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Abstract

It has long been assumed that there is a distorted mapping between real and ‘perceived’ space, based on demonstrations of
systematic errors in judgements of slant, curvature, direction and separation. Here, we have applied a direct test to the
notion of a coherent visual space. In an immersive virtual environment, participants judged the relative distance of two
squares displayed in separate intervals. On some trials, the virtual scene expanded by a factor of four between intervals
although, in line with recent results, participants did not report any noticeable change in the scene. We found that there
was no consistent depth ordering of objects that can explain the distance matches participants made in this environment
(e.g. A.B.D yet also A,C,D) and hence no single one-to-one mapping between participants’ perceived space and any
real 3D environment. Instead, factors that affect pairwise comparisons of distances dictate participants’ performance. These
data contradict, more directly than previous experiments, the idea that the visual system builds and uses a coherent internal
3D representation of a scene.

Citation: Svarverud E, Gilson S, Glennerster A (2012) A Demonstration of ‘Broken’ Visual Space. PLoS ONE 7(3): e33782. doi:10.1371/journal.pone.0033782

Editor: Markus Lappe, University of Muenster, Germany

Received November 6, 2011; Accepted February 17, 2012; Published March , 2012

Copyright: � 2012 Svarverud et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by The Wellcome Trust (086526/A/08/Z, http://www.wellcome.ac.uk/); Buskerud University College (http://www.hibu.no/english/)
and The University of Reading (http://www.reading.ac.uk/pcls/). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: a.glennerster@reading.ac.uk

. These authors contributed equally to this work.

Introduction

Artists such as Escher [1] have often exploited paradoxes that

emerge when a 3D scene is depicted by means of a flat, 2D

picture. In Figure 1A, for example, point A in the image can been

seen to be above point D if you follow the stairs via B and yet

below point D if you follow a route via C. This failure of

transitivity (A.B.D and yet A,C,D) is possible in a drawing

but there is no physically realisable 3D structure that would show

the same properties: in the real world, relationships such as ‘above’

or ‘farther than’ are transitive. The illusion is possible because

drawings of 3D scenes are inherently ambiguous, with each point

on the picture plane defining a visual direction but not a distance,

so there is no one-to-one relationship between the picture and 3D

locations in space.

The same is not true of an actual 3D representation or model.

Most theories of 3D vision and spatial representation assume that

humans generate a 3D representation of space, i.e. one with an

origin and three axes, and it is usually assumed that this is

constructed first in an ego-centric coordinate frame and then in a

world-based frame [2,3,4]. It is often argued that the visual

representation may be distorted [5,6,7,8,9,10], but with a one-to-

one mapping between points in the internal representation and

those in the external world. However, there has been a debate

about whether the notion of an internal representation, or visual

space, is necessary [11,12] and whether it can be sustained in the

face of recent evidence [13,14].

In order to test this model, we used a paradigm in which

participants fail to notice anything unusual when the scene around

them expands or contracts by as much as fourfold (i.e. a 16-fold

range in scale overall), viewed in immersive virtual reality

[15,16,17]. This astonishing lack of awareness of object size and

distance is potentially highly informative about the central

processing of spatial information, in the same way that knowing

the set of stimuli that are treated as equivalent inputs to a cell

informs neurophysiologists about the operations it carries out [18].

For further discussion of the expanding room phenomenon, see

[15,16,17]. Briefly, participants report that they do not notice

anything odd about a room that expands or contracts. Addition-

ally, in other similar experiments, participants’ behaviour suggests

that they are unable to separate trials in which the room expands

from those in which it contracts [16].

In our experiment, we tested whether a one-to-one mapping

between an internal representation and the external scene could

explain performance on judgements of object distance. In

Figure 1A, there is no consistent way to determine whether ‘A’

is above or below ‘D’; in our experiment, we tested whether

participants perceived one object (‘A’) to be in front of or behind

another object (‘D’) when tested via two separate intermediates (‘B’

and ‘C’).

Results

Figure 1B shows the virtual environment used in the

experiment. Participants wore a wide field of view, high resolution

head mounted display tracked with six degrees of freedom with

low latency and high spatial precision using an optical tracking

system (see Materials and Methods) so that participants had a fully

immersive experience of a simulated 3D environment. The virtual

scene was a brick-textured room with a chequered floor, as shown.
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Participants viewed a square in interval 1 and compared its

distance to that of a similar square displayed in interval 2 while

rocking from side to side to enhance the motion parallax

information. At the start of each interval, the squares were always

the same angular size (5.7 deg), so this was not a useful cue to

distance. The distance of the square in interval 1 was fixed for

each condition and always displayed at eye height. Participants

responded by pressing one of two buttons to indicate whether they

perceived the square in interval 2 to be nearer or farther away

than the reference square in interval 1. The distance of the square

in interval 2 was varied from trial to trial according to a staircase

procedure (see Materials and Methods) to establish the distance at

which participants perceived the two squares to be at the same

distance.

On half of the trials, the room changed size between intervals by

a factor of four, as illustrated in Figure 1B. When the room was

small (2.3564.5061.55 m) the floor came to about waist height,

while when it was large (9.461866.2 m) the gap between the

participant’s feet and the floor was as high as they were tall. But

the participants could not see their own body. The texture of the

room was scaled with the room so that there was the same number

of bricks on the walls and tiles on the floor and ceiling in both

room sizes. Since the room was visible throughout the trial, an

important feature of the expansion was that the change occurred

without any perceptible visual signal. Subjectively, the transition

was seamless. In none of the trials, neither those on which the

room expanded nor those on which it remained static did

participants notice any change in the size of the room [15,17].

This is consistent with previous findings using large-scale stimuli in

which looming cues are eliminated [19,20]. However, despite the

subjective perception of a stable room, there is evidence that

participants remain sensitive to the true distance of objects and

weight this information to a greater extent when the target is close

to the viewer or to other visible references [17].

Figure 2 shows the four conditions we used in our experiment

(first column). For the actual location of the reference squares, see

Procedures S1. The data shown in column 2 are from a single run

of 400 trials, 100 trials per condition, randomly interleaved during

the run but analysed separately. The first row illustrates a

condition in which the room remained a constant size (in this case,

small) between interval 1 and 2. Participants had to match the

distance of square A in the middle of the room with square C

which was placed closer to the right hand wall. As one might

expect, given that the room remained a constant size during the

trial, participants were able to do this quite accurately. The

psychometric function in the centre shows the proportion of trials

on which this participant (S1) perceived the comparison square, C,

to be farther away than the reference, A. The data are fitted by a

cumulative Gaussian function whose mean indicates the distance

at which the reference and comparison squares were perceived to

be equidistant (point of subjective equality, or PSE) shown by the

dashed line. Table 1 shows the conventions used in the paper for

labelling reference distances and points of subjective equality: in

this case, PSE CA is very similar to the reference distance, Aref. The

third column shows that the same is true for other participants, i.e.

the bias is small (22.2066.54 arcmin, mean 6 s.d.). This is

equivalent to a bias of about 1 cm at a reference distance of

75 cm, as in this case.

The second row of Figure 2 shows results when the room

expanded between intervals and the reference square, C, was close

to the wall. (The location of the reference square C (and B) varied

slightly between runs, as explained below. Values of the reference

distances are shown in Figure S1.) In this case, with the reference

close to the wall, there is a large bias caused by the room

expansion. For example, a bias of 80 arcmin corresponds to a

comparison square that is at a distance 174 cm farther away than

the reference square. The third row of Figure 2 shows results for

the condition in which the reference square was placed away from

the wall (square A), as was the comparison square (B). Again, the

room expanded between intervals and here, too, there was a bias

in distance judgements but in this case the bias was significantly

smaller (Row II: mean bias 88.9614.3 arcmin; Row III, mean bias

59.0611.7 arcmin; p,0.0001, using a bootstrap method) [21].

This difference is compatible with previous results showing larger

biases in distance matching when the target is close to visible

references [17]. The importance of proximity between the target

and the surroundings for the ‘texture-based’ cue, a catch-all term

here for any cue that indicates the distance to the square in

relation to the room rather than its physical distance, is easy to

understand. If other objects were infinitely far away the only cues

left would be ‘physical’ ones such as vergence. When the target is

Figure 1. Logic and setup of the experiment. A: ‘Penrose stairs’
illusion. In the real world, a continuously ascending or descending
staircase like this would be impossible. Is step A above or below step D?
A similar paradox emerges in our experiment in relation to the
perceived distance of objects in an expanding room. B: Virtual scene.
The high and low contrast regions illustrate the scene in intervals 1 and
2 of a trial in which the room expanded. Participants moved from side
to side to generate motion parallax and compared the perceived
distance of two squares, one presented in each interval. Shadows and
arrow are for illustration only.
doi:10.1371/journal.pone.0033782.g001

‘Broken’ Visual Space
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close to the wall, however, cues such as relative disparity indicate

its location relative to a point on the wall and hence, for example,

its distance as a proportion of the distance to the back wall. Finally,

the fourth row of Figure 2 shows biases when the room is stable

throughout the trial (like the first row) but this time with the room

enlarged. As expected, the biases are again relatively small (mean

10.567.89 arcmin).

These differing biases suggest that it may be difficult to pin

down the location of squares A, B, C and D in a single coherent

frame. Participants believed themselves to be in the same room

throughout the experiment and never perceived the room to

change in size. Yet, the data in Figure 2 suggest that there may be

no consistent representation of location in which depth ordering of

pairs of objects can be preserved. This is because the route from

reference square A to comparison square D via square B in the

centre of the room (i.e. Rows III and IV in Figure 2) involves

smaller biases than a similar comparison of square A and D via

comparison square C near the wall (Rows I and II of Figure 2).

However, to test this impression rigorously, some care is required.

Theoretically, one would like to compare two conditions under

which the perceived distance of the reference square A in Figure 2

is the same as the perceived distance of the square D and to do so

via two separate routes (shown in Rows I+II or III+IV).

Specifically, the ideal comparison would be:

Aref uPSE BA~Bref uPSE DB

and

Aref uPSE CA~Cref uPSE DC ð1Þ

where Aref, Bref and Cref are the distances of reference square A, B

and C respectively, PSE BA is the distance of square B at the point

of subjective equality relative to reference square A, etc, and

means ‘are at an equal perceived distance’. The ‘ = ’ sign means ‘is

identical to’ because it equates the distance of a square, e.g. B,

under identical conditions (size of room, location in room). For

example, if square B was placed at the point of subjective equality

relative to square A (i.e. at PSE BA), it would be an identical

stimulus to reference square B placed at the same distance (PSE

BA = Bref).

Of course, when running all the experiments together, it is

impossible to know in advance the value of PSE CA and PSE BA

(since these depend on the participant’s responses during the

experiment). This means it is not possible to arrange for the

reference squares, shown at distances Bref1 and Cref1, to be exactly

equal to PSE BA and PSE CA, respectively, as we would like.

Instead, in pilot experiments, we found approximate values for Bref

and Cref for each participant and then ran the main experiment

twice over using two different reference distances, with the aim of

having one closer and one more distant than the expected ‘ideal’

reference value. This was almost always achieved, as the pilot

generally provided a good estimate of the ‘ideal’ reference distance

in the experiment. On the rare occasions it was not, one of the

references was usually very close to the ideal reference distance

(see Procedures S2 and Figure S1).

Figure 3 shows how data using these two reference distances can

be used to estimate the distance at which square D would be

perceived to be equidistant with a square at the ‘ideal’ reference

distance (in this case, PSE CA). The data shown were collected in

two separate runs as described above, with the reference square C

at distance Cref1 in one run and at Cref2 in another. For the more

distant reference, the psychometric function was shifted to a

farther distance, as expected. The distance of the ‘ideal’ reference,

PSE CA, is shown by the black arrow (PSE CA is known at the end

of the experiment but not in advance). By design, the two

reference distances, Cref1 and Cref2, span the location of this

hypothetical ‘ideal’ reference. Linear interpolation can be used to

recover the expected PSE assuming that the reference had been at

CA, as illustrated by the thin black curve lying between the blue

psychometric curves in Figure 3. In this way, we derived the

expected PSEs for all conditions, i.e., the distances at which square

D was perceived to be at the same distance as square A, either via

intermediate square B or intermediate square C. The original

PSEs (e.g. for references at Cref1 and Cref2) are shown in Figure S1.

Figure 4 shows the derived PSEs when the distance to reference

square A was 0.75, 1.5 and 3 m. Red squares show the point of

subjective equality for square D when the intervening comparison

was via square B (PSE DB, i.e. the conditions illustrated in Rows

III and IV of Figure 2), while blue circles show the equivalent PSE

when the intervening distance judgement was with square C (PSE

DC, see Rows I and II of Figure 2). In every case, the distance of

square D that was perceived to be the same as the distance of

square A was greater when the judgement was made via the

intermediate square C than via square B. Even applying a simple

sign test [22], if we assume each of the runs shown in Figure 4 is an

independent test of the null hypothesis, the difference between

conditions is highly significant (N = 13, p = 0.0003). The difference

between the two routes (i.e. PSE DB and PSE DC) can also be

tested in a way that takes account of the variability across

Figure 2. Four interleaved distance comparisons. Plan views (left) show how the room remained the same size between intervals (Rows I and
IV) or expanded (Rows II and III), not drawn to scale. In each case, the position of the reference square in interval 1 is shown by the dashed line and
the comparison square (interval 2) by a solid line. The psychometric functions show the proportion of trials on which the comparison square was
judged to be ‘farther away’ than the reference. The arrows show the distance to the reference square (in arc minutes and metres on top and bottom
axes, respectively) and the dashed line shows the point of subjective equality (PSE). Plots in the right hand column show participants’ biases, i.e. the
difference between the reference and the PSE (expressed in arcmin). In most cases, standard error of the PSEs, obtained from the probit fit, are
smaller than the size of the markers. Although not shown here, square B and C were each presented at two reference distances (Bref1, Bref2, Cref1, and
Cref2). The reference distances illustrated here are Bref1 and Cref1. Similarly, the biases for square D shown in red and blue are those obtained with
references Bref1 and Cref1, namely PSE DB1 and DC1 (see text for details).
doi:10.1371/journal.pone.0033782.g002

Table 1. Labels used for reference distances and points of
subjective equality (PSEs).

Room expansion Reference distance Distance of PSE

Expanding Aref BA

Static (large) Bref1 or Bref2 DB1 or DB2

Static (small) Aref CA

Expanding Cref1 or Cref2 DC1 or DC2

Runs were repeated using two different reference distances for square B (i.e.
Bref1 or Bref2) and similarly two values for square C. For points of subjective
quality, subscripts indicate the reference square: e.g. BA refers to the PSE when
square B, shown in interval 2, appeared to be at the same distance as square A,
shown in interval 1.
doi:10.1371/journal.pone.0033782.t001

‘Broken’ Visual Space
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individuals using a bootstrap method and is again significant for all

three distances (0.75 m, p,0.0001; 1.5 m, p,0.0001; 3 m,

p = 0.008).

The statistics quoted above do not rely on any estimate of the

precision with which individual PSEs were determined. Never-

theless, Figure 4 shows, for two participants at 1.5 m viewing

distance, an estimate of the standard deviation of the PSE values;

given that these are interpolated points, estimating the variability

requires certain assumptions to be made (see Procedures S2).

Figure 5 demonstrates a method by which the two routes (via

square B or square C) can be compared without relying on

interpolation/extrapolation. It uses the same raw data as Figure 4

and it supports the same conclusion but it has the advantage that

the data are more directly related to the measured points of

subjective equality and there is no need to calculate the PSE value

for any ‘ideal’ reference distance.

Values in Figure 5 are calculated as follows. The abscissa shows

the disparity of the reference (e.g. Bref1 or Bref2) relative to the ‘ideal’

reference distance (in this case PSE BA). In Figure S3, these raw

values are shown but, since the range of values varies with viewing

distance, we have normalised them by dividing each by the

standard deviation of the psychometric function that gave rise to

the PSE. The ordinate shows the PSE for the match with square D

(i.e. DB1, DB2, DC1 or DC2), again plotted relative to the expected

value which, in this case, we have taken as the mean of the PSEs

measured via the two routes (i.e. mean of the two interpolated

values shown in Figure 4, DB and DC). As before, these raw values

are shown in Figure S3, but here we have normalised the values by

an average of the standard deviation of the relevant psychometric

functions (whose means are DB1, DB2, DC1 and DC2; see Procedures

S2 for details). Other things being equal, one would expect that the

distance of the PSE should reflect the distance of the reference

square so the data should lie on the diagonal of Figure 5. Any

difference between the conditions (i.e. the route via B or C, red

and blue symbols respectively) would result in a systematic

deviation from the diagonal, as is clearly the case (t-test comparing

normalised DB minus normalised distance of reference square B

with normalised DC minus normalised distance of reference square

C: t50 = 6.9, p,0.0001 and by bootstrap p,0.0001). The

interpolated PSEs from Figure 4 are shown in Figure 5 as

crosses/plusses, plotted at the ‘ideal’ reference distance (zero on

this axis, by definition).

It has been noted earlier that previous distance matching results

in an expanding room measured near-to and far-away from a wall

can explain the direction of the effect we observer here. In fact,

using the best fitting estimates from Svarverud et al. [17] which

estimate the weight applied to ‘texture-based’ and ‘physical’ cues

across different conditions, we can also predict the magnitude of

the effect we would expect to see in the current experiment. The

mean ratio of vergence angles to square D via C or via B is 0.77

(s.d. 0.07). Using estimates of texture-based weights, k, from

Svarverud et al. [17] for the middle of the room and close to the

wall (k = 0.08 and 0.42 respectively), the prediction for this ratio is

0.73.

Discussion

If participants generated a 3D model of the scene that they

observed, and used this model as the basis for their judgements,

they would not make the distance matches that we have found in

Figure 4. Dual perceived distances of an object. Red squares show the interpolated PSEs at which the comparison square D was perceived to
be at the same distance as the reference square A when this was judged via an intermediate square B (shown as perceived distance or corresponding
vergence angle). Blue circles show the equivalent PSEs when the intermediate object was square C. Data are shown for five participants when
reference square A was at 0.75 m and 1.5 m and for three participants at 3 m. Error bars showing standard deviations are shown for four points at
1.5 m (see Procedures S2). For two participants (S1 and S2), PSEs obtained for a direct comparison between reference square A and comparison
square D are shown as the grey triangles in the middle panel (see Procedures S2). The PSEs used for the interpolated values presented here are
shown in Figure S2.
doi:10.1371/journal.pone.0033782.g004

Figure 3. Inferring points of subjective equality (PSEs). Because
we ran all the conditions simultaneously, the appropriate distance for
the reference squares B and C could not be determined precisely in
advance. Instead, two reference distances close to the expected value
were chosen and interpolation (or, rarely, extrapolation) used to
estimate the PSE that would have been obtained had the reference
been positioned at the ‘ideal’ distance (CA, black arrow). Two reference
locations (Cref1 and Cref2, open arrows) and the corresponding
psychometric functions are shown, together with the interpolated
curve (black) and inferred PSE (dashed line). See also Figure S1.
doi:10.1371/journal.pone.0033782.g003
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our experiment. The assumption that there is an internal ‘visual

space’, albeit distorted compared to the real scene, does not allow

for a one-to-many mapping between internal and external

coordinates, nor for the intransitivity of distances we have shown

here.

Of course, it is impossible to recreate the conditions we have

investigated in a normal environment without virtual reality, but

the conclusions we draw are based on participants’ perceptions.

There is no reason to suppose that the nature of the representation

or the computations that underlie performance are fundamentally

different in an expanding room compared to those in a stable

room. Certainly, the subjective experience of the participants gives

no indication that this is the case. The intransitivity we have

demonstrated applies to the representation of the scene, not to the

stimuli we used. If the static room and the expanding room are

equivalent stimuli, in the sense of the ‘null test’ discussed earlier

[18], then the conclusions we have drawn about the nature of the

representation are equally applicable to a static or expanding

room, even though they can only be measured in the latter case.

Some have argued that any conclusion drawn on the basis of

evidence gathered in virtual reality must be suspect [23,24]. Our

experience has been that results gathered in simulated static scenes

have been similar to that expected in a normal scene and we have

included such simulated static scenes in our experiments as a

control [15,16,17].

The critical difference between the two types of model we have

considered is whether the distance of an object can be determined

purely from the information present at the time the judgement is

made. According to the 3D reconstruction model discussed in the

Introduction, this process is carried out once for each object and

then the two distance estimates are compared. The cue

combination model [15,16,17] instead uses a weighted combina-

tion of ‘texture-based’ and ‘physical’ cues. The ‘texture-based’ cue

remain the same independent of the physical size of the room (as it

indicates distance relative to the size of the room) while ‘physical

cues’ such as vergence and distance walked reflect the true distance

of objects. The texture-based cue does not contribute to a 3D

reconstruction model because it has no meaning if the observer

estimates the distance of one object at a time; it is only useful in

predicting the relationship between two distance estimates. A cue

combination model based on these two cues can explain our data,

in the sense that it predicts larger biases for the route A – C – D

than for the route A – B – D due to the greater effect of the wall in

the former case, as discussed earlier. The fact that the cue

combination model successfully accounts for our data suggests that

pairwise comparisons may form a fundamental component of

human spatial representation [25].

Intransitivity has been demonstrated in at least one other

domain [26] but not, to our knowledge, for 3D perceptual space.

Smeets et al. [27] have shown that, in the presence of illusions such

as the Judd or Poggendorff illusion, the order in which participants

make judgements matters. Although their example did not test

intransitivity of a single relationship, their results were incompat-

ible with perceptual space being an affine or even projective

transformation of real space (2D space, in their case). Instead, they

suggest that illusions affect single attributes without affecting others

and that visual space might not exist at all. Koenderink and

colleagues [13,28] have raised the possibility that there is no single

internal representation of space, in response to the discovery that

changing the participant’s task can radically change the distortion

of visual space. For example, they found that the curvature of

visual space had opposite signs depending on whether participants,

who were in an open field, had to bisect two points [13] or direct a

remote pointer to point towards another target [28]. They discuss

the idea that the notion of ‘apparent fronto-parallel’ (i.e. flat,

neither curved towards nor away from the observer) may be

incoherent in the following sense. A point could be seen as lying on

the fronto-parallel between two other points as measured by one

task but not by a second task. Such a result, if found, ‘‘would kill

the very notion of visual space’’ [28]. However, they did not, at the

time, find the evidence conclusive.

There are many psychophysical results that are compatible with

the suggestion of there being no coherent visual space even if these

do not provide a critical test. For example, He et al. [29] showed

that observers underestimated distance when an obstacle obscured

a significant portion of the ground surface between the observer

and the target but this effect disappeared when observers were

asked to plan a path around the obstacle, provided the ground

could be seen for the whole route. This fits with the idea that the

target distance is computed ‘on-the-fly’ once the task has been set,

rather than being represented explicitly as part of a 3D

reconstruction. Commenting on these findings, Wu et al. [30]

note that the task-dependent hypothesis they favour predicts that,

contrary to everyday experience, ‘‘our space perception changes

when we look around’’.

Our findings provide a much stronger test of the coherence of

visual space. By using a single task, by ensuring that the perceived

Figure 5. Normalised values of PSE for square D plotted
against normalised values of the reference distance. Zero on the
abscissa (x0) is the vergence angle at the ‘ideal’ reference distance, i.e.
the PSE BA or CA. The difference between this ‘ideal’ value and the
vergence angles of the reference squares (presented at distances Bref1,
Bref2, Cref1 or Cref2) was divided by the standard deviation of the
psychometric function that gave rise to PSE BA or CA (sx), so that, in
effect, the reference distances are plotted as z-scores (x = (x12x0)/sx,
where x1 is the vergence angle of the reference surface and x is the
value plotted; see Procedures S2 for details). Similarly, zero on the
ordinate is the expected PSE for D if the reference was at the ‘ideal’
distance (the mean of PSE DB and PSE DC, expressed as a vergence
angle, y0). The difference between this ‘ideal’ PSE and the actual PSEs
measured (DB1, DB2, DC1 and DC2, expressed as a vergence angles, y1)
were divided by the root mean square standard deviation of the
psychometric functions (sy) that gave rise to PSE (y = (y12y0)/sy; see
Procedures S2 for details). As in Figure 4, red symbols show data for
route A – B – D and blue symbols for the route A – C – D. Different
symbols shapes are used for different participants. The red plusses and
blue crosses re-plot the interpolated data from Figure 4 on these
relative axes. They are shown at a reference vergence angle of zero, by
definition in this plot, since the notional reference is always the ‘ideal’
reference distance (PSE BA or CA).
doi:10.1371/journal.pone.0033782.g005

‘Broken’ Visual Space

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33782



stimulus distance was equivalent for the critical conditions and by

ensuring that distance cues were the same for both ‘routes’ when

participants viewed square A and D, we have been able to show

that participants could not be referring to a single representation of

the room, with consistent coordinates for each object, even though

the room appears to them to be stable throughout the experiment

[16,17].

If the visual system does not generate a single internal 3D model

of the scene from which all responses are drawn, there must be an

alternative form of representation that observers use when

carrying out the task. As yet, there are few detailed hypotheses

about the form that such a representation might take. One

suggestion has been that ego-centric, gaze-centered representation

is important, with some evidence that transfer of information from

previous fixations to the current gaze-centered frame results in

biases that can explain human performance in pointing tasks [31].

Although it would be difficult to explain our current results in

terms of gaze-centred biases, the notion of an ego-centric

representation of visual direction that survives changes in gaze,

albeit with some errors, is an important one. If such a

representation also contains information about approximate

viewing distance, it could perform many of the functions

traditionally associated with an allocentric representation [25]. A

representation of this type could act as a sufficiently ‘loose’

description of object location (or of raw data from which location-

related properties could be computed ‘on-the-fly’) to permit many

task-dependent effects to co-exist without any explicit contradic-

tion being revealed in the representation.

One distinct alternative to 3D reconstruction is view-based

representation, particularly in the contexts of object recognition

[32] or navigation [33,34,35,36]. However, view graphs and

similar view-based representations do not represent information

about the scene structure in a form that would readily allow the

observer to judge whether one target is nearer or farther than

another, as participants did in our experiment. A challenge for the

future will be to implement representations that are less ‘rigid’ and

internally consistent than a full Cartesian model and yet are

sufficiently robust to allow precise and accurate control of

movement. Such representations are likely to be of considerable

interest in the field of robotics in applications such as simultaneous

localisation and mapping [37].

Materials and Methods

Participants
Six participants (age 21 to 39), including one author (S1) and

five unaware of the purpose of the experiment had normal or

corrected-to-normal vision (6/6 or better) and normal stereopsis

(TNO 60 arcsec or better). One participant (S2) had previously

taken part in a different experiment using an expanding virtual

room. Observers gave written informed consent to participate in

this study, which was approved by the University of Reading

Research Ethics Committee.

Equipment
The virtual reality stimuli were presented on a Datavisor 80

(nVision Industries Inc, Gaithersburg, Maryland, USA) head

mounted display (HMD) unit that presented separate

128061024 pixel images (interlaced) to each eye using CRT

displays. Each eye’s image was 73 deg horizontally by 69 deg

vertically with a binocular overlap of 38 deg giving a total

horizontal field of view of 108 deg (horizontal pixel size 3.4

arcmin). The display was fixed at an accommodative distance of

0.5 dioptres (2 m). The location and pose of the head was tracked

using a seven-camera, MX3 Vicon real time optical tracker (Vicon

Motion Systems Ltd, Oxford, UK) which recorded the position of

individual infra-red reflective markers rigidly attached to the

headset and delivered an estimate of the position and orientation

(nominal accuracy 60.1 mm and 0.15 deg, respectively) of the

headset, polled at 60 Hz. This information was then used to

render images for the appropriate optic centre location and display

frustum of each eye’s display [38]. A dual processor workstation

with dual graphic cards rendered the images at 60 Hz, which were

sent both eyes’ displays in the HMD and, simultaneously, to the

operator’s display console, with a total latency from head

movement to image change of approximately 34 ms.

Stimulus and task
The participant was surrounded by a virtual room with brick

textured wall, black and white checker board floor and grey ceiling

tiles (see Figure 1B). The task was to judge whether a comparison

square in the second interval was closer or farther away than a

reference square displayed in the first interval. There were four

interleaved conditions in each run, as illustrated in Figure 2, in

which the virtual room either expanded between interval 1 and 2

of the trial or remained static throughout the trial. Participants did

not report a perceived change in the size of the room and were not

told that this might happen. They were told that the square in the

first interval would be presented at different distances and

locations and were instructed to turn to look directly at the square

in each interval while moving from side to side to generate motion

parallax information (amplitude of about 0.65 m and frequency of

0.4–0.5 Hz [17]). Participants were not given any instructions as to

how they were to judge distance, e.g. physical distance or the

distance relative to the room [17] but simply to judge which square

appeared closer. Each run began with the participant in a virtual

wireframe room, similar in size to the real room in which the

experiment was carried out (about 36363 m). Both the reference

and comparison squares were red and displayed at eye height.

Their distance was fixed relative to a point at the centre of a

‘viewing zone’ in which the participant moved laterally, to and fro,

to obtain motion parallax information and, if viewed from this

point, they had a constant angular size (5.7 deg) (see Procedures

S1). The reference square was set at a predetermined distance for

each of the four interleaved experimental conditions while the

distance to the comparison square varied (see below).

In two conditions, the virtual room remained the same size in

both intervals, either 2.3564.5061.55 m (‘small’) or four times

larger in all dimensions (‘large’, 9.461866.2 m (width6depth6
height)). In the other two conditions, the room expanded by four

times in all dimensions between the two intervals (i.e. from ‘small’

to ‘large’). The texture of the room was scaled with the room so

that, for example, there was the same number of bricks on the

walls and tiles on the floor and ceiling in both intervals. When the

room expanded between intervals, which occurred as a linear

ramp over a period of 1.0 s, it did so in such a way that there was

no information about the scale change as viewed from the

cyclopean point (i.e. a point half way between the left and right

eyes). Although the same was not quite true of the view from the

left and right eye’s view points, which would have changed slightly

if the participant had remained static, in practice these image

changes were very small and generally masked by the larger image

changes caused by the observer moving. Since the room was

visible throughout the trial, an important feature of the expansion

was that the change occurred without any perceptible visual signal.

Subjectively, the transition was seamless.

The location of reference square A was fixed throughout any

given run (at 0.75, 1.5 or 3 m) but reference distances Bref1, Bref2,
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Cref1 and Cref2 depended on the participant’s responses during pilot

trials. The actual location of the reference squares used in the four

interleaved conditions is given in Figure S1.

A white vertical line extending from the floor to the ceiling,

close to the wall and at a distance approximately equal to Aref in

the small room and at a distance four times farther away when the

room was large, provided a strong relative distance cue. Although

this cue was useful within a trial, a random jitter in depth between

trials by 67% of the distance to reference square meant that it

could not be used across trials as a reliable reference.

Psychometric procedure
In one run of trials, there were three reference squares

presented at pre-determined distances, e.g. Aref, Bref1 and Cref1 in

four conditions (Aref was used in two of these) pseudo-randomly

interleaved to provide four independent psychometric functions of

100 trials from each 400-trial run. Participants were encouraged to

take breaks around every 100–150 trials. The distance of the

comparison square presented in the second interval was chosen

using a standard staircase procedure based on Cornsweet’s

method [15,16,39], but modified so that the comparison square

was never shown behind the back wall. The proportion of trials on

which the comparison was judged as ‘farther away’ was plotted as

a function of vergence angle (rather than target distance) by

assuming an interocular separation, or lateral translation of the

observer, of 6.5 cm. The psychometric function was fitted with a

cumulative Gaussian by probit [40]. Figures 2, 3 and 5 plot the

point of subjective equality, PSE, i.e. the 50% point, and error

bars in Figure S1 show the standard error of the PSE (s.e.m.)

derived from this fit.

Supporting Information

Figure S1 Using pairs of references to find an interpo-
lated point of subjective equality for square D. (A) The
distances of the reference squares B and C. Figure 3 in the

paper shows two reference distances and the ‘ideal’ reference

distance for square C. The ‘ideal’ reference distances for square

C are shown here for all conditions (blue circles), i.e. the PSEs of

square C compared with reference square A. In practice, two

different reference distances, Cref1 and Cref2, (shown by crosses),

were chosen against which the distance of the square D was

judged. Red squares and crosses show, similarly, the PSE of

square B compared to A and the reference distances Bref1 and

Bref2. Data are shown for five participants when reference square

A was at 0.75 m and 1.5 m and for three participants when

reference square A was at 3 m. (B) Points of subjective
equality (PSEs) before interpolation. Figure 3 also shows

an example of an interpolated PSE at which the square D would

be perceived to be at the same distance as the ‘ideal’ reference

distance for square C. Here we show the interpolated PSEs for

all conditions and the original PSEs from which they were

derived (open symbols). The PSE of the square D was measured

relative to two reference squares, Bref1 and Bref2 (PSEs shown as

two red open symbols), and relative to two other reference

squares Cref1 and Cref2 (blue). Error bars show the s.e.m. from the

probit fit, although in most cases these are smaller than the

symbols.

(EPS)

Figure S2 Interpolation of PSEs. (A) The PSEs for square D

are plotted against the distance of the reference square for two

participants S1 and S2. In the top left panel, the red circles show

the PSEs of the comparison square D for two reference distances

of square B (DB1 and DB2). These were the data used to generate

values shown in Figures S1A and S1B and used to derive the

interpolated data in Figure 4. The vertical line shows the

distance at which a square B was perceived to be at the same

distance as the reference square A (PSE BA). The solid

horizontal line shows the interpolated PSE for the square D

assuming that the reference square B was at distance BA (by

interpolating between PSE DB1 and DB2). The open symbols

show additional data taken at other distances of the reference

square. Using a linear regression through all five data points

gives rise to a very similar estimate (horizontal dashed line) to

that obtained using only two points (solid line). The lower panels

show similar data, but for reference square C rather than B.

Standard errors (s.e.m.) of the matched vergence angle, derived

from the probit fit of the psychometric function, were in the

order of 1–3 arc minutes.

(EPS)

Figure S3 Re-plot of Figure 5 without using normalised
ranges. (A) This shows the PSEs DB1, DB2 (red) and DC1, DC2

(blue), relative to an unbiased estimate of D (y = 0, see text) plotted

against the vergence angle of the reference square used in each

case (i.e. Bref1, Bref2, Cref1 or Cref2). The latter are shown relative to

the ‘ideal’ reference value (x = 0) for that condition (see text). All

values are shown as vergence angles. This is the same as Figure 5

except that the axes have not been normalised by sx and sy (see

text). As in Figure 5, the blue crosses and red plusses show the

interpolated values, and DB and DC plotted at the ‘ideal’ reference

value (x = 0). Different symbols show data for different partici-

pants.

(EPS)

Procedures S1 Experimental procedures.

(PDF)

Procedures S2 Analysis.

(PDF)
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12. O’Regan JK, Noë A (2001) A sensorimotor account of vision and visual

consciousness. Behav Brain Sci 24: 939–973; discussion 973–1031.

13. Koenderink JJ, van Doorn AJ, Kappers AM, Lappin JS (2002) Large-scale visual

frontoparallels under full-cue conditions. Perception 31: 1467–1475.

14. Smeets JB, Brenner E, de Grave DD, Cuijpers RH (2002) Illusions in action:

consequences of inconsistent processing of spatial attributes. Exp Brain Res 147:

135–144.

15. Glennerster A, Tcheang L, Gilson SJ, Fitzgibbon AW, Parker AJ (2006) Humans

ignore motion and stereo cues in favor of a fictional stable world. Curr Biol 16:

428–432.

16. Rauschecker AM, Solomon SG, Glennerster A (2006) Stereo and motion

parallax cues in human 3D vision: can they vanish without a trace? J Vis 6:

1471–1485.

17. Svarverud E, Gilson SJ, Glennerster A (2010) Cue combination for 3D location

judgements. J Vis 10: 1–13.

18. Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion

cells of the cat. J Physiol 187: 517–552.

19. Erkelens CJ, Collewijn H (1985) Motion perception during dichoptic viewing of

moving random-dot stereograms. Vision Res 25: 583–588.

20. Howard IP (2008) Vergence modulation as a cue to movement in depth. Spat

Vis 21: 581–592.

21. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Boca Raton,

Florida: Chapman & Hall/CRC.

22. Dixon WJ, Mood AM (1946) The statistical sign test. J Am Stat Assoc 41:

556–566.

23. Knapp JM, Loomis JM (2004) Limited field of view of head-mounted displays is

not the cause of distance underestimation in virtual environments. Presence -

Teleop Virt 13: 572–577.

24. Bingham GP, Bradley A, Bailey M, Vinner R (2001) Accommodation, occlusion,

and disparity matching are used to guide reaching: a comparison of actual versus
virtual environments. J Exp Psychol Human 27: 1314–1334.

25. Glennerster A, Hansard ME, Fitzgibbon AW (2001) Fixation could simplify, not

complicate, the interpretation of retinal flow. Vision Res 41: 815–834.
26. Zhang H, Morvan C, Maloney LT (2010) Gambling in the visual periphery: a

conjoint-measurement analysis of human ability to judge visual uncertainty.
PLoS Comput Biol 6: e1001023.

27. Smeets JB, Sousa R, Brenner E (2009) Illusions can warp visual space.

Perception 38: 1467–1480.
28. Koenderink JJ, van Doorn AJ, Lappin JS (2000) Direct measurement of the

curvature of visual space. Perception 29: 69–79.
29. He ZJ, Wu B, Ooi TL, Yarbrough G, Wu J (2004) Judging egocentric distance

on the ground: Occlusion and surface integration. Perception 33: 789–806.
30. Wu J, He ZJ, Ooi TL (2008) Perceived relative distance on the ground affected

by the selection of depth information. Percept Psychophys 70: 707–713.

31. Henriques DY, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-
centered remapping of remembered visual space in an open-loop pointing task.

J Neurosci 18: 1583–1594.
32. Bülthoff HH, Edelman S (1992) Psychophysical support for a two-dimensional

view interpolation theory of object recognition. PNAS 89: 60–64.

33. Gillner S, Mallot HA (1998) Navigation and acquisition of spatial knowledge in a
virtual maze. J Cogn Neurosci 10: 445–463.

34. Franz MO, Schölkopf B, Mallot HA, Bülthoff HH (1998) Learning view graphs
for robot navigation. Auton Robot 5: 111–125.

35. Ni K, Kannan A, Criminisi A, Winn J (2009) Epitomic location recognition.
IEEE T Pattern Anal 31: 2158–2167.

36. Cummins M, Newman P (2008) FAB-MAP: Probabilistic localization and

mapping in the space of appearance. Int J Robot Res 27: 647–665.
37. Sibley G, Mei C, Reid I, Newman P (2010) Vast-scale outdoor navigation using

adaptive relative bundle adjustment. Int J Robot Res 29: 958–980.
38. Gilson SJ, Fitzgibbon AW, Glennerster A (2008) Spatial calibration of an optical

see-through head-mounted display. J Neurosci Methods 173: 140–146.

39. Johnston EB, Cumming BG, Parker AJ (1993) Integration of depth modules:
stereopsis and texture. Vision Res 33: 813–826.

40. Finney DJ (1971) Probit analysis. Cambridge, UK: Cambridge University Press.

‘Broken’ Visual Space

PLoS ONE | www.plosone.org 9 March 2012 | Volume 7 | Issue 3 | e33782


