Plane wave approximation in linear elasticity

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1080/00036811.2012.671300

Publisher: Taylor & Francis

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
Applicable Analysis
Vol. 00, No. 00, Month 200x, 1–8

Plane wave approximation in linear elasticity
Andrea Moiola
Department of Mathematics and Statistics – University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK;
(Received XXX)

We consider the approximation of solutions of the time-harmonic linear elastic wave equation by linear combinations of plane waves. We prove algebraic orders of convergence both with respect to the dimension of the approximating space and to the diameter of the domain. The error is measured in Sobolev norms and the constants in the estimates explicitly depend on the problem wavenumber. The obtained estimates can be used in the h- and p-convergence analysis of wave-based finite element schemes.

Keywords: Linear elasticity, approximation by plane waves, potential representation, \(hp\)-estimates.

AMS Subject Classification: 74B05; 41A30

1. Introduction

In order to efficiently discretize the time-harmonic elastic wave equation (Navier equation), some non-polynomial finite element methods with plane wave basis functions have been designed; see for example the schemes described in [1–5]. A rigorous convergence analysis of these methods requires the proof of a best-approximation estimate: a bound on the minimal error inf \(v_N \in V_N \| \mathbf{u} - v_N \|\) where \(\mathbf{u}\) is a given solution of the considered PDE, \(V_N\) is the discrete trial space, and \(\|\cdot\|\) is a suitable norm.

For acoustic wave propagation, governed by the Helmholtz equation, approximation estimates have been proven in [6] using Vekua’s theory, harmonic polynomial approximation results, and a careful residual estimate of Jacobi-Anger’s expansion. Here we use the results of [6] to prove similar bounds for solutions of the time-harmonic Navier equation.

Using a balanced choice of pressure and shear waves, we obtain algebraic orders of convergence both in the diameter of the considered domain and in the dimension of the approximating space; these parameters are relevant for the \(h\)- and \(p\)-convergence of the corresponding finite element methods. The error is measured in weighted Sobolev norms on a bounded, star-shaped, Lipschitz domain. The dependence of the constants on the wavenumbers of pressure and shear waves is made explicit.

The proof follows the corresponding one for the Maxwell problem described in [7, Sec. 4]. It is based on a potential representation of time-harmonic elastic solutions.

Email: A.Moiola@reading.ac.uk
Andrea Moiola

In particular it relies on the approximation of the scalar and vector potentials using Helmholtz- and Maxwell-type plane waves, respectively.

The final convergence estimate is not expected to be sharp: the displacement is approximated by first-order derivatives of a (plane wave) approximation of the potentials. Thus, its approximation error measured in H^{j-1}-norm is related to the approximation of the potentials in H^j-norm, that is one algebraic order in h and p less than what was proved in the acoustic case (compare the indices of the Sobolev norms in equations (5) and (7)). Sharp bounds might be obtained by adapting Vekua’s theory to the linear elasticity setting, but it has not been accomplished yet (see the comments at the end of Section 3).

The purpose of this short paper is not to provide a recipe for finding a plane wave approximation of the solution of a given boundary value problem for the elastic wave equation. Several sophisticated methods capable of this have already been introduced in the literature, for example the Ultra Weak Variational Formulation (UWVF, see [1, 3]), the Discontinuous Enrichment Method (DEM, see [4, 5]) and the Variational Theory of Complex Rays (VTCR, see [2] and subsequent papers). As demonstrated by extensive numerical experiment in the cited articles, they perform very well compared to standard polynomial finite element schemes. More generally, wave-based methods constitute one of the most promising recent developments in the area of numerical algorithms for time-harmonic wave problems at medium frequencies. In particular, their main strength is that the use of oscillatory basis functions permits great accuracy with few degrees of freedom. However, to the author’s knowledge, for no one of these schemes a complete convergence analysis is available in the case of elasticity problems. By looking at the similar analysis for the Helmholtz and Maxwell equations (for the UWVF, see [8, 9] and [7], respectively), it is clear that one of the most important and technical steps is the proof of best approximation estimates. This paper aims at filling this gap: the error bounds proved in Theorem 3.2 can be directly used in the h- and p-convergence analysis of any of the methods mentioned above.

2. Potential representation

In this section we define Navier’s equation and we briefly study a well-known special Helmholtz decomposition of the displacement field, sometimes called Lamé’s solution. For a more comprehensive treatment of potential representations in (time-dependent) elasticity problems we refer to Sections 1 and 2 of [10]. A different representation through a single vector potential that is solution of the iterated Helmholtz equation can be found in [11].

Time-harmonic elastic wave propagation in a homogeneous medium and in absence of body forces is described in frequency domain by Navier’s equation (cf. [12, Sec. 5.1.1]):

\[
(\lambda + 2\mu)\nabla \text{div} \, u - \mu \text{curl} \, \text{curl} \, u + \omega^2 \rho \, u = 0 \quad \text{in } D, \tag{1}
\]

supplemented by appropriate boundary conditions (see for example [1, eq. (2.4)]); here

\[
D \subset \mathbb{R}^3 \quad \text{is an open domain},
\]

\[
u : D \to \mathbb{R}^3 \quad \text{is the displacement vector field},
\]

\[
\omega > 0 \quad \text{is the angular frequency},
\]
λ, μ > 0 are the Lamé constants, and
ρ > 0 is the density of the medium.

We assume λ, μ, ρ and ω to be constant in D, and define the wavenumber of pressure (longitudinal) and shear (transverse) waves, respectively, as:

$$\omega_P := \omega \left(\frac{\rho}{\lambda + 2\mu} \right)^{\frac{1}{2}}, \quad \omega_S := \omega \left(\frac{\rho}{\mu} \right)^{\frac{1}{2}}.$$

Remark 1: Thanks to the identity \(\nabla \text{div} = \Delta \text{ } + \text{curl} \text{curl}, \Delta \text{ being the vector Laplacian, equation (1) can be written as}

$$(\lambda + \mu) \nabla \text{div} \mathbf{u} + \mu \Delta \mathbf{u} + \omega^2 \rho \mathbf{u} = 0$$ in D.

We denote by \(Dv\) the Jacobian of the vector field \(v\), by \(D^Sv = \frac{1}{2}(Dv + D^Tv)\) the symmetric gradient (or Cauchy’s strain tensor), by \(\text{div}\) the (row-wise) vector divergence of matrix fields, and by \(\text{Id}\) the \(3 \times 3\) identity matrix. Using the identity \(2 \text{div} D^S = \nabla \text{div} + \Delta = 2 \nabla \text{div} - \text{curl} \text{curl}\), equation (1) can be written in the form

$$\text{div} \sigma + \omega^2 \rho \mathbf{u} = 0,$$

where \(\sigma = 2\mu D^S \mathbf{u} + \lambda (\text{div} \mathbf{u}) \text{Id}\) is the Cauchy stress tensor.

In this section we assume \(\mathbf{u}\) to be a solution of (1) in the sense of distributions; we define the scalar and vector potential, respectively, as

$$\chi := -\frac{\lambda + 2\mu}{\omega^2 \rho} \text{div} \mathbf{u} = -\frac{\text{div} \mathbf{u}}{\omega_P^2}, \quad \psi := \frac{\mu}{\omega^2 \rho} \text{curl} \mathbf{u} = \frac{\text{curl} \mathbf{u}}{\omega_S^2}. \quad (2)$$

From (1), we can use these potentials to represent \(\mathbf{u}\):

$$\mathbf{u} = -\frac{\lambda + 2\mu}{\omega^2 \rho} \nabla \text{div} \mathbf{u} + \frac{\mu}{\omega^2 \rho} \text{curl} \text{curl} \mathbf{u} = \nabla \chi + \text{curl} \psi, \quad (3)$$

which is a Helmholtz decomposition of the displacement field. Moreover, the scalar and the vector potentials satisfy Helmholtz’s and Maxwell’s equations, respectively:

$$-\Delta \chi - \omega_P^2 \chi = \text{div} \nabla \text{div} \mathbf{u} = \text{div} \nabla \left(\frac{\mu}{\lambda + 2\mu} \text{curl} \text{curl} \mathbf{u} - \omega_P^2 \mathbf{u} \right) + \text{div} \mathbf{u} \text{div} \text{curl} = 0, \quad (4)$$

$$\text{curl} \text{curl} \psi - \omega_S^2 \psi = \text{curl} \text{curl} \left(\frac{\mu}{\lambda + 2\mu} \nabla \text{div} \mathbf{u} + \omega_S^2 \mathbf{u} \right) - \text{curl} \mathbf{u} = 0.$$

As a consequence, the vector potential \(\psi\) satisfies also \(\text{div} \psi = 0\) and the vector Helmholtz equation \(-\Delta \psi - \omega_S^2 \psi = 0\).

Remark 2: The potentials \(\chi\) and \(\psi\) defined in (2) are the only couple of scalar and vector fields such that: (i) they are solution of Helmholtz’s equation with...
wavenumber ω_P and Maxwell’s equations with wavenumber ω_S, respectively; (ii) they constitute a Helmholtz decomposition (3) of u. Indeed, if $\tilde{\chi}$ and $\tilde{\psi}$ satisfy conditions (i) and (ii), then

$$
\tilde{\chi} = -\omega_P^{-2} \Delta \tilde{\chi} = -\omega_P^{-2} \text{div} \nabla \tilde{\chi} = -\omega_P^{-2} \text{div}(u - \text{curl} \tilde{\psi}) = -\omega_P^{-2} \text{div} u = \chi,
\tilde{\psi} = \omega_S^{-2} \text{curl} \text{curl} \tilde{\psi} = \omega_S^{-2} \text{curl} (u - \nabla \tilde{\chi}) = \omega_S^{-2} \text{curl} u = \psi.
$$

3. Approximation by plane waves

From now on, we assume for the domain D:

\begin{enumerate}[label=(D\arabic*)]
\item $D \subset \mathbb{R}^3$ is open, Lipschitz and bounded,
\item there exists $\rho \in (0, 1/2]$ such that the ball with centre in a point x_0 and radius ρh is included in D, where h is the diameter of D,
\item there exists $\rho_0 \in (0, \rho]$ such that D is star-shaped with respect to the ball with centre in the same point x_0 and radius $\rho_0 h$.
\end{enumerate}

For instance, every convex polyhedron satisfies these assumptions; this is not a severe restriction since D is meant to be an element of a finite element mesh.

Given $j \in \mathbb{N}$ and $\tilde{\omega} \in \mathbb{R}$, $\tilde{\omega} > 0$, we define the $\tilde{\omega}$-weighted Sobolev norm

$$
\|v\|_{j, \tilde{\omega}, D}^2 := \sum_{j_0=0}^j \tilde{\omega}^{2(j-j_0)} \|v\|_{j_0, D}^2 \quad \forall v \in H^j(D),
$$

where $\|\cdot\|_{j_0, D}$ is the usual Sobolev seminorm in $H^{j_0}(D)$. We use the same notation for the analogous norm of vector fields in $H^j(D)^3$. We denote the unit sphere in \mathbb{R}^3 by $S^2 = \{x \in \mathbb{R}^3, |x| = 1\}$.

We report in the following Lemma the result of Lemma 3.4.6 and Corollary 3.5.5 of [9] concerning the approximation of solutions of Helmholtz equation by linear combinations of plane waves. The same result with a slightly worse dependence of the bounding constant on the wavenumber was proved in Lemma 4.5 and Corollary 5.5 of [6].

Lemma 3.1: Let D be a domain satisfying (D1)–(D3), fix

$$0 < \tilde{\omega} \in \mathbb{R}, \quad k \in \mathbb{N}, \quad q \in \mathbb{N} \text{ such that } q \geq 2k + 1, \quad q \geq 2(1 + 2^{1/\lambda_D}),$$

where λ_D is a positive parameter which depends only on the shape of D, as defined in [9, Th. 3.2.12].

Then, there exists a set $\{d_\ell\}_{1 \leq \ell \leq p} \subset S^2$ of $p = (q + 1)^2$ different plane wave propagation directions such that, for every $v \in H^{k+1}(D)$ that is solution of the homogeneous Helmholtz equation

$$-\Delta v - \tilde{\omega}^2 v = 0 \quad \text{in } D,$$

there exist some coefficients $\alpha_1, \ldots, \alpha_p \in \mathbb{C}$ such that the following bound holds for every $0 \leq j \leq k + 1$:

$$
\left\|v - \sum_{\ell=1}^p \alpha_\ell e^{\tilde{\omega} x \cdot d_\ell}\right\|_{j, \tilde{\omega}, D} \leq C \left(1 + (\tilde{\omega} h)^j\right) e^{\left(\frac{7}{4} - \frac{1}{4}q\right) \tilde{\omega} h} h^{k+1-j}.
$$
\[
\left[q^{-\lambda_D(k+1-j)} + \frac{1+ (\bar{\omega}h)^q - k^2}{(\sqrt{2} \rho q)^{\frac{2}{q}}} M \right] \|v\|_{k+1,\bar{\omega},D}.
\]

Here, the constant \(C > 0 \) depends only on \(j, k \) and on the shape of \(D \), and the constant \(M \) satisfies \(M \leq 2\sqrt{\pi}p \).

The bound on the constant \(M \) is given by an “optimal” choice of the directions which is not explicitly available. A good choice is provided by the system of directions introduced in [13] and available on the website [14]. In this case, the bound on \(M \) is only slightly weaker, namely, \(M \leq 4\sqrt{\pi}pq \) (cf. [6, Rem. 4.6]).

Our policy is to apply Lemma 3.1 to the potentials \(\chi \) and \(\psi \). Thus we use two kinds of plane wave functions to approximate the solutions of Navier’s equation (1): pressure (longitudinal) waves

\[
w_d^P : x \mapsto d e^{i\omega_P x} d \in \mathbb{S}^2,
\]

and shear (transverse) waves

\[
w_{d,A}^S : x \mapsto A e^{i\omega_S x} d \quad d, A \in \mathbb{S}^2, \quad A \cdot d = 0.
\]

Given \(d \in \mathbb{S}^2 \), there exist two linearly independent shear waves propagating along \(d \) (\(w_{d,A}^S \) and \(w_{d,d \times A}^S \)) and only one pressure wave (\(w_d^P \)). They satisfy the relations

\[
\begin{align*}
\text{div } w_d^P &= i\omega_P e^{i\omega_P x} d, & \text{div } w_{d,A}^S &= 0, \\
\text{curl } w_d^P &= 0, & \text{curl } w_{d,A}^S &= i\omega_S d \times A e^{i\omega_S x} d = i\omega_S w_{d,d \times A}^S, \\
\nabla \text{div } w_d^P &= -\omega_P^2 w_d^P, & \nabla \text{curl } w_{d,A}^S &= -\omega_S^2 w_{d,A}^S, \\
i\omega_P w_d^P &= \nabla (e^{i\omega_P x} d).
\end{align*}
\]

It is intuitive to guess that the two components of \(u \), namely, \(\nabla \chi \) and \(\text{curl } \psi \), can be approximated separately by pressure and shear waves, respectively. This is the basic idea we will exploit in the proof of Theorem 3.2.

Given \(p \in \mathbb{N} \) distinct unit propagation directions \(\{d_\ell\}_{1 \leq \ell \leq p} \subset \mathbb{S}^2 \), we associate \(p \) unit amplitude vectors \(\{A_\ell\}_{1 \leq \ell \leq p} \subset \mathbb{S}^2 \) such that \(d_\ell \cdot A_\ell = 0 \) for \(1 \leq \ell \leq p \). We use them to define the linear space

\[
V_{3p} = \left\{ \sum_{\ell=1}^p \alpha_\ell^P d_\ell e^{i\omega_P x} d_\ell + \alpha_\ell^{S,1} A_\ell e^{i\omega_S x} d_\ell + \alpha_\ell^{S,2} (d_\ell \times A_\ell) e^{i\omega_S x} d_\ell, \right. \quad \alpha_\ell^P, \alpha_\ell^{S,1}, \alpha_\ell^{S,2} \in \mathbb{C} \bigg\}
= \text{span} \left\{ w_{d_\ell}^P, w_{d_\ell,A_\ell}^S, w_{d_\ell,d_\ell \times A_\ell}^S \right\}_{\ell=1,...,p}.
\]

Notice that \(V_{3p} \) depends on the choice of \(d_\ell \)'s but not on \(A_\ell \)'s, and that \(\text{dim}(V_{3p}) = 3p \).

Now we can state our main result.

Theorem 3.2: Let \(D \subset \mathbb{R}^3 \) be a domain satisfying (D1)–(D3), \(k \) and \(q \in \mathbb{N} \), \(q \geq 2k+1, q \geq 2(1 + 2^{1/\lambda_D}) \), where \(\lambda_D \) is the positive parameter that depends only
on the shape of \(D\) defined in \([9, \text{Th. 3.2.12}]\). Then, there exists a set of \(p = (q+1)^2\) propagation directions \(\{d_\ell\}_{1 \leq \ell \leq p} \subseteq \mathbb{S}^2\), such that, for every solution \(u\) of Navier’s equation (1) that belongs to

\[
H^{k+1}(\text{div}; D) \cap H^{k+1}(\text{curl}; D)
\]

\[
= \left\{ v \in H^{k+1}(D)^3 : \text{div} \, v \in H^{k+1}(D), \, \text{curl} \, v \in H^{k+1}(D)^3 \right\},
\]

there exists \(\xi \in V_3\), namely, a linear combination of \(p\) pressure and \(2p\) shear plane waves, such that, for \(1 \leq j \leq k + 1\),

\[
\|u - \xi\|_{j-1,\omega_S,D} \leq C \left(1 + (\omega_S h)^{j+6} \right) \left(\frac{1}{h^{k+1-j}} + \frac{1}{(\sqrt{2} q h^{\frac{q+1}{2}})^{k+2}}M \right) \left(\omega_p^2 \|v\|_{k+1,\omega_p,D} + \omega_S^2 \|u\|_{k+1,\omega_S,D} \right). \tag{7}
\]

Here, the constant \(C > 0\) depends only on \(j\), \(k\) and on the shape of \(D\), the constant \(M\) is bounded by \(2\sqrt{\pi} p\).

Proof: This proof follows the lines of the one of Theorem 5.4 in \([7]\).

We fix the directions \(\{d_\ell\}_{1 \leq \ell \leq p}\) to be the ones provided by Lemma 3.1, and separately approximate the two potentials \(\chi\) and \(\psi\).

In (4) we have seen that the scalar potential \(\chi\) is solution of the Helmholtz equation with wavenumber \(\omega_p\); Lemma 3.1 provides a combination of scalar plane waves \(\chi = \sum_{\ell=1}^p \alpha_\ell e^{i\omega_p x \cdot d_\ell}\) such that, for \(0 \leq j \leq k + 1\),

\[
|\chi - \chi|_{j,D} \leq C \left(1 + (\omega_p h)^{j+6} \right) \left(\frac{1}{h^{k+1-j}} + \frac{1}{(\sqrt{2} q h^{\frac{q+1}{2}})^{k+2}}M \right) \|\chi\|_{k+1,\omega_p,D}. \tag{8}
\]

The three Cartesian components of the vector potential \(\psi\) are solutions of the Helmholtz equation with wavenumber \(\omega_S\). For every \(\ell \in \{1, \ldots, p\}\), the three vectors \(d_\ell\), \(A_\ell\) and \(d_\ell \times A_\ell\) constitute an orthonormal basis of \(\mathbb{R}^3\). Thus, according to Lemma 3.1, \(\psi\) can be approximated by a linear combination of \(3p\) vector Helmholtz plane waves

\[
\psi = \psi_1 \sum_{\ell=1}^p \alpha_\ell^1 d_\ell e^{i\omega_S x \cdot d_\ell} + \psi_2 \sum_{\ell=1}^p A_\ell e^{i\omega_S x \cdot d_\ell} + \psi_3 \sum_{\ell=1}^p d_\ell \times A_\ell e^{i\omega_S x \cdot d_\ell}
\]

with the error bound, for \(0 \leq j \leq k + 1\),

\[
|\psi - \psi|_{j,D} \leq C \left(1 + (\omega_S h)^{j+6} \right) \left(\frac{1}{h^{k+1-j}} + \frac{1}{(\sqrt{2} q h^{\frac{q+1}{2}})^{k+2}}M \right) \|\psi\|_{k+1,\omega_S,D}. \tag{9}
\]

Now we define

\[
\xi = \nabla \chi + \text{curl} \, \psi.
\]
(6) \[\sum_{i=1}^{p} \left(\rho_p d_x \alpha_i \xi e^{i \omega \xi \cdot x} d_x + \omega_p \rho_1^{3,2} d_x A_p e^{i \omega p \cdot x} d_x - \omega_p \rho_1^{3,2} A_p e^{i \omega p \cdot x} d_x \right) \]

which clearly belongs to \(\mathcal{V}_3 p \). This vector field provides the desired approximation of the displacement \(u \):

\[
\| u - \xi \|_{j-1, \omega, p, D} = \| \nabla \chi + \text{curl} \psi - \nabla \xi \chi - \text{curl} \xi \psi \|_{j-1, \omega, p, D}
\]

\[
\leq \sum_{j_0=0}^{j(j-1-j_0)} \left| \nabla (\chi - \xi) + \text{curl}(\psi - \xi \psi) \right|_{j_0, D}
\]

\[
\leq \sum_{j=1}^{j} \omega_S^{j-j_1} \left(|\chi - \xi|_{j_1, D} + |\psi - \xi \psi|_{j_1, D} \right)
\]

(8),(9) \[\omega_p < \omega_S \]

\[
\leq C \left(\sum_{j_1=1}^{j} \omega_S^{j-j_1} \left(1 + (\omega_S h)^j + 6 \right) h^{k+1-j_1} \right) e^{(\frac{\xi}{\xi} - \frac{\xi}{p}) \omega_S h}
\]

\[
\leq C \left(1 + (\omega_S h)^j + 6 \right) e^{(\frac{\xi}{\xi} - \frac{\xi}{p}) \omega_S h} h^{k+1-j}
\]

\[
\left[q^{-\lambda_D(k+1-j)} + \frac{1 + (\omega_S h)^{q-k+2}}{(\sqrt{2} q)^{\frac{q}{2}}} M \right]
\]

\[
\leq C \left(1 + (\omega_S h)^j + 6 \right) e^{(\frac{\xi}{\xi} - \frac{\xi}{p}) \omega_S h} h^{k+1-j}
\]

\[
\left[q^{-\lambda_D(k+1-j)} + \frac{1 + (\omega_S h)^{q-k+2}}{(\sqrt{2} q)^{\frac{q}{2}}} M \right]
\]

Notice that, in order to have convergence in the bound (7), either in \(p \) or the potentials \(\text{div} u \) and \(\text{curl} u \) have to belong to \(H^2(D) \).

Since \(\omega_p < \omega_S \), the bound (7) holds true also in the case where the norm on the left-hand side is substituted by \(\| u - \xi \|_{j-1, \omega_p, D} \); on the contrary we can not substitute the algebraic and exponential terms in \(\omega_S h \) on the right-hand side with the analogous ones containing \(\omega_p h \).

The bound proven in Theorem 3.2 shows algebraic orders of convergence both with respect to the size \(h \) of the domain and to the dimension \(p \) of the approximating space. If the solution \(u \) can be smoothly extended outside \(D \), the order in \(p \) is exponential, see [8, Rem. 3.14], and [9, Rem. 3.5.8]. The bounding constant depends on the problem parameters \(\omega, \lambda, \mu \) and \(\rho \) only through \(\omega_p \) and \(\omega_S \), with the dependence shown in the estimate.

The approximation results for the Maxwell equations suggest some extensions of Theorem 3.2. For example, error bounds for elastic spherical waves (i.e., solutions of (1) defined via vector spherical harmonics and spherical Bessel functions) could be proved by following the technique used in Section 6.2.2 of [9]. The order of convergence with respect to the diameter \(h \) might be improved, as it was done in the electromagnetic case in Section 6.3 of [9]: a special Taylor approximation bound for harmonic functions can be used in the time-harmonic setting thanks.
REFERENCES

to a careful use of Vekua’s theory; some lengthy manipulations of vector spherical harmonics could provide approximating fields which are exact solution of the elastic wave equation; a special vector Jacobi–Anger formula (see equation 6.34 in [9]) is then needed to find approximants in the form of vector plane waves. The proof of improved orders of convergence in p seems to be much harder: it requires better understanding of the Vekua transform in a vector setting and is not available even in the electromagnetic case.

In the almost incompressible case, i.e., for very large values of λ, both ω_P and $\text{div } u$ go to zero. Therefore, estimate (7) is useful only if $\omega_P^{-2} \|\text{div } u\|_{k+1,\omega_P,D}$ remains bounded in dependence of λ. In the limit case we recover Maxwell’s equations and Theorem 3.2 reduces to Theorem 5.4 of [7].

Acknowledgement

The author is grateful to R. Hiptmair, I. Perugia and C. Schwab for the support in the preparation of this paper.

References

