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Abstract 

    The development of a combined engineering and statistical Artificial Neural Network model of UK domestic appliance load 

profiles is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 suburban 

households and 46 rural households during the summer of 2010 and 2011 respectively. It also incorporates measured energy data and 

is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a 

two layer feed forward network with backpropagation training which has a 12:10:24 architecture. Model outputs include appliance 

load profiles which can be applied to the fields of energy planning (microrenewables and smart grids), building simulation tools and 

energy policy.   

 

Keywords: Artificial Neural Networks, Domestic appliance energy consumption, Load modeling 

 
*Corresponding author:  Tel: +44 (0) 118 378 7182;  E-mail address: d.v.lim@reading.ac.uk   

                                                                                                           

 

1. Introduction 
 

Humanity arguably faces its greatest challenge to 

date: climate change (IPCC, 2007, IPCC, 2007a). Under 

the Kyoto Protocol (UNFCCC, 2009), the European 

Union agreed to a collective emission reduction of 8% 

with the UK’s target set at 12.5% in the period 2008 to 

2012. Embracing the challenge, the UK set an internal 

emission reduction target of by 20% by 2010 from a 

1990 baseline. Having passed the Climate Change Act in 

2008 (DECC, 2008), long term targets now stand at 80% 

by 2050.  In 2008, UK energy consumption by sector 

showed transport 38%, industry 20%, domestic 29% and 

other 13% (DECC, 2009). Disaggregating domestic 

consumption shows: space heating 56%, hot water 26%, 

lighting and appliances 15% and cooking 3% (DECC, 

2009a). Consequently, in 2008 approximately 

27.2MtCO2(e) was produced from lighting and 

appliances, clearly presenting significant scope for 

emission reductions in this sector.   

Since 1970, appliance ownership and associated 

energy consumption has increased at an extraordinary 

rate, so much so that Lomas et al. (2007) state that the 

use of energy in UK homes for lighting and electrical 

equipment is increasing and can exceed that used for 

space heating. One of the UK’s leading organisations on 

carbon reduction, the Energy Saving Trust (EST), draws 

attention to consumer electronics, stating that it is the 

single most significant growth area of electricity 

consumption within the home (Owen, 2007), and that by 

2020, entertainment, computers and gadgets will account 

for an extraordinary 45% of electricity used in the home. 

Furthermore, consumer electronics in particular will be 

the biggest single user of domestic electricity, overtaking 

the traditionally high consuming sectors of cold 

appliances and lighting. This phenomena is driven by 

factors such as: increased income (Roberts, 2008), 

decreasing household size (DCLG, 2007), consumer 

trends towards ‘bigger and better’ (Crosbie, 2008, 

Boardman et al., 2005) and an ever increasing product 

range (Owen, 2006).  Electrical load profile analysis at 

household level will become increasingly important and 

essential for future energy planning, particularly for 

integrating microrenewables (Wright and Firth, 2007), 

sizing decentralized power plants and demand side 

management programmes (Paatero and Lund, 2005).  

Further work is required to improve our understanding of 

domestic electricity consumption to assist decision 

makers with climate change mitigation strategy. 

The aim of this study is to develop a prototype model 

which can predict a dwelling’s diurnal appliance energy 

load profile for a given demographic, socioeconomic, 

physical and climatic characteristic. The model is 
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(1) 

primarily developed for engineers and academics who 

can apply it to the following fields: (1) scenario 

modelling; (2) appliance efficiency evaluation; (3) 

building simulation tools; (4) energy policy (including 

demand-side management programmes); (5) supply and 

demand issues (micro renewables/energy planning); and 

(6) Micro grids and Smart grids.  The model’s defining 

feature is its ability to capture product efficiency 

improvement by integrating a data pre-processing stage 

which uses a simple engineering method.  

 

1.1 Modelling domestic energy consumption  

Parameterization of domestic energy consumption 

within the literature encompasses social, economic, 

behavioural and physical factors. Modelling domestic 

energy use is situational; therefore the order of parameter 

significance depends on the characteristics of the 

modelled scenario. Different studies conclude of varying 

parameter significance, however commonly cited 

parameters at a micro level include: household size, 

occupancy pattern, income, floor area, dwelling 

type/vintage, location, climate, tenure and appliance 

ownership amongst others. Challenges concerning data 

procurement severely restrict the inclusivity of domestic 

energy models. Furthermore, energy modellers are often 

mindful of the balance which must be struck between 

computational efficiency versus accuracy. This can 

frequently result in limited parameter inclusivity. The 

model’s inputs reflect the most salient variables of 

domestic energy consumption as identified in the 

literature and uses Artificial Neural Networks to simulate 

load profiles. 

 

1.2 Energy modeling techniques 

Energy models can be classified using various criteria 

from purpose, to data resolution, to mathematical 

approach. Nevertheless, two general approaches are 

formally recognized - ‘top-down’ and ‘bottom-up’.  

Top-down models commonly use national aggregated 

data, adopt econometric or technological approaches and 

are generally used for supply-side issues. Bottom-up 

models require high resolution data, use statistical or 

engineering techniques aimed at estimating aggregated 

consumption and are widely used for demand-side 

analysis (Swan and Ugursal, 2009). Engineering methods 

include distributions, archetypes and samples (Swan and 

Ugursal, 2009), whilst statistical methods commonly 

feature regression techniques, Conditional Demand 

Analysis (CDA), Markov Chain (MC) and Artificial 

Neural Networks (ANNs) amongst others. Intuitively, 

each method displays a different set of advantages and 

disadvantages. Although it is beyond the scope of this 

study to provide a full discussion on such methods, it is 

worth noting that artificial neural networks are 

commonly used for load modeling and the literature 

demonstrates their superior capability over conventional 

methods such as regression, engineering and time series 

(Karatasou et al., 2006) when applied to multivariate 

modeling. 

 

1.3 Artificial Neural Networks (ANNs) 

ANNs is a biomimetic technique proposed in 1943 by 

McCulloch and Pitts (1943). The concept was inspired 

by the anatomy of the human brain and consists of a 

network of neurons or processing units arranged in layers. 

Commonly used networks for short term load forecasting 

(STLF) are ‘multi-layer perceptrons’ (MLPs) (Beccali et 

al., 2004). MLPs have an input layer, one or more hidden 

layers and an output layer. They are generally classed as 

‘feedforward’ networks as there are no feedback 

connections. The generic network form can be seen in 

Fig.1 below. 

 

Figure 1. Generic form of a MLP (Beccali et al. 2004) 

Each neuron has input weights, a transfer and activation 

function and an output. Networks are trained to 

recognize data patterns within ‘input output pairs’ 

facilitated by a training algorithm. Equation 1 below 

expresses the output of a neuron: 

𝑦𝑗 = 𝑓 ( ∑ 𝑤𝑗𝑖

𝑛

𝑖=1

 𝑥𝑖 − 𝑏) 
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where:  yj  is the output of generic neuron y belonging to layer  j;  

xi  are the input signals to the neuron,  wji  is the synaptic weight 

associated with the connection between the generic neurons belonging 

to layers j and i respectively; b is the bias term (another neuron weight); 

and f is the activity function. 

ANNs are renowned for their accuracy in 

reproducing lifelike characteristics of energy use and 

capturing the effects of occupant behaviour (Kreider et 

al., 1995). Fischer (2010) states that: ‘over the past ten 

years, the use of ANNs has become a benchmark for 

comparing new emerging methods’. Park et al. (1991) 

initially used ANNs for domestic load forecasting in the 

early nineties, achieving a 4% error when predicting 

demand 24 hours ahead of time. Two years later, 

ASHRAE initiated an energy modelling competition in 

1993 which involved predicting energy consumption of a 

single building; the top six models used ANNs, 

suggesting the technique is superior to regression 

methods (Kreider and Harberl, 1994). Considering the 

aforementioned, the selection of ANNs is regarded as a 

logical selection in which to develop the model in order 

to reproduce the required features.  

 

2. Data sets, inputs and data pre-processing 

The network requires ‘input output data pairs’ to 

effectively train it in a supervised manner. Inputs 

represent determinants of energy consumption whilst the 

outputs correspond to the hourly appliance loads. This 

data is acquired through field survey and measurement, 

and is processed before presenting it to the network.       

2.1 Data sources 

The model uses four main sources of quantitative 

data: (1) a questionnaire; (2) diary-style appliance use 

data; (3) weather data; and (4) measured appliance 

energy data.   

2.1.1 Questionnaire 

A total of 51 households in the urban area of Greater 

London and 46 households in the rural region of Dorset, 

South West England were invited to participate in a 

two-part survey during the summer of 2010 and 2011 

respectively. The first part of the survey consisted of a 

single questionnaire used to establish household 

characteristics. Such characteristics included 

demographic and socioeconomic factors, physical 

dwelling characteristics, appliance ownership and 

occupancy patterns. Respondents could complete the 

survey online, via a dedicated survey website 

(www.appliancesurvey.org) or by post.  

2.1.2 Appliance energy-use diary 

The second part of the survey involved respondents 

recording their appliance use for a typical week 

(reflecting normal occupancy patterns) in summer by 

completing ‘appliance-diary-sheets’ (Figure 2). The sheet 

designs were tailored to the respondent’s appliance 

ownership type and batched according to their property 

layout. When an appliance was used, respondents 

indicated the appliance type, duration of use, time and 

household member. For kettle, washing machine and 

oven loads, respondents also had to indicate if the 

appliance was operating at ‘full’ or ‘half’ capacity. 

Figure 2. Appliance-diary-sheet example 

Between three and six batches of sheets were issued to 

every household; the intention being that one batch is to 

be placed in each main area of their home. This approach 

was implemented to increase the likelihood of 

respondent engagement in order to reduce unrecorded 

events.   

2.1.3 Weather data 

Weather is highlighted in the literature as being an 

influencing, or significant factor of domestic energy 

consumption. This is particularly true for space heating 

demand but less so for appliance energy use. 

2.1.4 Measured appliance energy data 

Appliance loads can be placed into four categories: (1) 

continuous loads (e.g. alarm clock), (2) operational 

constant loads (e.g. kettle), (3) operational variable 

loads (e.g. washing machine) and (4) cyclical loads (e.g. 
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refrigerator). Calculating the energy consumption of 

continuous, operational constant and cyclical loads is 

relatively straight forward. However, power variation can 

occur due to appliance manufacturer specification (e.g. 

power ratings, capacities etc.) and other associated 

variables such as age, condition and environmental 

factors. To handle this, the model randomly selects an 

appliance power rating from a ‘power rating database’ 

constructed for commonly used appliances.  The power 

rating database was composed by empirical measurement 

using two types of instrument: (1) Plogg Zgb automatic 

energy data logger and (2) Brennensthul EM230 energy 

monitor.   

Operational variable loads on the other hand are 

more complex to calculate, due to many factors which 

significantly affect energy consumption.  For example, 

washing machine loads depend on type of wash 

programme used, washing capacity, hot or cold fill and 

the make and model of machine. Again, the model 

captures a degree of variation by randomly selecting an 

energy load profile from a second database, the 

‘operational variable load database’, which accounts for 

some of the factors mentioned afore.  

2.2 Model inputs 

 The selection of model inputs is largely determined 

by the literature. Although twelve variables have been 

selected, it is noted that other less significant variables 

are highlighted within the literature, such as: education 

level, dwelling vintage, occupant gender, humidity and 

solar radiance. However, a trade-off is usually required: 

model complexity versus accuracy (and challenges in 

data collection). Table 1 shows the model inputs 

(variables) and their associated factors. It can be seen 

that each variable has a corresponding neuron number, 

value and possible coding scheme.  

 

Table 1. Model inputs 

 

2.3 Data preprocessing  

 As the neural network is trained using a supervised 

learning method, output values or ‘targets’, must be 

assigned to input values to form a ‘data pair’. The targets 

are calculated during a data pre-processing stage which 

uses a simple engineering method. The targets denote the 

hourly aggregated appliance load values. The aggregated 

hourly load is a sum of the minutely component loads 

(e.g. kettle + toaster + fridge etc.) which are calculated 

from selecting random values within the ‘power rating’ 

and ‘operational variable load’ databases described in 

section 2.1.2. This introduces a stochastic element to 

capture variation of behavioural factors and appliance 

specification. In doing so, notably, this process enables 

the modelling of: (1) appliance efficiency improvements; 

(2) appliance energy policy; and (3) energy trends. 

Modelling these kinds of phenomena is an indicative 

limitation of neural network load models and is typical 

advantage widely reserved for engineering models. 

2.4 Data normalization 

To improve the computational efficiency of the 

network, input data can be scaled to an interval of -1 to 

+1 or 0 to 1.  This study uses the scaling interval of 0 to 

1 for continuous data, using equation 2 below. 

𝑥𝑛 = ( 
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
 )    (2) 

where: 

x =value of the input/output unit 

xn =value of the scaled input/output unit 

xmin =minimum value of the input/output unit 

xmax =maximum value of the input/output unit 

Variable Input Neuron Input Value Code 

Household size 1 

 
Senior citizens (60+) Number of people n/a 

 2 Adults Number of people n/a 

 3 Children (3 - 17) Number of children n/a 

Occupant presence  4 Total occupant hours at home 0 - 1 n/a 

Income 5 Total household income 0 - 1 n/a 

Household employment  6 Employment ratio 0 – 1 0 = none employed, 1 = all members employed 

Dwelling size 7 Total usable floor area (m2) 0 – 1 n/a 

Appliance ownership 8 Appliance ownership level 1 – 10 1 = low level ownership, 10 = high level of ownership 

Dwelling type 9 Dwelling type 1 – 6 1-6 = detached, semi-detached, terraced, flat, detached 

bungalow, semi-detached bungalow  
Tenure 10 Tenure type 1 – 3 1 – 3 = home owner, renting, social housing  

Geographic location  11 Location type 1 – 5 1=inner city, 2=urban, 3=suburban, 4=rural, 5=remote 

Weather  12 Mean external temperature Degrees Celsius n/a 
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2.5 Data division  

Data used for neural network development is 

commonly divided into two sets - a training set (for 

training) and a test set (for testing). Various authors have 

adopted a proportional split of 75%, 25%, training set 

and test set respectively (Aydinalp et al. 2002, Yang et al., 

2005) and others a 80%, 20% split (Beccali et al. 2004). 

As the model is implemented in MATLAB R2011b, the 

data division default proportion is used. The default 

proportions are 75% training set, 15% test set and 15% 

validation set. 

2.6 Network architecture  

The model assumes a 12:10:24 architecture: 12 

neurons feature in the input layer, ten in the hidden layer 

and 24 neurons for the output layer. The number of 

hidden neurons has no physical significance and can be 

arbitrarily increased or decreased to affect the network’s 

performance. Too many hidden layers can result in 

‘overfitting’, whereas too few can reduce the network’s 

ability to map the target outputs (Cohen and Krarti, 

1995). This is often a matter of trial and error when 

striving to reduce the model error whilst trying to 

maintain computational efficiency. 

2.7 Selection of activation functions 

This study looks at using the universal function 

approximators, ‘tan sigmoid’ and ‘linear’ activation 

functions in the hidden and output layer respectively.  

Such a configuration is widely used in energy modeling 

and is reported to be the most commonly used 

architecture (Tso & Yau, 2007).   

 

3. Model development and applications  

This section presents the model in schematic form, 

and discusses its applications in the real world. 

3.1 Model schematic 

Figure 3 below shows the model in schematic form, 

illustrating its main components and the various 

processes involved in data collection and data treatment.   

Figure 3. Model schematic  

 

Appliance load profiles form the basis of the outputs 

which can then be analyzed in various contexts as 

identified in the above figure and later discussed in 

section 3.3.  

3.2 Artificial Neural Network Model 

The prototype model was implemented in MATLAB 

R2011b using the neural network toolbox on a high 

specification laptop computer (Intel Core i7 processor @ 
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1.6GHz, 16GB RAM). Figure 4 shows the neural 

network model illustrating the 12:10:24 architecture with 

each neuron connected to the proceeding layer.  

Network training was stopped after 100 epochs using 75% 

of the data which was randomly selected. The model 

achieves an overall R value of 0.933 which is considered 

very respectable for this level of modeling. Table 2 

shows the mean squared error (MSE) and R values for 

the training, validation and test data sets. Figure 8 shows 

regression plots for all the data sets as seen in a 

MATLAB screen shot. 

 

Data set Mean Squared Error R Value 

Training 2.706 e-3 0.998 

Validation 5.566 e-3 0.711 

Test 1.494 e-3 0.854 

Overall 3.26 e-3 0.933 

Table 2. Network performance

 

 

 

 

Figure 6 shows an example load profile for survey 

respondent number 22 generated during the data 

pre-processing stage. This data is subsequently 

simplified and averaged into hourly time steps to 

calculate the model targets used during network training.  

An example output can be seen in Figure 7. This 

particular profile corresponds to a low energy use 

household with single occupancy for weekday use. 

Further model improvements will include 

experimentation with alternative network configurations, 

namely adjusting the number of neurons (in the hidden 

and output layer) and number of hidden layers.  

Increasing the number of neurons in the output layer will 

result in smaller time steps thus addressing issues 

concerned with time averaging effects (Wright & Firth, 

2007). This is expected to be a key improvement area as 

specific appliance loads are associated with energy 

demand bursts. Using a similar experimental approach to 

Aydinalp et al. (2002) it is also worth applying different 

training algorithms and activation functions to help 

minimize the network error. Further work will also be 

conducted in developing data correction factors relating 

to the diary-style appliance use survey. Calculation of 

such factors will utilize measured energy data obtained 

from sub-metering commonly used appliances during 

survey periods to highlight the disparity between 

measured and recorded appliance uses. Unrecorded 

appliance use due to survey fatigue is an inherent feature 

of this type of survey exercise. Nevertheless, this can be 

partially addressed through introduction of such 

correction factors. 

3.3 Appliance database development 

Development of the operational variable load database 

was constructed using measured data obtained during the 

survey process. Figure 5 shows eight types of domestic 

washing machine load profiles (on a 40°C wash cycle) in 

the database. Energy consumption variation across 

appliance type, caused by manufacturer specification and 

user behavior (programs or settings), is significant; in 

some cases consumption could vary by a factor a five. 

The model’s functionality randomly selects a load profile 

from its database during data pre-processing stages (for 

the relevant appliance) and uses this to create aggregated 

hourly load totals that are then used as ‘targets’ in which 

Figure 4. Network architecture showing inputs and outputs 
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to train the model.  

3.3 Model applications 

This section briefly discusses how the model can be 

used by academics and energy planning engineers to 

whom it is originally intended for. Discussion allows for 

parallels to be draw between the academic and industrial 

worlds where the model’s applications can provide 

valuable links.  

 

 

 

 

 

 

3.3.1 Scenario modelling 

The model can be used to predict the appliance loads 

of an existing neighbourhood or future housing 

developments based on a given demography, 

socioeconomic characteristics of households and basic 

physical properties of the dwellings. A range of scenarios 

can be simulated with respect to planning issues, 

financial constraints or other determining factors. This 

type of scenario modelling is vital for cost planning from 

the perspective of construction and utility provision.  

3.3.2 Appliance efficiency  
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Figure 7. Example of an appliance load profile (survey respondent 22) as generated within the data pre-processing stage 

 

Figure 5. Washing machine load profiles in the model’s Operational Variable Load Database 

 

Figure 6. Model output example showing an appliance load profile with hourly time steps 
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Modelling technological change is traditionally the 

domain of engineering models, however due to the 

model’s data pre-processing stage, evaluating the 

outcome of improving appliance efficiencies can be 

achieved. For example, this application is useful to 

predict the impact of introducing a new EU Energy 

Efficiency Rating band or prohibiting manufacture of all 

‘B’ rated washing machines for instance. 

3.3.3 Building simulation tools  

The model can be used as a basis for a ‘bolt-on’ to 

building simulation tools such as ESP-r, IES<VE> or 

EnergyPlus to help improve the prediction capability of 

actual energy use in domestic schemes.  At present, 

modellers are commonly faced with adopting crude 

algorithms embedded in software programmes in an 

attempt to simulate occupant appliance use.  It is also 

common for simulation tools to ignore the energy 

contribution of appliances altogether.  It is the intention 

to investigate how the model could function on a 

universal platform allowing accessibility from a range of 

existing tools in the form of a ‘toolbox’. 

Figure 8. Regression plots for training, testing and validation datasets 

 

3.3.4 Energy policy  

The model can be used to assess the impact of energy 

policy measures on appliance use; energy rating schemes 

being a prime example.  In addition, the impact of local 

housing policy can be evaluated.  For example, if a 

particular policy focussed on developing low cost homes 

for a certain demographic (e.g. one or two person 

households with key worker occupants earning between 

£15K and £25K in southern England) the model will be 

able to estimate the specific contribution from appliances 

on the electricity network.   

3.3.5 Supply and demand  

The model can be applied to problems concerning 

energy supply and demand matching.  For instance, 

analysis of microrenewables supply curves (from 

photovoltaic systems or micro wind turbines) can be 

compared with appliance demand profiles to assess the 

extent to which carbon offsetting can be achieved.  

Simulated appliance load profiles can also be analyzed in 

the context of Dynamic Demand Management and 

general demand management programs to reduce peak 

demand.  

3.3.6 Micro grids and smart grids  

Domestic load modeling is applicable to many fields; 

however analysis at a micro level, as demonstrated 

within this study, will be extremely beneficial for 

developing smart grids and micro grids which are very 

sensitive to load variability.  By nature, appliance use 

encompasses a wide range of services and prediction of 

peak loads will become increasingly important when 

meeting demand with technology which generates 

electricity intermittently such as microturbines.  

Currently in the UK, much debate ensues around these 

two grid aspects as it pushes forward in its infancy.  

Reliable data at high resolution is sparse and modeling 

the impact removing neighborhood loads away from the 

main electricity grid will be crucial for successful grid 

integration.   

 

4. Conclusions  

The authors demonstrate the suitability of artificial 

neural networks to model diurnal domestic appliance 

loads. They present a two layer feedforward network 

using backpropogation training with architecture 

12:10:24. The model’s achieves an R value of 0.932 and 

its distinguishing feature is its ability to assess the impact 

of improving appliance efficiency which are anticipated 

for the future; a feature widely reserved for engineering 

models. A discussion of the model’s application 

highlights the importance of work in this field, 

particularly at a micro level. Improvements to the model 

can be achieved with further experimentation of network 
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architecture, in particular, increasing the quantity of 

output neurons to decrease the load profile time step, and 

use of different activation functions and training 

algorithms. Furthermore, a larger and richer data set 

could be used to enhance the model’s output in order to 

make generalizations of appliance energy use in the UK; 

this work is already underway.   
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