RYRs. In the presence of nifedipine, L-NAME did not markedly prevent the basal asynchronous 

propagating Ca2+ waves, whereas ryanodine did. This is in contrast to previous observations in cerebral 

arteries by Mandala et al [26], who suggested that NO was absolutely essential for RYR activation (and 

thus for activation of BKCa-channels) because spontaneous Ca2+ sparks were reduced by around 50 % 

with NOS inhibitors or endothelium removal. However, following on from our observations it is likely 

that asynchronous propagating Ca2+ waves were masked by the Ca2+ influx through the L-type VGCCs 

and development of synchronous Ca2+ oscillations, as observed in the present study. Therefore, while 

the activation of BKCa-channels by NO likely involves direct stimulation of RYR-controlled Ca2+ 

stores, this action of NO is not an essential step in the activation of RYR. It follows that as RYR 
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stimulation is not necessarily associated with NO, an as yet unidentified process may also modulate 

vasomotion. In support of this conclusion, inhibition of RYR in the absence of a functional 

endothelium (and therefore NO synthesis) resulted in a small increase in tension as well as 

development of large, regular depolarizing oscillations in Em.   

 

Further experiments in the absence of functional endothelium showed that NONOate appears to 

directly inhibit VGCCs. In the presence of both IbTx and ODQ, NONOate responses mimicked those 

of nifedipine under control conditions and in the presence of L-NAME, that is, complete block of the 

oscillations in Em associated with a small hyperpolarization, and relaxation. This direct effect of 

NONOate on VGCC was confirmed in isolated smooth muscle cells, where ICaL was markedly reduced. 

The effect of NONOate on ICaL in the isolated cells appears to be at least in part via a direct action on 

the channel protein or associated proteins, rather than via a cGMP-dependent mechanism.  This is 

consistent with previous findings in the carotid body, where Summers et al. (1999) showed that NO-

mediated inhibition of ICaL occurs via S-nitrosylation of the channel protein, and that S-alkylation of the 

free cysteine residues by NEM prevented the modulation by the NO donor sodium nitroprusside, rather 

than via the activation of sGC.  

 

Further evidence for the action of NO on ICaL in our studies to be induced by nitrosylation rather than 

via the cGMP/PKG pathway may come from the time-course of NONOate induced inhibition, which 

took minutes to tens of minutes to occur.  Previous studies of neuronal BKCa channels suggest that not 

only does nitrosylation require a higher concentration of NO than the PKG pathway, but it develops 

with a much slower time-course [38,39]. Further, transient receptor potential (TRP) channels can be 

activated by NO donors, TRPC6 channels being PKG-dependent, whereas TRPC5 channels are more 

slowly activated via S-nitrosylation [40]. 
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The action of NO at VGCC was fully reversed by adding the direct opener of L-type VGCC, 

suggesting the sites of action are independent. Although there is evidence that both NO and BayK 8644 

each evoke their effects on the L-type VGCC via the pore-forming α1c-subunit, BayK 8644, which 

competitively competes with nifedipine, binds from the extracellular surface to access the 

dihydopyridine receptor site within the channel [41,42]. The site of NO-induced VGCC modulation by 

nitrosylation still remains to be elucidated.  However, studies on other ion channels and transporters 

indicate that S-nitrosylation sites are primarily hydrophobic intracellular cysteine residues, flanked by 

positively charged basic residues [43].  In the skeletal muscle ryanodine receptor, the NO nitrosylation 

site has been identified as a hydrophobic cysteine residue at position 3635 of the calmodulin-binding 

domain [44].  Indeed, there is also evidence that VGCC function can be impaired by nitrosylation of an 

intracellular tyrosine residue  (Y2134) situated in the src kinase protein binding domain of the carboxy 

terminal of the α1c-subunit [45].  

 

In summary, in rat middle cerebral arteries a basal release of NO from the endothelium suppresses 

myogenic tone. This suppression of myogenic tone is due, at least in part, to the ability of NO to 

stimulate BKCa-channels by activating ryanodine-sensitive Ca2+ stores. Following inhibition of NOS, 

the BKCa-channels close leading to depolarization, with an associated increase in tension and the 

development of vasomotion. Therefore, our data indicate that basal NO-release represents an important 

controlling mechanism on myogenic tone in cerebral arteries. In disease states where NO synthesis is 

compromised, disruption of this constitutive suppression of myogenic tone would be predicted to 

increase significantly the risk of brain ischaemia. 
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Table 1.  Amplitude and frequency of smooth muscle cell Em, tension and synchronous Ca2+ 

oscillations.  

 

SMC Em [Ca2+]SMC 

Oscillation amplitude Oscillation frequency Oscillation frequency 
 

Em  

(mV) 

Tension 

(mN) 

Em 

(Hz) 

Tension 

(Hz) 

Ca2+ 

(Hz) 

Tension 

(Hz) 

L-NAME 16.4 ± 1.8 0.14 ± 0.2  0.85 ± 0.06  0.84 ± 0.05  0.75 ± 0.05  0.76 ± 0.04  

IbTx 19.7 ± 2.3  0.11 ± 0.02   0.97 ± 0.05  0.96 ± 0.06  ND ND 

ODQ 8.1 ± 0.7* 0.13 ± 0.02  0.57 ± 0.06* 0.56 ± 0.07* ND ND 

Ryanodine 19.5 ± 3.4 0.06 ± 0.01* 1.08 ± 0.06  1.06 ± 0.06  1.04 ± 0.04* 1.01 ± 0.05* 

 

Data expressed as mean ± SEM, n = 4-11. Time-matched, paired values obtained from simultaneous 

records of either Em and tension or Ca2+ and tension. *P<0.05 significant difference from L-NAME. 
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Figure 1. Spontaneous nitric oxide release prevents vasomotion. Original traces showing (A) 

simultaneous recordings of membrane potential (upper panels) and tension (lower panels) or (B) 

simultaneous recordings of [Ca2+]SMC (upper 2 sets of panels) and tension (lower panels) under control 

resting conditions (left hand panels) or in the presence of the NO synthase inhibitor, L-NAME (100 

µM; right hand panels), in rat middle cerebral arteries. Under control conditions, membrane potential 

and tension are relatively stable, and at the same time, [Ca2+]SMC is constantly oscillating but these 

oscillations are asynchronous between smooth muscle cells and can be observed as waves passing 

along cells (asynchronous propagating Ca2+ waves). In the presence of L-NAME, the smooth muscle 

cells depolarized and developed regular depolarizing oscillations, which were associated with increased 

tension and oscillations in tension; the peaks in Em immediately preceded peaks in tension. In the 

presence of L-NAME oscillations in [Ca2+]SMC were now synchronized and regular (synchronous Ca2+  

oscillations) and were temporally linked to oscillations in tension. The top coloured traces correspond 

to the average F/F0 in 3 cells indicated by filled coloured squares on the images of the preparations (C), 

and the black traces are the average change in fluorescence from 10 equivalent regions in separate 

cells. The lower coloured traces correspond to the percentage maximum change in fluorescence in 

single cells indicated by the open coloured squares in (C). Bar = 20 µm. Movie files corresponding to 

the cropped regions shown in Control and L-NAME (dashed lines) are available online. Summary data 

are shown in Table 1. 

 

Figure 2.  Spontaneous activation of BKCa-channels and sGC prevent vasomotion. Original traces 

showing the effect of either (A) the BKCa-channel inhibitor, IbTx (100 nM) or (B) the sGC cyclase 

inhibitor, ODQ (10 µM) on simultaneous recordings of membrane potential (upper panels) and tension 

(lower panels). Both IbTx and ODQ caused depolarization and increased tension and a development of 

vasomotion. 
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Figure 3.  Spontaneous activation of RYRs prevents vasomotion. Original traces of (A) simultaneous 

recordings of membrane potential and tension or (B) simultaneous recordings of [Ca2+]SMC and tension. 

The traces show recordings obtained in the presence of the inhibitor of RYRs (ryanodine, 10 µM). 

Ryanodine caused depolarization and increased tension of the middle cerebral artery associated with 

development of depolarizing oscillations in Em that were temporally coupled to changes in tension. 

Ryanodine also caused development of synchronous Ca2+ oscillations that were temporally linked to 

oscillations in tension.  [Ca2+]SMC responses from 3 randomly selected cells are displayed (colour) as 

well as the 10 cell average (black). 

 

Figure 4. Spontaneous nitric oxide release does not inhibit control, asynchronous propagating Ca2+ 

waves. Original traces showing the basal, asynchronous propagating Ca2+ waves from 3 representative 

cells (colour) and the 10 cell average (black; upper traces) and associated tension records (lower traces) 

in rat middle cerebral arteries (A) in the presence of the L-type VGCC inhibitor, nifedipine (1 µM) and 

(B) the combination of nifedipine and the NO synthase inhibitor, L-NAME (100 µM). Under control 

conditions changes in [Ca2+]SMC were not synchronized between individual cells and were not coupled 

to changes in tension (as in Figure 1A). Nifedipine had no effect on the size of the asynchronous 

propagating Ca2+ waves. Subsequent addition of L-NAME also had no effect on these Ca2+ waves. 

Average data are shown in (C) showing the frequency of Ca2+ waves and the percentage of cells 

exhibiting this behavior (left panel) and the associated tension (right panel) in control vessels and in the 

presence of nifedipine, nifedipine + L-NAME and nifedipine + ryanodine (10 µM). Ryanodine 

completely abolished the Ca2+ waves in all cells of all vessels tested (60 cells). Data expressed as 

means ± SEM. 
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Figure 5.  Caffeine and NONOate stimulate hyperpolarization and relaxation. Concentration response 

curves showing hyperpolarization (left panels) and relaxation (right panels) produced by caffeine (A) 

or the NO donor DEA-NONOate (B) in endothelium-intact (+EC) or endothelium-damaged arteries (-

EC, C). Vessels were pre-incubated with L-NAME (100 µM), IbTx (100 nM), ODQ (10 µM) and/or 

ryanodine (10 µM). Data are expressed as mean ± SEM, n = 4-9. * Significant difference from L-

NAME (+EC) or control (-EC), P < 0.05; † Significant difference from Baseline, P < 0.05. 

 

Figure 6. Application of exogenous NO (NONOate 3 nM – 3 µM) appears to directly inactivate 

VGCCs in endothelium-denuded middle cerebral arteries. Original trace (A) showing that in the 

combined inhibition of BKCa-channels (IbTx, 100 nM) and sGC (ODQ, 10 µM), NONOate  induces a 

reduction in membrane potential oscillation frequency and amplitude  (upper trace) that is associated 

with relaxation (lower trace). The effects of NONOate were fully reversed by an opener of L-type 

VGCCs (BayK 8644, 1 µM). Highlighted regions (gray lines) are reproduced in an extended time base 

to demonstrating that BayK 8644 fully reverses the effects of NONOate. Also shown are concentration 

response curves (B) showing the effect of NONOate on membrane potential and tension, as well as 

histograms (C) that show the effect of NONOate on oscillation frequency and amplitude in the 

presence of IbTx, the combined presence of IbTx and ODQ and in the additional presence of BayK 

8644. Note that following inhibition of BKCa and sGC, NONOate-mediated relaxation does not seem to 

involve a true hyperpolarization but results from a reduction in both frequency and amplitude of the 

oscillations in membrane potential. Data are expressed as mean ± SEM, n = 4-5. *P<0.05 significant 

difference from control. †P<0.05 significant difference from baseline. 

 

Figure 7. NONOate inhibits VGCC via a sGC-independent mechanism. In isolated smooth muscle 

cells at 37ºC under current-clamp conditions (A) the resting Em oscillated. Addition of 1 µM NONOate 
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(indicated by arrow) hyperpolarized the cell and abolished the oscillations in Em. (B) The voltage 

protocol for detecting ICaL (top) resulted in inward current that was reduced by 1 µM NONOate 

(bottom). (C) Mean current voltage relationships under both control conditions (n = 6, left) and after 

pretreatment with ODQ (n = 7, right) show that the inhibition of ICaL by 1 µM NONOate was not 

sensitive to ODQ, and (D) the peak current was reduced by approximately 50% under both conditions. 

Data are expressed as mean ± SEM. *P<0.05 significant difference from control.  Panel E shows the 

effect of 1 µM NONOate (added at arrow) on peak ICaL amplitude over time, for data shown in panels 

C and D. NONOate-induced ICaL inhibition took minutes to occur, and was not due to current rundown 

(Time control). 

 

Figure 8.  Schematic depicting actions of NO in cerebral artery smooth muscle cells. Release of NO 

from endothelial cells can suppress vasomotion via multiple mechanisms. (i) Stimulation of sGC can 

relax smooth muscle cells via voltage-independent pathways. (ii) NO can directly activate BKCa-

channels, leading to hyperpolarization, closure of VGCC and relaxation. (iii) The action of NO on 

BKCa-channel activity can be indirect, via a direct action of NO at RYRs, or (iv) via an intermediate 

(e.g. sGC/PKG). RyRs are also activated by NO-independent mechanisms (v) including those related to 

store filling via the Ca2+-ATPase (SERCA). This depiction is based on the close association of RyRs to 

BKCa-channels, which are spatially separated from the Ca2+ release and influx mechanisms associated 

with contraction [46,47].  
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Online supplementary material 

 

The online supplementary material shows two movies of the Ca2+ events in middle cerebral arteries 

mounted in a wire myograph. Under control conditions (Movie 1) spontaneous, asynchronous 

propagating Ca2+ waves can be observed in the individual smooth muscle cells. After the addition of L-

NAME, the artery contracted and developed vasomotion. Under these conditions, the synchronous Ca2+ 

oscillations were observed (Movie 2). See Figure 1 for traces of tension and [Ca2+]SMC. 
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