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In this article we describe recent progress on the design, analysis and im-
plementation of hybrid numerical-asymptotic boundary integral methods for
boundary value problems for the Helmholtz equation that model time har-
monic acoustic wave scattering in domains exterior to impenetrable obstacles.
These hybrid methods combine conventional piecewise polynomial approxi-
mations with high-frequency asymptotics to build basis functions suitable
for representing the oscillatory solutions. They have the potential to solve
scattering problems accurately in a computation time that is (almost) inde-
pendent of frequency and this has been realized for many model problems.
The design and analysis of this class of methods requires new results on the
analysis and numerical analysis of highly oscillatory boundary integral op-
erators and on the high-frequency asymptotics of scattering problems. The
implementation requires the development of appropriate quadrature rules for
highly oscillatory integrals. This article contains a historical account of the
development of this currently very active “eld, a detailed account of recent
progress and, in addition, a number of original research results on the design,
analysis and implementation of these methods.

� Colour online for monochrome “gures available at journals.cambridge.org/anu.
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1. Introduction

Acoustic, elastic and electromagnetic wave scattering problems arise in
many applications of mathematical, physical and engineering interest, in-
cluding the modelling of radar, sonar, noise barrier design and atmospheric
particle scattering. Often the scattering problem comprises the forward map
in the formulation of an inverse problem, for example in non-destructive
testing or in methods for detecting hydrocarbon-bearing deposits under the
sea bed. While in general the scattered wave has to be found in an in-
homogeneous medium, there are a substantial number of applications in
which the material is either homogeneous or piecewise homogeneous, at
least su�ciently far away from the scatterer. In these cases boundary in-
tegral equation (BIE) methods are of considerable interest and form the
basis for several commercial scattering codes; see, for example, Chewet al.
(2004).

This review focuses on the e�cient solution of high-frequency acoustic
scattering problems in homogeneous media, using integral equation meth-
ods. Hence we consider the Helmholtz equation,

� u + k2u = 0 , (1.1)

in a domain � + := Rd\ � Š , d = 2 or 3, where � Š is some bounded open set
with surface �, and (1.1) is to be solved subject to some suitable bound-
ary condition on � and radiation condition in the far “eld. The Helmholtz
equation is of course derived from the linear wave equation under the as-
sumption that all quantities vary harmonically (e Š i�t ) in time. Here � is
the angular frequency andk := �/c > 0 is the wavenumber, wherec is the
speed of sound.

The problem (1.1) has solutions which oscillate in space with wavelength
� = 2 �/k . For example the plane wavesu(x) = exp(i kx · �a), where �a � Rd

is a unit vector, are solutions. The number of oscillations grows linearly in
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k and so the application of conventional (piecewise polynomial) boundary
elements to this problem leads to full matrices of dimension at leastN =
O(kdŠ 1) and a solution time of this order or worse ask � � . (Domain
“nite elements lead to sparse matrices but require even largerN .) Since
this lack of robustness with respect to increasing values ofk puts high-
frequency problems beyond the reach of many standard algorithms, much
recent research has been devoted to “nding more robust methods.

Of course, saying thatk, which has dimension 1/length, is large is mean-
ingless without reference to the size of the scatterer. The dimensionless
quantity that can meaningfully be thought of as quantifying the oscillatory
character of our problem is kL , where L is an appropriate characteristic
length of the scattering surface � (e.g., the diameter of �). Thus a problem
can be highly oscillatory even ifk is not large provided that L is su�ciently
large. But without loss of generality, throughout the review we consider
k as the relevant large parameter, equivalently assuming that the unit of
length is chosen so that the surface � has characteristic lengthO(1).

The aim of this review is to describe a currently very active area of re-
search which seeks algorithms for scattering problems which (ideally) have
bounded error for “xed computational e�ort as k � � , and have computa-
tional complexity which is either independent of k, or grows only mildly as k
increases. To achieve this aim, the methods we describe explicitly build into
the numerical method a certain amount of asymptotic information about the
oscillatory nature of the solution as k � � , and seek to approximate only
the slowly varying components by (piecewise) polynomials. By now these
methods have been supported by substantial theoretical justi“cation, as we
shall describe.

It is well known that the scattering problem described above is in gen-
eral a multiscale problem. Figure 1.1 illustrates the resulting total “eld
u := uI + uS induced by a scatterer � Š composed of the union of a disk and
a triangle, when the incident “eld uI is a plane waveuI (x) = exp(i kx · �a),
with unit incident direction � a. The scattered “eld uS is found as the so-
lution of the classical •sound-soft• scattering problem, that is,uS satis“es
(1.1) in � + , the Dirichlet condition uS = ŠuI (and so u = 0) on the scat-
tering surface � (in this case the union of the circle and the boundary of
the triangle) and, in addition, uS satis“es the usual Sommerfeld radiation
condition (given by (2.9)) in the far “eld. While the incident “eld uI oscil-
lates on the single scalekŠ 1, the total “eld u contains several other scales
coming from the scattered “eld uS. These include scales ofkŠ 1/ 2 (respec-
tively kŠ 1/ 3) associated with widths of zones of transition from illuminated
to shadow regions behind di�racting corners (respectively tangency points)
These oscillatory and multiscale properties of scattered “elds … known for
many years in the asymptotics literature … are described in a form useful
for numerical analysis in Section 3 of this review.
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Figure 1.1. The total “eld when the incident “eld is a plane wave
in the direction �a = (cos �, sin � ), with � = Š�/ 18, and the
wavelength is � = 0 .2 (so k = 2 �/� = 10� � 31.42). The scatterer
has two components, a disk of unit diameter and a triangle.

To formulate BIEs for (1.1), we introduce the standard fundamental so-
lution of the Helmholtz equation, given, in the two-dimensional (2D) and
three-dimensional (3D) cases, by

� k(x, y) :=

�
����

����

i
4

H (1)
0 (k|x Š y|), d = 2 ,

exp(ik|x Š y|)
4� |x Š y|

, d = 3 ,

(1.2)

for x, y � Rd, x �= y, whereH (1)
� denotes the Hankel function of the “rst kind

of order � . Using � k , we can build layer potentials that provide solutions
to (1.1) in the exterior domain � + , and automatically satisfy the radiation
condition at in“nity. These potentials conveniently also provide solutions
to (1.1) in the interior domain � Š . In general all the standard boundary
value problems (BVPs) for the Helmholtz equation (1.1) can be formulated
as integral equations on � using these layer potentials.

For example, in the case of sound-soft scattering, the solutionu is fully
determined on � + by its Neumann data �u/�n on �; see Section 2 for de-
tails. Moreover the •far-“eld• behaviour ofu (often of interest in the solution
of inverse scattering problems) can be determined by the action of a simple
oscillatory linear operator applied to the Neumann data. The required Neu-
mann data can be obtained, for example, by solving the combined potential
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integral equation

1
2

�u
�n

(x) +
�

�

�
� � k (x, y)

�n (x)
Š i� � k (x, y)

�
�u
�n

(y) ds(y) = f k,� (x), x � � ,

(1.3)
where, throughout the review, we adopt the convention that the normal
derivative is taken outward from � Š , and the source term is given by

f k,� (x) :=
�u I

�n
(x) Š i�u I (x), x � � . (1.4)

The problem (1.3) is well-posed for any “xed choice of the coupling pa-
rameter � � R\{ 0} (see Theorem 2.46). We write (1.3) more compactly
as

A�
k,� v :=

�
1
2

I + D �
k Š i�S k

�
v = f k,� , where v := �u/�n. (1.5)

The operators Sk, D �
k and A�

k,� will be discussed in detail in Section 2.
Turning to numerical methods, for an operator equation of the general

form Av = f posed in L 2(�), the Galerkin method consists of choosing a
“nite-dimensional approximating spaceVN and then seeking an approximate
solution vN � V N such that

(AvN , wN )L 2(�) = ( f, w N )L 2(�) , for all wN � V N . (1.6)

For the discretization of the second-kind integral equation (1.5) there is
a classical theory, which holds at least when � is su�ciently smooth and
when the approximating space consists of piecewise polynomials. Suppose
that we solve (1.5) using the Galerkin method (1.6) on a family of N -
dimensional spacesVN of piecewise polynomial functions of “xed degree on
a quasi-uniform sequence of meshes on � with diameterh � 0 (so that
N is proportional to h1Š d). Then it can be shown, using the methods in
Atkinson (1997), for example, that there exist constantsC > 0 and N0 > 0
such that the Galerkin solution vN satis“es the quasi-optimal error estimate

� v Š vN � � C inf
wN �V N

� v Š wN � , (1.7)

for all N 	 N0, where here and throughout this review � · � represents
� · � L 2(�) , unless otherwise speci“ed. (This theory also extends to some
collocation and, with the addition of quadrature, Nystr öm-like methods.)
However, the classical theory does not tell us howC and N0 depend onk.

These subtle questions are discussed in some detail in Section 6.1 of this
review, but we can easily see that the error� v Š vN � will be highly k-
dependent. This is becausev is in general oscillatory, and thej th derivative
of v will, roughly speaking, beO(kj ) times bigger than v itself. Thus, using
standard estimates for piecewise polynomial approximation of degreep, the
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error in best approximation appearing on the right-hand side of (1.7) will
have an estimate of the form

inf
wN �V N

� v Š wN � � C�(hk)p+1 , (1.8)

for some constant C� (which may itself grow with k). Thus h will need
to decrease with O(kŠ 1), and possibly faster, in order to keep the error
bounded ask � � . Hence, standard (piecewise) polynomial BEMs applied
directly to approximate the oscillatory solution v of (1.5) on a surface inRd

will have complexity at least O(h1Š d) = O(kdŠ 1) as k � � .
By contrast, the hybrid numerical-asymptotic methodswhich are the main

subject of this review article exploit more detailed information about the
oscillations in v (obtained via asymptotic analysis or exact integral rep-
resentations) directly in the numerical method. Known highly oscillatory
components ofv are treated exactly in the algorithm, leaving only more
slowly varying components to be approximated by piecewise polynomials.
This yields a method which is much more •robust• ask � � .

One of the simplest hybrid numerical-asymptotic methods, and one which
we shall discuss at length in Section 3, can be seen as an extension of the
•physical optics• (also called the •Kirchho�•) approximation. This method
assumes that the scattered waveuS oscillates on the same scale as the
incoming plane wave, leading to the ansatz

v(x) = kV (x, k ) exp(ikx · �a), x � � . (1.9)

For some geometries (e.g., smooth convex scatterers),V (·, k) is much less
oscillatory than v, and methods based on approximatingV (·, k) using piece-
wise polynomials have been proposed by a number of authors. This pro-
cedure is equivalent to approximating v using a hybrid spaceVN with a
basis consisting of products of the plane wave exp(ikx · �a) and appropriate
piecewise polynomial basis functions. Using such a hybrid spaceVN , it is
possible to show that the best approximation error on the left-hand side
of (1.8) increases much more slowly ask � � than the estimate on the
right-hand side of (1.8) (which holds for conventional piecewise polynomial
spaces). Thus good approximation for largek on relatively coarse meshes
(and with relatively few degrees of freedom) can potentially be achieved by
hybrid methods.

Unfortunately the bene“ts of these hybrid methods do not come without
cost. When the mesh is fairly coarse andk is large, integration of the ker-
nel of Sk or D �

k over the support of a basis function requires computing an
oscillatory integral. The additional oscillations arising via the basis func-
tions further complicate these integrals, which have to be evaluated with a
work count growing at worst modestly in k if the overall algorithm is to be
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successful. Hence this “eld requires a substantial investment in research
into numerical methods for oscillatory integrals; see Section 4 for details.

To do a full numerical analysis of hybrid methods, not only do we require
good estimates for the best approximation error (on the right-hand side of
(1.7)), but also we needk-explicit estimates for the constantsN0 and C in
(1.7). This issue is discussed in Sections 5 and 6.

Summarizing these points, one can think of the numerical analysis of
hybrid methods as requiring research on three related questions.

Q1 The design of k-dependent “nite-dimensional approximation spaces
VN , with the property that the best approximation error, that is,
inf wN �V N � v Š wN � , remains within a given tolerance ask � � , with
N “xed or growing only slowly with k.

Q2 The design ofk-robust methods for computing the oscillatory integrals
arising in implementation.

Q3 The proof of sharp estimates for the dependence onk of the •stability
constant• C and the space dimension thresholdN0, ideally showing
that these grow only slowly ask � � .

This review describes research on these three fundamental issues and re-
lated topics, and we summarize its contents here. In Section 2 we describe
fundamental solvability results on the relevant BVPs for (1.1) and the re-
formulation of these BVPs as BIEs, including new BIE formulations that
have recently been proposed for high-frequency scattering problems. Given
that many scatterers in applications involve corners and edges, we work
on general Lipschitz domains. Background results for this section, some
of which are not easily found in the literature, are given as an appendix.
Section 3 describes the design of good hybrid spaces for a range of scat-
tering problems and the proof of k-robustness of the best approximation
error for these spaces (Q1). While this section is concerned mostly with 2D
problems, hybrid spaces for a class of 3D screen problems are also discussed
later in Section 7.6. In Section 4 the question of robust computation of
oscillatory integrals which arise in hybrid methods is considered (Q2), and
rigorous error estimates for these integration schemes, which have been the
subject of recent research, are described. Section 5 describes the recently
very active “eld which seeksk-explicit bounds on the conditioning of inte-
gral operators such as that in (1.5) (in particular, bounds on the operator,
bounds on its inverse, coercivity properties,etc.). These results are required
for estimating the constants N0 and C appearing in the formulation of Q3
above. This is done in Section 6, which in fact gives error estimates for
standard as well as hybrid boundary element methods, valid ask � � .
Finally, Section 7 presents a series of illustratory numerical examples, sup-
porting the estimates of Section 6 and showing that, for a range of scattering
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problems, arbitrary accuracy is achieved with a computational cost that
grows only very mildly with respect to k.

We “nish this introduction with some historical remarks on the devel-
opment of hybrid numerical-asymptotic methods, concluding with some re-
marks on other methods for the accurate solution of high-frequency scat-
tering problems.

Methods that combine numerical and asymptotic approaches in order to
reduce computational cost have been applied within the electromagnetics
community for many years. Two papers dating back to 1975 suggest reduc-
ing the computational cost at high frequencies by splitting the boundary into
di�erent regions, and using numerical methods in some regions and asymp-
totic approximations in others (Thiele and Newhouse 1975, Burnside, Yu
and Marhefka 1975). The BIE method proposed in Burnsideet al. (1975),
for an electromagnetic problem equivalent to plane wave scattering by a
sound-hard square, can sensibly be viewed as a prototype of the methods
that we develop for scattering by convex polygons in Section 3.3 (and see
Sections 7.2…7.4). The related method proposed in Thiele and Newhouse
(1975) is a “rst instance of what has become a popular hybrid BIE-based
methodology, whereby high-frequency physical optics approximations (see
(3.4) below) are employed on part of the scattering surface, and standard
BEM approximations on the remainder, with coupling between these sub-
domains: see Djordjević and Notaro�s (2005), Zhanget al. (2010) and the
references therein for recent developments.

A hybrid numerical-asymptotic BIE method in exactly the sense of this
article was proposed at almost the same time in the acoustics literature by
Uncles. In a short proof-of-concept paper, Uncles (1976) proposed the use
of essentially the ansatz (1.9), computing scattering by a sound-hard sphere
using a piecewise constant approximation for the unknownV(·, k). This
hybrid BIE idea (approximating the ratio of scattered to incident “eld rather
than the scattered “eld itself) was used for the 2D problem of scattering
by an impedance half-plane (which we treat with more sophisticated hybrid
methods in Section 3.2), by Chandler-Wilde (1988), with numerical results
demonstrating the e�ciency of this approach at moderate frequencies.

Essentially the same hybrid BIE method to that in Uncles (1976) was
proposed independently in the electromagnetics literature in James (1990).
Numerical results for the case of a circular scatterer (solving the integral
equations (2.109) and (2.111) below) again demonstrated a signi“cant re-
duction in the number of unknowns required compared to a conventional
BEM. A more elaborate method, using hybrid spaces which are close to
but less sophisticated than those described below in Sections 3.3.1…3.3.2,
was proposed by Wang (1991), whose numerical results demonstrate some
accuracy for a number of 2D geometries. The work of Aberegg and Peterson
(1995) developed the methods of Uncles and Wang. To tackle 2D problems
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of electromagnetic scattering by piecewise smooth convex obstacles, solving
the Helmholtz equation (1.1), they used the same ansatz (1.9) but intro-
duced a number of aspects that are key to the e�ective implementation of
hybrid methods and which we will study in some detail in Section 3, namely
higher-order basis functions, the treatment of corner singularities (via spe-
cial basis functions in Aberegg and Peterson (1995)), and the use of mesh
grading. They report, for many geometries, reasonably accurate results
(� 3.5% relative error) with ten times fewer degrees of freedom compared
to standard BEMs, and note that the method is robust in that, in cases
where the ansatz (1.9) does not capture accurately the oscillation in the
solution, the method should in any case be no less accurate for the same
number of degrees of freedom than conventional BEMs.

Since 1994 there has been signi“cant numerical analysis interest in hy-
brid methods for scattering problems, with the majority of investigations
focusing (either implicitly or explicitly) on the case of a smooth convex ob-
stacle. This started with the contributions of Abboud et al. (1994, 1995),
who considered (1.1) subject to an impedance boundary condition on �, and
formulated this as a “rst-kind BIE, somewhat di�erent to (1.3) (see (3.10)
for details). The ansatz (1.9) was then applied, with the •slow variable•
V (·, k) being approximated using the h-version BEM. This analysis and
numerical scheme was subsequently developed by Darrigrand (2002), who
proposed fast multipole-based methods to evaluate the oscillatory integrals
that arise.

A more advanced approach than that taken by Abboud, Nédélec and
Zhou (1995), taking special care to approximateV (·, k) accurately near
the shadow boundary (see Section 3 for details), was proposed by Bruno,
Geuzaine, Monro and Reitich (2004). They developed a high-frequency
Nystr öm approach, substituting (1.9) directly into (1.5) to obtain a second-
kind integral equation for the slow variable V (·, k) (see (3.11)), and then
devising a frequency-robust, fast quadrature method for discretizing the
corresponding integral operators. This was extended further, with strong
emphasis on integration in 3D problems, by Bruno and Geuzaine (2007).
At around the same time, Giladi and Keller (2004) … see also Giladi (2007)
(following earlier work by Giladi and Keller (2001) on “nite element meth-
ods) … solved the same equation considered by Brunoet al. (2004) using a
collocation method, but also took into account the exponentially damped
•creeping waves• behind the shadow boundary. Subsequently Huybrechs and
Vandewalle (2006) developed steepest descent-based methods for oscillatory
integration and applied these in the implementation of a collocation-type
scheme for the BIE (2.109), again using the ansatz (1.9) (Huybrechs and
Vandewalle 2007b), with the advantage that their approach leads to a sparse
linear system.
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The same problem of scattering by a sound-soft smooth convex 2D obsta-
cle was considered in Dom´šnguez, Graham and Smyshlyaev (2007), where
the ansatz (1.9) was again used. By extending the asymptotic analysis of
Melrose and Taylor (1985), Domš́nguezet al. were able to derive rigorous
estimates demonstrating that their Galerkin method achieved an error that
depended only very mildly on k (see Section 3.1).

For the problem of scattering by an impedance half-plane (see Section 3.2),
Chandler-Wilde, Langdon and Ritter (2004), and then Langdon and Chand-
ler-Wilde (2006), proposed and analysed a hybrid Galerkin BEM, proving
rigorous error estimates independent ofk, as k � � . These ideas were
extended to scattering by sound-soft convex polygons (Chandler-Wilde and
Langdon 2007, Hewett, Langdon and Melenk 2012), curvilinear polygons
(Langdon, Mokgolele and Chandler-Wilde 2010), convex polygons with im-
pedance boundary conditions (Chandler-Wilde, Langdon and Mokgolele
2012b), and non-convex polygons (Chandler-Wilde, Hewett, Langdon and
Twigger 2012a), and are described in detail in Sections 3.3 and 3.4.

A Galerkin method in the same spirit, utilizing a high-frequency ansatz
similar to those described in Section 3, was applied to the 2D problem of
scattering by a ”at strip in Davis and Chew (2008), with numerical results
suggesting only a very mild dependence of the error on the frequency.

For the case of scattering by a smooth convex obstacle in 3D, Ganesh and
Hawkins (2011) again used the ansatz (1.9), and the integral equation for
V (·, k) was solved using a discrete Galerkin method with a global polynomial
basis and a specially chosen global quadrature rule to handle the oscillatory
integrals.

The design of hybrid spaces for the case of multiple scattering (scattering
by two or more disjoint convex scatterers) has been considered by Geuzaine,
Bruno and Reitich (2005), and a detailed analysis of the phase structure of
the solution has been given in Ecevit (2005), Ecevit and Reitich (2009) and
Anand, Boubendir, Ecevit and Reitich (2009).

Further discussion of many of the above approaches will be given in Sec-
tions 3 and 4. Due to space considerations, this review has not been able
to discuss in detail three other techniques which also address the e�cient
solution of high-frequency scattering problems, and here we give only a few
representative references.

The “rst seeks fast implementations (often speci“cally tuned to the high-
frequency case) of standard discretization methods and includes fast mul-
tipole and related fast iterative methods. Research in this direction is
still very active and here we mention Rokhlin (1990), Amini and Maines
(1998), Christiansen and Nédélec (2000), Farhat, Macedo and Lesoinne
(2000), Bruno and Kunyansky (2001), Chandler-Wilde, Rahman and Ross
(2002), Donepudi, Jin and Chew (2003), Harris and Chen (2003), Darve and
Havé (2004), Livschits and Brandt (2006), Erlangga, Oosterlee and Vuik
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(2006), Engquist and Ying (2007), Banjai and Hackbusch (2008), Bruno,
Domš́nguez and Sayas (2012), Ernst and Gander (2012) and Engquist and
Ying (2012).

The second is research on partition of unity and related methods in which
a number of plane waves is introduced on each element in addition to stan-
dard piecewise polynomial boundary elements. These methods are accu-
rate and rapidly convergent for general Helmholtz problems and do not
require any prior knowledge of the asymptotics of the solution, but they
do not enjoy the k-robustness of the hybrid methods for classes of scat-
tering problems which we describe in this review; in particular, in each of
these methods, the degrees of freedom need to increase in proportion to
kdŠ 1 to maintain accuracy ask � � , just as for conventional BEMs, albeit
with a lower constant of proportionality. Examples of this approach include
de La Bourdonnaye (1994), Perrey-Debain, Trevelyan and Bettess (2003a),
Perrey-Debain, Trevelyan and Bettess (2003b), de La Bourdonnaye and To-
lentino (2004), Perrey-Debain, Laghrouche, Bettess and Trevelyan (2004),
Perrey-Debain, Trevelyan and Bettess (2005), and Honnor, Trevelyan and
Huybrechs (2010). There also exists an extensive literature applying similar
ideas within a “nite element context; see, for example, Melenk and Babu�ska
(1996), Babu�ska and Melenk (1997), Cessenat and Despr´es (1998), Monk
and Wang (1999), Giladi and Keller (2001), Laghrouche, Bettess and Astley
(2002), Huttunen, Monk and Kaipio (2002), Cessenat and Despr´es (2003),
Laghrouche, Bettess, Perrey-Debain and Trevelyan (2005), Bu�a and Monk
(2008), Gittelson, Hiptmair and Perugia (2009), Luostari, Huttunen and
Monk (2009), Hiptmair, Moiola and Perugia (2011a) and Esterhazy and
Melenk (2012).

The third is the solution of appropriate limiting problems, which are valid
only if the frequency is su�ciently high (so-called •ray tracing• methods).
Considerable progress has been made on extending these to practical geome-
tries and obtaining error estimates; see, for example, Engquist and Runborg
(2003), Benamou (2003), Bleszynski, Bleszynski and Jaroszewicz (2004) and
Motamed and Runborg (2009).

Finally we mention that earlier reviews on the subject matter of this
article include Bruno and Reitich (2007) and Chandler-Wilde and Graham
(2009).

We “nish with a brief word on notations and assumed prior knowledge.
Throughout we use function space notations that are explained in the Ap-
pendix (with cross-referencing from other sections). This use is mild in the
more algorithmic Sections 3, 4, and 7, and more pronounced in Sections 2,
5, and 6, where we also need some functional analysis concepts and results
which are brie”y listed with references at the beginning of the Appendix.
We are a little cavalier throughout as to whether we write �u (the trace of
u) or u|� (the restriction of u to �) for the value of the total “eld on �,
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and likewise whether we write� nu or �u/�n for the normal derivative. The
distinction in these de“nitions, and that they coincide for the scattering
problems that we study, is explained in Section 2.1 (see Theorem 2.12) and
Section 2.8.

2. BVPs and integral equation formulations

In this section we formulate the relevant BVPs for the Helmholtz equation,
giving details as appropriate of function spaces, radiation conditions,etc.
We also formulate BIEs, and study properties of the layer potentials and
integral operators which these give rise to. We make explicit the relationship
between integral equations and BVPs, in particular the conditions under
which BIE and BVP formulations are equivalent.

There is much in this section regarding the theory of BIEs for acoustic
problems which is not found in other reviews or monographs, in part be-
cause many of the results we describe are very recent. In particular, we
develop new BIE formulations and new representations for boundary inte-
gral operators, which are essential components in the wavenumber-explicit
error and stability analysis in Sections 5 and 6.

However, those readers whose primary interest is in the design of hybrid
algorithms and their implementation may well prefer to start with Sections 3
and 4, which can be read largely independently of this section.

This article is concerned with scattering problems, so that our focus is
naturally on exterior BVPs, that is, problems set in the unbounded exterior
of a scatterer. But the theory of BIEs, particularly perhaps BIEs for acoustic
problems, depends inextricably on an understanding of the well-posedness
of both interior and exterior BVPs, so that necessarily we shall consider
interior problems too.

When it comes to the formulation of BVPs and BIEs, there is a degree
of choice in the function space setting, in the sense in which the boundary
conditions are to be understood, and indeed in the class of domains that one
wishes to consider. Overwhelmingly the literature of the modern theory of
BIE methods and their numerical solution, especially the solution of these
problems on non-smooth domains, uses Sobolev space settings, for which a
standard reference is McLean (2000). There is some variation in notations
and de“nitions in respect of Sobolev spaces. We spell out our de“nitions
precisely in the Appendix, mainly following McLean (2000), which has be-
come a standard reference for the theory of BIEs on Lipschitz domains, but
indicating explicitly wherever our notations and de“nitions vary from those
of McLean, in which case we usually follow Sauter and Schwab (2011).

For many of the scattering problems we consider, formulations in spaces
of continuous functions, or Hölder-continuous functions, are also possi-
ble, particularly where the boundary is su�ciently smooth. A standard
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reference for these is Colton and Kress (1983). We will indicate to what
extent and under what conditions these formulations are equivalent in what
follows. Some of the results that we wish to use and develop in this arti-
cle are associated with a third setting for the BVPs, that associated with
the harmonic analysis of Calderón…Zygmund operators on the boundaries
of Lipschitz domains. There one studies BVPs with data in L p spaces,
understands boundary conditions to hold in a sense of almost everywhere
non-tangential convergence, and supplements this with a requirement on
the behaviour of maximal functions.

Much of the above material, in particular the deep results using harmonic
analysis methods, is not available in an accessible form in the BIE literature,
and their implications for BIE methods are not fully understood. At the
same time a number of the recent results which we will describe, and which
are key to a rigorous error analysis of the new boundary element methods
that we will propose, make essential use of these methods of analysis. For
this reason the Appendix includes a brief account of these results, which
use function spaces speci“ed in terms of maximal functions, and of the
relationship of these function spaces to usual Sobolev spaces.

2.1. Acoustic boundary value problems

All the BVPs that we consider are for the Helmholtz equation (1.1) with
wavenumber k, which arises in acoustics from the wave equation, satis“ed
by the perturbation in pressure on an assumption of harmonic (eŠ i�t ) time
dependence. We will impose most often thesound-softor Dirichlet bound-
ary condition, namely that u is speci“ed on the boundary �, which has
been the focus of most of the theory and computation for hybrid numerical-
asymptotic methods to date. We will also show numerical results and analy-
sis for problems where an impedance boundary condition (much more widely
used in acoustic modelling) is imposed. This is

�u
�n

Š ik	u = h (2.1)

on �, where n is the normal directed outwards from the domain of propa-
gation, and 	 is the normalized admittance of the surface. In general	 is
a function of position (and generally also a function of frequency� ), given
by 	 = 
c/� , where � is the surface impedance, and 
 the density of the
”uid in which the acoustic wave propagates; the product 
c is termed the
impedanceof the medium of propagation. The h in (2.1) is given; usually
h = 0 in scattering problems wheneveru denotes the total “eld. Physical
considerations, namely the requirement that the boundary does not emit
energy, imply that

Re	 	 0. (2.2)
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In the special case	 = 0, the impedance boundary condition reduces to the
Neumann or sound-hardboundary condition. One of many examples where
(2.1) is a widely used boundary condition is in outdoor noise propagation,
an application we will return to in Section 3.2, where (2.1) with 	 = 0 is an
appropriate boundary condition on a hard road surface, while (2.1), with
Re	 > 0 and frequency dependent, is a widely used model of a range of
sound-absorbing outdoor surfaces;e.g., Taraldsen and Jonasson (2011).

This review contains some new BIE methods which give rise to the study
of a generalization of the above boundary condition. LetZ be a bounded
vector “eld de“ned (at least) on the boundary �. The generalization we
make replaces the normal derivative in the boundary condition by an oblique
derivative, so that the boundary condition is

Z · 
 u Š ik	u = h (2.3)

on �.
We will formulate all of our problems in the Sobolev space setting, and

selected problems also in alternative function space settings. In the inte-
rior problems below, D is a bounded Lipschitz domain (see De“nition A.2
and the paragraph that follows that de“nition) with boundary �, and � is
the trace operator (see Section A.3). We state “rst the interior Dirichlet
problem:

Given h � H 1/ 2(�) , “nd u � C2(D) � H 1(D )

such that (1.1) holds in D and �u = h on � .
(2.4)

The solvability of this standard interior problem is well understood, e.g.,
McLean (2000, p. 286).

Theorem 2.1. There exists a sequence 0< k 1 < k 2 < · · · of positive
wavenumbers, with km � � as m � � , such that the interior Dirichlet
problem with h = 0 has a non-trivial solution. For all other values of k > 0
the interior Dirichlet problem has exactly one solution.

The other interior BVPs that are relevant to us are the interior impedance
problem and what we will call the interior oblique impedance problem, by
which we will mean the Helmholtz equation subject to the boundary condi-
tion (2.3). Note that, in these Sobolev space formulations, we understand
the normal derivative of u in (2.1) as � nu � H Š 1/ 2(�), where � n is the nor-
mal derivative operator de“ned in equation (A.28). (Of course … see (A.18) …
� nu coincides with classical de“nition of the normal derivative �u/�n when
u is su�ciently regular.) We understand the oblique derivative Z · 
 u as
meaning

Z · 
 u = Zn � nu + Z · 
 � �u,

where Zn := Z · n is the normal component of Z and 
 � is the surface
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gradient operator (see (A.14)). Thus the interior impedance problemis

Given h � H Š 1/ 2(�), and 	 � L � (�), “nd u � C2(D) � H 1(D )

such that (1.1) holds in D and � nu Š ik	�u = h on �;
(2.5)

and the interior oblique impedance problemis

Given h � L 2(�), Z � (L � (�)) d, and 	 � L � (�), “nd

u � C2(D) � H 1(D ), with �u � H 1(�), such that (1.1)

holds in D and Zn� nu + Z · 
 � �u Š ik	 �u = h on � .

(2.6)

Note that the requirement, in (2.5), that � nu = h + i k	�u holds, means,
in view of the de“nition of the normal derivative operator � n in (A.28) and
(A.29), nothing more or less than the requirement that
�

�
h �v ds+ i k

�

�
	 �u �v ds =

�

D

�

 u · 
 v̄ + v̄ � u

	
dx, v � H 1(D ), (2.7)

in the case that h � L 2(�). In the case that h � H Š 1/ 2(�) but h �� L 2(�),
the integral



� h �v ds in (2.7) is understood as the limit

�

�
h �v ds = lim

j ��

�

�
hj �v ds,

where (hj ) � L 2(�) is any sequence which is convergent toh in the H Š 1/ 2(�)
norm. The boundary condition in (2.6) has an analogous interpretation to
that of (2.7).

The part of the solvability theory for the interior impedance BVP that we
need (Colton and Kress 1983, McLean 2000) is encapsulated in the following
theorem. In the statement of this theorem we make the “rst reference to
the following assumption.

Assumption 2.2. Either: (a) Re 	 	 0 and Re	 > 0 on some relatively
open subset of �; or: (b) Re 	 � 0 and Re	 < 0 on some relatively open
subset of �.

Theorem 2.3.

(i) Suppose that Assumption 2.2 holds. Then the interior impedance prob-
lem has exactly one solution.

(ii) Suppose that 	 = 0 (the Neumann boundary case). Then there exists
a sequence 0 =k1 < k 2 < · · · of positive wavenumbers, with km � �
as m � � , such that the interior impedance problem with h = 0
has a non-trivial solution. For all other values of k > 0 the interior
impedance problem with 	 = 0 has exactly one solution.
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The existence statement in (i) can be obtained by a variety of arguments,
not least by BIE methods as a corollary of Theorem 2.30 below. The unique-
ness statement in (i) is a consequence of (2.7). In more detail, ifu1 and
u2 are solutions of (2.5) then, de“ning u := u1 Š u2, it follows from (2.7)
applied with v = u, since � u = Šk2u, that

ik
�

�
	 |�u |2 ds =

�

D

�
|
 u|2 Š k2|u|2

	
dx. (2.8)

Taking imaginary parts, we see that



� Re	 |�u |2 ds = 0, so that in case
(i) we deduce that �u vanishes on some relatively open subset of �. Since
� nu = i k	�u , it follows that � nu vanishes on the same open subset of �. By
the following version of Holmgren•s uniqueness theorem it follows thatu is
identically zero and sou1 = u2.

Theorem 2.4. Suppose thatD is a bounded Lipschitz open set and that
u � C2(D ) � H 1(D ) satis“es the Helmholtz equation (1.1) in D and �u =
� nu = 0 on � 0, some non-empty, relatively open subset of � = �D . Then
u = 0 (in D).

Proof. Let G = ( Rd \ �)  � 0, so that G is the open set which is the union of
� 0 and the interior and exterior of �. Extend the de“nition of u from D to G
by setting u(x) = 0 for x � G\ D . Then it follows from Theorem 2.20 below
that u in G\ � 0 is the di�erence of two layer potentials, each with density
that vanishes on � 0. Hence, by Theorem 2.14,u � C2(G) and (1.1) holds
in G. But (see, e.g., Colton and Kress 1983) solutions of the Helmholtz
equation in a domain are real analytic in that domain and, if they vanish
in some open subset, vanish identically. Thusu = 0 in the component of G
that includes D  � 0, and in particular u = 0 in D .

Of course, the focus of this article is on solving exterior problems in
unbounded domains, for which radiation conditions need to be imposed to
ensure uniqueness of solution, expressing mathematically the physical idea
that any acoustic “eld is radiating away from the physical boundary. In
the case when the Helmholtz equation (1.1) holds outside some bounded
set, the standard radiation condition to impose is theSommerfeld radiation
condition, that

�u
�r

(x) Š iku(x) = o(r Š (dŠ 1)/ 2), (2.9)

as r := |x| � � , uniformly in �x := x/r . The following lemma is an
important consequence of this radiation condition; for a proof see,e.g.,
Colton and Kress (1983). In this lemma, and the remainder of the article,
we use the notationsBR := { x � Rd : |x| < R } , � R := �B R = { x : |x| = R} ,
and SdŠ 1 := { x � Rd : |x| = 1 } .
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Lemma 2.5. If, for some R > 0, u satis“es (1.1) in Rd \ BR and the Som-
merfeld radiation condition (2.9), then there exists a functionF � C� (SdŠ 1)
(the far-“eld pattern ) such that

u(x) =
eikr

r (dŠ 1)/ 2

�
F (�x) + O(r Š 1)

	
(2.10)

as r � � , uniformly in �x := x/r .

A consequence of Lemma 2.5 is the following lemma, derived by applying
Green•s “rst identity (A.29) to u in the domain BR � � + and then letting
R � � . In this lemma and for the next paragraphs up to and including
Theorem 2.10, we suppose that �Š is a bounded Lipschitz open set such
that � + := Rd \ � Š is a Lipschitz domain with boundary � = � � + . In
this con“guration, as noted in Sections 1 and A.5, the normal vectorn will
always be taken to point out from � Š into � + , and H 1

loc(� + ) is as de“ned
in (A.30).

Lemma 2.6. If u � C2(� + ) � H 1
loc(� + ) and u satis“es the Helmholtz

equation (1.1) in � + and the Sommerfeld radiation condition (2.9), then
�

� +

�
|
 u|2 Š k2|u|2

	
dx = I Š

�

�
� ū � nu ds (2.11)

where

I := lim
R��

�

� R

ū
�u
�r

ds = i k lim
R��

�

� R

|u|2 ds = i k
�

SdŠ 1
|F (�x)|2 d�x,

and the integral over � + in (2.11) is understood as the improper integral
limR��



B R � � +

�
|
 u|2 Š k2|u|2

	
dx.

We will study, in the unbounded domain � + , the exterior Dirichlet prob-
lem:

Given h � H 1/ 2(�), “nd u � C2(� + ) � H 1
loc(� + ) such that (1.1) holds

in � + , �u = h on �, and u satis“es the radiation condition (2.9). (2.12)

We will also study the exterior impedance problem:

Given h � H Š 1/ 2(�) and 	 � L � (�), “nd u � C2(� + )�

H 1
loc(� + ) such that (1.1) holds in � + , � nu + i k	u = h on �, (2.13)

and u satis“es the radiation condition (2.9).

(The sign change in this impedance boundary condition compared to (2.1)
is because the normaln here points into the domain of propagation.)

In contrast to the interior Dirichlet and Neumann problems, both prob-
lems (2.12) and (2.13) have at most one solution for allk > 0. This is a
consequence of Lemma 2.8 below, which in turn follows from the following
key lemma due to Rellich (for a proof see Colton and Kress 1983).
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Lemma 2.7. (Rellich) If u � C2(� + ) satis“es (1.1) in � + and the ra-
diation condition (2.9), and lim R��



� R

|u|2 ds = 0, then u is identically
zero.

Rellich•s lemma implies the following result (Colton and Kress 1983).

Lemma 2.8. If u � C2(� + ) � H 1
loc(� + ) satis“es (1.1) in � + , the radiation

condition (2.9), and

Im
�

�
� ū� nu ds � 0,

then u = 0 (in � + ).

Proof. The conditions of the lemma imply, by Lemma 2.6, that

k
�

SdŠ 1
|F (�x)|2 d�x = Im

�

�
� ū� nu ds � 0, (2.14)

so that F = 0 in L 2(SdŠ 1). It follows from Lemma 2.6 that

lim
R��

�

� R

|u|2 ds = 0

and hence, by Rellich•s lemma, thatu = 0.

An immediate consequence of Lemma 2.8 is the following uniqueness re-
sult for the exterior Dirichlet and impedance problems.

Corollary 2.9. The exterior Dirichlet BVP (2.12) and the exterior im-
pedance BVP (2.13), with Re	 	 0, each have at most one solution.

Corollary 2.9 is the uniqueness part of the following theorem.

Theorem 2.10. The exterior Dirichlet BVP and the exterior impedance
BVP, with Re 	 	 0, each have exactly one solution.

Proof. Existence follows from Corollary 2.28 below, which uses results
about invertibility of boundary integral operators.

Our prime interest in the above exterior Dirichlet and impedance prob-
lems is that they arise in the context of acoustic scattering. By acoustic
scattering we mean the problem of computing the scattered acoustic “eld
uS produced when an incident “eld uI interacts with an obstacle or obsta-
cles (the scatterer) occupying some closed set �, such that � + := Rd \ � is
an unbounded domain. By an incident “eld we mean the following.

DeÞnition 2.11. We call uI � L 1
loc(Rd) an incident “eld if, for some open

neighbourhoodG of �, uI |G � C� (G) and satis“es the Helmholtz equation
(1.1) in G. We will refer throughout to the sum u := uI + uS as the total
acoustic “eld (total “eld for short).
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We deal exclusively with the case when � is bounded, except in Sec-
tion 3.2. Further, except in Section 7.6, we deal exclusively with the case
where � = � Š , with � Š , the interior of �, a Lipschitz open set, in which
case �, the surface of the scatterer, is the common boundary of �+ and � Š .

We will focus particularly on the case when the incident “eld is a plane
wave, that is, for some �a � Rd with |�a| = 1,

uI (x) = exp(i kx · �a), x � Rd.

However, many of our results apply to general incident “elds, for example
the “eld generated by a point source, that is, for somez � Rd \ �,

uI (x) = � k(x, z), x � Rd \ { z} ,

where � k is the fundamental solution of the Helmholtz equation de“ned in
(1.2).

In this article we will focus on the cases of thesound-soft scatterer(where
u = 0 on �), the impedance scatterer, where (2.13) with h = 0 holds on �,
and the sound-hard scatterer, the special case of the impedance scatterer in
which �u/�n = 0 on �.

Considering “rst the sound-soft scattering problem, one natural formula-
tion, where our requirement onuS is continuity rather than membership of
a particular Sobolev space, is the following:

Find uS � C2(� + ) � C(� + ) such that (1.1) holds in � + , u = 0 (2.15)

(so uS = ŠuI ) on �, and uS satis“es the radiation condition (2.9).

In the case that � + is a Lipschitz domain, a second natural formulation is
to require that the scattered “eld uS satisfy the exterior Dirichlet problem
(2.12), with boundary data ŠuI |� . In other words uS satis“es:

Find uS � C2(� + ) � H 1
loc(� + ) such that (1.1) holds in � + , �u = 0 (2.16)

(so �u S = ŠuI |� ) on �, and uS satis“es the radiation condition (2.9).

It is shown in Colton and Kress (1998, Theorem 3.7) that problem (2.15)
has at most one solution, and the argument in the proof of that theorem
shows that if uS satis“es (2.15) and � + is Lipschitz, then uS satis“es (2.16).
Further, in the case that � + is Lipschitz, it is a corollary of Theorem 2.10
that (2.16) has exactly one solution which also satis“es (2.15); to see this
it is a matter of showing that if uS satis“es (2.16) then uS � C(� + ). This
does not follow from the Sobolev embedding theorem (Theorem A.1), but is
a consequence of elliptic regularity results up to the boundary;e.g., Kenig
(1994). Thus the following result holds.

Theorem 2.12. The Dirichlet scattering problem (2.15) has at most one
solution. In the case that � + is a Lipschitz domain, (2.15) and (2.16) share
the same unique solution, which satis“es� nu � L 2(�).
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Proof. In view of the discussion above it remains only to show that� nu �
L 2(�). But, by De“nition 2.11, for some neighbourhood G of �, uI |G �
C� (G) so that uI |� � C� (�) � H 1(�) (see Section A.3). Thus �u S �
H 1(�), and the fact that � nu � L 2(�) follows from Theorem A.5.

We remark that, while it is common (following the lead of Colton and
Kress 1983, for instance) to make use of the formulation (2.15) in the case
when � + is su�ciently smooth, precisely when � + is C1,µ for some µ �
(0, 1], overwhelmingly the recent numerical analysis literature for the case
of Lipschitz � + uses the formulation (2.16). Theorem 2.12 makes clear that
the formulation (2.15) is a valid alternative even in the Lipschitz case.

Consider next the impedance scattering problemformulated as follows.
Restricting attention to the case when � + is Lipschitz, we require that uS

satis“es the exterior impedance problem (2.13) with

h := Š
�

�u I

�n
+ i k	u I

� �
�
�
�
�

� L 2(�) . (2.17)

In other words, with h given by (2.17), uS satis“es:

Find uS � C2(� + ) � H 1
loc(� + ) such that (1.1) holds in

� + , � nu + i k	�u = 0 (so � nuS + i k	�u S = h) on �, (2.18)

and uS satis“es the radiation condition (2.9).

Analogously to Theorem 2.12, an immediate corollary of Theorem 2.10 and
Theorem A.5, is the following result.

Corollary 2.13. The impedance scattering problem (2.18) has exactly
one solution, which satis“es� nu � L 2(�) and �u � H 1(�).

2.2. Layer potentials

In Section 2.5 we will formulate the BVPs in the previous subsection as
BIEs. Here we introduce the requiredlayer potentials and recall some of
their properties.

Suppose that � + is an unbounded Lipschitz open set with boundary �, in
which case � Š := Rd \ � + is a bounded Lipschitz open set. For� � L 1(�)
and k > 0 let

Sk � (x) :=
�

�
� k (x, y)� (y) ds(y), x � Rd \ � , (2.19)

and

Dk� (x) :=
�

�

� � k (x, y)
�n (y)

� (y) ds(y), x � Rd \ � , (2.20)
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where the normal n is directed into � + . Note that, in particular, these
de“nitions apply for � � H s(�) with 0 � s � 1, since of courseH s(�) �
L 2(�) � L 1(�). Further, they extend in a natural way, via the duality
pairing �· , ·� � de“ned by (A.24), to the case that � � H s(�) for Š1 � s < 0.
In this case, for example, noting that � k (x, ·) � C� (�) � H Š s(�), Sk � (x) is
understood asSk� (x) = � � k (x, ·), � � � , and Dk� (x) is understood similarly.
Equivalently, Sk � (x) and Dk� (x) can be understood as the limits

Sk� (x) = lim
j ��

Sk � j (x), Dk � (x) = lim
j ��

Dk � j (x), (2.21)

where (� j ) � L 2(�) is any sequence converging inH s(�) to � � H s(�).
We will use the above de“nitions also fork = 0 with � 0 given by (1.2) in

the 3D case (d = 3). The de“nition (1.2) does not make sense whend = 2
and here we de“ne � 0 by

� 0(x, y) :=
1

2�
log

�
a

|x Š y|

�
, (2.22)

for some constanta > 0 (the usual choicea = 1). In both 2D and 3D, � 0
is the standard fundamental solution for the Laplace equation.

Boundary integral equation methods for solving the BVPs of Section 2.1
are based on solutions in terms of layer potentials. This is e�ective because
of the following simple result whose proof we sketch.

Theorem 2.14. For k 	 0 and � � H Š 1(�), Sk �, Dk � � C2(Rd \ �) and
satisfy (1.1) in Rd \ �. For k > 0, Sk� and Dk� satisfy the Sommerfeld
radiation condition (2.9).

Proof. For a proof in the case that � � C(�), see Colton and Kress (1983).
For Sk� the result follows for � � H Š 1(�) since C(�) is dense in H Š 1(�),
so that there exists a sequence (� j ) � C(�) with � � Š � j � H Š 1(�) � 0 as
j � � , which implies that Sk� j (x) � S k � (x) uniformly on compact subsets
of Rd \ �, from which it follows that Sk� satis“es (1.1). In the casek > 0
also, for all su�ciently large R,

max
|x|� R

�
|x| |Sk � j (x) Š Sk� (x)|

	
� 0, as j � � ,

from which it follows that Sk� satis“es the Sommerfeld radiation condition.
The same arguments work forDk� when � � H Š 1(�).

The above theorem, coupled with Lemma 2.5, implies that, fork > 0,
Sk� and Dk� both have the representation (2.10) at in“nity. In fact (see
Colton and Kress 1998, or McLean 2000, p. 294), the far-“eld patterns of
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Sk� and Dk� are, respectively,

FS(�x) = cd k(dŠ 3)/ 2
�

�
exp(Šik �x · y)� (y) ds(y) (2.23)

and

FD (�x) = Ši cd k(dŠ 1)/ 2
�

�
�x · n(y) exp(Šik �x · y)� (y) ds(y), (2.24)

where

cd =
eŠ i( dŠ 3)�/ 4

2(2� )(dŠ 1)/ 2
.

To derive BIEs for scattering problems, we need to supplement the above
result with mapping properties of Sk and Dk. In the following theorem,  �
C�

0 (Rd) is any smooth compactly supported function such that  (x) = 1
in a neighbourhood of � Š  � and, for example,  Sk denotes the compo-
sition of the operator Sk followed by multiplication by  . A consequence
of Theorem 2.15 is that Sk� � H 1

loc(Rd) and that Dk� � H 1
loc(� ± ). (From

(2.23) and (2.24) it follows that Sk� and Dk� decay too slowly at in“nity
for either to be in H 1(� + ).)

Theorem 2.15. For Š 1
2 � s � 1

2 and k 	 0, the following mappings are
bounded:

(i)  Sk : H sŠ 1/ 2(�) � H s+1 (Rd);
(ii)  Dk : H s+1 / 2(�) � H s+1 (� ± ).

A proof of the above theorem for the restricted range|s| < 1/ 2, derived
from the key paper by Costabel (1988), is given in McLean (2000). It
depends on characterizations of the single- and double-layer potential oper-
ators in terms of the adjoints of the trace and normal derivative operators,
respectively, and, in particular, depends on (A.17), which holds only for
1/ 2 < s < 3/ 2 and not for s = 1 / 2 (even for smooth boundaries �). Thus
the proof does not extend tos = ± 1/ 2. This is of signi“cance for us since,
for the most part, it will be precisely the limiting cases s = ± 1/ 2 that are
of interest.

To establish the mapping properties of Theorem 2.15 fors = ± 1/ 2 (which,
as McLean notes, imply the same mapping properties for|s| < 1/ 2 by in-
terpolation), we can use the equivalences of Corollary A.8. These, together
with the standard interpolation results, imply that Theorem 2.15 is equiv-
alent to Theorem 2.16 below. In this theorem, the so-callednon-tangential
maximal functions, u� and (
 u)� , are de“ned as in (A.36) and (A.37), ex-
cept that now �( x) := � + (x)  � Š (x), where { � ± (x) : x � � } denotes any
uniform and su�cient family of non-tangential approach sets in � ± , so that
� ± (x) � � ± , � ± (x) � � = { x} , and (A.32) holds with the same constant
C > 1 for every x � �.
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Theorem 2.16. For �, � � H Š 1(�) let u = Sk� and v = Dk� . Then, for
some constantC > 0 independent of� and � :

(i) if � � L 2(�) then ( 
 u)� � L 2(�) and � (
 u)� � L 2(�) � C� � � L 2(�) ;

(ii) if � � L 2(�) then v� � L 2(�) and � v� � L 2(�) � C� � � L 2(�) ;

(iii) if � � H Š 1(�) then u� � L 2(�) and � u� � L 2(�) � C� � � H Š 1(�) ;

(iv) if � � H 1(�) then ( 
 v)� � L 2(�) and � (
 v)� � L 2(�) � C� � � H 1(�) .

The proof of this theorem requires deep results from the harmonic anal-
ysis literature, speci“cally that part concerned with the study of Calderón…
Zygmund operators, in particular Cauchy integral and layer-potential oper-
ators on Lipschitz curves and surfaces.

For a proof of (i) and (ii) we refer the reader to the account in Meyer and
Coifman (2000) for the casek = 0 and Torres and Welland (1993) and Liu
(1995) for the extension tok > 0. It is convenient to leave remarks on the
proof of (iii) and (iv) (which are corollaries of (i) and (ii)) until we introduce
relevant boundary integral operators in the next subsection. Note that by
far the main part of the work is to establish results for k = 0. Extensions
from k = 0 to k > 0 by perturbation arguments are relatively straightfor-
ward becauseWk := � k Š � 0 is much smoother than � 0. Precisely, it follows
easily from (1.2) and the power series expansions for Hankel functions that
Wk(x, y) = wk(x Š y) where wk � C� (Rd \ { 0} ) and, for some constant
ck > 0,

|wk(x)| + |
 wk(x)| � ck , |� � wk(x)| �

�
ck log

�
|x|Š 1

	
, d = 2 ,

ck |x|Š 1, d = 3 ,
(2.25)

for |x| � 1/ 2. Here � is any multi-index with |� | = 2 so that � � wk is
any second-order partial derivative (we use here the notation (A.1)). The
monograph of Colton and Kress (1983) is a classic example of arguing by
perturbation from k = 0 to obtain results for k > 0; see also Torres and
Welland (1993), Liu (1995) and Mitrea (1996).

As in Section A.5, we denote the exterior and interior trace operators by
� + and � Š , and the exterior and interior normal derivative operators by � +

n
and � Š

n , respectively, with the normal directed out of � Š into the exterior
domain � + . Applying Theorem 2.15 with s = 0 and Theorem 2.14, we
see that, for � � H Š 1/ 2(�) and � � H 1/ 2(�), both  Sk � and  Dk� are in
H 1(� ± ), in fact in H 1(� ± ; �). (This notation is de“ned below equation
(A.26).) It follows from (A.17) that the traces � ± Sk� and � ± Dk� are well-
de“ned as elements ofH 1/ 2(�), and that (see (A.28)) the normal derivatives
� ±

n Sk� and � ±
n Dk� are well-de“ned as elements ofH Š 1/ 2(�). Moreover

(McLean 2000) the following jump relations hold:

� + Sk � = � Š Sk�, � +
n Dk� = � Š

n Dk�. (2.26)
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A natural question to ask is whether the traces and normal derivatives
of the single- and double-layer potentials,u = Sk� and v = Dk� , have
anything to do with the limiting values of u(x), v(x), 
 u(x) and 
 v(x) as
x approaches � from inside � ± . Reassuringly, this is the case, at least if the
densities � and � are smooth enough. As before Theorem 2.16, forx � �
let � ± (x) denote any non-tangential approach set tox from � ± , so that
� ± (x) � � ± , � ± (x) � � = { x} , and (A.32) holds. Then, if � � H sŠ 1/ 2(�)
and � � H s+1 / 2(�), for some s � (Š1/ 2, 1/ 2], it follows from Lemma A.9
that, for almost every x � �,

� ± u(x) = lim
y� x, y � � ± (x)

u(y) and � ± v(x) = lim
y� x, y � � ± (x)

v(y). (2.27)

Further, these non-tangential limits are well-de“ned, by Theorem 2.16 and
Corollary A.8, even for � � H Š 1(�) and � � L 2(�), providing an extension
of the notion of the traces of u and v to the cases of densities� � H Š 1(�)
and � � L 2(�).

Similarly, if � � L 2(�) and � � H 1(�) then, by Theorem 2.16 and
Lemma A.10, � ±

n u, � ±
n v � L 2(�) and, for almost all x � �,

� ±
n u(x) =

�u ±

�n
(x) := lim

y� x, y � � ± (x)
n(x) · 
 u(y) (2.28)

and

� ±
n v(x) =

�v ±

�n
(x) := lim

y� x, y � � ± (x)
n(x) · 
 v(y). (2.29)

Further, for almost all x � �, by Theorem 2.16 and Lemma A.10, 
 � �u �
L 2(�) and

lim
y� x,y � � ± (x)


 u(y) = 
 � � ± u(x) + n(x)� ±
n u(x) (2.30)

and

lim
y� x,y � � ± (x)


 v(y) = 
 � � ± v(x) + n(x)� ±
n v(x). (2.31)

2.3. Boundary integral operators

For k 	 0 we de“ne the acoustic single-and double-layer operators, Sk and
Dk, respectively, by

Sk� (x) :=
�

�
� k (x, y)� (y) ds(y),

Dk� (x) :=
�

�

� � k (x, y)
�n (y)

� (y) ds(y),
(2.32)

for x � �, where � k is given by (1.2) in 3D and in 2D by (1.2) for k > 0
and by (2.22) for k = 0.
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When � and � are both su�ciently smooth, it is well known that the above
integrals are well-de“ned (the integrands are in L 1(�)) for all x � �. In
particular (Colton and Kress 1983), this is the case if � is C2 and � � C(�),
with both Sk�, D k � � C(�). In the 2D case, with � � L 2(�) and � Lipschitz,
it still holds (by Cauchy…Schwarz, since �k(x, ·) � L 2(�) when d = 2), that
Sk� (x) is well-de“ned for all x � � and Sk� � C(�).

For Lipschitz �, the situation is more delicate for the double-layer po-
tential, but for � � L 2(�), irrespective of the dimension d, Sk� and Dk�
are well-de“ned by (2.32) for almost all x � �, with Dk� understood as the
Cauchy principal value integral

Dk� (x) := lim
� � 0

�

� \ B � (x)

� � k (x, y)
�n (y)

� (y) ds(y), x � � , (2.33)

whereB� (x) is the open ball of radius� centred at x and Sk�, D k� � L 2(�).
This result for the double-layer potential is not straightforward and was
established “rst for the casek = 0; see,e.g., Meyer and Coifman (2000) and
the discussion in the following paragraphs. The extension tok > 0 is more
straightforward; see Torres and Welland (1993).

As is well known, and will be recalled below,Sk� and Dk� appear when
we take boundary values of the single- and double-layer potentialsSk� and
Dk� . When we apply the normal derivative operator � n , two additional
boundary integral operators, D �

k and Hk, arise, which we will term the
(acoustic) adjoint double-layer operator and the (acoustic) hypersingular
operator, respectively. For � � L 2(�) and � � H 1(�) these operators are
given explicitly by

D �
k � (x) :=

�

�

� � k (x, y)
�n (x)

� (y) ds(y), (2.34)

Hk� (x) :=
�

�n (x)

�

�

� � k (x, y)
�n (y)

� (y) ds(y), (2.35)

for almost all x � �, where the integral de“ning D �
k � is understood as a

Cauchy principal value integral (as in (2.33)) while Hk� � L 2(�) is de“ned
in the sense of (2.29), that is,

Hk� (x) := lim
y� x, y � � ± (x)

n(x) · 
D k � (y). (2.36)

Note that for � � H 1/ 2(�), � +
n Dk� = � Š

n Dk� (see (2.26)). It follows from
(2.29) that the limits in (2.36) as y � x from � + (x) and from � Š (x)
coincide.

It is a consequence of Young•s inequality for convolutions thatSk is a
bounded operator on L 2(�). A much deeper result is that both Dk and
D �

k are bounded operators onL 2(�); for a clear discussion of the proofs
of these results fork = 0 see Meyer and Coifman (2000), and see Torres
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and Welland (1993) for the relatively straightforward extensions to k > 0.
This boundedness was established only in 1982 as a corollary of the proof of
Coifman, McIntosh and Meyer (1982) that the Cauchy integral operator is
bounded onL 2(�) when � is the graph of a Lipschitz-continuous function.
It was shown soon afterwards, by Verchota (1984), that, in the casek = 0,
Dk is also a bounded operator onH 1(�) and Sk a bounded operator from
L 2(�) to H 1(�); again, for extensions to k > 0 see Torres and Welland
(1993). The results in Verchota (1984) were achieved through the use of
Rellich-type identities, which we will make new use of in Section 5.7 (see
the discussion in Section 5.3).

Important identities, which follow by Fubini•s theorem for Sk, and by the
arguments of Meyer and Coifman (2000) plus Fubini•s theorem (to move
from k = 0 to k > 0) for Dk and D �

k , are that, for �, � � L 2(�),
�

�
� S k � ds =

�

�
� S k � ds,

�

�
� D k � ds =

�

�
� D �

k � ds. (2.37)

For k = 0 (when the kernels of the operators are real) this is precisely a
statement that, as operators on the Hilbert spaceL 2(�), D �

k is the adjoint
of Dk and Sk is self-adjoint. To frame these identities as statements about
adjoints for k > 0, let C : H s(�) � H s(�) denote the operation of complex
conjugation, that is,

Cu(x) := u(x), x � � ,

so that C is an anti-linear bounded operator onH s(�) for |s| � 1. Then, if
A� denotes the adjoint of a bounded linear operatorA on L 2(�), it follows
from (2.37) that

S�
k = CSkC, D �

k = CD �
kC. (2.38)

Combined with standard results on adjoints of operators on Hilbert spaces,
this has simple but important consequences, for example that

� Dk � L 2(�) � L 2(�) = � D �
k � L 2(�) � L 2(�) = � D �

k � L 2(�) � L 2(�) . (2.39)

A further important consequence follows from writing (2.37) in terms of the
duality pairing (A.24), as

�Sk �, � � � = � �, S �
k � � � , �Dk �, � � � = � �, D �

k � � � . (2.40)

These identities hold in the “rst instance just for �, � � L 2(�). But, since
Sk is a bounded operator fromL 2(�) to H 1(�), the “rst of these identities
can be extended to� � L 2(�), � � H Š 1(�), and used to show (together
with (2.38)) that Sk extends to a bounded operator fromH Š 1(�) to L 2(�).
Similarly, since Dk is a bounded operator onH 1(�) as well as on L 2(�),
the second of these identities implies thatD �

k extends to a bounded linear
operator onH Š 1(�). These remarks sketch the proof of most of the following
result.
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Theorem 2.17. For |s| � 1/ 2 and k 	 0 the following mappings are
bounded:

Sk : H sŠ 1/ 2(�) � H s+1 / 2(�) ,

Dk : H s+1 / 2(�) � H s+1 / 2(�) ,

D �
k : H sŠ 1/ 2(�) � H sŠ 1/ 2(�) .

Proof. We have shown the above mappings for the limiting casess = ± 1/ 2.
The results for intermediate values ofs follow by interpolation (see, e.g.,
the introduction and Theorems B.2 and B.11 in Appendix B of McLean
(2000)).

The connection between the above boundary integral operators and the
operators Sk and Dk is obtained via an extended version of the jump rela-
tions (2.26). From McLean (2000) we have, onH Š 1/ 2(�),

� ± Sk = Sk, � ±
n Sk = � 1

2I + D �
k , (2.41)

where I is the identity operator. Similarly, on H 1/ 2(�), we have

� ± Dk = ± 1
2I + Dk. (2.42)

For � � H 1(�) we have, from (2.26), (2.36) and (2.29), that

Hk� = � ±
n Dk�. (2.43)

To see that Hk extends (uniquely) to a bounded operator fromH s+1 / 2(�) to
H sŠ 1/ 2(�), for |s| � 1/ 2, and in particular that (2.43) holds for � � H 1/ 2(�),
our method is again to show this result “rst for k = 0 and then make
a perturbation argument. To obtain the result for k = 0 a convenient
route is to use the result of Verchota (1984) thatS0 : L 2(�) � H 1(�) is a
bijection. (There is a subtlety in dimension 2: we have to choosea in (2.22)
so that it does not equal the so-calledcapacity of �. For example, choosing
a larger than the diameter of � is su�cient. See Chapter 8 in McLean
(2000) and Section 4 of Verchota (1984).) This implies by duality that also
S�

0 = S0 : H Š 1(�) � L 2(�) is a bijection, and hence, by interpolation, that
S0 : H sŠ 1/ 2(�) � H s+1 / 2 is a bijection for |s| � 1/ 2. Uniqueness for the
interior Dirichlet problem for Laplace•s equation and the trace results (2.41)
and (2.42) imply that, for � � H 1(�),

D0� (x) = ŠS0SŠ 1
0

� 1
2I Š D0

	
� (x), x � � Š (2.44)

(a similar argument is used in Verchota 1984). By density ofH 1(�) in L 2(�),
and that both the left and right sides of this equation depend continuously
on � � L 2(�), it follows that (2.44) in fact holds for all � � L 2(�).

The identity (2.44) “rstly establishes (iv) in Theorem 2.16, as a corollary
of (i) (see the remarks following Theorem 2.16). Then, recalling that Ver-
chota (1984) also tells us that 1

2I Š D0 is a bijection on H s(�) for s = 0 and
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1, and hence by interpolation for all 0� s � 1, we can rewrite (2.44) as

S0� (x) = ŠD 0
� 1

2I Š D0
	 Š 1S0� (x), x � � Š , (2.45)

for � � H Š 1(�). Hence we are able to deduce (iii) in Theorem 2.16 as a
corollary of (ii). Finally, combining (2.41), (2.42), and (2.44), we see that,
on H 1(�),

H0 = Š� Š
n S0SŠ 1

0

� 1
2I Š D0

	
= Š

� 1
2I + D �

0

	
SŠ 1

0

� 1
2I Š D0

	
. (2.46)

This identity, combined with the above observation that S0 : H sŠ 1/ 2(�) �
H s+1 / 2(�) is a bijection, and Theorem 2.17, allows us to extend the do-
main of de“nition of H0, and implies, together with the bounds (2.25), the
following result.

Theorem 2.18. For |s| � 1/ 2, the hypersingular operator

Hk : H s+1 / 2(�) � H sŠ 1/ 2(�) ,

and this mapping is bounded.

2.4. Green•s representation theorems

Our main starting point for our numerical schemes will be integral equa-
tions obtained from Green•s theorems. We begin with the following simple
consequence of (A.29).

Theorem 2.19. (GreenÕs second formula) Suppose that D is a Lip-
schitz open set and thatu, v � H 1(D ; �). Then

�

�

�
�v� nu Š �u� nv

	
ds =

�

D

�
v� u Š u� v

	
dx.

From this theorem we deduceGreen•s representation theorems. As in the
previous subsection, �Š is a bounded Lipschitz open set, and �+ = Rd \ � Š
is assumed to be connected, and so is an unbounded Lipschitz domain, and
the trace and normal derivative operators, � ± and � ±

n , are as de“ned in
Section A.5.

Theorem 2.20. If u � H 1(� Š ) � C2(� Š ) and, for somek 	 0, � u+ k2u =
0 in � Š , then

Sk� Š
n u(x) Š D k� Š u(x) =

�
u(x) x � � Š ,
0 x � � + .

(2.47)

Proof. For x � � + this is an immediate consequence of Theorem 2.19,
applied with D = � Š and v = � k(·, x). For x � � Š , the application
of Theorem 2.19 is in � Š with a small ball of radius � removed, and the
theorem follows on taking the limit � � 0; see Colton and Kress (1983) for
details.
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The following is the version of Green•s representation theorem which holds
in exterior domains. It is shown by applying Theorem 2.20, with � Š re-
placed by the part of � + contained in a large ball of radius R, and then
letting R � � . The integral around the boundary of the large ball vanishes
in this limit as a consequence of the Sommerfeld radiation condition (2.9)
satis“ed by u and by � k(·, x); see Colton and Kress (1983) for details.

Theorem 2.21. If u � H 1
loc(� + ) � C2(� + ) and, for some k > 0, � u +

k2u = 0 in � + and u satis“es the Sommerfeld radiation condition (2.9) in
� + , then

ŠSk� +
n u(x) + Dk� + u(x) =

�
u(x) x � � + ,
0 x � � Š .

(2.48)

2.5. Boundary integral equation formulations

We have set up the tools that we need to derive BIE formulations of the
BVPs in Section 2.1. Our main tool for computation will be so-called di-
rect BIE formulations, namely, integral equation formulations derived from
the Green•s representation theorems in which the solution to the integral
equation is either the trace or normal derivative of the solution to the BVP.
The starting point to derive these BIEs are the representation formulae in
Theorems 2.20 and 2.21.

To describe the integral equations succinctly, we de“ne the matrices of
operators

P± = ±


� ± Dk Š� ± Sk
� ±

n Dk Š� ±
n Sk

�
. (2.49)

These are the so-calledCalderón projectors; we will see shortly that these
are indeed projection operators (for example on the Hilbert spaceH 1/ 2(�) ×
H Š 1/ 2(�)). Applying the jump relations, (2.41), (2.42) and (2.43), we “nd
that

P± = 1
2I ± M k, (2.50)

where I is the (2 × 2 matrix) identity operator and M k is the matrix of
boundary integral operators

M k =

Dk ŠSk
Hk ŠD �

k

�
. (2.51)

To see whereP+ arises, we apply the trace operator� + and then the
normal derivative operator � +

n to (2.48) to obtain two equations which we
can write in matrix form as

P+ c+ u = c+ u, (2.52)

where c+ u = [ � + u, � +
n u]T is the Cauchy data for u on �. Explicitly, using
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(2.50), these two equations are
�
Dk Š 1

2I
	
� + u Š Sk� +

n u = 0 (2.53)

and

Hk� + u Š
�
D �

k + 1
2I

	
� +

n u = 0 , (2.54)

each a linear relationship between the components� + u and � +
n u of the

Cauchy data c+ u. Similar relationships between the components of the
Cauchy data cŠ u = [ � Š u, � Š

n u]T are obtained by applying � Š and � Š
n to

(2.47). We summarize these key results in the following lemma.

Lemma 2.22. If u � H 1(� Š ) � C2(� Š ) and, for somek 	 0, � u+ k2u = 0
in � Š , then PŠ cŠ u = cŠ u. Similarly, if u � H 1

loc(� + ) � C2(� + ) and, for
somek > 0, � u + k2u = 0 in � + and u satis“es the Sommerfeld radiation
condition (2.9) in � + , then P+ c+ u = c+ u.

Of course, this lemma implies that if, for somek > 0, u � H 1(� Š ) �
H 1

loc(� + ) � C2(Rd\ �), � u+ k2u = 0 in Rd\ �, and u satis“es the Sommerfeld
radiation condition, then P± c± u = c± u. In particular, by Theorems 2.14
and 2.15, the following lemma holds.

Lemma 2.23. If u = Dk� 1 Š Sk� 2 with � 1 � H 1/ 2(�), � 2 � H Š 1/ 2(�),
then

P± c± u = c± u.

Further, writing � = [ � 1, � 2]T , it follows immediately from the de“nition
(2.49) that

c± u = ± P± �,

so that

P2
± � = ± P± c± u = ± c± u = P± �.

This lemma con“rms that P± are projection operators on H 1/ 2(�) ×
H Š 1/ 2(�), i.e., that P2

± = P± . Further, in view of (2.50), this projection
property is equivalent to the very useful identity

M 2
k = 1

4I, (2.55)

which, written out in component form, is

SkHk = D 2
k Š 1

4I, D kSk = SkD �
k , HkDk = D �

kHk, (2.56)

plus a further identity, obtained from the “rst identity by taking adjoints.
Lemma 2.22 is the basis for all the standard direct BIE formulations

for interior and exterior acoustic BVPs. For example, if u satis“es the
exterior Dirichlet problem (2.12), then it follows immediately from (2.52),
in component form (2.53) and (2.54), that � +

n u satis“es both

Sk� +
n u =

�
Dk Š 1

2I
	
h (2.57)
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and
�
D �

k + 1
2I

	
� +

n u = Hkh. (2.58)

Similarly, if u satis“es the interior Dirichlet problem (2.4), then, from
Lemma 2.22, in particular from the equation PŠ cŠ u = cŠ u, it follows that

Sk� Š
n u =

�
Dk + 1

2I
	
h (2.59)

and
�
D �

k Š 1
2I

	
� Š

n u = Hkh. (2.60)

Let us make two simple observations here. Firstly, all these equations are
BIEs of the form

A� = �, (2.61)

where A is a linear combination of boundary integral operators and the
identity, � is the solution to be determined and� is given data. Secondly
we observe that the same operatorA can arise from both interior and exte-
rior problems. This has the important implication that, although exterior
acoustic problems are generically uniquely solvable (this holds in particu-
lar for the exterior Dirichlet and Neumann/impedance problems that we
focus on in this article: see Theorem 2.10), the natural BIE formulations of
these problems need not be uniquely solvable for all wavenumbersk. For
example, Theorem 2.1 shows that the homogeneous interior Dirichlet prob-
lem has non-trivial solutions at a sequencekm of positive wavenumbers. If
k = km and u is such a solution then� Š

n u is a solution of (2.59) with h = 0
(a non-trivial solution by Theorem 2.4 which implies that � Š

n u �= 0), and so,
for k = km , the BIE (2.57) for the exterior Dirichlet problem has in“nitely
many solutions (in H Š 1/ 2(�)).

In (2.57)…(2.60) we have stated four standard BIEs for the exterior and
interior Dirichlet BVPs. Similarly, we can write down BIEs for the exterior
and interior Neumann problems (problems (2.5) and (2.13) with 	 set to
zero); indeed these equations are just equations (2.57)…(2.60) re-interpreted
as equations where the unknown is the Dirichlet datah and the known
function is � nu.

Another popular and closely related approach is theindirect method
where the solution is sought in the form of a layer potential with some
unknown density, for example in the form

u = Sk� or u = Dk�, (2.62)

for some� � H Š 1/ 2(�) or � � H 1/ 2(�). By Theorems 2.14 and 2.15 these
satisfy each of the BVPs of Section 2.1 provided the relevant boundary
condition is satis“ed. For example, u = Sk� satis“es the exterior Dirichlet
problem (2.12) if and only if � + u = h, that is,

Sk � = h; (2.63)
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similarly u = Dk� satis“es (2.12) if and only if � + u = h, that is,
� 1

2I + Dk
	
� = h. (2.64)

Like (2.57) and (2.58), these equations are of the form (2.61); indeed, with
the same operatorA = Sk in (2.63) and (2.57), and with closely related
operators in (2.58) and (2.64).

We recall (see (2.38)) thatD �
k is closely related to the Hilbert space adjoint

of Dk. Seeking to generalize this, let us denote byA� the quasi-adjoint of
an operator A, where we callA� the quasi-adjoint of A if

A� = CA� C, (2.65)

where A� is the Hilbert space adjoint of A. We call A quasi-self-adjoint if
A� = A. Then (see (2.38))D �

k is the quasi-adjoint of Dk and Sk is quasi-
self-adjoint, and moreover

� 1
2I + Dk

	 � = 1
2I + D �

k ,

that is, the operator in (2.64) is the quasi-adjoint of that in (2.58).

Remark 2.24. An important observation is that A, A� and (as a conse-
quence of (2.65))A� all share the same norm. Furthermore, one of the three
is invertible if and only if they are all invertible. Moreover, if they are all
invertible, then their inverses share the same norm.

The observation that the operator in (2.64) is the quasi-adjoint of that
in (2.58) holds more generally: the indirect BIE method gives rise to equa-
tions of the form (2.61) where the operator A is the quasi-adjoint of an
equation arising from the direct BIE approach. In particular the interior
and exterior Dirichlet and Neumann problems all give rise to BIEs of the
form (2.61) and the operators that arise are tabulated in Table 2.1. In the
column labelled •Direct•, we list the operators in the direct BIEs which fol-
low from Lemma 2.22, while in the column labelled •Indirect• we show this
information for the indirect BIEs which arise from looking for the solution
in the form (2.62).

Let us pull out a few points from this table. Observe “rst that each op-
erator in the third column is the quasi-adjoint of the operator immediately
to its left. The message here is, roughly speaking, that the indirect for-
mulation does not give rise to di�erent operators to invert from the direct
formulation, in particular all spectral properties (relevant for conditioning
and behaviour of iterative solvers) are the same. Secondly, note that the
collection of operators arising in the di�erent formulations of the exterior
Dirichlet and Neumann problems is precisely the same collection of oper-
ators as arises in the formulation of the interior problems. Finally, recall
that we argued below equation (2.61) that (2.57) has in“nitely many solu-
tions in H Š 1/ 2(�) at wavenumbers k for which the interior Dirichlet problem
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Table 2.1. The integral operator A, in the equation of the form (2.61), that
arises from a direct formulation from Lemma 2.22 (column 2) or an indirect
formulation, looking for a solution in the form (2.62) (column 3). The operators
in a particular row are not invertible for values of k, for which the homogeneous
interior problem indicated in the last column has non-trivial solutions.

Direct Indirect Homogeneous interior
problem

Interior Dirichlet problem Sk Sk Dirichlet
1
2 I Š D �

k
1
2 I Š Dk Dirichlet

Interior Neumann problem 1
2 I + Dk

1
2 I + D �

k Neumann
Hk Hk Neumann

Exterior Dirichlet problem Sk Sk Dirichlet
1
2 I + D �

k
1
2 I + Dk Neumann

Exterior Neumann problem 1
2 I Š Dk

1
2 I Š D �

k Dirichlet
Hk Hk Neumann

(2.4) with h = 0 has non-trivial solutions, so that Sk (as an operator from
H Š 1/ 2(�) to H 1/ 2(�)) cannot be invertible at those frequencies. Arguing
similarly, as indicated in Table 2.1, one can show thatHk, as an operator
from H 1/ 2(�) to H Š 1/ 2(�) is not invertible if the interior Neumann problem
has non-trivial solutions and that 1

2I ± Dk and 1
2I ± D �

k are not invertible if
particular homogeneous interior problems have non-trivial solutions. These
are either the Dirichlet problem ((2.4) with h = 0) or the Neumann problem
((2.5) with 	 = h = 0), as indicated in the last column of the table.

Let us summarize what is known about the invertibility of the operators
in Table 2.1 in a theorem.

Theorem 2.25. For k > 0 and |s| � 1
2 the mappings

Sk : H sŠ 1/ 2(�) � H s+1 / 2(�) ,
� 1

2I ± Dk
	

: H s+1 / 2(�) � H s+1 / 2(�) ,

Hk : H s+1 / 2(�) � H sŠ 1/ 2(�) ,
� 1

2I ± D �
k

	
: H sŠ 1/ 2(�) � H sŠ 1/ 2(�)

are all Fredholm of index zero. Further, Sk, 1
2I Š Dk and 1

2I Š D �
k are

invertible as mappings between the spaces indicated above for|s| � 1/ 2 if
and only if the interior homogeneous Dirichlet problem ((2.4) with h = 0)
only has the trivial solution, while Hk, 1

2I + Dk and 1
2I + D �

k are invertible
if and only if the interior homogeneous Neumann problem ((2.5) with 	 =
h = 0) only has the trivial solution.
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Proof. All the mappings are bounded by Theorems 2.17 and 2.18. Note
that, as discussed before Theorem 2.18,S0 is invertible as a mapping from
L 2(�) to H 1(�) and as a mapping from H Š 1(�) to L 2(�), provided that,
in the 2D case, a in (2.22) is chosen su�ciently large (which we assume
throughout). It is enough to focus on the operatorsSk, Hk, 1

2I Š D �
k , and

1
2I + Dk, as the results for the other two operators follow by taking quasi-
adjoints. So let Rk denote one of these operators. To show thatRk is
Fredholm of index zero for all k and |s| � 1/ 2, it is enough to show that
Rk = R• + Ck where R• is invertible and Ck is compact. Further, it is
enough to show thatR• is invertible and Ck compact for the limiting values
s = ± 1/ 2. (The full range |s| � 1/ 2 follows from the limiting cases by
interpolation: see Appendix B (especially Theorem B.2) in McLean (2000)
and Cobos, Edmunds and Potter (1990).) Once we have shown thatRk
is Fredholm of index zero, the theorem is proved if we can show, for each
s in the range |s| � 1/ 2, that Rk is invertible if and only if the relevant
homogeneous interior problem only has the trivial solution. SinceRk is
Fredholm of index zero, invertibility of Rk is equivalent to injectivity. This
injectivity has to be shown for all |s| � 1/ 2. However, H r (�) is dense in
H t (�) for Š1 � t < r � 1, so that a standard result of Fredholm theory
(see, for example, Section 1 in Pr¨ossdorf and Silbermann 1991) implies that,
if an operator L is Fredholm of the same index onH r (�) and H t (�), then
the null space ofL is the same in each space. This result is applied directly
to Rk in the casesRk = 1

2I + Dk and Rk = 1
2I Š D �

k , and is applied to
SŠ 1

0 Sk and S0Hk in the casesRk = Sk and Rk = Hk, respectively, and
implies that the null space of Rk is independent of s so that injectivity
for s = 0 is equivalent to injectivity for all |s| � 1/ 2. Thus the proof is
completed if we can show thatRk is injective for s = 0 if and only if the
relevant homogeneous interior problem only has the trivial solution. But
this is well known (see, for example, the results in Section 7.6 of Steinbach
2008), following easily from Theorems 2.14 and 2.15 and the jump relations
(2.41), (2.42) and (2.43). (See also the discussion in the paragraph below
(2.59) and (2.60).)

We now give a proof of the fact that Rk = R• + Ck, with R• invertible and
Ck compact, for s = ± 1/ 2. This step varies between the distinct choices
Rk = Sk, 1

2I Š D �
k , 1

2I + Dk, and Hk. In each case it follows from the bounds
(2.25) that the di�erence Rk Š R0 is compact for all k > 0 for s = ± 1/ 2.
(For example, Sk Š S0 is a compact operator fromL 2(�) to H 1(�) because
Sk Š S0 and 
 � (Sk Š S0) are compact operators onL 2(�), this being clear
from the bounds (2.25), which imply that these are integral operators on
L 2(�) with bounded kernels. Then the fact that Sk Š S0 = ( Sk Š S0)� is a
compact operator fromH Š 1(�) to L 2(�) follows by duality.) When Rk = Sk
a sensible splitting isR• = R0 = S0 and Ck = Sk Š S0. This works because
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R• = S0 is invertible for s = ± 1/ 2. Likewise, it is shown in Verchota (1984)
that 1

2I Š D0 is invertible on L 2(�) and H 1(�). Thus, taking adjoints, when
Rk = 1

2I Š D �
k , R0 is invertible on L 2(�) and H Š 1(�).

The splitting in the other two cases is slightly more subtle becauseH0 and
1
2I + D0 are not invertible (but are Fredholm of index zero). For |s| � 1/ 2
and � � H s(�) let

P � = |� |Š 1 � �, 1� � 1,

where 1 is the constant function on � with value one, �· , ·� � is the dual-
ity pairing (A.24), and |� | = � 1, 1� � =



� ds. Then, for |s| � 1, P is a

(bounded) projection operator, mapping H s(�) onto the one-dimensional
subspace of constant functions. For|s| � 1, let H s

� (�) := { � � H s(�) :
P � = 0 } , a closed subspace ofH s(�) of co-dimension 1. Where T := 1

2I + D �
0

and L 2
� (�) := H 0

� (�), it is shown as Theorem 3.3(i) in Verchota (1984) that
T : L 2

� (�) � L 2
� (�) is invertible and T : L 2(�) � L 2

� (�). This implies that
T as an operator onL 2(�) is Fredholm of index zero (note that if � � L 2(�)
and T � = 0, then � is a multiple of 1Š (T|L 2

� (�) )Š 1T1, so that the null space
of T has dimension one). Thus, so is its dual,T � = 1

2I + D0. Further, (2.56)
implies that, as an operator onH Š 1(�),

T = 1
2I + D �

0 = SŠ 1
0 ( 1

2I + D0)S0,

so that T is Fredholm of index zero also onH Š 1(�) and, passing to adjoints,
T � is Fredholm of index zero onH 1(�). A splitting of Rk = 1

2I + Dk is
Rk = R• + Ck with R• = T � + P � = ( T + P)� and Ck = Dk Š D0 Š P� .
Ck is compact on L 2(�) and H 1(�) and R• is Fredholm of index zero on
each space. To see thatR• is invertible, it is enough to show that T + P is
injective, and indeed to show that it is injective as an operator onL 2(�).
But, if � � L 2(�) and ( T + P)� = 0, then, since T maps L 2(�) onto L 2

� (�),
PT � = 0 so that P � = P2� = 0 and � � L 2

� (�) with T � = 0. Thus � = 0
since T is invertible on L 2

� (�). Finally, that H0 is Fredholm of index zero
as a mapping fromL 2(�) to H Š 1(�) and from H 1(�) to L 2(�) follows from
(2.46) and the results just discussed. This identity and the above results
imply further that a suitable splitting of Rk = Hk is Rk = R• + Ck with

R• = Š( 1
2I + D �

0 + P)SŠ 1
0 ( 1

2I Š D0),

which has R• invertible and a compact perturbation of H0, so that Ck is
compact.

An attraction of the BIE (2.57) for the exterior Dirichlet problem (and
the corresponding formulation for the Neumann problem where the operator
is Hk) is that, even at frequencies where the operator is not invertible, the
integral equation formulation is still equivalent to the BVP formulation, in
a sense that we make precise now for the Dirichlet case in a theorem.
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Theorem 2.26. If u satis“es the exterior Dirichlet problem (2.12), then

u(x) = Dkh(x) Š Sk� +
n u(x), x � � + , (2.66)

and � +
n u � H Š 1/ 2(�) satis“es (2.57). Conversely, if � � H Š 1/ 2(�) is a

solution to the integral equation (2.57) and

u(x) := Dkh(x) Š Sk� (x), x � � + , (2.67)

then u satis“es (2.12).

Proof. If u satis“es (2.12) then Theorem 2.21 implies that (2.66) holds,
and we have seen above that (2.57) follows by taking traces. Conversely,
if � � H Š 1/ 2(�) is a solution to (2.57), that is, Sk � = ( Dk Š 1

2I )h, and
u is de“ned by (2.67), then, applying (2.41) and (2.42), it follows that
� + u = ( 1

2I + Dk)h Š Sk� = h. Thus, and by Theorems 2.14 and 2.15,u
satis“es (2.12).

2.6. Combined potential integral equations

As is clear from Theorem 2.25, none of the BIEs detailed above have unique
solutions at all wavenumbersk > 0. In the case of direct formulations one
simple and e�ective solution to this, an idea which dates back at least to
Burton and Miller (1971), is to take linear combinations of the equations
that we have met already. In particular, taking a linear combination of
(2.57) and (2.58), we obtain

A�
k,� � +

n u = Bk,� h, (2.68)

where � � C is a parameter that we need to choose andA�
k,� , Bk,� are the

operators

A�
k,� = 1

2I + D �
k Š i�S k and Bk,� = Hk + i �

� 1
2I Š Dk

	
. (2.69)

Equation (2.68), considered as a reformulation of the exterior Dirichlet prob-
lem (2.12), will be the focus of much of the numerical analysis in this review.
Equation (2.68) can also be viewed as a reformulation of the exterior Neu-
mann problem ((2.13) with 	 = 0), in which case � +

n u is the known data
and h = � + u is to be determined, this being the point of view taken in
Burton and Miller (1971). We will see in Theorem 2.27 that both A�

k,� and
Bk,� are invertible (considered as operators between appropriate pairs of
Sobolev spaces) for allk > 0 provided Re� �= 0, the argument justifying
the injectivity of Bk,� dating back to Burton and Miller (1971).

Alternatively, we can formulate uniquely solvable indirect integral equa-
tions. In these equations the operators to be inverted are the quasi-adjoints
of A�

k,� and Bk,� . In particular, if we look for a solution of (2.12) in the
form of the combined layer-potential

u(x) = Dk� (x) Š i� Sk � (x), x � � + , (2.70)
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for some� � H 1/ 2(�) and � � C, we see from Theorems 2.14 and 2.15 and
from (2.41) and (2.42) that u satis“es (2.12) if and only if

Ak,� � = h, (2.71)

where Ak,� is the quasi-adjoint of A�
k,� , that is,

Ak,� = 1
2I + Dk Š i�S k. (2.72)

Equation (2.71) and this method for solving the exterior Dirichlet problem
date back to Brakhage and Werner (1965), Leis (1965) and Pani�c (1965).

Similarly, u given by (2.70) with � � H 1/ 2(�) satis“es the exterior im-
pedance problem (2.13) if and only if

C�
k,�,k� � = h (2.73)

where, for �� � L � (�),

C�
k,�, �� = B �

k,� + i��A k,� and B �
k,� = Hk + i �

� 1
2I Š D �

k

	
(2.74)

is the quasi-adjoint of Bk,� . Of course,C�
k,�,k� = B �

k,� in the Neumann BVP
case	 = 0.

The corresponding direct formulation for the exterior impedance problem
follows essentially from (2.68). Ifu satis“es (2.13) then, by Lemma 2.22, in
particular from (2.53) and (2.54), we see that

� 1
2I Š Dk

	
� + u Š ikSk(	� + u) = ŠSkh (2.75)

and

Hk� + u + i k
� 1

2I + D �
k

	
(	� + u) =

� 1
2I + D �

k

	
h. (2.76)

For the case	 = 0 (the exterior Neumann problem) we have seen in Table 2.1
that equation (2.75) is not uniquely solvable at wavenumbersk for which
the homogeneous interior Dirichlet problem has a non-trivial solution, and
(2.76) is not uniquely solvable at wavenumbers for which the homogeneous
interior Neumann problem has a non-trivial solution. These statements
hold equally for 	 �= 0; this can essentially be read o� from Table 2.1. In
particular, from (2.59) and (2.60) we see that, if u is a non-trivial solution
of the homogeneous interior Dirichlet problem ((2.4) with h = 0), then
� Š

n u (which is non-zero by Theorem 2.4) is in the null space of bothSk and
1
2I Š D �

k , and hence in the null space of12I Š D �
k Š ik	S k, for any 	 � L � (�).

Thus, if (2.4) with h = 0 has a non-trivial solution, then 1
2I Š D �

k Š ik	S k

is not invertible. Hence by Remark 2.24 its quasi-adjoint 1
2I Š Dk Š ikSk	 ,

which is the operator on the left-hand side of (2.75), also is not invertible.
We obtain a direct combined potential formulation of the exterior im-

pedance problem by taking a linear combination of equations (2.75) and
(2.76), which gives

Ck,�,k� �u = A�
k,� h, (2.77)
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where Ck,�, �� is the quasi-adjoint of C�
k,�, �� , de“ned explicitly by

Ck,�, �� � := Bk,� � + i A�
k,� (��� ), � � H 1/ 2(�) . (2.78)

We can deduce mapping properties of the operatorsAk,� , Bk,� , Ck,�, �� and
their quasi-adjoints straightforwardly from Theorem 2.17. This is the con-
tent of the “rst sentence of the following theorem.

Theorem 2.27. For k 	 0, � � C, |s| � 1
2, and �� � L � (�), the mappings

Ak,� : H s+1 / 2(�) � H s+1 / 2(�) , A�
k,� : H sŠ 1/ 2(�) � H sŠ 1/ 2(�) ,

Bk,� : H s+1 / 2(�) � H sŠ 1/ 2(�) , B �
k,� : H s+1 / 2(�) � H sŠ 1/ 2(�) ,

Ck,�, �� : H s+1 / 2(�) � H sŠ 1/ 2(�) , C�
k,�, �� : H s+1 / 2(�) � H sŠ 1/ 2(�) ,

are bounded. Further, for k > 0 and Re� �= 0 the mappings for Ak,� , A�
k,� ,

Bk,� and B �
k,� are invertible; the mappings for Ck,�, �� and C�

k,�, �� are also
invertible provided also that Re �� 	 0.

Proof. That these mappings are bounded follows from Theorems 2.17 and
2.18. It is enough (cf. Remark 2.24) to show the invertibility of A�

k,� , Bk,� ,
and Ck,�, �� , with the invertibility of the other operators following by passing
to adjoints. A main step in proving the invertibility of these three operators
is to show that each is Fredholm of index zero for|s| � 1/ 2. But this fol-
lows from Theorem 2.25 since, for|s| � 1

2, A�
k,� is a compact perturbation

of 1
2I + D �

k and Bk,� and Ck,�, �� are compact perturbations of Hk. These
compactness results follow from the boundedness of the mappings in The-
orem 2.17 and that the operator embeddingH t (�) into H r (�) is compact
for Š1 � r < t � 1. To establish invertibility, it remains to show injectivity
and, arguing as in the proof of Theorem 2.25, it is enough to show this
injectivity for the standard case s = 0. We give the proof of injectivity for
just one of these operators, namelyA�

k,� , which is the focus of much of the
rest of this article, following Theorem 2.7 in Chandler-Wilde and Langdon
(2007). The proofs for the other operators are similar.

So suppose that� � H Š 1/ 2(�) and A�
k,� � = 0 and let u = Sk� . Then,

using (2.41) and Theorems 2.14 and 2.15, we see thatu satis“es the interior
impedance problem (2.5) with h = 0 and 	 = �/k , in particular � Š

n u Š
i�� Š u = A�

k,� � = 0. It follows from Theorem 2.3 that, provided Re � �= 0,
u = 0 in � Š . This (together with Theorems 2.14 and 2.15) implies that
u in � + satis“es the homogeneous exterior Dirichlet problem ((2.12) with
h = 0), in particular � + u = � Š u = 0. It follows from Corollary 2.9 that
u = 0 in � + so that � = � Š

n u Š � +
n u = 0.

The implications of this for our combined potential integral equation for-
mulations is spelled out in the following corollary. This corollary provides
further the promised proof of the existence part of Theorem 2.10.
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Corollary 2.28. Suppose that k > 0 and � � C with Re � �= 0. Then
both the following statements hold.

(i) For every h � L 2(�) the integral equation (2.71) has exactly one solu-
tion � � L 2(�), and if h � H s(�) for 0 � s � 1 then also � � H s(�).
If h � H 1/ 2(�) and � � H 1/ 2(�) is the unique solution of (2.71), then
u given by (2.70) is the unique solution of (2.12). Conversely, ifu is
the unique solution of (2.12) then � +

n u � H Š 1/ 2(�) is the unique so-
lution of (2.68). Further, if h = � + u � H s(�) for 1 / 2 < s � 1 then
� +

n u � H sŠ 1(�).

(ii) For every h � H Š 1(�) the integral equation (2.73) has exactly one
solution � � L 2(�), and if h � H s(�) for Š1 � s � 0 then also
� � H s+1 (�). If h � H Š 1/ 2(�) and � � H 1/ 2(�) is the unique solu-
tion of (2.73), then u given by (2.70) is the unique solution of (2.13).
Conversely, if u is the unique solution of (2.13) then � + u � H 1/ 2(�)
is the unique solution of (2.77). Further, if h = � + u � H s(�) for
Š1/ 2 < s � 0 then � + u � H s+1 (�).

The above corollary makes clear that the exterior Dirichlet, Neumann
and impedance BVPs can be solved by combined potential integral equation
formulations. Essentially the same boundary integral operators arise when
we solve the interior impedance BVP (2.5). To see this, extending the
notations (2.72) and (2.74), for � � L � (�), we de“ne the bounded operators
Ak,� : H s(�) � H s(�) and B �

k,� : H s(�) � H sŠ 1(�), for 0 � s � 1, by

Ak,� � = 1
2� + Dk� Š iSk(�� ) and B �

k,� � = Hk� + i
� 1

2I Š D �
k

	
(�� ), (2.79)

and, with Ak,� and Bk,� de“ned in this way, de“ne the bounded operator
Ck,�, �� , for �� � L � (�), by (2.78). Thus the following result contains the
invertibility statements about Ak,� and B �

k,� in Theorem 2.27 as a special
case. Its proof is a straightforward variation on the proof of Theorem 2.27.

Theorem 2.29. If � � L � (�) and Assumption 2.2 holds with 	 replaced
by � , then the operators Ak,� and B �

k,� are invertible as mappingsAk,� :

H s+1 / 2(�) � H s+1 / 2(�) and B �
k,� : H s+1 / 2(�) � H sŠ 1/ 2(�), for |s| � 1/ 2.

Further, if also �� � L � with Re �� 	 0, then also C�
k,�, �� : H s+1 / 2(�) �

H sŠ 1/ 2(�) is invertible for |s| � 1/ 2.

These generalizations ofAk,� and B �
k,� arise when we make a direct for-

mulation of the interior impedance problem (2.5).

Theorem 2.30. If u satis“es the interior impedance problem (2.5), then

Ak,k� � Š u = Skh, (2.80)

B �
k,k� � Š u = Š

� 1
2I Š D �

k

	
h, (2.81)
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and �u is the unique solution in H 1/ 2(�) of each of these equations in the
case that Assumption 2.2 holds. Conversely, suppose Assumption 2.2 holds.
Then, if � � H 1/ 2(�) is the unique solution of either Ak,k� � = Skh or
B �

k,k� � = Š
� 1

2I Š D �
k

	
h, and

u(x) = Sk(h + i k	� )(x) Š D k� (x), x � � Š , (2.82)

it follows that u satis“es (2.5).

Proof. Equations (2.80) and (2.81) follow from Lemma 2.22 and (2.50), and
the fact that �u is the unique solution of each of these equations follows from
Theorem 2.29. Suppose now that Assumption 2.2 holds and� � H 1/ 2(�) is
the unique solution of either (2.80) or (2.81) andu is de“ned by

u(x) := Sk(h + i k	� )(x) Š D k� (x), x � Rd \ � . (2.83)

Then, by Theorems 2.14 and 2.15,u � H 1(� Š ) � H 1
loc(� + ) � C2(Rd \ �),

� u + k2u = 0 in Rd \ �, and u satis“es the Sommerfeld radiation condition.
Further, by Lemma 2.23, (2.50) and (2.80),� +

n u Š � Š
n u = Š(h + i k	� ) and

� Š u Š � + u = � and moreover � + u = 0 in the case that Ak,k� � = Skh,
while � +

n u = 0 in the case that B �
k,k� � = Š( 1

2I Š D �
k)h. Thus, by the

uniqueness parts of Theorem 2.10,u = 0 in � + so that � + u = � +
n u = 0 and

� Š
n u = h + i 	k� Š u. Thus we have shown thatu|� Š satis“es (2.5).

2.7. Poincaré…Steklov and boundary integral operators

In this section we explore the connections between boundary integral op-
erators and solution operators for the corresponding BVPs (Dirichlet to
Neumann and similar maps). The representations we deduce, several of
which appear to be new, will be an important tool in our investigation of
the k-dependence of condition numbers of BIE formulations in Section 5.

We noted in Theorem 2.10 that the exterior Dirichlet problem (2.12) is
uniquely solvable. Let P+

DtN denote the mapping which takesh � H 1/ 2(�)
to � nu, where u is the solution to (2.12). This mapping P+

DtN : H 1/ 2(�) �
H Š 1/ 2(�) is called the exterior Dirichlet to Neumann map or exterior Poin-
caré…Steklov operator. Similarly, let P+

NtD : H Š 1/ 2(�) � H 1/ 2(�) denote
the mapping which takes h � H Š 1/ 2(�) to �u � H 1/ 2(�), where u is the
solution to the exterior Neumann problem ((2.13) with 	 = 0). P+

NtD is
called the exterior Neumann to Dirichlet map or sometimes the exterior
Steklov…Poincar´e operator (Sauter and Schwab 2011). It is immediate from
these de“nitions that these mappings are inverses of each other; what is less
obvious, but follows easily from Green•s second formula (Theorem 2.19), is
that the Steklov…Poincaré and Poincaré…Steklov operators are both quasi-
self-adjoint. Thus

P+
DtN P+

NtD = P+
NtD P+

DtN = I,
�
P+

DtN

	 � = P+
DtN ,

�
P+

NtD

	 � = P+
NtD . (2.84)
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The importance of these mappings for our purposes is their close con-
nection with boundary integral operators. Indeed, we have from Corol-
lary 2.28(i) that, if u satis“es the exterior Dirichlet problem (2.12), then
� nu is the unique solution of (2.68). Thus

P+
DtN =

�
A�

k,�

	 Š 1Bk,� . (2.85)

We can deduce a further representation forP+
DtN from Corollary 2.28(i)

based on solving (2.71) and can deduce representations forP+
NtD from Corol-

lary 2.28(ii), but these representations can equally be read o� from (2.84).
For example, combining (2.84) and (2.85), we see that

P+
DtN =

�
P+

DtN

	 � =
��

A�
k,�

	 Š 1Bk,�
	 � = B �

k,� AŠ 1
k,� .

Let us summarize these representations in a theorem.

Theorem 2.31. It holds that

P+
DtN =

�
A�

k,�

	 Š 1Bk,� = B �
k,� AŠ 1

k,� and P+
NtD = B Š 1

k,� A�
k,� = Ak,�

�
B �

k,�

	 Š 1.

The operatorsP+
DtN : H 1/ 2(�) � H Š 1/ 2(�) and P+

NtD : H Š 1/ 2(�) � H 1/ 2(�)
are bounded, and have unique extensions to bounded operatorsP+

DtN :
L 2(�) � H Š 1(�) and P+

NtD : H Š 1(�) � L 2(�). Further,

P+
DtN : H 1/ 2+ s(�) � H Š 1/ 2+ s(�) and P+

NtD : H Š 1/ 2+ s(�) � H 1/ 2+ s(�) ,

for |s| � 1/ 2, and all these mappings are bounded.

The above representations are only one of many possible boundary inte-
gral representations for the Poincaré…Steklov maps; indeed it is most usual
in the BIE literature ( e.g., Steinbach 2008, Sauter and Schwab 2011) to use
representations directly in terms of Sk, Dk, D �

k and Hk, avoiding combined
potential operators. One such representation follows from Theorem 2.26
and (2.57); we see that, for values ofk for which Sk is invertible,

P+
DtN = SŠ 1

k

�
Š 1

2I + Dk
	
.

For further such representation see Steinbach (2008) and Sauter and Schwab
(2011).

Similar representations can be obtained for interior Dirichlet to Neumann
and Neumann to Dirichlet operators, for wavenumbersk for which the
Dirichlet and Neumann interior problems are uniquely solvable. But we
will focus here on the interior impedance to Dirichlet operator PŠ ,�

ItD which
mapsh � H Š 1/ 2(�) to �u , whereu is the solution of the interior impedance
problem (2.5) with 	 = �/k . Provided 	 satis“es Assumption 2.2, which
is the case if and only if � � L � (�) satis“es Assumption 2.2, it follows
from Theorem 2.10 that this is a well-de“ned mapping from H Š 1/ 2(�) to
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H 1/ 2(�); we see from Theorem 2.30 that

PŠ ,�
ItD = AŠ 1

k,� Sk . (2.86)

One can also make representations for exterior impedance to Dirichlet op-
erators. For h � H Š 1/ 2(�) and � � � L � (�) with Re � � 	 0, let P+ ,��

ItD denote
the mapping which takes h to �u � H 1/ 2(�), where u denotes what is, by
Theorem 2.10, the unique solution of the exterior impedance problem (2.13)
with 	 = ��/k . From Theorem 2.30 and (2.77) we see that, for every� � C
with Re � �= 0,

P+ ,��
ItD = CŠ 1

k,�, �� A�
k,� . (2.87)

Just as for the exterior Dirichlet to Neumann map, it follows from Theo-
rem 2.19 that the operatorsPŠ ,�

ItD and P+ ,��
ItD are quasi-self-adjoint. Thus, in

particular,

PŠ ,�
ItD =

�
PŠ ,�

ItD

	 � =
�
AŠ 1

k,� Sk
	 � = Sk

�
A�

k,�

	 Š 1. (2.88)

These representations are one route to establishing the following mapping
properties.

Theorem 2.32. Provided �� � L � (�) and Assumption 2.2 is satis“ed with
	 replaced by �� , the mapping PŠ ,��

ItD : H Š 1/ 2(�) � H 1/ 2(�) is bounded and
has a unique extension to a bounded operatorPŠ ,��

ItD : H Š 1(�) � L 2(�).
The same statements hold forP+ ,��

ItD for �� � L � (�) with Re � � 	 0. Further,
provided the respective conditions on �� are satis“ed,

P± ,��
ItD : H Š 1/ 2+ s(�) � H 1/ 2+ s(�) ,

for |s| � 1/ 2, and all these mappings are bounded.

The above results represent the exterior DtN and NtD maps and the inte-
rior and exterior ItD maps partly in terms of the inverses of Ak,� , Bk,� and
Ck,�, �� . A component of our arguments in Section 5.6, when we study the
dependence of the norm ofAŠ 1

k,� on k, will be the following representations
in the other direction. While representations, such as those we have pre-
sented above, for Poincaré…Steklov operators in terms of boundary integral
operators and their inverses are widely used, these representations in the
other direction seem less well known.

Theorem 2.33. Suppose that� � L � (�) and that Assumption 2.2 holds
with 	 replaced by� . Then, for |s| � 1/ 2, the mapping AŠ 1

k,� : H 1/ 2+ s(�) �

H 1/ 2+ s(�) has the representation

AŠ 1
k,� = I Š PŠ ,�

ItD

�
P+

DtN Š i�
	

(2.89)

and, provided also that �� � L � (�) with Re � � 	 0, the mapping CŠ 1
k,�, �� :
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H sŠ 1/ 2(�) � H 1/ 2+ s(�) has the representation
�
C�

k,�, ��

	 Š 1 = P+ ,��
ItD Š PŠ ,�

ItD

�
I Š i( � + �� )P+ ,��

ItD

	
. (2.90)

Proof. The left- and right-hand sides of (2.89) are bounded operators on
H s+1 / 2(�) for |s| � 1/ 2, by Theorems 2.27, 2.31 and 2.32, so that to show
(2.89) it is enough to show that

AŠ 1
k,� h = h Š PŠ ,�

ItD

�
P+

DtN Š i�
	
h (2.91)

holds for all h in some dense subset ofL 2(�), e.g., H 1/ 2(�). So suppose
that h � H 1/ 2(�) and that � = AŠ 1

k,� h, so that

Ak,� � = h,

and de“ne

u = Dk� Š iSk(�� ). (2.92)

Then, by Lemma 2.23 and (2.50),� + u = h, � Š u = h Š � and � +
n u Š � Š

n u =
i�� , so that

� Š
n u Š i�� Š u = � +

n u Š i�h.

Hence, and by Theorems 2.14 and 2.15,u|� + satis“es the exterior Dirichlet
problem (2.12) with � + u = h, while u|� Š satis“es the interior impedance
problem (2.5) with 	 = �/k and impedance data� +

n u Š i�h , so that

� Š u = PŠ ,�
ItD

�
� +

n u Š i�h
	

= PŠ ,�
ItD

�
P+

DtN Š i�
	
h.

and, sinceAŠ 1
k,� h = � = h Š � Š u, (2.91) follows.

Arguing similarly, to establish (2.90) it is enough to show that
�
C�

k,�, ��

	 Š 1h = P+ ,��
ItD h Š PŠ ,�

ItD

�
I Š i( � + �� )P+ ,��

ItD

	
h (2.93)

holds for all h in some dense subset ofH Š 1(�), e.g., H Š 1/ 2(�). So suppose
that h � H Š 1/ 2(�) and that � = ( C�

k,�, �� )Š 1h, so that C�
k,�, �� � = h, and de“ne

u by (2.92). Then, by Lemma 2.23 and (2.50),� +
n u + i��� + u = C�

k,�, �� � = h,
� + u Š � Š u = � , and � +

n u Š � Š
n u = i �� , so that

� Š
n u Š i�� Š u = h Š i(�� + � )� + u.

Hence, and by Theorems 2.14 and 2.15,u|� + satis“es the exterior impedance
problem (2.13) with 	 = ��/k and impedance datah, while u|� Š satis“es
the interior impedance problem (2.5) with 	 = �/k and impedance data
h Š i(�� + � )� + u, so that

� Š u = PŠ ,�
ItD

�
h Š i(�� + � )� + u

	
= PŠ ,�

ItD

�
I Š i( � + �� )P+ ,��

ItD

	
h.

and, since (C�
k,�, �� )Š 1h = � = � + u Š � Š u, (2.93) follows.
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We note that, in particular, the above theorem holds for �� = 0, in which
case (2.90) reduces to

�
B �

k,�

	 Š 1 = P+
NtD Š PŠ ,�

ItD

�
I Š i�P +

NtD

	
. (2.94)

It is clear from Theorem 2.31, (2.86), and Theorem 2.33, thatAŠ 1
k,� and

the interior and exterior solution operators P+
DtN and PŠ ,�

ItD are intimately re-
lated. In particular, we will use the representation (2.89) to bound the norm
of AŠ 1

k,� as an operator onL 2(�) in Section 5.6. This method of bounding
the norms of inverses of integral operators is not spelt out, but is to some
extent implicit in the arguments in Verchota (1984) and Chandler-Wilde
and Monk (2008).

Theorem 2.33 is also very useful in shedding light on the physical mean-
ings of the solutions to indirect BIEs. In the direct case, for instance the
combined potential equations (2.68) and (2.77), the solution is just the trace
or normal derivative of the solution of the BVP that we are solving. The
meaning of the solution to an indirect integral equation, for instance (2.71)
or (2.73), is more obscure, but is elucidated by Theorem 2.33. For example
(2.89) implies that the solution to the direct integral equation formulation
(2.71) of the exterior Dirichlet problem is the di�erence between the Dirich-
let data (the trace of the solution of the exterior problem) and the trace of
the solution of an interior impedance problem with data depending on the
solution to the exterior problem. Thus the solution of (2.71) depends in a
complex way on the solutions of both interior and exterior BVPs. This can
make direct formulations preferable for numerical computation. As has been
well known for many years, the issue is that the singularities in the solution
to direct formulations are just those of the boundary traces of the solutions
to the original BVPs, while the solutions to indirect integral equations, e.g.,
(2.71), typically contain singularities related to both solutions of interior
and exterior problems, and so require more degrees of freedom to approxi-
mate. As pointed out in Bruno et al. (2004), there are additional reasons to
prefer direct formulations to indirect formulations for high-frequency scat-
tering problems: the oscillatory behaviour of solutions of indirect integral
equations is more complex, and depends inextricably on the solutions to
both interior and exterior problems in a complicated interacting way.

2.8. Regularity of the solutions of the integral equations and BVPs

In this subsection we make some brief comments on the smoothness of the
solutions of the BVPs (2.4), (2.5), (2.12), and (2.13).

Our “rst result makes clear that, under rather general and mild condi-
tions, the traces�u and � nu are (at least almost everywhere) limiting values
of the function and its gradient as � is approached from � ± .
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Theorem 2.34. Let { � ± (x) : x � � } be families of non-tangential ap-
proach sets to x from � ± (as de“ned in Section A.4). (i) If u satis“es
the exterior Dirichlet problem (2.12) or the exterior impedance problem
(2.13) then limy� x,y � � + (x) u(y) = � + u(x), for almost all x � �. (ii) If v
satis“es the interior Dirichlet or impedance problems, (2.4) or (2.5), then
limy� x,y � � Š (x) v(y) = � Š v(x). (iii) If u satis“es (2.12) with boundary data
h � H 1(�) or satis“es (2.13) with data h � L 2(�), then also 
 � � + u � L 2(�)
and � +

n u � L 2(�) and

lim
y� x,y � � + (x)


 u(y) = 
 � � + u(x) + n(x)� +
n u(x),

for almost all x � �. In particular, for almost all x � �,

� +
n u(x) =

�u
�n

(x) := lim
y� x,y � � + (x)

n(x) · 
 u(y). (2.95)

(iv) Similarly, if v satis“es (2.13) with data h � L 2(�), then also 
 � � + v �
L 2(�) and � +

n v � L 2(�) and

lim
y� x,y � � + (x)


 v(y) = 
 � � + v(x) + n(x)� +
n v(x),

for almost all x � �.

Proof. By Theorems 2.21 and 2.20 the solutions to all these problems
have representations as single- and double-layer potentials. Thus the limits
claimed in (i) and (ii) follow from (2.27). Similarly the limits claimed in
(iii) and (iv) follow from (2.28)…(2.31), provided that � + u, � + v � H 1(�) and
� +

n u, � +
n v � L 2(�). But for u, this follows from Corollary 2.28(i), while for v

this follows from the impedance boundary condition and Corollary 2.28(ii).

Under stronger smoothness conditions on � and on the data, the solu-
tion of each BVP and some of its derivatives may be continuous up to the
boundary. The following local elliptic regularity result is a result of this sort
which is su�cient for our purposes, applying in the important practical case
when the boundary � is smooth except for corners and edges: for a proof see
Theorem 4.18 in McLean (2000) (and see also Theorem 3.27 and its proof in
Colton and Kress 1983 for a related result speci“c to the Helmholtz case).

Lemma 2.35. Suppose that u satis“es the interior or exterior Dirichlet
or impedance BVP in D = � ± (i.e., u satis“es (2.12), (2.13), (2.4) or (2.5)),
and that � 0 is a relatively open subset of � which is C� , and that the
boundary data h � C� ( � 0 ) and (in the impedance case) also	 � C� ( � 0 ).
Then u and its partial derivatives of all orders have continuous extensions
from D to D  � 0.
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2.9. The star-combined integral equation

In this subsection we introduce novel generalizations of the combined po-
tential integral equations (2.68) and (2.71), building on recent developments
in Spence, Chandler-Wilde, Graham and Smyshlyaev (2011).

Theorem 2.36. If u satis“es the exterior Dirichlet problem (2.12) with
h � H 1(�), then

Sk� +
n u =

�
Š 1

2I + Dk
	
h (2.96)

and
�
n

� 1
2I + D �

k

	
+ 
 � Sk

�
� +

n u =
�
nH k + 
 � Dk Š 1

2
 �
�
h. (2.97)

Hence, for � � L � (�) and Z � (L � (�)) d, we have

A�
k,�,Z � +

n u = Bk,�,Z h, (2.98)

where the operatorA�
k,�,Z : L 2(�) � L 2(�) is de“ned by

A�
k,�,Z := Z · n

� 1
2I + D �

k

	
+ Z · 
 � Sk Š i�S k, (2.99)

and Bk,�,Z : H 1(�) � L 2(�) by

Bk,�,Z := Z ·
�
nH k + 
 � Dk Š 1

2
 �
�

Š i�
�
Š 1

2I + Dk
	
. (2.100)

Proof. We have observed already above in (2.57) that (2.96) holds under
the weaker condition that h � H 1/ 2(�). If also h � H 1(�) then, by Corol-
lary 2.28(i), � +

n u � L 2(�). Then, taking the non-tangential limit of the
gradient of (2.66) asx approaches �, and using (2.30) and (2.31) and the
jump relations (2.41)…(2.43), we obtain (2.97).

The above derivation is straightforward, but the integral equation for-
mulation (2.98) seems to be very recent (Spenceet al. 2011). The integral
equation can be seen as a generalization of (2.68), reducing to this equation
when the choiceZ = n is made, since

A�
k,�,n = A�

k,� and Bk,�,n = Bk,� . (2.101)

In the case when �Š is star-shaped with respect to an appropriately
chosen origin (see De“nition 5.5 below), Spenceet al. (2011) proposed the
integral equation formulation (2.97) with Z (x) := x, x � �, and the special
choice

� (x) := k|x| + i
d Š 1

2
. (2.102)

We will use, following Spenceet al. (2011), the notation A k for Ak,�,Z in
that case, that is,

A k := A�
k,�,Z = Z · n

� 1
2I + D �

k

	
+ Z · 
 � Sk Š i�S k, (2.103)
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with � given by (2.102) and Z (x) := x, x � �. Following Spence et al.
(2011) we will call A k the star-combinedoperator.

The following theorem follows from results in Spenceet al. (2011) dis-
cussed in Section 5.7, precisely from Theorem 5.26, which proves the stronger
property of coercivity. These results, and their implications for high-fre-
quency scattering computations, are discussed in more detail in Sections 5.7
and 6.4.

Theorem 2.37. If � Š is star-shaped with respect to the origin, which
implies that, for some c > 0,

x · n 	 c, for almost all x � � , (2.104)

then A k : L 2(�) � L 2(�) is invertible with � A Š 1
k � L 2(�) � L 2(�) � 2/c .

The operator A�
k,�,Z appearing in (2.98) also arises in solving the interior

oblique impedance problem (2.6).

Theorem 2.38. The single-layer potential u = Sk� , with density � �
L 2(�), satis“es the interior oblique impedance problem (2.6) if

A�
k,k�,Z � = h. (2.105)

If u satis“es the interior oblique impedance problem, thenu = Sk� , with
� � L 2(�) satisfying (2.105).

Proof. If u = Sk� with � � L 2(�) then, by Theorems 2.14, 2.15 and (2.30),
u satis“es the interior oblique impedance BVP if and only if

Zn � Š
n u + Z · 
 � � Š u Š ik	� Š u = h.

But, using the jump relations (2.41), this equation is precisely (2.105). On
the other hand, if u satis“es the interior oblique impedance problem then
� Š u � H 1(�) and, by Theorem A.5, � Š

n u � L 2(�) so that h0 := � Š
n u Š

ik� Š u � L 2(�). Now note that, by Theorem 2.3, the interior impedance
BVP (2.5) with 	 = 1 and h = h0 has exactly one solution. Clearly this
solution is u. Now, recall that A�

k,k,n = A�
k,k , and this operator is invertible

by Theorem 2.27. Further, the interior impedance problem is the special
case of the interior oblique impedance problem in whichZ = n. So, by the
“rst part of this theorem, we see that u = Sk� with � =

�
A�

k,k

	 Š 1h0 � L 2(�).

From Theorem 2.38 the invertibility of A�
k,k�,Z is equivalent to the solv-

ability of the interior oblique impedance problem.

Corollary 2.39. For 	 � L � (�) and Z � (L � (�)) d, the operator A�
k,k�,Z :

L 2(�) � L 2(�) is injective if and only if (2.6) with h = 0 has only the
trivial solution, and is surjective if and only if (2.6) has a solution for every
h � L 2(�).
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Proof. The statement regarding surjectivity is clear from Theorem 2.38.
So is the statement regarding injectivity, provided that u = Sk� = 0 in � Š
only if � = 0. But this is a consequence of Theorems 2.14 and 2.15 and
(2.26) and the fact that the exterior Dirichlet problem (2.12) is uniquely
solvable. More explicitly, � � L 2(�) and u = Sk� is zero in � Š then u
satis“es (2.12) in � + with h = 0 and so u = 0 in � + by Corollary 2.9.
Then, by (2.41), � = � Š

n u Š � +
n u = 0.

The following result is taken from Chandler-Wilde and Spence (2012), and
is a consequence of Theorem 2.50 below. It strengthens the above corollary
in the case whenZ is real-valued and Lipschitz-continuous andZn is strictly
positive.

Theorem 2.40. If 	 � L � (�) and Z � (C0,1(�)) d is real-valued, with

Zn(x) := Z (x) · n(x) 	 c, for almost all x � � , (2.106)

for somec > 0, then the operator A�
k,k�,Z : L 2(�) � L 2(�) is Fredholm of

index zero, and so is invertible if and only if (2.6) with h = 0 has only the
trivial solution.

The above corollary and theorem show equivalence of questions of solv-
ability of the interior oblique impedance problem to questions of solvability
of the integral equation (2.105). One case in which both are clear is the case
Z = n, when the interior oblique impedance problem reduces to the regular
interior impedance problem. Another case is when �Š is star-shaped. In
that case we have the following corollary of Theorems 2.37 and 2.38.

Corollary 2.41. If � Š is star-shaped with respect to the origin, so that
(2.104) holds for somec > 0, then the interior oblique impedance problem
with

Z (x) := x and 	 (x) := |x| + i
d Š 1

2k
, x � � ,

has the unique solutionu = Sk� with � =
�
A�

k,k�,Z

	 Š 1h � L 2(�). Moreover,
� � � L 2(�) � (2/c )� h� L 2(�) .

The above corollary applies to a special case of the interior oblique im-
pedance BVP: the domain must be star-shaped and particular choices made
for Z and 	 . But one context where this case may have application is in
boundary-element-based domain decomposition methods for the Helmholtz
equation, for example modifying the method of Steinbach and Windisch
(2011). In domain decomposition methods the bounded Lipschitz domain
� Š is initially divided into a number of subdomains � 1, . . . , � M , the choice
of these up to the user: in particular, it is always possible to arrange that
each � j is star-shaped with respect to some pointxj � � j . In the itera-
tive solution schemes based on domain decomposition methods, a main step
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is the solution of local problems for the Helmholtz equation on each sub-
domain � j . In the design of such methods a choice that has to be made is the
boundary condition to be used in these local problems. A natural choice in
domain decomposition methods for the Helmholtz equation is the impedance
boundary condition, so that one solves (2.5) on each subdomain, choosing
	 (e.g., 	 = 1) to ensure that (2.5) is uniquely solvable; a variant on this
with additional non-local operators in the impedance boundary condition is
used in Steinbach and Windisch (2011). But an interesting alternative may
be to use the oblique boundary condition (2.3) on �j , choosingZ and 	 as
in the above corollary, that is,

Z (x) := x Š xj and 	 (x) := |x Š xj | + i
d Š 1

2k
, x � � � j .

This choice ensures that each local problem is well-posed, as is the integral
equation formulation (2.105), but further, as we will see in Section 5.7, this
integral equation formulation is coercive in the sense of Section 2.11, with
a coercivity constant that is uniform in the wavenumber k.

In Section 2.7 we discussed the relation between boundary integral op-
erators and Poincaré…Steklov operators. These results generalize to the
operator A�

k,�,Z and the interior oblique impedance BVP (2.6). Generaliz-

ing the notation PŠ ,�
ItD introduced before equation (2.86), letPŠ ,�,Z

ItD denote
the operator which mapsh � L 2(�) to � Š u � H 1(�), where u is the solution
of the interior oblique impedance problem (2.6) with 	 = �/k . Of course,
PŠ ,�,Z

ItD is only well-de“ned for those� � L � (�) and Z � (L � (�)) d for which
the interior oblique impedance BVP (2.6) has exactly one solution in the
case that 	 = �/k . By Corollary 2.39 these are precisely the� and Z for
which A�

k,�,Z is invertible, as shown in the following result.

Theorem 2.42. Suppose that k > 0 and that � � L � (�) and Z �
(L � (�)) d are such that A�

k,�,Z is invertible. Then

P+
DtN =

�
A�

k,�,Z

	 Š 1Bk,�,Z , PŠ ,�,Z
ItD = Sk

�
A�

k,�,Z

	 Š 1,

and, if ess infx� � |Zn(x)| > 0,

�
A�

k,�,Z

	 Š 1 =
1

Zn
I Š

�
P+

DtN Š
1

Zn

�
i� Š Z · 
 �

	
�

PŠ ,�,Z
ItD .

Proof. The “rst two results follow immediately from Theorems 2.36 and
2.38. To see the last equation, suppose that�, h � L 2(�) and A�

k,�,Z � = h
and de“ne u = Sk� . Then, by Theorem 2.38 and (2.41),

� + u = � Š u = PŠ ,�,Z
ItD h, � = � Š

n u Š � +
n u.

Further,

� +
n u = P+

DtN � + u = P+
DtN PŠ ,�,Z

ItD h,



138 S. Chandler-Wilde, I. Graham, S. Langdon and E. Spence

while, using Theorem 2.38, which implies thatu satis“es the oblique bound-
ary condition (2.3) with 	 = �/k , we have

� Š
n u =

1
Zn

�
h + i �� Š u Š Z · 
 � � Š u

	
=

1
Zn

�
I + i �P Š ,�,Z

ItD Š Z · 
 � PŠ ,�,Z
ItD

	
h.

From these equations the rest of the theorem follows.

2.10. Boundary integral equations for scattering problems

In Section 2.5 we derived various integral equation formulations for the ex-
terior Dirichlet and impedance BVPs (2.12) and (2.13). These immediately
imply integral equation formulations for the sound-soft and impedance scat-
tering problems, (2.16) and (2.18). Indeed, to say thatuS satis“es one of
these scattering problems is no more or less than saying thatuS satis“es the
corresponding BVP with boundary data h determined by the incident “eld
uI , precisely by the requirement that the total “eld u = uI + uS satis“es
the respective homogeneous Dirichlet or impedance boundary condition.
Thus, any integral equation for the exterior Dirichlet or impedance BVP
immediately implies an integral equation formulation for the corresponding
scattering problem.

The hybrid numerical…asymptotic schemes we will propose are based on
discretization of direct integral equation formulations for the scattering
problems. To implement these schemes we will work with essentially the
integral equations (2.68) and (2.98) for the sound-soft scattering problems,
with u replaced by uS and h = ŠuI |� , and the integral equations (2.75) or
(2.77) for the impedance scattering problem, withu replaced by uS and h
given by (2.17). But we will work with versions of these integral equations
where the expressions for the inhomogeneous terms in the equations are
simpli“ed, thanks to the special form of the boundary data h. One way
to obtain these simpli“ed equations is to derive the following modi“ed ver-
sion of the Green•s representation theorem (Theorem 2.21), which applies
to scattering problems.

Theorem 2.43. In the case that uS satis“es the sound-soft scattering
problem (2.16), � +

n u � L 2(�) and

u(x) = uI (x) Š
�

�
� k (x, y)� +

n u(y) ds(y), x � � + . (2.107)

In the case that uS satis“es the impedance scattering problem (2.18),� + u �
H 1(�) and

u(x) = uI (x) +
�

�

�
� � k (x, y)

�n (y)
+ i k	 (y)� k (x, y)

�
� + u(y) ds(y), x � � + .

(2.108)
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Proof. From Theorem 2.12 or Corollary 2.13 it follows that � +
n u � L 2(�)

and � + u � H 1(�). From Theorem 2.21,

uS(x) = Dk� + uS(x) Š Sk� +
n uS(x), x � � + ,

while from Theorem 2.20,

0 = Dk� + uI (x) Š Sk� +
n uI (x), x � � + .

Adding these two equations and then addinguI to both sides, we “nd that

u(x) = uI (x) + Dk� + u(x) Š Sk� +
n u(x), x � � + .

Equations (2.107) and (2.108) follow from the boundary conditions satis“ed
in the sound-soft and impedance cases.

From the above theorem and the jump relations (2.41) and (2.42), we
deduce immediately the integral equation formulations in the next theorem.
The rest of the theorem in respect of the Dirichlet problem is a consequence
of Theorem 2.26 and that uS satis“es the sound-soft scattering problem
if and only if uS satis“es the exterior problem (2.12) with Dirichlet data
h = ŠuI |� . The proof that u given by (2.112) satis“es the impedance
scattering problem provided (2.4) has at most one solution follows similarly
to the proof of Theorem 2.26.

Theorem 2.44. If uS satis“es the sound-soft scattering problem (2.16),
then � +

n u � L 2(�) and

Sk� +
n u = uI |� . (2.109)

Conversely, if � � H Š 1/ 2(�) satis“es Sk� = h and

u(x) = uI (x) Š
�

�
� k (x, y)� (y) ds(y), x � � + , (2.110)

then u satis“es the scattering problem.
If uS satis“es the impedance scattering problem (2.18), then� + u � H 1(�)

and
� 1

2I Š Dk
	
� + u Š ikSk(	� + u) = uI |� . (2.111)

Conversely, if � � H 1/ 2(�) is a solution to (2.111),

u(x) = uI (x) +
�

�

�
� � k (x, y)

�n (y)
+ i k	 (y)� k (x, y)

�
� + � (y) ds(y), x � � + ,

(2.112)
and the wavenumberk is such that the homogeneous interior Dirichlet prob-
lem ((2.4) with h = 0) has only the trivial solution, then u satis“es the
impedance scattering problem.



140 S. Chandler-Wilde, I. Graham, S. Langdon and E. Spence

Remark 2.45. We have shown below equation (2.76) that (2.75) (and so
also (2.111)) is not uniquely solvable atirregular wavenumbersk for which
the homogeneous interior Dirichlet problem has a non-trivial solution. Fur-
ther, at these wavenumbers, it does not hold that (2.112) is a solution to the
impedance scattering problem for every solution� of (2.111). (This is in
contrast to (2.110), which satis“es the sound-soft scattering problem even
when (2.109) has more than one solution, which it does for the same irreg-
ular wavenumbers.) This •irregular frequency• property leads, for standard
BEM discretizations, to very bad conditioning and inaccurate numerical ap-
proximations of u in a neighbourhood of suchk. In Section 7.4, through
computations using (2.111) precisely at irregular wavenumbers where the
integral equation is not uniquely solvable, we see that a bonus of the novel
discretization methods that we propose is that they, at least in these exam-
ples, do not exhibit any conditioning problems at the discrete level, and in
fact produce accurate numerical results.

As observed in Remark 2.45, the integral equations (2.109) and (2.111)
are not uniquely solvable for all k > 0. The standard cure is to use the
combined potential integral equations introduced in Section 2.6. The direct
versions of the combined potential equations are the integral equation (2.68)
for the sound-soft problem (with u replaced by uS and h = ŠuI |� ) and
(2.77) for the impedance scattering problem (with u replaced by uS and h
given by (2.17)). Versions of these equations with simpli“ed expressions for
the inhomogeneous terms on the right-hand side are stated in the following
two theorems. In the “rst of these theorems we derive a version of the
generalized integral equation (2.98) which includes (2.68) as a special case.
Note that (2.114) is a restatement of equation (1.5) in Section 1.

Theorem 2.46. Suppose thatuS satis“es the sound-soft scattering prob-
lem (2.16) and that � � L � (�) and Z � (L � (�)) d. Then � +

n u � L 2(�)
satis“es the integral equation

A�
k,�,Z � +

n u = f k,�,Z := [ Z · 
 uI Š i�u I ]|� . (2.113)

In the case that Z = n and � is constant, this equation simpli“es to

A�
k,� � +

n u = f k,� := f k,�,n = [ � +
n uI Š i�u I ]|� , (2.114)

and this equation is uniquely solvable for allk > 0 if Re� �= 0. In the case
that � Š is star-shaped with respect to the origin, satisfying (2.104) for some
c > 0, Z (x) := x, for x � �, and � is given by (2.102), equation (2.113) is

A k� +
n u = f k := [ x · 
 uI Š i�u I ]|� , (2.115)

with A k de“ned by (2.103), and this equation is uniquely solvable for all
k > 0.
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Proof. That � +
n u satis“es (2.113) follows from (2.107), (2.30), (2.31) and

the jump relations (2.41)…(2.43). That (2.114) is uniquely solvable follows
from Theorem 2.27, and that (2.115) is uniquely solvable from Theorem 2.37.

We will refer to (2.115) as the star-combinedintegral equation.
The second theorem states the standard combined potential integral equa-

tion for the impedance scattering problem, dating back to Burton and Miller
(1971), who were concerned with the sound-hard case	 = 0.

Theorem 2.47. If uS satis“es the impedance scattering problem (2.18)
and � � C, then � + u � H 1(�) satis“es the integral equation

Ck,�,k� � + u = Š


�u I

�n
Š i�u I

� �
�
�
�
�
, (2.116)

with Ck,�,k� de“ned by (2.78). If Re � �= 0 then � + u is the unique solution
in H 1/ 2(�) of this equation.

Proof. Equation (2.116) follows from applying the operator � +
n Š i�� + to

(2.108) (i.e., from taking a particular linear combination of Neumann and
Dirichlet traces), on using the jump relations (2.41)…(2.43). That� + u is
the unique solution of this equation follows from Theorem 2.27.

2.11. Coercivity of boundary integral operators

For the analysis of numerical methods, for example for the combined po-
tential equation (2.68), it is important that the boundary integral operator
(A�

k,� in (2.68)) is invertible, so that the equation we are solving is well-
posed. However, additional properties of the operator are needed to prove
convergence of numerical schemes and deduce error estimates.

The error analysis of BIE methods is most developed for schemes based
on Galerkin methods, and this will be our focus in Section 6. The argument
will proceed as outlined in Section 1, that is, we prove a quasi-optimal error
estimate of the form (1.7), and then bound the best approximation error.
In particular, for the hybrid methods introduced in Section 3, we cannot
currently see any prospect of proving estimates of the form (1.7) for anything
other than Galerkin schemes. The results that have been obtained in this
direction will be described in Section 6.

Our focus in later sections is on high-frequency analysis, proving (1.7)
with the dependence of the constantC on k made explicit. However, al-
though the standard combined potential formulations (2.68) and (2.71) date
back at least to Brakhage and Werner (1965) and Burton and Miller (1971),
the establishment of (1.7) for standard Galerkin methods, even for “xedk
(indeed, even for the Laplace casek = 0) remains an outstanding open
problem for the case of general Lipschitz �. We will describe below, and in
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Section 5.7, progress in resolving this open problem, indeed in a way which
also teases out the dependence onk. We will also describe brie”y in this
subsection ways that have been proposed in the last “ve years for modify-
ing equations (2.68) and (2.71), introducing additional operators into these
equations which imply additional computational e�ort, with the bene“t that
they allow (1.7) to be established (for “xed k) for general Lipschitz �.

The Galerkin method starts by writing the integral equation in weak form
as follows: “nd v � V such that

a(v, w) = F (w), for all w � V . (2.117)

Here V is some Hilbert space,F is an anti-linear continuous functional on
V, that is, some element ofV�, the dual space ofV, and a is a bounded
sesquilinear form onV × V , so that, for some constantB 	 0,

|a(v, w)| � B � u� � w� , v, w � V . (2.118)

(The smallest B 	 0 for which this inequality holds is the norm of a.)
The Galerkin method for approximating (2.117) then seeks a solutionvN �
VN � V , where VN is a “nite-dimensional subspace, requiring that

a(vN , wN ) = F (wN ), for all wN � V N . (2.119)

In the case when the integral equation takes the form

Av = f,

where v � V , f � V �, and A : V � V � is a bounded linear operator, the
standard way to construct the weak form (2.117) is to de“ne

a(v, w) := �Av, w� and F (w) := � f, w � , (2.120)

where, for f � V �, w � V , � f, w � denotes the action of the functionalf on w.
Let us illustrate this general framework by application to three of the

integral equation formulations of Section 2.10, using the fact that (see Sec-
tion A.3) H Š s(�) is (isomorphic to) the dual space of H s(�). For (2.109)
we take V = H Š 1/ 2(�), V� = H 1/ 2(�), v = � +

n u,

a(v, w) := �Skv, w� � and F (w) := � uI |� , w� � , (2.121)

where �· , ·� � is de“ned in (A.24). For the integral equation (2.113), which
will be the main focus in Section 6, the natural weak form is obtained by
setting V = V� = L 2(�), v = � +

n u,

a(v, w) := ( A�
k,�,Z v, w) and F (w) := ( f k,�,Z , w). (2.122)

Finally, the standard weak formulation of (2.116) is obtained by setting
V = H 1/ 2(�), V� = H Š 1/ 2(�), v = � + u,

a(v, w) := �Ck,�,k� v, w� � and F (w) :=
�

Š


�u I

�n
Š i�u I

� �
�
�
�
�
, w

�

�
. (2.123)
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All of these sesquilinear forms are bounded, the norm of the sesquilinear
form a being the norm of the corresponding operator,

Sk : H Š 1/ 2(�) � H 1/ 2(�) , A�
k,�,Z : L 2(�) � L 2(�) ,

and Ck,�,k� : H 1/ 2(�) � H Š 1/ 2(�) ,

in the respective cases (2.121), (2.122), and (2.123).
We will call a bounded sesquilinear forma on V × V coercive if, for some

� > 0 (the coercivity constant),

|a(v, v)| 	 � � v� 2, for all v � V . (2.124)

Likewise, we will call the bounded linear operator A : V � V � coercive
(with coercivity constant � ) if the sesquilinear form a given by (2.120) is
coercive. It is easy to see that ifA : V � V � is coercive then so is its adjoint
A� : V� � V with the same coercivity constant � .

Simple but powerful results hold if a is bounded and coercive: the Lax…
Milgram lemma guarantees that (2.117) has exactly one solutionv � V for
every w � V , with

� v� V � � Š 1� f � V� , (2.125)

and existence of the Galerkin solution and quasi-optimality is guaranteed
by Céa•s lemma.

Lemma 2.48. (C« eaÕs lemma) If the sesquilinear forma is bounded and
coercive, satisfying (2.118) and (2.124), then (2.119) has exactly one solution
vN � V N , which satis“es

� v Š vN � �
B
�

inf
wN �V N

� v Š wN � . (2.126)

This version of Céa•s lemma will be one of the main analysis tools for our
hybrid numerical-asymptotic methods in Section 6. This will be surpris-
ing to many readers since variational problems of the form (2.117), arising
from BVPs for the Helmholtz equation, are standard examples of inde“nite
problems where coercivity does not hold, at least for su�ciently large k. It
has seemed reasonable to assume that the same should hold true for weak
formulations arising via integral equation formulations. However recent re-
sults, discussed in Section 5.7, show that coercivity holds for (2.122), for
certain choices ofZ and a range of geometries, with� bounded away from
zero for all su�ciently large k.

In cases where coercivity does not hold (or is not known to hold) analysis
of Galerkin methods, at least for “xed k, can be achieved when the operator
A takes the form A = B + C, whereB : V � V � is coercive andC : V � V � is
compact. We will say that A is a compactly perturbed coerciveoperator in
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this case. (Many authors call our •coercive• and •compactly perturbed coer-
cive•elliptic and coerciverespectively.) The standard generalization of Céa•s
lemma to this case is as follows (see,e.g., Theorem 8.11 in Steinbach 2008).

Theorem 2.49. Suppose the sesquilinear forma is given by (2.120), where
the bounded linear operatorA : V � V � is a compactly perturbed coercive
operator and is injective. Suppose moreover that (VN )N � N is a sequence of
approximation spaces converging toV, in the sense that

inf
wN �V N

� w Š wN � � 0 asN � � ,

for every w � V . Then there exists N0 � N and C > 0 such that, for
N 	 N0, (2.119) has exactly one solutionvN � V N , which satis“es

� v Š vN � � C inf
wN �V N

� v Š wN � .

This theorem is relevant to the combined potential integral equation
(2.116) for the impedance scattering problem, for general Lipschitz �, since
Ck,�,k� : H 1/ 2(�) � H Š 1/ 2(�) is a compactly perturbed coercive operator
(since the same holds forHk (McLean 2000, Theorem 7.8) andCk,�,k� Š Hk
is compact), and is also injective for allk > 0 if Re� �= 0 (see Theorem 2.27).
In particular, this means that Theorem 2.49 applies to the standard Burton…
Miller integral equation (Burton and Miller 1971) for sound-hard scattering
(the special case of (2.116) when	 = 0), although the dependence ofN0
and C on k in this case is still unknown.

Perhaps surprisingly, up to now it seemed harder to develop the theory for
Galerkin BIE methods in the general Lipschitz case for sound-soft scatterers.
Theorem 2.49 does apply to the integral equation (2.109) for the sound-soft
scattering problem, but not for every k > 0. The reason is that, while, for all
k > 0, Sk : H Š 1/ 2(�) � H 1/ 2(�) is a compactly perturbed coercive operator
(see,e.g., Steinbach 2008, Theorem 6.40),Sk is not injective for all k > 0:
see Theorem 2.25. On the other hand, the operatorA�

k,� : L 2(�) � L 2(�)
is injective, indeed invertible, for all k > 0 (Theorem 2.27). However, for
general Lipschitz �, it is an open question whether A�

k,� is a compactly
perturbed coercive operator. Indeed this question is equivalent, sinceA�

k,�
is compactly perturbed coercive if and only if A�

0,0 is, as the di�erence
A�

k,� Š A�
0,0 is compact (e.g., Chandler-Wilde and Langdon 2007), to the

long-standing open question: Is

A�
0,0 = 1

2I + D �
0,

considered as an operator onL 2(�), a compact perturbation of a coercive
operator for general Lipschitz �?

The answer to this last question is yes if � is C1, for then D �
0 itself is

compact (Fabes, Jodeit and Riviere 1978), and soA�
0,0 and A�

k,� are compact
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perturbations of 1
2I . In the 2D case, when � is Lipschitz and a curvilinear

polygon (relevant to many of the examples in this article), it has been known
since the 1960s (e.g., Shelepov 1969) that the answer is also yes. For general
Lipschitz � it was shown by Elschner (1992, Appendix A) ( cf. Steinbach
and Wendland 2001, Steinbach 2008,§6.64, Costabel 2007, Section 4.1),
that A�

0,0 + cS0 is coercive, for all su�ciently large c > 0, but on H Š 1/ 2(�)
rather than L 2(�), meaning that

|
�
(A�

0,0 + cS0)v, v
	

H Š 1/ 2(�) | 	 � � v� 2
H Š 1/ 2(�) ,

where (·, ·)H Š 1/ 2(�) is the inner product on H Š 1/ 2(�). Since S0 is a compact

operator on H Š 1/ 2(�), it follows that A�
0,0 is compactly perturbed coercive

and Theorem 2.49 can be applied to Galerkin methods for (2.113). How-
ever, these are not the usual Galerkin methods but non-standard methods,
formulated with respect to the non-local H Š 1/ 2(�) inner product, a setting
which is less straightforward than L 2(�) for computation. See Wendland
(2009) for a survey that discusses in more detail what is known about these
questions for the operatorA�

0,0.
Given these di�culties in the Galerkin analysis for equations involving

Ak,� and A�
k,� , a number of authors (Bu�a and Hiptmair 2005, Bu�a and

Sauter 2006, Engleder and Steinbach 2007, Engleder and Steinbach 2008)
have proposed methods involving modi“ed integral operators. Focusing on
A�

k,� for convenience, these modi“cations have in common that they replace
the •second-kind• part, 1

2I + D �
k , of the operator by the product of 1

2I + D �
k

and another non-local operator, so that the resulting product is a compact
operator from H Š 1/ 2(�) � H 1/ 2(�), and the whole modi“ed operator A•

k,�
is injective (like A�

k,� ) and is a compactly perturbed coercive operator from

H Š 1/ 2(�) to H 1/ 2(�). These modi“cations are attractive theoretically, but
have the disadvantage that their implementation is more complicated and
expensive.

An alternative and potentially less costly modi“cation is to use A�
k,�,Z

instead of A�
k,� . The following result, which suggests that this may be a

promising idea, is shown in Chandler-Wilde and Spence (2012).

Theorem 2.50. If � � C and Z � (C0,1(�)) d is real-valued and satis“es
(2.106) for somec > 0, then the operator A�

k,�,Z : L 2(�) � L 2(�) is a
compactly perturbed coercive operator.

This result is encouraging but is not quite as helpful as we would like, as
we do not know in general whetherA�

k,�,Z is injective. One case where this
is clear is whenZ = n and Re� �= 0, as then A�

k,�,Z = A�
k,� is invertible, but

the theorem does not apply in this case unless � isC1,1.
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3. Asymptotics and hybrid approximation spaces

Now that we have developed BIE formulations of scattering problems in
Section 2 we are ready to discuss hybrid numerical-asymptotic methods
for their solution, and in particular to design hybrid approximation spaces
informed by asymptotic analysis, addressing questionQ1 posed in Section 1.
The methods of interest here will in general approximate the (k-dependent)
solution v of a BIE using an ansatz of the form

v(x) � V0(x, k ) + c(k)
M�

m=1

Vm (x, k ) exp(ik� m (x)) , x � � . (3.1)

In this representation, V0 is a known (generally oscillatory) function, the
phases� m are chosena priori , c(k) is a scaling factor, explicitly chosen, and
the amplitudes Vm , m = 1 , . . . , M , are approximated numerically. The idea
(and in many cases this can be rigorously proved) is that, if the phases are
carefully chosen, thenVm (·, k), m = 1 , . . . , M , will be much less oscillatory
than v and so can be better approximated by piecewise polynomials thanv
itself.

One possible starting point for constructing such hybrid methods is re-
lated to the physical optics(or Kirchho� ) approximation. Consider a plane
wave uI (x) := exp(i kx · �a) incident on an in“nite plane passing through (for
simplicity only) the origin, with unit normal direction n. Then, under the
assumption of sound-soft scattering, the correct physical scattered “eld is
the re”ected plane wave

uR(x) = Š exp(ikx · �aR), where �aR = �a Š 2(n · �a)n. (3.2)

(The Sommerfeld radiation condition (2.9) is not, of course, relevant in
this case as the scatterer is unbounded.) It follows immediately that if
u := uI + uR is the total wave then its normal derivative v = �u/�n satis“es

v(x) = 2
�u I

�n
(x) = 2i kn · �a exp(ikx · �a), on � . (3.3)

Based on the observation that in the high frequency case the scatterer acts
locally like a plane, a plausible high-frequency approximation forv = �u/�n
in the scattering problem (2.15), at least when the scatterer is convex, is
that, on �,

v �

�
�

�
2

�u I

�n
on the illuminated part,

0 on the part in shadow.
(3.4)

In line with many other authors, we will refer to this as the physical optics
approximation; some other authors call this a geometrical optics approx-
imation. Following usual practice, we will also call the approximation to
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the solution of (2.15) that is obtained by substituting the approximation
(3.4) to �u/�n into the integral representation (2.107), the physical optics
or Kirchho� approximation. (The analogous approximation in the sound-
hard case is that v = u|� , the restriction of u to �, satis“es v � 2uI |� on
the illuminated part of � and v � 0 on the part in shadow.)

For a general smooth, strictly convex obstacle the scattering surface nat-
urally divides into illuminated and shadow zones,

{ x � � : n(x) · �a < 0} and { x � � : n(x) · �a > 0} , respectively, (3.5)

which are separated by theshadow boundary:

S := { x � � : n(x) · �a = 0 } . (3.6)

Motivated by the physical optics approximation (3.4), which is valid for
high frequency for such scatterers, a plausible ansatz in the case when the
incident “eld is the plane wave uI (x) := exp(i kx · �a), as discussed already
in Section 1, is that

v(x) =
�u
�n

(x) � kV (x, k ) exp(ikx · �a), (3.7)

where V is a well-behaved non-oscillatory functionaway from the shadow
boundary. Much work has been done on analysing this approximation (see
the discussion in Section 3.1). This is our “rst example of the general
ansatz (3.1).

Example 3.1. The ansatz (3.1), with M = 1, V0 � 0 and � 1(x) = x · �a,
motivated by the physical optics approximation (3.4), is sometimes assumed
to hold (with V1 non-oscillatory) on the whole of �, even when � is not
convex. In Section 3.1 we prove its utility, at least for the smooth convex
case.

On the other hand, for a convex polygonal scatterer it can be shown (see
Section 3.3) that, if V0 is the physical optics approximation (3.4), that is,

V0 :=

�
�

�
2

�u I

�n
on illuminated sides,

0 on sides in shadow,
(3.8)

then

v = V0 + � , (3.9)

where � denotes a sum of terms (of a similar form to the summation on the
right-hand side of (3.1)), arising from di�raction of the incoming wave at
the corners of the polygon.

Example 3.2. The ansatz (3.1), with V0 given by (3.8) and M = 2ns,
where ns is the number of sides of �, will be proposed for convex polygons



148 S. Chandler-Wilde, I. Graham, S. Langdon and E. Spence

in Section 3.3, with the phases� m determined by the orientation of the
sides of �.

As we have described already in Section 1, a number of authors in the
acoustics and electromagnetics literature, starting with Uncles (1976), have
proposed the ansatz of Example 3.1 as the basis for hybrid numerical-
asymptotic methods for scattering by convex obstacles. Abboud, N´edélec
and Zhou (1994, 1995) developed this idea, apparently independently of ear-
lier work, and took the “rst steps towards numerical analysis of these meth-
ods. These authors considered the impedance scattering problem (2.18) and
formulated this as the “rst-kind BIE

ŠHkv + k2	S k(	v ) Š ikD �
k(	v ) Š ik	D kv = gk := Š

�u I

�n
Š ik	u I , (3.10)

where v = u|� , the restriction of u to �. Then the ansatz of Example 3.1
was used, and the unknown •slow variable•V1(·, k) was approximated using
the h-version BEM. Although the method in Abboud, N édélec and Zhou
(1994, 1995) lacks a rigorous error analysis, some formal arguments were
given which suggested that consistency error for the Galerkin method for
(3.10) remains bounded ask � � , provided the BEM is employed with
O(k(dŠ 1)/ 3) degrees of freedom. In Abboudet al. (1995), and also in the
thesis Zhou (1995), a range of experiments on smooth and non-smooth con-
vex 2D objects (and some experiments also on the sphere) were presented,
illustrating the sharpness of the formal error estimate described above. The
authors also discussed there the computation of the Galerkin sti�ness ma-
trix, and proposed some methods for computing the matrix entries which
(while not being independent ofk in cost) do allow a reduction in complexity
by making some use of the method of stationary phase.

In terms of key algorithmic ideas, a substantial step forward was taken
in the work of Bruno and collaborators (Bruno et al. 2004), which again
employed the ansatz of Example 3.1 but combined it with a more careful
discretization scheme, aimed at avoiding the breakdown of the ansatz near
the shadow boundary. Starting from the direct combined potential formu-
lation (2.114), employing the ansatz of Example 3.1, and multiplying each
side of (2.114) by exp(Šikx · �a), one obtains

�
1
2

I + �Dk
�
Š i� �Sk

�
V (·, k) = i( kn · �a Š � ), (3.11)

where the single-layer and adjoint double-layer operators with modulated
kernels, �Sk and �Dk

�
respectively, are de“ned by

�Sk� (x) :=
�

�
� k (x, y) exp(ik(y Š x) · �a)� (y) ds(y), (3.12)
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and

�Dk
�
� (x) :=

�

�

� � k (x, y)
�n (x)

exp(ik(y Š x) · �a)� (y) ds(y). (3.13)

These integral operators have oscillatory kernels containing a factor of the
form exp(ik	( x, y)), where 	( x, y) = |x Š y| + ( y Š x) · �a. (This will be ex-
plained in more detail later: see,e.g., (4.41).) To solve (3.11), Bruno et al.
(2004) sampledV at points of a suitable mesh on �, and applied special
integration rules based on partitions of unity and exponentially convergent
quadrature, carefully handling the oscillations in the kernel, to obtain a
Nystr öm-type scheme. The result is a fully discrete method which, in the
examples computed, turns out to have close tok-independent error for a
“xed number of degrees of freedom. To avoid the breakdown of the approx-
imation of Example 3.1 at the shadow boundaryS, the mesh is graded in
O(kŠ 1/ 3) neighbourhoods ofS. The estimates on the derivatives ofV in
Section 3.1 below could be used to provide consistency estimates for such
a procedure. The work of Brunoet al. (2004) was continued by Bruno and
Geuzaine (2007), concentrating on the formulation of a robust quadrature
method for the oscillatory integrals which arise in the discretization of (3.11)
in 3D. This is described in more detail in Section 4.5.

Huybrechs and Vandewalle (2007b) solved a model 2D problem related
to (3.11), by collocation with a piecewise polynomial basis, and the em-
phasis then was on the construction of e�cient quadrature schemes for the
entries of the collocation matrix. These were evaluated by a combination
of generalized Filon quadrature with a steepest descent approach; see Sec-
tions 4.2 and 4.5 for details. By examining the location of the stationary
points of the phase 	, Huybrechs and Vandewalle were able to demonstrate
that their scheme leads to a sparse BEM formulation, with numerical results
comparable to those of Brunoet al. (2004) being obtained.

Ganesh and Hawkins (2011) solved (3.11) in the case of a 3D smooth
convex obstacle, using a discrete Galerkin method with global polynomial
basis and a specially chosen global quadrature rule to compute the Galerkin
matrix entries (again, see Section 4.5 for details). Following similar lines
to the purely formal argument put forward by Abboud, N´edélec and Zhou
(1994), one might expect that (because no special action is taken at the
shadow boundary) the method would requireO(k2/ 3) degrees of freedom to
maintain accuracy ask � � , and numerical results in Ganesh and Hawkins
(2011) support this conjecture. However this method is much more e�cient
than standard BEM (which requires at least O(k2) degrees of freedom as
k � � ) and impressive results for rather largek are presented in Ganesh
and Hawkins (2011). The method of Ganesh and Hawkins (2011) requires
that the scatterer can be mapped to the sphere with an invertible map, but
this is always true for convex obstacles.
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For the rest of this section we will describe the asymptotic background
to the design of various hybrid numerical-asymptotic methods.

3.1. Smooth convex obstacles

Let us consider the sound-soft scattering problem (2.15). Under the as-
sumption that � is C� and convex (in 2D or 3D), and has strictly positive
curvature, we write the solution v := �u/�n of (1.3) as

v(x) := kV (x, k ) exp(ikx · �a), x � � (3.14)

(i.e., we employ the ansatz of Example 3.1). The key question is howV(x, k )
behaves forx near the shadow boundary de“ned in (3.6) (this is essentially
equivalent to understanding how the total “eld u behaves in the transition
region between the illuminated and shadow parts of the exterior domain).
The “rst (non-rigorous) results on this question were by Fock (e.g., Fock
1965), with these results valid in a neighbourhood of the shadow boundary
whose width shrinks to zero ask � � . This was followed by Ludwig (1967),
who obtained (non-rigorous) results in ak-independent neighbourhood of
the shadow boundary, and subsequently by the rigorous analysis of Buslaev
(1964, 1975); see also Babich and Buldyrev (1991, Chapter 13), Babich and
Kirpichnikova (1979) and further references therein. The following result
is quoted from Melrose and Taylor (1985, Theorem 9.27), but the same
result can essentially be found elsewhere in the literature. For example
the •Fundamental Theorem• in Buslaev (1975,§1.9) concerns the case of
Neumann boundary conditions and a point source incident wave, although
the general method used there can also be directly extended to the Dirichlet
boundary conditions and plane wave incidence which are considered here
(Buslaev 1962).

Theorem 3.3. There exists � > 0 such that V (x, k ) has the asymptotic
expansion

V(x, k ) �
�

�,m � 0

kŠ 1/ 3Š 2�/ 3Š m b�,m (x)� (� ) (k1/ 3Z (x)) , x � � � , (3.15)

as k � � , where � � := { x � � : dist( x, S) � � } , and S is the shadow
boundary de“ned in (3.6).

The precise meaning of the asymptotic expansion in (3.15) can be made
clear using thesymbol classesof Hörmander (1983a, p. 236, De“nition 7.8.1),
also mentioned brie”y in Melrose and Taylor (1985, p. 249). In the context
of our problem, a function p = p(x, k ) (where x � � � and k � (0, � )) is
said to lie in the symbol classSµ

	,
 if

|D �
k D n

x p(x, k )| � C�,n (1 + k)µŠ 	� + 
n , �, n � N  { 0} ,
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Figure 3.1. The contour c in the complex plane.

where D n
x denotes a surface derivative of ordern on � � .

Then, the precise meaning of (3.15) is that, for anyµ < 0 and for all
L, M � N  { 0} su�ciently large (depending on µ), the remainder

RL,M := V (x, k ) Š
L,M�

�,m =0

kŠ 1/ 3Š 2�/ 3Š m b�,m (x)� (� ) (k1/ 3Z (x))

satis“es

RL,M � Sµ
2/ 3,1/ 3 for (x, k ) � I � × (0, � ) (3.16)

(i.e., 
 = 2 / 3, � = 1 / 3 in this case). This interpretation is equivalent to
saying that (3.15) is a conventional asymptotic expansion in the limit as
k � � , and remains so under term-by-term di�erentiation on both sides
with respect to both x and k. This use of the� symbol in (3.15) is prevalent
throughout the rigorous asymptotics and microlocal analysis literature, and
it always has the same meaning.

In the expansion (3.15),b�,m are C� complex-valued functions on �� and
Z is a C� real-valued function on � � , which vanishes to “rst order on S
and is positive-valued on the illuminated zone and negative-valued on the
shadow zone (see (3.5)). Moreover � :C � C is an entire function (also
known as •Fock•s integral• (e.g., Fock 1965,§7, 12), de“ned by

�( � ) := exp( Ši� 3/ 3)
�

c

exp(Šiz� )
Ai (exp(2� i/ 3)z)

dz, (3.17)

where Ai is the Airy function and c is the contour depicted in Figure 3.1,
with � chosen to be any su�ciently small positive angle, ensuring the ab-
solute convergence of (3.17). We note that Fock•s integral is often denoted
	( � ) in other references (see for example Melrose and Taylor 1985). The
asymptotics of �( � ) are given in Melrose and Taylor (1985, Lemma 9.9)
(for � � + � ), whereas for � � Š� they can be inferred from Babich
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and Buldyrev (1991, p. 393), Buslaev (1964, Lemma 8); for a summary see
Domš́nguezet al. (2007). From these one can obtain the derivative estimates

|�( � )| � C0(1 + |� |), |� �(� )| � C1, (3.18)

and |� (� ) (� )| � C� (1 + |� |)Š 2Š � , for � 	 2, (3.19)

for all � � R, with C� independent ofk.
Using the asymptotic expansion in (3.15) and the interpretation of it in

terms of the Hörmander symbol classes, the following result was derived in
Domš́nguezet al. (2007).

Corollary 3.4. For all L, M � N  { 0} , the decomposition

V (x, k ) =

� L,M�

�,m =0

kŠ 1/ 3Š 2�/ 3Š m b�,m (x)� (� ) (k1/ 3Z (x))

�

+ RL,M (x, k ) (3.20)

holds for all x � � � , with remainder term satisfying, for all L, M � N  { 0} ,

|D n
x RL,M (x, k )| � CL,M,n (1 + k)µ+ n/ 3, (3.21)

where CL,M,n is independent ofk and

µ = Š min{ 2(L + 1) / 3, (M + 1) } . (3.22)

In numerical analysis we typically needk-explicit estimates on the deriva-
tives of V . These are obtained in the following result, which is a general-
ization of results in Domš́nguezet al. (2007), to include 3D as well as 2D
scattering problems.

Theorem 3.5. For all n � N  { 0} there exist constantsCn > 0 indepen-
dent of k and x such that, for all k su�ciently large, and x � � � ,

|D n
x V (x, k )| �

�
Cn n = 0 , 1,
Cn kŠ 1 (kŠ 1/ 3 + dist( x, S))Š (n+2) n 	 2,

(3.23)

where D n denotes any surface derivative operator of ordern on � � and S
is the shadow boundary as de“ned in (3.6).

Remark 3.6. This theorem quanti“es rather precisely the boundary layer
e�ect near the shadow boundary. If dist(x, S) 	 C > 0, then all the deriva-
tives of V decay with O(kŠ 1). However if dist(x, S) = O(kŠ 1/ 3) then for
n 	 2, the nth derivative of V grows with O(k(nŠ 1)/ 3). We emphasize also
that, up to this point in the theory, this estimate holds only for x � � �
(a neighbourhood of the shadow boundary, but independent ofk). The
extension to all of � requires a rigorous application of matched asymptotic
expansions: see,e.g., Domš́nguezet al. (2007), where the estimates (3.23)
are shown (in the 2D case) to hold for allx � �.
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Proof. Choosing anyn � N  { 0} , we can selectL, M so that Šµ 	 n/ 3,
with µ de“ned in (3.22). Then we apply Corollary 3.4 to obtain V (x, k ) =
AL,M (x, k ) + RL,M (x, k ), where

AL,M (x, k ) := kŠ 1/ 3
L�

� =0

kŠ 2�/ 3B�,M (x)� (� ) (k1/ 3Z (x)) ,

B�,M :=
M�

m=0

kŠ m b�,m (x),

the derivatives of RL,M are bounded as in (3.21), and, by choice ofµ,

|D n
x RL,M (x, k )| � Cn , for all k,

with Cn denoting a generic constant independent ofx and k but possibly de-
pending onn. Now, since all derivatives ofB�,M are bounded independently
of k, we obtain

|D n
x AL,M (x, k )| � CnkŠ 1/ 3

n�

j =0

L�

� =0

k(j Š 2� )/ 3
�
� � (� + j ) (k1/ 3Z (x))

�
� , (3.24)

and the result follows on observing that by (3.18), (3.19), each term in the
double sum can be estimated in the required way.

A hybrid approximation scheme for (1.3) can now be devised by insert-
ing an appropriate piecewise polynomial approximation ofV into (3.14).
Although methods which do not take any special care near the shadow
boundary can still be very e�ective (Abboud, N édélec and Zhou 1994, 1995,
Aberegg and Peterson 1995, Ganesh and Hawkins 2011), Theorem 3.5 sug-
gests we may do better if we do more work near the shadow boundary.
As an example consider the 2D case, where � is parametrized by a map-
ping � : [0, 2� ] � �, assumed proportional to arc-length. The shadow
boundary consists of two points, here denoted� (t i ), i = 1 , 2. Following
Domš́nguezet al. (2007), we partition the parameter domain into four zones

 i : i = 1 , . . . , 4, where 
 i , i = 1 , 2 are small neighbourhoods oft1, t2 re-
spectively, chosen as


 1 := [ t1 Š O(kŠ 1/ 3+ 
 ), t1 + O(kŠ 1/ 3+ � )], (3.25)


 2 := [ t2 Š O(kŠ 1/ 3+ � ), t2 + O(kŠ 1/ 3+ 
 )], (3.26)

with �, � � (0, 1/ 3) parameters to be chosen. For large enoughk, 
 1, 
 2
are disjoint and the remaining two components of [0, 2� ] are denoted 
 3
(contained in the illuminated zone) and 
 4 (in the shadow zone), with the
regions 
 j touching only at the end points. The hybrid approximation space
VN is then de“ned to be the space of functions taking the form (3.14), with
V approximated by a polynomial of degreep in each of 
 i : i = 1 , 2, 3 and
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by zero in the shadow zone, more precisely

VN := � 3
j =1 span{ k j (s)sm exp(ik� (s) · �a) : m = 0 , . . . , p} , s � [0, 2� ],

(3.27)
where the partition of unity {  j : j = 1 , 2, 3, 4} satis“es  j � L � [0, 2� ],
supp j = 
 j , 0 �  j � 1, for each j = 1 , . . . , 4, and

� 4
j =1  j = 1. The

spaceVN then has dimensionN = 3( p+1). It is proved in Dom´šnguezet al.
(2007) that, with the choice � = 1 / 9, we have, for 6� n � p + 1,

inf
wN �V N

� v Š wN � � Cnk
�

kŠ 4/ 9
�

k1/ 9

p

� n

+ exp( Šc0k
 )
�

, (3.28)

for some constantc0, where, recalling the convention introduced in Section 1,
�·� is used to denote�·� L 2(�) . Since (3.28) holds forn = p+1, it is driven to
zero quickly asp � � , provided p grows just slightly faster than k1/ 9. This
relative k-robustness of the estimate arises because we are concentrating
work near the shadow boundary. Note that the rightmost term in (3.28)
arises from the known exponential decay ofv in the shadow. (The proofs of
this decay are classical and highly non-trivial (Ursell 1968, Filippov 1976,
Zayaev and Filippov 1985, Zayaev and Filippov 1986, Lebeau 1984, Harge
and Lebeau 1994, Popov 1987).) A brief summary is given in Dom´šnguez
et al. (2007).

Before leaving this discussion we mention that a more detailed analysis of
the asymptotics of (3.17) as� � Š� allows one to identify exponentially
damped oscillations inV in the shadow region but near the transition points
t1, t2, commonly known as creeping waves. The most dominant of these
creeping waves was modelled explicitly in the hybrid numerical-asymptotic
collocation method of Giladi and Keller (2004) and Giladi (2007).

3.2. The impedance half-plane problem

Chandler-Wilde et al. (2004) and Langdon and Chandler-Wilde (2006) con-
sidered the problem of 2D scattering of an incident plane waveuI (x) =
exp(ikx · �a) by an in“nite ”at surface where the scattered wave uS satis-
“es a suitable radiation condition and the total wave u = uI + uS satis“es
a piecewise constant impedance boundary condition. For this problem,k-
independent stability, convergence and complexity were proved, the “rst
such rigorous result for any scattering algorithm. We give an overview of
these results here since they can be considered as a prototype for results
later in this section, and, in particular, have direct links to Section 3.3.

The total “eld u � C(U) � C2(U) is required to satisfy (1.1) in the upper
half-plane, U := { (x1, x2) � R2 : x2 > 0} , together with the impedance
boundary condition

�u
�n

+ i k	u = 0 , on � := { (x1, 0) : x1 � R} . (3.29)
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Such problems arise, for example, in outdoor sound propagation, where
the relative surface admittance 	 in general depends on the frequency and
the ground properties (e.g., Taraldsen and Jonasson 2011). Although more
general con“gurations are possible, for exposition we here restrict to the
relatively simple case

	 (x1) =

�
	 1 x1 � [0, 1],
	 c x1 � R\ (0, 1),

with (recall (2.2)) 	 1, 	 c � C assumed to lie in the right half-plane.
This problem di�ers from all the other boundary value problems in this

review since the scatterer is of in“nite extent and the appropriate radiation
condition is di�erent from that for a bounded scatterer. Nevertheless, the
problem can be reformulated as the second-kind BIE

v Š K � c
� v = � � c , (3.30)

on R, where v(s) := u(s,0) is the total “eld at point ( s,0) on �, and

� � c (s) :=
�

2 cos�
cos� + 	 c

�
exp(iks sin � ).

Here �a = (sin �, Š cos� ) is the direction of the incident plane wave (with
� � (Š�/ 2, �/ 2), so that the wave is incoming), and

K � c
�  (s) := i k(	 1 Š 	 c)

� 1

0
G� c ((s,0), (t, 0)) (t) dt,

with G� c (x, y) the Green•s function for (1.1) and (3.29) in the case	 = 	 c
(Chandler-Wilde and Hothersall 1995). In fact � � c is the total acoustic “eld
in the case that the surface has constant impedance	 c.

The numerical scheme for solving (3.30) is then based on a high-frequency
analysis of re”ected and di�racted rays, in the spirit of the geometrical the-
ory of di�raction. More precisely, the dominant component of v turns out
to be � � 1 (the total “eld induced if the whole boundary had the admit-
tance 	 1) and the remainder can be described by the sum of the di�racted
rays scattered at the discontinuities in the impedance. (For scattering at 0,
rays travel from left to right along (0 , 1), and for scattering at 1, rays travel
from right to left along (0 , 1).) These di�racted rays are illustrated by the
arrows in Figure 3.2 (where the scattered “elduS = uŠ uI is plotted for the
same choice of parameter values as given in Langdon and Chandler-Wilde
(2006, p. 2454)).

This leads to the ansatz

v(s) = � � 1 (s) + V + (s) exp(iks) + V Š (1 Š s) exp(Šiks), s � (0, 1), (3.31)

which corresponds to (3.1) with M = 2, V0(x, k ) = � � 1 (x), V1(x, k ) =
V + (x), � 1(x) = x, V2(x, k ) = V Š (1 Š x) and � 2(x) = Šx. Langdon and
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discontinuities in impedance

Figure 3.2. Scattered “eld uS = u Š uI ; the arrows represent the
incident rays, and those di�racted rays scattered at the discontinuities
in the impedance which travel in either direction along the boundary.

Chandler-Wilde (2006, Theorems 2.3, 2.6) have shown that the functions
V ± are not oscillatory, and that their high-order derivatives decay rapidly
away from the discontinuities in impedance ats = 0 and at s = 1.

Theorem 3.7. For t > 1/k , m = 0 , 1, . . . , there exist constantsCm , de-
pendent only on m, such that

�
�V ± (m) (t)

�
� � Cm km (kt)Š 1/ 2Š m cos�, (3.32)

and there exists a constantC, such that
�
�V ± (t)

�
� � C (kt)Š 3/ 2(cos� )Š 1. (3.33)

Thus, if � is bounded away fromŠ�/ 2 and �/ 2 (the directions of graz-
ing incidence), the estimates (3.33) can be used, while the bounds (3.32)
apply for all � . Numerical experiments in Langdon and Chandler-Wilde
(2003b, 2006) suggest that, form = 0, these bounds appear to be sharp with
respect to both � and kr . These estimates are crucial to thek-independent
convergence rate obtained in Theorem 3.8 below.

Given these estimates the hybrid approximation spaceVN for (3.30) is
then chosen to be a space of functions of the form (3.31), withV + replaced
by certain piecewise polynomials de“ned on a mesh graded towards 0, and
V Š replaced by piecewise polynomials de“ned on a mesh graded towards
1. A crucial ingredient in the method is the precise design of the mesh,
speci“cally that it is geometric (like (3.47)) on most of the interval [0 , 1].
Solving (3.30) by the Galerkin method inVN , the resulting solution vN � V N
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has an error estimate given by the following theorem. In this section we shall
use the notation A � B when A � CB, where C is a constant that does
not depend onk or N .

Theorem 3.8. (Langdon and Chandler-Wilde 2006, Theorem 3.5)
If |	 1 Š 	 c| < Re	 c (i.e., the relative jump in 	 is not too large), then

� v Š vN � L 2(0,1) �
log1/ 2(min( N/ cos�, k ))

N � +1 ,

whereN � N is a parameter used in the de“nition of the graded meshes and
� is the degree of polynomial approximation on each interval of the graded
meshes. The spaceVN has dimension� N log(min(N/ cos�, k ) (in contrast
to elsewhere in the review, where we generally use the convention thatVN
has dimensionN ).

We note that in general the meshes used to approximateV Š and V +

do not coincide, which ensures the corresponding system matrices are well-
conditioned. (Further details are in Langdon and Chandler-Wilde 2006.)
This type of approximation scheme arises again below, for example in Sec-
tion 3.3.

The estimate in Theorem 3.8 is derived by “rst noting that

� K � c
� � L 2(0,1)� L 2(0,1) �

|	 1 Š 	 c|
Re	 c

< 1,

under the assumption on	 . Thus existence and boundedness of (I Š K � c
� )Š 1

follows from the Banach Lemma. Writing the Galerkin method as

(I Š P N K � c
� )vN = PN � � c , (3.34)

where PN : L 2(0, 1) � V N is the orthogonal projection onto VN , with
�P N � 2 = 1, it follows that (3.34) is uniquely solvable, and a little algebra
(see Section 6.1 for similar arguments) shows that

� v Š vN � L 2(0,1) �
Re	 c

Re	 c Š | 	 1 Š 	 c|
� v Š P N v� L 2(0,1) .

The “nal result is obtained by using a bound on � v Š P N v� L 2(0,1) proved in
Langdon and Chandler-Wilde (2006, Theorem 3.4).

Thus, for “xed N , as k increases the error is boundedindependently of
k. Further results can be found in Langdon and Chandler-Wilde (2003a,
2003b, 2006), where it is shown, for instance, that the Galerkin method can
be implemented with a cost that is independent ofk, that the condition
number of the Galerkin matrix is bounded independently of k and, via a
careful choice of mesh parameters, that the error estimates are uniform
with respect to the angle of incidence� (even as� approaches grazing angle
of incidence).
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3.3. Convex polygons

In this subsection we consider the solution of three high-frequency scatter-
ing problems, where the scatterers are non-smooth bounded 2D domains.
The “rst is the sound-soft exterior Dirichlet problem (2.16) for a polygonal
scatterer (•the sound-soft polygon•, with results described in Section 3.3.1),
the second is the exterior impedance problem (2.18), again for a polygo-
nal scatterer (•the impedance polygon•, Section 3.3.3), and the third is the
sound-soft exterior Dirichlet problem for a curvilinear polygon (described
brie”y in Section 3.3.2). For the two sound-soft problems, (2.16) is reformu-
lated as the BIE (2.114) or (2.115), and the solutionv := �u/�n is written
in the form (3.1), using a slightly di�erent ansatz in each case. For the
impedance problem, a similar ansatz to (3.1) is used forv = �u . Rigorous
k-explicit error estimates for approximation in the corresponding hybrid ap-
proximation spaces are available for the sound-soft and impedance polygons.
For the curvilinear polygon, the validity of the hybrid approximation space
is justi“ed by a heuristic argument, and also by numerical results, presented
in Section 7.3.

3.3.1. The sound-soft polygon
The chief reference for this subsection is Chandler-Wilde and Langdon
(2007), although other references are mentioned below. The treatment be-
gins by establishing that the choice of hybrid space given in Example 3.2 is
appropriate for this problem. In fact it is shown that, for x � �,

v(x, k ) = V0(x, k ) (3.35)

+ k
ns�

m=1

�
V +

m (x, k ) exp(ikx · �dm ) + V Š
m (x, k ) exp(Šikx · �dm )

�
,

wherens is the number of sides of the polygon, the unit vector�dm is parallel
to the mth side � m , the function V ±

m is non-zero only on �m , and V0(x, k )
is given by (3.8). It is easily seen that this corresponds to a particular
instance of (3.1) with M = 2ns (note that here v has a di�erent scaling
to that used in Chandler-Wilde and Langdon (2007)). Let � m denote the
side of the polygon connecting the verticesPm and Pm+1 , with length L m
and corresponding exterior angles� m , � m+1 � (�, 2� ) at its end-points, and
make the convention that Pns +1 = P1 and � ns +1 = � 1. Then, for x � � m ,
m = 1 , . . . , ns, we can rewrite (3.35) as

v(s) = V0(s) + k
�
V +

m (s) exp(iks) + V Š
m (L m Š s) exp(Šiks)

�
, s � [0, L m ],

(3.36)
where s denotes the distance ofx from Pm .

To establish the potential of (3.35) as the starting point for a hybrid ap-
proximation space, it is necessary to establish thek-explicit regularity of
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the functions V ±
m (·, k). In fact it turns out that the representation (3.35)

captures the oscillatory behaviour ofv exactly, in the sense that the func-
tions V ±

m are non-oscillatory. The key to obtaining this result, as for all of
the results in this section, lies in understanding precisely the high-frequency
asymptotics of the solution to the scattering problem. Comparing the prob-
lems in this subsection with those in Section 3.1, it might at “rst appear
that polygonal scatterers present more of a challenge, due to the di�culties
caused by the corners of the polygon. However, it turns out that if x is
su�ciently close to a corner, the behaviour of V ±

m can be understood using
standard techniques for handling elliptic corner singularities (e.g., Grisvard
1985), or by explicitly representingu and �u/�n near corners via separation
of variables in polar coordinates centred on the corner. Using this approach
the following theorem was established.

Theorem 3.9. (Chandler-Wilde and Langdon 2007, Corollary 3.4)
For m = 1 , . . . , ns, t > 0, and for all n 	 0, the bound

�
�
�
�

� n

�t n V +
m (t)

�
�
�
� � M (u) kn(kt)Š � m Š n (3.37)

holds for kt � 1, where� m := 1 Š �/� m � (0, 1/ 2), and

M (u) := sup
x� � +

|u(x)|.

The hidden constant in (3.37) is independent ofk and t. The same bounds
hold for V Š

m , with � m replaced by � m+1 .

The dependence of the constantM (u) on the wavenumber k is not yet
fully understood. Hewett et al. (2012) showed that when � is a star-shaped
polygon, M (u) grows at most algebraically with k; speci“cally,

M (u) = O(k1/ 2 log1/ 2 k) as k � � . (3.38)

However, numerical experiments in Chandler-Wilde and Langdon (2007),
Hewett et al. (2012) and Chandler-Wildeet al. (2012a) lead us to conjecture
that, in fact, M (u) = O(1) as k � � , for both convex and a more general
class of non-convex polygons. As yet though, this statement remains to be
proved.

Establishing regularity results for V ±
m (x, k ) when x is further away from

the corners turns out to be a somewhat easier task than deriving the analo-
gous estimates for smooth convex scatterers, as in Section 3.1. The key step
is the observation (adapted from Chandler-Wilde et al. 2004 and related
to the ideas in Section 3.2) that one can write down an explicit solution
to the Dirichlet boundary value problem for the Helmholtz equation in a
half-plane, using the explicit Green•s function constructed via the method
of images. To this end, letDm � � + denote the half-plane whose boundary
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contains � m , and set Gm,k (x, y) = � k (x, y) Š � k(x, y �
m ), where y�

m denotes
the image ofy in the straight line �D m . (This is the Dirichlet Green•s func-
tion for the half-plane Dm .) Then, for an illuminated side � m (shadow sides
are treated similarly), we have the formula

u(x) = uI (x) + uR(x) +
�

�D m

�G m,k (x, y)
�n (y)

u(y) ds(y), for x � Dm . (3.39)

HereuR is the plane wave re”ected from�D m (de“ned analogously to (3.2)).
Taking the normal derivative in (3.39), noting that �G m,k (x, y)/�n (y) =
2� � k (x, y)/�n (y), and recalling that u = 0 on �, we have

�u
�n

(x) = 2
�u I

�n
(x) + 2

�

�D m \ � m

� 2� k (x, y)
�n (x)�n (y)

u(y) ds(y), x � � m . (3.40)

The formula (3.40) holds on each illuminated side. The same formula
holds also on shadow sides but with the term 2�u I /�n deleted. Thus, on a
side � m , it holds that

�u
�n

(x) = V0(x, k ) + k
�
V +

m (x, k ) eikx · �dm + V Š
m (x, k )eŠ ikx · �dm

�
, (3.41)

where V0 is de“ned by (3.8) and the functions V ±
m and unit vector �dm are

de“ned in (3.42) below. This formula is obtained by decomposing the inte-
gral in (3.40) into two parts, corresponding to the two lines either side of
� m that extend to in“nity in each direction (which we denote by � ±

m ), so
that explicitly

V ±
m (x, k ) :=

ik
2

�

� ±
m

exp(� iky · �dm )µ(k|x Š y|)u(y) ds(y), (3.42)

with µ(z) := exp( Šiz)H (1)
1 (z)/z , for z > 0, and with �dm the unit vector

pointing from � +
m along � m .

Equation (3.41) is the representation (3.35) promised in Example 3.2,
evaluated on � m . Although we cannot evaluate the integrals in (3.42), as
they involve the unknown u on � ±

m , it can be shown that the V ±
m are not

oscillatory on � m . This is the content of the following theorem.

Theorem 3.10. (Chandler-Wilde and Langdon 2007, Theorem 3.2)
For m = 1 , . . . , ns, t > 0, and for all n 	 0, we have

�
�
�
�

� n

�t n V ±
m (t)

�
�
�
� � M (u)kn(kt)Š 1/ 2Š n , (3.43)

for kt 	 1. The hidden constant in (3.43) is independent ofk and t.

The hybrid approximation space VN for this problem is de“ned as the
space of all functions of the form (3.35), withV ±

m , m = 1 , . . . , ns, each re-
placed by certain piecewise polynomials of degreep. Speci“cally, V +

m is ap-
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proximated on � m using piecewise polynomials of degreep, on a mesh which
is graded near the cornerPm (to accommodate the blow-up of derivatives
near that point) and has points more spread out over the rest of �m . Anal-
ogously V Š

m is approximated on � m using piecewise polynomials on a mesh
graded towards the other corner,Pm+1 (recall (3.36)); as for the scheme
described in Section 3.2, the meshes used to approximateV +

m and V Š
m do

not usually coincide and the precise design of the meshes is crucial to the
success of the method. Using Theorems 3.9 and 3.10, one can prove the
following best approximation estimate for VN .

Theorem 3.11. (Chandler-Wilde and Langdon 2007, Theorem 4.4)
Denote the length of the boundary of the polygon byL , the total number
of degrees of freedom byN , and the degree of polynomial approximation on
each element byp. Then

kŠ 1/ 2 inf
wN �V N

� v Š wN � � M (u)(ns log(kL ))1/ 2
�

ns log(kL )
N

� p+1

.

The hidden constant in this estimate depends only on the corner angles and
on p.

Combining with (3.38), this theorem shows that in order to maintain
control of the quantity kŠ 1 inf wN �V N � v Š wN � , it is su�cient to increase
the number of degrees of freedomN slightly faster than log k ask increases.
For a discussion of what are the appropriate quantities to consider when
measuring the error, and why, we refer to Section 6.5.

A collocation method based on the identical integral equation formulation
and the same approximation spaceVN is implemented in Arden, Chandler-
Wilde and Langdon (2007). The numerical results there suggest that there
is little di�erence in accuracy between the Galerkin and the (rather easier to
implement) collocation method for this problem, although there is no error
analysis for collocation.

3.3.2. Convex curvilinear polygons
The extension of the ideas in Section 3.3.1 to sound-soft convex curvilinear
polygons is discussed in Langdonet al. (2010). In this case the ansatz for
smooth convex obstacles (3.14) is combined with that for convex polygons
(3.35), leading to the ansatz (forv = �u/�n )

v(x, k ) = kV (x, k ) exp(ikx · �a) (3.44)

+ k
ns�

m=1

�
V +

m (x, k ) exp(iks) + V Š
m (x, k ) exp(Šiks)

�
,

for x = � (s) � �, where � again represents arc-length parametrization of �,
ns is the number of sides of the curvilinear polygon and each functionV ±

m
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is assumed non-zero only on sidem. Here, V and V ±
m are all to be found.

Whereas for smooth obstacles the regularity ofV can be established, and for
convex polygonsV is known and V ±

m can be proved to be slowly oscillating,
for convex curvilinear obstacles such results have, to date, remained elusive.
Nevertheless, numerical results in Langdonet al. (2010) suggest (at least for
the examples tested) that, if we use the ansatz (3.44) and approximateV
as in Section 3.1 andV ±

m as in Section 3.3.1, then the number of degrees of
freedom required to approximate (1/k )�u/�n to any given level of accuracy
for convex curvilinear polygons grows only logarithmically ask increases.
This is a similar result to that described in Theorem 3.11 above for straight-
sided convex polygons. Further numerical results in Section 7.3 illustrate
how this result appears to extend to the computation of the solution u in
the domain, and of the far-“eld pattern F de“ned by (2.10) (see also (2.23)
and (2.24)).

3.3.3. The impedance polygon
The extension of the method in Section 3.3.1 to scattering from a convex
polygon with impedance boundary condition is described in Chandler-Wilde
et al. (2012b). In this case, we havev = �u as the unknown function to be
approximated on �, rather than �u/�n , and the integral formulation (2.111)
is used. Again, v can be expressed as a product of oscillatory and non-
oscillatory functions on each side of the polygon, leading to a similar ansatz
to that used for the sound-soft convex polygon (3.35), but without the factor
k multiplying the summation on the right-hand side, and with a di�erent
V0. Similar techniques to those described in Section 3.3.1 can be applied to
establish regularity estimates forV ±

m . In this case, it is proved in Chandler-
Wilde et al. (2012b) that (using the same notation as in Section 3.3.1)

kŠ n
�
�
�
�

� n

�t n V +
m (t)

�
�
�
� �

�
M (u)(kt)� m for kt � 1,
M (u)(kt)Š 1/ 2Š n for kt 	 1,

where the hidden constant is independent ofk and t and where 	 m =
min{ 0, �� m Š n} , with �� m = �/� m � (1/ 2, 1). Similar bounds hold for
V Š

m , with �� m replaced by �� m+1 . An order p polynomial approximation
space similar to that in Section 3.3.1 is employed, again with geometric
mesh grading except within a wavelength of each corner. LettingVN de-
note the resulting approximation space (and using the same notation as in
the statement of Theorem 3.11), the best approximation result is

k1/ 2 inf
wN �V N

� v Š wN � � M (u)(ns log(kL ))1/ 2
�

ns log(kL )
N

� p+1

. (3.45)

The hidden constant depends only on the impedance	 , the corner angles,
and p. This estimate is identical to Theorem 3.11 except that the factor
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of kŠ 1/ 2 on the left-hand side of the estimate in Theorem 3.11 is now a
factor of k1/ 2 (recall that here we havev = �u , as opposed tov = �u/�n
in Section 3.3.1). Thus, under the assumption that (3.38) holds also for the
impedance case, we can maintain control of infwN �V N � vŠ wN � by increasing
the number of degrees of freedomN slightly faster than log k ask increases.
Results in Section 7.4 (e.g., Figure 7.11) suggest that this may even be
pessimistic, with errors decreasing for “xedN as k increases (as would be
expected from (3.45) ifM (u) = O(1) was known to hold).

3.3.4. Exponential convergence
All of the theoretical and numerical results described in Section 3.3 so far
have concerned methods with an algebraic order of convergence. These
results have recently been improved upon in Hewettet al. (2012), where,
for the sound-soft convex polygon,hp methods with exponential convergence
rate are presented. The analysis of this scheme requires stronger analyticity
and regularity estimates on V ±

m , appearing in (3.36), than are provided by
Theorems 3.9 and 3.10. In Hewettet al. (2012) it is shown that V ±

m (t), m =
1, . . . , ns, have an analytic continuation into the right half-plane Re ( t) > 0,
where (using the same notation as in Theorem 3.9)

|V +
m (t)| �

�
M (u)|kt |Š � m 0 < |t| � 1/k,
M (u)|kt |Š 1/ 2 |t | > 1/k,

(3.46)

and an identical bound holds for |V Š
m |, with � m replaced by � m+1 .

We can describe thehp space for approximatingv in (3.36) by simply de-
scribing how V +

m and V Š
m are approximated. For V +

m we de“ne the geometric
mesh

x0 := 0 , xi := � nŠ i L m , i = 1 , 2, . . . , n, (3.47)

where L m is the length of side � m , 0 < � < 1 is a grading parameter and
n � N. Then we set V+

m to be the space of piecewise polynomials of de-
gree p on [0, L m ] with respect to this mesh. Because of the grading, this
space approximatesV +

m well despite the singularity at s = 0. We de“ne VŠ
m

completely analogously by a mesh graded towardsL m . The approximation
spaceVN then consists of functions of the form (3.35), withV +

m and V Š
m re-

placed by functions from V+
m and VŠ

m respectively. Typically the number of
layersn on each geometric mesh is taken to be proportional top (alternative
choices are discussed in Hewettet al. (2012)), in which case the approxima-
tion spaceVN has dimensionN = O(p2), and the best approximation result
is then (with v = �u/�n )

inf
wN �V N

� v Š wN � � M (u)k� exp(Šp� ), (3.48)

where � > 0 is a constant which represents the rate of exponential decay,
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(a) re-re”ections

illuminated region

shadow region

�
s

r

uI

x

(b) partial shadowing

Figure 3.3. New phenomena that arise for non-convex obstacles.

�

Figure 3.4. Assumption on geometry of non-convex obstacles,
that � lies entirely within the semi-in“nite dashed lines.

and � = 1 Š minm=1 ,...,n s (1 Š �/� m ) � (1/ 2, 1), with � m the external angles
at the corners of the polygon. To maintain accuracy ask increases, it is
su�cient for p to grow only logarithmically, in which case the algebraically
growing k-dependent prefactor in (3.48) (recall (3.38)) will be absorbed into
the exponentially decaying factor. Numerical results demonstrating this are
provided in Section 7.2 (see Figure 7.5).

3.4. Non-convex polygons

In this subsection we consider the sound-soft scattering problem (2.16) when
� is the boundary of a non-convex two-dimensional polygon. Non-convexity
signi“cantly complicates the behaviour of the solution on �, permitting
two new phenomena that cannot occur for convex obstacles: re-re”ections
(where the incident “eld re”ects o� one part of � onto another part of �)
and partial illumination (where one part of � obscures another, creating a
shadow zone and shadow boundary that do not correspond to the de“nitions
(3.5) and (3.6)). These are illustrated in Figure 3.3.

The main reference for the results described in this subsection is Chandler-
Wilde et al. (2012a). Only a restricted class of polygonal geometries is
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convex sides

non�convex sides non�convex sides

(a) star-shaped polygon

convex sidesnon�convex sides

non�convex sides
convex sides

(b) non-star-shaped polygon

Figure 3.5. Examples of non-convex polygons
satisfying our geometrical assumptions.

described rigorously by the present theory. While there is some evidence
that the approximation space we propose will be e�ective in practice for a
wider range of geometries, it will not be appropriate in certain cases,e.g.,
for the trapping domains described in Section 5.2. The assumptions on the
geometry are as follows.

(1) Each external angle is either greater than � (a •convex corner•) or
exactly �/ 2 (a •non-convex corner•); this assumption permits the use
of a representation formula for the solution in a quarter-plane that
leads to a signi“cant simpli“cation of the analysis in Chandler-Wilde
et al. (2012a).

(2) For each non-convex corner, the obstacle � must lie within the dashed
lines illustrated in Figure 3.4; this assumption ensures that re-re”ec-
tions and partial shadowing occurring on any side of the polygon can
only be caused by a single alternative side of the polygon (and also
disallows trapping domains), which eases the analysis considerably.

Such polygons may or may not be star-shaped. Two examples of scatterers
satisfying these constraints are shown in Figure 3.5. We call a side �m ,
m = 1 , . . . , ns, •convex• if each of its end points is a convex corner and •non-
convex• otherwise. On convex sides, the ansatz (3.36) holds (forv = �u/�n ),
and the analysis of Sections 3.3.1 and 3.3.4 can be carried over to derive
identical best approximation estimates on those sides as for convex polygons.

We now consider the behaviour on a typical non-convex side. For ease
of presentation, we consider only the con“guration in Figure 3.3(b), and
describe a representation for the solutionv = �u/�n on the vertical side in
that “gure (with r representing the distance from the •shadowing• corner to
a point x on that side, and s representing the distance from the non-convex
corner to the point x (thus r can be thought of as a function ofs), as shown
in the “gure). In this case, the side is partially illuminated; we also expect
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�

infinite ’knife edge’

uI

Figure 3.6. The leading-order behaviourud on the vertical side
of � corresponds to the known exact solution to the problem
of di�raction by the in“nite knife edge in the “gure.

di�raction from each corner in the “gure. The following theorem describes
an appropriate ansatz on such a side (which we denote by �m , and presume
to have length L m ).

Theorem 3.12. (Chandler-Wilde et al. 2012a) On the vertical side
� m in Figure 3.3(b), v = �u/�n satis“es

v(s) = V0(s) + V + (L m + s) exp(iks) + V Š (L m Š s) exp(Šiks)

+ �V (s) exp(ikr (s)) , (3.49)

for s � [0, L m ], where

V0(s) := 2
�u d

�n
(s),

and ud is the known exact solution to the problem of di�raction of the
incident plane wave uI by the in“nite knife edge (with Dirichlet boundary
conditions) that would be created were the horizontal side of the polygon
to be extended inde“nitely to the right, as shown in Figure 3.6, and the
rest of � ignored. The functions V ± and �V can be shown to be analytic in
appropriate regions of the complex plane to allow a similar approximation
theory to that described in Section 3.3.4 to be applied; in particular, V ±

satisfy the bounds (3.46), and (for star-shaped polygons)

| �V (s)| � Ck log1/ 2 k,

in a “xed (independent of k) neighbourhood of [0, L m ] in the complex plane.

For alternative con“gurations such as that corresponding to Figure 3.3(a),
very similar results hold. We refer to Chandler-Wilde et al. (2012a) for
details.

There are parallels between the proof of Theorem 3.12 and the proofs
of the regularity results for convex polygons described in Section 3.3.1. In
particular, whereas the results in Section 3.3.1 are based on a representation
of the solution in a half-plane, the proof of Theorem 3.12 is based on the
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explicit expression for the Green•s function in a quarter-plane, with this
used in the quarter-plane formed by extending to in“nity the two sides
subtended by the non-convex corner. This theoretical reliance on the explicit
expression for the quarter-plane Green•s function has driven the geometrical
restrictions imposed here, but we anticipate that an approximation space
based on ansatz (3.49) could equally well be applied to more general star-
shaped non-convex scatterers, although the analysis does not carry forward
to such cases at present.

The hybrid approximation space VN for this problem is then de“ned as
the set of functions that on each convex side has the form (3.36), withV +

m
and V Š

m replaced by functions from V+
m and VŠ

m respectively (as described
in Section 3.3.4). On non-convex sides we use representations based on the
ansatz (3.49); for the con“guration described in Theorem 3.12 on �m , V Š is
replaced by a function from VŠ

m (to deal with the singularity at the convex
corner at the top of the vertical side in Figure 3.3(b)), and V + and �V are
each replaced by a polynomial on the whole of �m , since these functions are
analytic in a neighbourhood of [0, L m ].

Assuming for simplicity the same number of layersn on each graded mesh,
and the same degreep of polynomial approximation on each element, the
result is a scheme with 2n(p + 1) degrees of freedom per convex side and
(n + 2)( p + 1) per non-convex side. As described in Section 3.3.4, if the
number of layers n on each geometric mesh is taken to be proportional to
p then the approximation spaceVN has dimensionN = O(p2). Using the
regularity results provided by Theorem 3.12 and (3.46) the following best
approximation result can be proved (for v = �u/�n ).

Theorem 3.13. (Chandler-Wilde et al. 2012a) For star-shaped non-
convex polygons satisfying the geometrical assumptions described above, for
some� > 0,

inf
wN �V N

� v Š wN � � M (u)k1/ 2+ � exp(Šp� ), (3.50)

where � = 1 Š minm=1 ,...,n s (1 Š �/� m ) � (1/ 2, 1), with � m the external
angles at the corners of the polygon.

To maintain accuracy as k increases, since (3.38) holds, it is again su�-
cient for p to grow logarithmically as k � � . Numerical results illustrating
this are provided in Section 7.5 (see Tables 7.6…7.8), where it is also shown
that the approximation properties of the best approximation (3.50) carry
over to the approximation of the far-“eld pattern.

3.5. Multiple scattering

A very interesting extension of the method in Bruno et al. (2004) and Bruno
and Geuzaine (2007) to multiple scattering is given in Geuzaineet al. (2005).
There it is explained how the integral equation (1.3) may be solved by a
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Neumann series approach, where each term in the Neumann series corre-
sponds to the scattering by a single convex obstacle of an incident “eld
consisting of the incident wave combined with previously scattered waves.
Each of these single-obstacle scattering problems can be solved by a method
similar to the methods described above, except that now the ansatz (3.1)
becomes somewhat more complicated. Although there is still only one term
in the expansion (i.e., V0 = 0 and M = 1), the phase � 1 has now to be cho-
sen as a function re”ecting the optical distance travelled by rays through
all previous re”ections (as worked out in detail for the case of two scat-
terers when each individual scatterer is smooth and convex in Geuzaine
et al. (2005)). Preliminary numerical tests were provided in Geuzaineet al.
(2005) which demonstrated the potential for the method. The theory was
substantially advanced in the subsequent works of Ecevit (2005) and Ecevit
and Reitich (2009), where the implementation of the Neumann series was
shown to correspond to a sum over increasing period of a sequence of peri-
odic orbits. Each orbit corresponds to re”ections o� a “xed set of scatterers,
and this allows the convergence rate of the Neumann series to be estimated,
for su�ciently high frequency, and permits the formulation of methods for
accelerating its convergence. The most recent work in this direction (Anand
et al. 2009) extended the analysis to the three-dimensional case, where ad-
ditional considerations on the relative orientation of the scattering bodies
come into play.

4. Numerical treatment of oscillatory integrals

In this section we review work on the key implementation issue (see ques-
tion Q2 identi“ed in Section 1) of how to assemble the linear systems aris-
ing from hybrid methods with a computational time that either remains
bounded or else grows only slowly ask � � . In Section 4.1 we describe
the speci“c integrals which arise in the numerical treatment of scattering
problems by hybrid Galerkin methods. These are particularly challenging
examples of the general problem of computing oscillatory integrals, which
has a long history and has seen a great deal of research interest in recent
years. In Section 4.2 we review classical and modern work on oscillatory
integration in general. The oscillatory integrals introduced in Section 4.1
have integrands which are products of explicit oscillatory exponentials and
complicated non-oscillatory factors; Filon quadrature rules which require
only point-values of the non-oscillatory factors are particularly useful for
these. Some classes of such rules are reviewed in Section 4.3, together with
recent progress in their error analysis. These are applied to computation of
Galerkin integrals in scattering problems in Section 4.4. The section is com-
pleted with Section 4.5, in which the integration approaches in a number of
other hybrid methods are reviewed.
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4.1. Integration problems arising in hybrid Galerkin methods

We will be chie”y concerned with discretization of integral equations arising
from the direct and indirect formulations of scattering problems, of the form

Ak,� v :=
�

1
2

I + Dk Š i�S k

�
v = f, (4.1)

A�
k,� v :=

�
1
2

I + D �
k Š i�S k

�
v = f, (4.2)

(recall (2.71) and (2.68) for the general case and (2.114) for the direct for-
mulation in the particular case of sound-soft scattering), where� is usually
taken to be a k-dependent constant. We will also be concerned with imple-
mentation of the star-combined formulation, which is of the form

A kv := ( x · n)
�

1
2

I + D �
k

�
v + x · 
 � Skv Š i�S kv = f, (4.3)

where � is a (smooth) function of x � � (see (2.103) and (2.115)). Each
equation above is posed inL 2(�) and in general f is k-dependent.

Let us suppose we take a Galerkin approach based on the ansatz (3.1) and
let � , �� denote a typical pair of basis functions in this Galerkin method. Dis-
regarding for a moment the surface derivative term (the second term of the
middle entry of (4.3)), the Galerkin implementation of all other terms will
require computation of various inner products. Firstly inner products which
do not involve integral operators appear. These are (dŠ 1)-dimensional •load
vector• and •mass matrix• integrals, of the form

(f, �� ), (bV0, �� ) and (b�, �� ), (4.4)

with b being smooth and non-oscillatory, f being the right-hand side in
(4.1), (4.2) and (4.3), andV0 the known, in general oscillatory, leading-order
function in (3.1). All inner products involving V0(x, k ) are with respect to
x. Secondly there are •sti�ness matrix• inner products involving integral
operators. These are in principle 2(d Š 1)-dimensional, and in general take
the form

(Dk�, b �� ), (D �
k �, b �� ), (Sk �, b �� ), (4.5)

or

(DkV0, b�� ), (D �
kV0, b�� ), (SkV0, b�� ), (4.6)

with b again smooth and non-oscillatory (in some casesb � 1). Finally the
surface gradient term in (4.3) yields further •sti�ness matrix• inner products
of the form

(
 � Sk �, ��x ) and (
 � SkV0, ��x ), (4.7)

and these can be reduced to inner products just involving the single-layer
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operator, via integration by parts, as we explain in Section 4.1.3. So, for
the present let us concentrate on the inner products (4.4)…(4.6).

We may start by observing the fundamental di�erence between the inte-
gration tasks arising from hybrid methods and those arising from standard
boundary element methods. In standard BEM (with piecewise polynomial
bases), the basis functions have local support, and should cover only a frac-
tion of a wavelength in order for the method to be su�ciently accurate.
Moreover, in standard BEM, the terms involving the (in general) oscillatory
function V0 are not present. So, even though the kernels of the operators
(e.g., in (4.5)) are oscillatory, the oscillation does not pose a problem in
practice since the domains of integration are so small that they resolve the
oscillation. On the other hand, in hybrid methods the intention is that
the support of the basis functions should be large compared to the wave-
length (to achieve computational e�ciency), so the domains of integration
are correspondingly large, typically rendering the integrals highly oscilla-
tory (in addition, V0 (when present) is typically supported over the entire
illuminated region). Moreover the basis functions � , �� are also oscillatory
(as aref and V0), thus complicating the oscillation in (4.5) and also poten-
tially introducing oscillation in (4.4). (We consider this in more detail in
Section 4.1.1 below.)

Recalling (3.1), a typical basis function for a hybrid spaceVN will take
the form

� (x) =  j (x)P� (x) exp(ik� m (x)) , (4.8)

where {  j : j = 1 , . . . , J } is a partition of unity with respect to a covering,
{ � j : j = 1 , . . . , J } of �, { � m : m = 1 , . . . , M } is a set of phase functions
and { P� (� (s)) : � = 1 , . . . , p} is a basis for the polynomials of degreep, with
� a parametrization of �. This includes, as a special case, basis functions of
the form � (x) = P� (x) exp(ik� m (x)), with x restricted to a subdomain of �,
i.e., standard discontinuous piecewise polynomials modulated witha priori
chosen plane waves.

4.1.1. Load vector and mass matrix integrals
With the basis functions given by the generic formula (4.8), and introducing
also �� =  j � P� � exp(ik� m� ), the integrals in (4.4) may be written

(f, �� ) =
�

� j �

(f  j � P� � )(x) exp(Šik� m� (x)) ds(x), (4.9)

(bV0, �� ) =
�

� j �

(bV0 j � P� � )(x) exp(Šik� m� (x)) ds(x), (4.10)

(b�, �� ) =
�

� j � � j �

(b j  j � P� P� � )(x) exp(ik(� m (x) Š � m� (x))) d s(x). (4.11)
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In general these integrals take the form
�

� j � � j �

g(x) exp(ik	( x)) ds(x), (4.12)

and in general they are oscillatory (with g smooth and non-oscillatory, and
the oscillations contained in the term exp(ik	( x))). However, in some cases
	 is constant and the integral (4.12) is not oscillatory. To illustrate this
point, let us consider the sound-soft scattering problem solved by the direct
boundary integral method (4.2). In this case (see (1.4))

f (x) = f k,� (x) = i( kn(x) · �a Š � ) exp(ikx · �a).

Example 4.1. In the case of scattering by a smooth convex obstacle (see
Section 3.1),V0 � 0 and the basis functions take the form (4.8) withM = 1
and � 1(x) = x · �a: see,e.g., Domš́nguezet al. (2007). In this case all basis
functions have the same phase, which is the same as the phase off , and so
neither of the integrals (4.9) or (4.11) are oscillatory, and the integral (4.10)
is not present.

Example 4.2. In the case of scattering by a polygon,V0 is oscillatory and
supported over (at least) the entire illuminated region, and basis functions
with several phases appear. Thus each of the integrals (4.9), (4.10) and
(4.11) may be oscillatory. For example, consider an illuminated side of a
convex polygon, parametrized by � (s) = { (s,0) : s � [0, 1]} . Recalling
(3.35), on this side V0 = 2 �u I /�n , and basis functions with the phases
� 1(� (s)) = s and � 2(� (s)) = Šs appear. Thus the integrals (4.9) and (4.10)
each take the form (4.12) with 	( � (s)) = � (s) · �a± s, and the integral (4.11)
takes the form (4.12) with 	( � (s)) � {Š 2s,0, 2s} . For a convex polygon
each of these integrals thus has linear phase, which eases their evaluation
considerably (see Section 4.4.1).

Example 4.3. For the case of a non-convex polygon, we consider an il-
luminated non-convex side (de“ned as in Section 3.4), again parametrized
by � (s) = { (s,0) : s � [0, 1]} . In this case, recalling (3.49) and considering
only (4.11) (the oscillatory behaviour of the •knife edge• solution (and hence
of V0) is rather complicated; we refer to Chandler-Wilde et al. (2012a) for
details), basis functions with the phases� 1(� (s)) = s, � 2(� (s)) = Šs and
� 3(� (s)) =

�
s2 + a2 appear (where a > 0). Thus in this case the inte-

gral (4.11) takes the form (4.12), with linear phase functions of the form
	( � (s)) � {Š 2s,0, 2s} occurring, as in Example 4.2, but also non-linear
phase functions of the form 	( � (s)) = ± s ±

�
s2 + a2.

4.1.2. Sti�ness matrix integrals for conventional operators
To describe the structure of the integrals in (4.5) and (4.6), it is useful to
introduce the following notation.
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Notation 4.4. If R is any linear integral operator on � with kernel func-
tion r and if � m are the phases appearing in (4.8), then we denote byRm,m �

the integral operator:

(Rm,m �
w)(x) =

�

�
r m,m �

(x, y)w(y)ds(y),

with modulated kernel r m,m �
(x, y) := exp(i k(� m (y) Š � m� (y)) r (x, y).

With �, �� as de“ned above, it is then easy to see that

(R�, b �� ) = ( Rm,m �
( j P� ), b j � P� � )

=
�

� j �

�

� j

r m,m �
(x, y) j (y)P� (y)b(x) j � (x)P� � (x) ds(y) ds(x),

and the structure of each of the inner products in (4.5) can then be under-
stood to be special cases of this abstract formula. For example the third
integral in (4.5) may be written

(Sk�, b �� ) = ( Sm,m �

k ( j P� ), b j � P� � ),

where Sk is the integral operator with modulated kernel

� k (x, y) exp(ik(� m (x) Š � m� (y))) , x, y � � . (4.13)

Similarly the “rst and second inner products in (4.5) (involving Dk and D �
k)

yield the modulated kernels

� � k (x, y)
�n (y)

exp(ik(� m (x) Š � m� (y))) ,
� � k (x, y)

�n (x)
exp(ik(� m (x) Š � m� (y))) .

(4.14)
The inner products in (4.6) can be represented in a similar way, noting that
for each the examples discussed in Section 3 we can write

V0(x, k ) =
�

j

V j
0 (x, k ) exp(ik� j

0(x)) , (4.15)

where the known functions V j
0 are not oscillatory. This representation is

obvious for the convex obstacles studied in Section 3; that it can also be
applied for the non-convex polygons discussed in Section 3.4 is shown in
Chandler-Wilde et al. (2012a).

The construction of robust quadrature rules for the oscillatory integrals
(4.5) and (4.6) depends crucially on the explicit extraction of the phase of
the oscillatory components, which (once this is done for the leading-order
behaviour V0, as discussed above) is achieved by extracting the phase from
the fundamental solution and its normal derivatives. Restricting to (4.5)
and to the kernels which arise in the direct boundary integral operator only
(i.e., the second and third entries in (4.5); the “rst entry is analogous), it
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is easy to see that

� k (x, y) = F (x, y) exp(ik|x Š y|),
� � k (x, y)

�n (x)
= G(x, y) exp(ik|x Š y|),

(4.16)
where

F (x, y) =

�
��

��

i
4

h0(k|x Š y|) d = 2 ,
1

4� |x Š y|
d = 3 ,

(4.17)

with h0(z) = exp( Šiz)H (1)
0 (z) for z > 0, and

G(x, y) =

�
����

����

Š
ik
4

�
n(x) · (x Š y)

|x Š y|

�
h1(k|x Š y|) d = 2 ,

n(x) · (x Š y)(i k|x Š y| Š 1)
4� |x Š y|3

d = 3 ,

(4.18)

with h1(z) = exp( Šiz)H (1)
1 (z) for z > 0.

In the 3D case, both F and G are trivially non-oscillatory but of course
have derivatives which (in general) blow up with negative powers of|x Š y|.
This statement also holds in 2D, but its proof is a bit more complicated and
is postponed to Section 4.1.4.

Collecting together the observations (4.13), (4.14) and (4.16), we see that
all of the integrals in (4.5) take the form

�

� j

�

� j �

g(x, y) exp(ik	( x, y)) ds(y) ds(x) (4.19)

with phase

	( x, y) = |x Š y| + � m (y) Š � m� (x). (4.20)

Here g(x, y) is smooth except at the diagonalx = y, and is non-oscillatory
in the sense that derivatives ofg do not grow any faster ask increases than
g itself. The integrals in (4.6) can be represented in a similar way, with
di�erent phase functions 	 varying from problem to problem according to
the exact nature of V0 (speci“c examples are discussed in Section 4.4).

Remark 4.5. Note that by (4.17) and (4.18), G(x, y) (the non-oscillatory
part of the kernel of D �

k) contains a multiplicative factor of k which is absent
from F (x, y) (the non-oscillatory part of the kernel of Sk). Moreover in the
combined potential formulation (4.1), (4.2), Sk is multiplied by the coupling
parameter � , which is usually chosen proportional tok. (The discussion in
Remark 5.1 indicates that this is a natural choice.) Thus it may at “rst
appear that (D �

k �, �� ) and i� (Sk �, �� ) might be O(k) ask � � . However, this
is in fact not the case; the oscillatory components of the integral operators
lead to decay of O(1/k ) as k � � for the corresponding integrals (see
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Section 4.2, (4.29) in particular), and hence the matrix entries (D �
k �, �� ) and

i� (Sk �, �� ) are both, in general, O(1) as k � � .

4.1.3. Sti�ness matrix integrals for surface gradient of the single-layer
potential

It remains to discuss the implementation of the Galerkin integrals (4.7)
arising from the star-combined formulation. We do this here only for the
3D case (following the discussion in Spenceet al. 2011) but we note an
analogous procedure can be applied in 2D, and this has been implemented
in Kim (2012). Let us denote � 0 = supp �� , so that (4.7) may be written

�

� 0

� �� (x)x
	

· 
 � (Sk � )(x) ds(x). (4.21)

The surface gradient operator may be moved from the right-hand term in
(4.21) to the left-hand term by the following integration by parts procedure.
We assume that the surface patch �0 is parametrized by a map,

�x �


�x
� ( �x)

�
,

de“ned on a 2D parameter domain�� 0, where � � C2(�� 0). (This does not
imply that � is globally smooth.) This map is assumed to provide a good
parametrization of � 0 such that the columns of the Jacobian

J (�x) :=

�

�
1 0
0 1
�

� �x1

�
� �x2

�

 

form a basis for the tangent plane atx, the image of �x = ( �x1, �x2) under this
map. Moreover for any vector “eld w : � 0 � R3, we may also resolvew in
the tangent and normal directions via the formula

w(x) = J (�x) �� ( �x) + ( w(x) · n(x))n(x),

for some “eld �� : �� 0 � R2. Then in Spenceet al. (2011) the formula
�

� 0
w(x) · 
 � v(x) ds(x) =

�

� �� 0
(det J (�x)T J (�x))1/ 2 ( �� ( �x) · �n(�x)) �v(�x) d� ( �x)

Š
�

�� 0

�
 ·
�
(det J (�x)T J (�x))1/ 2�� ( �x)

�
�v(�x) d�x

(4.22)

is proved for all su�ciently smooth vector “elds w and v, where �n(�x) is the
outward normal from �� 0 at �x � � �� 0 and �
 denotes gradient with respect
to �x. Inserting w = �� (x)x and v = Sk� into (4.22) gives a formula for
the integral (4.21), which avoids computing the surface derivative of the
single-layer potential.
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4.1.4. Phase extraction in the 2D case
We “nish this subsection by brie”y explaining why the functions F and G
appearing in (4.17) and (4.18) are non-oscillatory in the 2D case. This prop-
erty is proved using the following lemma, which examines the asymptotics
of the functions h0 and h1 which appear in the formulae (4.17) and (4.18).

Lemma 4.6. For all n 	 0, there exists a constantCn such that
�
�
�
�

�
d
dz

� n

h0(z)

�
�
�
� � Cn

�
max{ 1 + log(1/z ), zŠ n} z � (0, 1],
zŠ (n+1 / 2) z � [1, � ),

and
�
�
�
�

�
d
dz

� n

h1(z)

�
�
�
� � Cn

�
zŠ (n+1) z � (0, 1],
zŠ (n+1 / 2) z � [1, � ).

We do not give the proof here, but we note it is obtained by using the
following integral formula (see,e.g., Oberhettinger and Badii (1973, (12.31)
in part II)):

H (1)
0 (z) = Š

2i
�

exp(iz)
� �

0

exp(Šzt)
t1/ 2(t Š 2i)1/ 2

dt. (4.23)

This immediately gives us a formula for h0(z) which can be readily di�er-
entiated. A formula for h1(z) is obtained by combining the “rst deriva-
tive of (4.23) with the formula H (1)

1 (z) = Š d
dz H (1)

0 (z) (Abramowitz and
Stegun 1964, (9.1.27)). More details of the proof of Lemma 4.6 are in
Chandler-Wilde and Langdon (2007, Theorem 3.1) and in Kim (2012) .

Now if the 2D contour � is parametrized by � (say arc length parametriza-
tion), we are concerned with estimates for the derivatives ofh0(kr (s, t)) and
h1(kr (s, t)) where r (s, t) = |� (s) Š � (t)|. When considering the single-layer
potential we can use Lemma 4.6 and the Fa´a di Bruno formula for mul-
tiple application of the chain rule to show (see Kim (2012)) that for each
p1, p2 � N, there exists a constantC such that

�
�
�
�

�
�
�s

� p1
�

�
�t

� p2
�

h0(kr (s, t))
� �

�
�
� � C r (s, t)Š p1Š p2 ,

so the function F is not oscillatory. Analogous estimates can be obtained
for the function G (Kim 2012).

In Sections 4.3 and 4.4 below, we will describe some oscillatory integration
methods which have been used to implement hybrid methods in scattering.
Since the computation of oscillatory integrals has a long history and has
seen a great deal of recent interest (some of it related to high-frequency
scattering and some of it coming from completely di�erent motivations), we
insert at this point a (necessarily brief) review of numerical methods for
oscillatory integration in general.
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4.2. E�cient evaluation of highly oscillatory integrals: a review

In this subsection we describe a range of schemes for computing single in-
tegrals of the form

I [a,b]
k (g) =

� b

a
g(s) exp(ik	( s)) ds, (4.24)

and double integrals of the form

I [a,b]× [a� ,b� ]
k (g) =

� b

a

� b�

a�
g(s, t) exp(ik	( s, t)) d t ds, (4.25)

where a, b, a�, b� � R, a < b, a� < b�, and k > 0. We have in mind here that
the function g is integrable on its domain and that it is slowly oscillating
compared to exp(ik	).

Such integrals appear in Galerkin methods for BIEs arising in 2D scat-
tering as described in Section 4.1 (after parametrization of (a part of) the
boundary via univariate functions); recall (4.12) and (4.19). Integrals such
as (4.25) also appear in collocation methods for 3D scattering problems, as
described in Section 4.5, after parametrization of a part of the boundary
by a bivariate function. Galerkin methods in 3D lead to integrals such as
(4.25) and its four-dimensional analogue (again recalling the formulae (4.12)
and (4.19)). We consider speci“c methods for the 3D case in Section 4.5,
but remark that many of the ideas applicable to the e�cient evaluation of
(4.25) can, in principle at least, be extended to higher dimensions.

Because of the oscillation, conventional (interpolatory) quadrature tech-
niques for evaluating (4.24)…(4.25) perform poorly whenk is large, with
the computational cost required to achieve a prescribed level of accuracy
increasing rapidly ask � � . To get around this di�culty, many schemes
have been proposed, some of which have been inspired by classical asymp-
totic integration schemes; see,e.g., Bleistein and Handelsman (1986), Olver
(1974) and Wong (1989). Starting with (4.24) and assuming that g and
	 are su�ciently smooth and that 	 � does not vanish on [a, b], repeated
integration by parts gives

I [a,b]
k (g) = Š

nŠ 1�

j =0

�
i
k

� j +1

uj (s) exp(ik	( s))

�
�
�
�

s= b

s= a

+
�

i
k

� n � b

a
gn(s) exp(ik	( s)) ds, (4.26)

for n = 1 , 2, . . . , where

u0 =
g
	 � , gj +1 = u�

j , uj +1 =
gj +1

	 � ,

for j = 0 , 1, 2, . . . . Applying the Riemann…Lebesgue lemma (e.g., Wong
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1989, p. 200) to the remaining integral, we “nd that I [a,b]
k (g) is asymptotic

to the boundary terms (assuming they do not vanish), that is,

I [a,b]
k (g) � Š

nŠ 1�

j =0

�
i
k

� j +1

uj (s) exp(ik	( s))

�
�
�
�

s= b

s= a
+ o(kŠ n), as k � � ,

(4.27)
for n = 1 , 2, . . . .

For (4.25) on the other hand, making the assumption that 
 	( x) �= 0 for
all x � [a, b] × [a�, b�], applying the divergence theorem and following Wong
(1989, p. 425), for instance, we have the similar result that

I [a,b]× [a� ,b� ]
k (g) = Š

nŠ 1�

j =0

�
i
k

� j +1 � L

0
(uj (� (s)) · n(s)) exp(i k	( � (s))) d s

+
�

i
k

� n � b

a

� b�

a�
�gn (s, t) exp(ik	( s, t)) d t ds, (4.28)

where� (s), n(s) and L = 2( bŠ a+ b� Š a�) are the arc length parametrization,
unit outward normal vector and length, respectively, of the boundary of
[a, b] × [a�, b�], and

u0 :=

 	

|
 	 |2
g, �gj +1 = ( 
 · uj ), uj +1 =


 	
|
 	 |2

�gj +1 ,

for j = 0 , 1, 2, . . . . Under the further assumption that �
�s 	( � (s)) �= 0 on the

boundary of [a, b] × [a�, b�] (this is equivalent to the non-resonance condition
of Iserles and Nørsett (2006)), which ensures that the double integral on the
right-hand side of (4.28) iso(1) as k � � , we have

I [a,b]× [a� ,b� ]
k (g) � Š

nŠ 1�

j =0

�
i
k

� j +1 � L

0
(uj (� (s)) ·n(s)) exp(i k	( � (s))) d s+ o(kŠ n),

(4.29)
as k � � , for n = 1 , 2, . . . .

If in (4.27) 	 � vanishes at any point of [a, b] then one cannot use the inte-
gration by parts representation (4.26). Likewise, if
 	 vanishes at any point
of [a, b] × [a�, b�] then one cannot use the divergence theorem formula (4.29).
In either case, it can easily be shown that ask � � , the corresponding
oscillatory integral is dominated by contributions obtained by integrating
over small neighbourhoods of all such •stationary phase• points, with the
size of the neighbourhoods vanishing ask � � .

In particular, in the 1D case it can be shown that if xs is a stationary
point of order n 	 1, that is,

	 �(xs) = 	 �� (xs) = · · · = 	 (n) (xs) = 0 , and 	 (n+1) (xs) �= 0 ,
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and if, in addition, g(xs) �= 0, then I [a,b]
k (g) = O(kŠ 1/ (n+1) ) as k � � .

(Thus the ”atter 	( x) is at x = xs, the less rapidly I [a,b]
k (g) vanishes as

k � � .) Similar results hold for I [a,b]× [a� ,b� ]
k (g): see,e.g., Wong (1989). The

classical •method of stationary phase• then consists of approximating the
integrals asymptotically via Taylor series expansions about the stationary
points: see,e.g., Olver (1974, p. 96). If a partition of unity is used to isolate
the stationary points, then the integrals over the remainder of the domain
can be expanded in a similar way to (4.27) and (4.28) above.

Historically, asymptotic formulae such as these have been used to approx-
imate oscillatory integrals arising from scattering problems. For example,
the single integrals in (4.29) each take the form (4.24), and thus an obvi-
ous way to evaluate (4.25) for largek, under the stated assumptions on 	,
could be to simply apply (4.27) within (4.29) and to truncate the series.
Such an approach may yield accurate results forsu�ciently large k; how-
ever, the asymptotic series (4.27) and (4.29) are not convergent for “xedk,
and may diverge very quickly in practice; see,e.g., Ganesh, Langdon and
Sloan (2007), where such an approach is analysed within the context of a
particular class of 3D scattering problems. Hence it is not possible to obtain
the required integrals to a controllable accuracy for any “xed k unless we
combine the asymptotic approach with a convergent quadrature rule. On
the other hand, a reasonable goal for any quadrature approach is that it
should be able to replicate the asymptotic results in the limit ask � � ,
and standard quadrature schemes for which the weights are not explicitly
dependent onk will perform poorly.

A simple idea, implemented by Asheim (2008) is to use the series repre-
sentations (4.26) and (4.27) and to evaluate the remaining single and double
integrals numerically (via Filon quadrature, see Section 4.3), rather than in-
tegrating the original integral directly. The reduction of order (with respect
to k) of the integral being evaluated numerically, compared to more standard
approaches, leads to improved overall accuracy. The schemes in Brunoet al.
(2004) and Bruno and Geuzaine (2007) are also based on the asymptotic
expansions above, but applying convergent quadrature rules to evaluate the
integrals in the neighbourhood of stationary points; see Section 4.5 for more
details.

An alternative asymptotic approach is the •method of steepest descent•
(see, e.g., Jones 1972, Wong 1989,§II.4). Describing this method as it
applies to (4.24), the idea is to deform the path of integration into the com-
plex plane in such a way that the oscillatory integral (4.24) over a “nite
interval is replaced by two or more non-oscillatory •Laplace-type integrals•.
These •Laplace-type integrals• are integrals over in“nite intervals but with
non-oscillatory integrands which decay exponentially. The exponential rate
of decay, moreover, increases ask increases so that the integrals can be
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evaluated asymptotically, using, e.g., Watson•s Lemma (Jones 1972). An
observation dating back at least to Jones (1972) is that, in the limit as
k � � , very high-order asymptotic approximations to Laplace-type inte-
grals are provided alternatively by generalized Gauss…Laguerre quadrature.
Moreover, these approximations are convergent as the number of quadrature
points increases. This suggests a •numerical method of steepest descent•, in
which the path of integration is deformed to one or more steepest descent
paths and generalized Gauss…Laguerre quadrature is used to evaluate the
resulting integrals. This amounts to a numerical quadrature scheme for
the original oscillatory integral whose performance improves rapidly ask
increases. Chandler-Wilde and Hothersall (1995) is a case study of this
methodology applied to evaluate numerically a particular Green•s function
in acoustics. This paper provides an error analysis of the resulting general-
ized Gauss…Laguerre quadrature approximations, showing moreover how it
is possible to modify the approximations to take account of the presence of
a simple pole singularity near the steepest descent path of integration, in a
way which maintains accuracy uniformly in k and the position of the pole.

The •numerical method of steepest descent•, only hinted at in Jones
(1972), and applied only to a particular example in Chandler-Wilde and
Hothersall (1995), is developed systematically by Huybrechs and Vandewalle
(2006) for the general oscillatory integral (4.24), with further extensions and
generalizations in Dea�no and Huybrechs (2009). In Huybrechs and Vande-
walle (2006) the focus is on single integrals. The methodology has subse-
quently been extended to double integrals of the form (4.25) (Huybrechs
and Vandewalle 2007a), and has been used to good e�ect in a number of
schemes (e.g., Honnor et al. 2010, Huybrechs and Vandewalle 2007b, Asheim
and Huybrechs 2010b), that we discuss further in Section 4.5. Due in part to
the added di�culties arising due to stationary points in the complex plane,
particularly for higher-dimensional integration, a complete rigorous error
analysis for this approach has proved elusive. However, recent progress by
Huybrechs and Olver (2012), who have reinterpreted this •numerical steep-
est descent• method as a Filon-type method (see below) with special com-
plex interpolation points, has gone some way to rectifying this, for single
integrals at least.

We now turn our focus to Filon quadrature; this procedure turns out to
be particularly well suited to integrals of the form (4.24) and (4.25) arising
from hybrid Galerkin methods, and is more amenable to the derivation of
rigorous error estimates than some of the other schemes described above.
For a much more detailed discussion of highly oscillatory quadrature, we
refer to the review articles by Iserles, Nørsett and Olver (2005) and Huy-
brechs and Olver (2009), and also to the more recent literature reviews in
Olver (2010), Huybrechs and Olver (2012) and Domš́nguez, Graham and
Smyshlyaev (2011), for example.
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4.3. Recent progress on error analysis of Filon rules

The construction of Filon quadrature starts from the simple observation
that integrals of the form � b

a
Pn(s) exp(iks) ds

can be evaluated analytically if Pn is a polynomial. Thus any integral of the
form (4.24) with 	( s) = s (often referred to as the linear oscillator), can be
approximated by replacing g by a suitable polynomial (e.g., the Legendre or
Chebyshev interpolant) and then integrating exactly. More generally, if we
wish to approximate (4.24), and if 	 does not have stationary points, the
change of variable �s = 	( s) reduces (4.24) to a new oscillatory integral with
a phase which is linear in �s, at the cost of having to evaluate the inverse
function 	 Š 1. Even if 	 has stationary points this procedure can still be
applied on a partition of [a, b] with breakpoints chosen to be the stationary
points, although now algebraic singularities in the integrand appear at the
breakpoints due to the singularity of the inverse function there.

Filon quadrature has a long history starting from Filon (1928) (see also
Luke 1954, Bakhvalov and Vasil�ceva 1968, and the review in Evans and Web-
ster 1999), and has enjoyed considerable recent interest following a sequence
of in”uential papers by Iserles and co-authors (see,e.g., Iserles 2004, Iserles
2005, Iserles and Nørsett 2004, Iserleset al. 2005). In particular, Iserles
(2004) showed that for the linear oscillator a Filon rule has an error which
will decay with k like O(kŠ 2), provided the interpolation points include the
end points a, b. This was generalized in Iserles and Nørsett (2005), to ob-
tain faster decay ask � � , by using interpolation of derivatives at the
end points of the domain of integration. Related methods were proposed by
Xiang (2007), and general oscillators 	 which may have stationary points
were treated by Olver (2007, 2010).

In the context of high-frequency scattering, many integrals of the form
(4.24) and (4.25) have to be computed, and rules which use only point values
of g are particularly attractive, since g is often very complicated (and may it-
self be an integral involving special functions). In error and complexity anal-
ysis it also turns out to be important to control the quadrature error explic-
itly with respect to both k and N (the number of quadrature points), and to
know how this depends on the regularity ofg (e.g., in some Sobolev space).
In this context, a recent error analysis for Filon…Clenshaw…Curtis (FCC)
rules (Domš́nguez, Graham and Kim 2012, Dom´šnguezet al. 2011) has been
performed and we now give some details of the results obtained there.

In view of the above remarks we may begin by considering oscillatory
integrals of the form (4.24) with 	( s) � s, that is,

I [a,b]
k (g) =

� b

a
g(s) exp(iks) ds. (4.30)
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The FCC rule in its simplest form starts with [ a, b] = [ Š1, 1] and approxi-
mates I [Š 1,1]

k (g), by replacing g by QN g, its polynomial interpolant of de-
gree N at the Clenshaw…Curtis pointst j,N := cos(j�/N ), j = 0 , . . . , N ,
where N 	 1. After writing QN g in terms of Chebyshev polynomials
Tn(x) = cos(n arccos(x)), n = 0 , . . . , N , and performing some elementary
manipulations, the rule may be written as

I [Š 1,1]
k,N (g) =

N�

n=0

�� � n,N (g)� n (k), (4.31)

with

� n,N (g) =
2
N

N�

j =0

�� cos
�

jn�
N

�
g(t j,N ), n = 0 , . . . , N, (4.32)

where the notation
� �� means that the “rst and last terms in the sum are

multiplied by 1 / 2, and where the weights

� n (k) :=
� 1

Š 1
Tn(s) exp(iks) ds, n 	 0, (4.33)

have to be computed. After an initial application of the discrete cosine trans-
form (via fast Fourier transform (FFT), costing O(N logN ) operations), the
rule (4.31) can then be applied to anyg in an additional O(N ) operations;
see Domš́nguezet al. (2011) for more detail. In Domš́nguezet al. (2011) a
stable and e�cient scheme for computing { � n (k)} is presented, and a public
domain implementation of the rule is provided by Domš́nguez (2009). More-
over, in Domš́nguezet al. (2011), it is shown that there exists a constant
C > 0 such that, for r � { 0, 1} and all integers m 	 1, we have

|I [Š 1,1]
k (g) Š I [Š 1,1]

k,N (g)| � C min
�

1,
�

1
k

� r ��
1
N

� mŠ r

� gc� H m (Š �,� ) , (4.34)

for k > 0 and N 	 1. Here gc(� ) = g(cos� ) is the cosine transform ofg
and H m (Š�, � ) is the Sobolev space of orderm of all 2� -periodic functions.
The proof of (4.34) is obtained by noticing that

I [Š 1,1]
k (g) Š I [Š 1,1]

k,N (g) =
� 1

Š 1
(g Š QN g)(s) exp(iks) ds

=
� �

0
(g Š QN g)c(� ) exp(ik cos� ) sin � d�,

and that ( g Š QN g)c is the error in the even trigonometric interpolant of
degreeN to gc at the points j�/N , j = 0 , . . . , N . Then, integration by
parts and standard error estimates for trigonometric interpolation at equally
spaced points yield the estimate. It is straightforward to extend (4.34) to
all r � [0, 1]. In fact a more general version of this theorem withr = 2
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and m required to be any real number greater than 7/ 2 was proved in
Domš́nguezet al. (2011), making precise the requirements for theO(kŠ 2)
decay predicted in Iserles (2004).

The convergence rate in (4.34) may be slow ifg is not smooth and in
this case it is better to apply the rule in a composite fashion with “xed N
on meshes graded suitably towards the singular point(s) and obtain con-
vergence by letting the mesh diameter shrink to zero. In order to obtain
error estimates for such composite rules, Dom´šnguezet al. (2012) prove a
variant of (4.34) which shows (emphasizing the casek � � ), that there
exists � N > 0 such that

�
�I [Š 1,1]

k (g) Š I [Š 1,1]
k,N (g)

�
� � � N

�
1
k

� r � � 1

Š 1

|g(N +1) (s)|
�

1 Š s2
ds

� 1/ 2

, (4.35)

for all k > 0 and N 	 1.
Now, to compute (4.30) for any [a, b] we can transplant onto [Š1, 1] using

the a�ne change of variables s = c+ h�s, �s � [Š1, 1], where and the estimate,
analogous to (4.35), is

�
�I [a,b]

k (g) Š I [a,b]
k,N (g)

�
� � �� N

�
1
k

� r

hN +2 Š r
� � b

a

|g(N +1) (s)|
!

(s Š a)(bŠ s)
ds

� 1/ 2

.

(4.36)
If the FCC rule is applied in a composite fashion, the estimate (4.36)

may then be used to establish convergence as the subinterval size shrinks to
zero, whenN is “xed. Optimal convergence for singular integrandsg can
be obtained by suitable mesh re“nement. For example, suppose

� g� N +1 ,� := max
�

sup
s� [0,1]

|g(s)|, sup
s� [0,1]

�
�s(j Š � )D j g(s)

�
� , j = 1 , . . . , N +1

�
< � ,

(4.37)
for some	 > 0, and introduce the graded meshsj = ( j/M )q, j = 0 , . . . , M .
On the “rst interval, we use the one-point rule

� s1

0
g(s) exp(iks) ds � g(s1)

� s1

0
g(s) exp(iks) ds,

while on all other subintervals we use the FCC rule shifted to that interval in
an a�ne way. Then it was shown (Kim 2012) that the error Ek,M,q,N (g) ( i.e.,

the di�erence between the integral I [0,1]
k (g) and the resulting approximation)

may be estimated as

|Ek,M,q,N (g)| � C
�

1
k

� r �
1

M

� N +1 Š r

� g� N +1 ,� , (4.38)

provided q > (N + 1 Š r )/ (	 + 1 Š r ), where C depends onN , 	 and r
but not M . The results illustrated here have been extended in Dom´šnguez
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et al. (2012) to the case of logarithmic singularities ing and also the case
g(s) � s� , with 	 � (Š1, 0). In the algorithms presented in Domš́nguez
et al. (2012) the error decays at least as fast as the exact integralI [0,1]

k (g) as
k � � . Logarithmic singularities in particular often occur in the integrals
arising in hybrid Galerkin methods (recall (4.17) and Lemma 4.6).

Related estimates to those described here may be found in Melenk (2010)
(see also Melenk 2008), where general Filon-type rules for (4.24) are con-
sidered with g approximated by a general Hermite interpolating polynomial
and g,	 are considered to be holomorphic in a neighbourhood of [a, b]. Er-
ror estimates for this case showing exponential convergence with respect to
the polynomial degree and allowing sharp estimates of the rate of decay
with respect to k are obtained. It is expected that by changing the choice
of mesh grading and generalizing the setting to that of piecewise analytic
functions, the estimates above could also be extended to show exponential
convergence forhp-versions of the FCC quadrature, such as is observed (for
a related scheme, using Gauss…Legendre rather than Clenshaw…Curtis nodes
and weights) in Melenk and Langdon (2007, 2012).

4.4. Galerkin integrals for the 2D case

In this subsection we describe in more detail the robust computation of
the oscillatory integrals arising in hybrid Galerkin methods in 2D in both
the smooth convex and the polygonal cases. The relevant references are
(for the smooth convex case) Domš́nguez, Graham, Kim and Smyshlyaev
(2009), Domš́nguezet al. (2012), Domš́nguezet al. (2011), and Kim (2012),
and (for the polygonal case) Melenk and Langdon (2007) and Melenk and
Langdon (2012). The central method to be applied is the FCC rule, usually
after application of a transformation to render the phase linear. We start in
Section 4.4.1 by describing the key ideas in the simplest context of the load
vector and mass matrix integrals, as described in Section 4.1.1, which are
only oscillatory in the polygonal case. We then proceed in Section 4.4.2 by
studying the (in general) more di�cult sti�ness matrix entries, as introduced
in Sections 4.1.2 and 4.1.3.

4.4.1. Load vector and mass matrix entries
Recalling Section 4.1.1, we begin by noting that all load vector and mass
matrix entries for the convex polygonal case (as described in Example 4.2)
have linear phase, and thus each can be expressed exactly in the form (4.24)
with 	( s) = Cs, whereC � R. The change of variables �s = Cs immediately
puts each of these integrals in the form (4.30), and then the FCC rules of
Section 4.3 can be applied without di�culty.

As a slightly more challenging example we consider one of the integrals
described in Example 4.3, which arise in the case of a non-convex polygon
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with an illuminated non-convex side. Speci“cally, we consider the construc-
tion of an e�cient quadrature scheme for evaluating

� 1

0
g(s) exp(ik(s +

!
s2 + a2)) ds,

where a > 0 and g � L 2(0, 1) is not oscillatory. We proceed by making the
change of variables

� = s +
!

s2 + a2,

giving s = ( � 2 Š a2)/ 2� and hence ds/ d� = (1 + a2/� 2)/ 2 > 0. Thus the
integral can be written as

� 1+
	

1+ a2

a
�g(� ) exp(ik� ) d�, (4.39)

where

�g(� ) :=
1
2

�
1 +

a2

� 2

�
g
�

� 2 Š a2

2�

�

is non-oscillatory. The integral (4.39) thus again takes the form (4.30),
allowing us to apply the rules of Section 4.3 directly. The other load vec-
tor/mass matrix integrals that arise for convex and non-convex polygons
can all be evaluated using a similar procedure.

4.4.2. Sti�ness matrix entries
In Section 4.1.2 it is explained that we can cover all the oscillatory integra-
tion problems which arise from the •sti�ness matrix• inner products, (4.5)
and (4.6), by considering integrals of the form (4.19) withg non-oscillatory
but (usually) weakly singular at x = y and with phase 	 given either by
(4.20) (for (4.5)), where { � m } are the phases present in the basis functions
(see (4.8)), or by a similar formula found by replacing� m (y) in (4.20) with
� j

0(y), where � j
0 are the phase functions in the representation (4.15) forV0.

In the computation of (4.19) we will parametrize the boundary � by some
parametrization � . Identifying x with � (s), and y with � (t), we may rewrite
(4.19) in the form

Jk =
� �

g(s, t) exp(ik	( s, t)) d t ds. (4.40)

(Here we have abused notation slightly: the notationg(s, t) is used to de-
note the function g(� (s), � (t)) |� �(s)| |� �(t)|, while 	( s, t) denotes the function
	( � (s), � (t)) and the limits on the integrals in (4.40) depend on the choice
of the parametrization.)

Recalling the speci“c phases of the basis functions� m and the leading-
order behaviourV0 for the two examples of a smooth convex obstacle (recall
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Example 3.1) and a convex polygon (see (3.35) and (3.8)), we have

	( s, t) =

�
|� (s) Š � (t)| + ( � (t) Š � (s)) · �a convex smooth,
|� (s) Š � (t)| + �s ± t convex polygon,

(4.41)

for some� � [Š1, 1] (with � = ± 1 corresponding to the inner products (4.5),
and � � (Š1, 1) for the inner products (4.6)).

One approach to computing the integralJk in (4.40) robustly with respect
to k is to introduce a change of variable� = 	( s, t), thus obtaining a trans-
formed integral with phase which varies linearly in � (as in Section 4.4.1).
Introducing the notation

	 [s](t) := 	( s, t) and 	 [t ](s) := 	( s, t),

we can choose to interpret this transformation as either� = 	 [s](t) (de“ning
� in terms of t, for eachs) or � = 	 [t ](s) (de“ning � in terms of s, for eacht).
(The choice of interpretation would be motivated by the desire to avoid,
as far as possible, choosing a transformation containing stationary points.)
The transformed integral is then suitable for treatment using the Filon rules
outlined in Section 4.3 (as described in Section 4.4.1 for the simpler load
vector/mass matrix entries), and hence rigorous error estimates are possible.
The transformation does however introduce some new di�culties, since the
regular domain of integration in (4.40) (usually rectangular or triangular)
is transformed to a (usually non-standard) shaped domain and, moreover,
inverse functions of 	 appear in the transformed integrand. However, the
method (“rst suggested by Melenk 2006 and substantially developed by
Domš́nguez 2007; see also Dom´šnguezet al. 2009) has enjoyed considerable
success in computing the Galerkin integrals.

To give more detail, let us “rst consider the case of a smooth convex obsta-
cle. Recalling (3.25)…(3.26), � is parametrized by� : [0, 2� ] � � and the pa-
rameter domain [0, 2� ] is partitioned into four subintervals 
 i : i = 1 , . . . , 4,
where 
 1, 
 2 correspond to the near-shadow boundary zones (which shrink
to zero as k � � ), 
 3 corresponds to a subset of the illuminated zone
and the remaining interval of parameter space, 
4, corresponds to the deep
shadow zone. Since the solution is exponentially small in the deep shadow,
it is approximated by zero there, and thus only integrals over the domains


 j × 
 j � for j, j � = 1 , 2, 3 (4.42)

have to be considered. These domains are depicted in Figure 4.1(a), where
we have written 
 1 = [ a, b], 
 2 = [ c, d] and 
 3 = [ b, c]. In the case of the
•diagonal domains• in (4.42) (i.e., those with j = j �), the integrand in (4.40)
generally has a singularity at s = t. These domains are subdivided into two
triangles along the diagonal (Figure 4.1(a)), thus con“ning the singularity
to the boundary, as turns out to be important later.
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under the transformation (4.43)

Figure 4.1. Domains of integration for a smooth convex obstacle.

It is shown in Kim (2012) (see also Domš́nguezet al. 2009) that 	 [s]
has stationary points only when (s, t) � 
 1 × 
 1, with t 	 s and when
(s, t) � 
 3 × 
 3 with t � s (curves of stationary points are depicted in
Figure 4.3(a)). Thus the transformation

� = 	 [s](t) (4.43)

provides a well-de“ned change of variable for all the domains above the
diagonal depicted in Figure 4.1(a) except for the triangleAFG (and analo-
gously provides also a well-de“ned change of variable for all domains below
the diagonal except for the triangle CEH ). The change of variable (4.43)
transforms the rectangular and triangular domains above the diagonal in
Figure 4.1(a) into curvilinear domains as depicted in Figure 4.1(b). Here
s varies on the horizontal axis and� varies on the vertical axis. Since (in
the smooth convex case), 	 vanishes ats = t (see (4.41)), the diagonal line
s = t in Figure 4.1(a) maps to the line � = 0 in Figure 4.1(b). The top curve
in Figure 4.1(b) is the image of the line t = d under the transformation,
namely the curve � = 	 [s](d) = 	 [d](s).

Let us consider, as a particular example, the integral (4.40) over the
domain s � 
 2 = [ b, c], t � 
 3 = [ c, d] (shaded in Figure 4.1), and making
the change of variable (4.43), we arrive at the formula

Jk =
� c

b

� d

c
g(s, t) exp(ik	( s, t)) d t ds

=
� c

b

� � [d] (s)

� [c] (s)
�g
�
s, �

	
exp(ik� ) d� ds, (4.44)
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(a) image of the domain � 2 × � 3 under (4.43)

� 1 � 2 � 3 � 4

F1
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F4

F5

0

� max� min

(b) the functions Fj (� )

Figure 4.2. Transformed domain of integration

 2 × 
 3 for a smooth convex obstacle.

with

�g(s, � ) = g(s, 	 Š 1
[s] (� )) / |	 �

[s](	
Š 1
[s] (� )) |. (4.45)

A blow-up of the image of the rectangle (s, t) � 
 2 × 
 3 under the transfor-
mation (4.43) is shown in Figure 4.2(a).

To obtain a set of integrals which can be approximated by the FCC rule,
the “nal step is then to change the order of integration in (4.44), thus
pushing all the oscillation in the integrand into the outer integral (over
the � variable). The inner limits of integration typically depend on inverse
functions and are highly geometry-dependent. In the particular case of
(4.44) (see also Figure 4.2(a)), we have to break the outer integral up into
“ve pieces:

Jk =
5�

j =1

� � j

� j Š 1

Fj (� ) exp(ik� ) d�, (4.46)

where � 0 = � min , � 5 = � max , and Fj , j = 1 , . . . , 5, are real-valued functions
on [� j Š 1, � j ]. For example,

F2(� ) =
� (� [d] )Š 1(� )

(� [c] )Š 1(� )
�g(s, � ) ds.

For this example a graph of{ Fj (� ) : j = 1 , 2, 3, 4, 5} is given in Figure 4.2(b).
The integrals (4.46) are now computable by the FCC rules described in Sec-
tion 4.3. The functions Fj may have either logarithmic singularities (from
the fundamental solution appearing in �g) or else algebraic singularities due
to the fact that the functions 	 [c] and 	 [d] can have turning points. (In the
particular example depicted in Figure 4.2 there is a logarithmic singularity
at � 0 and square-root singularities at � 3 and � 5, due to the turning-points
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(a) paths of stationary points of the
function � [s]
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(b) detail of the oscillations in the integrand
of (4.44) on � 1 × � 1 for k = 30

Figure 4.3. Locations of stationary points and oscillations
of integrand for a smooth convex obstacle.

there.) The composite FCC rules described in Section 4.3 have a conver-
gence rate which remains optimal even in the presence of these singularities,
provided the mesh grading is appropriately chosen (see (4.38)).

As mentioned earlier (see also Figure 4.3(a)), the change of variable (4.43)
is not valid in 
 1 × 
 1 when t > s or in 
 3 × 
 3 when t < s , due to
the appearance of stationary points. However, 
1 and 
 3 are both small
neighbourhoods of the shadow boundary (recall that� (t1) and � (t2) are the
shadow boundary points, with t1 and t2, marked in Figure 4.3), with length
which shrinks to zero ask � � . It turns out that in these problematic re-
gions the phase has su�ciently many decaying derivatives ask � � that in
fact the integrand in (4.44) is not oscillatory at all, and the integral can be
well approximated by standard Clenshaw…Curtis rules, for example. This is
explained in some detail in Kim (2012) and is illustrated in Figure 4.3(b).
Here the domain above the main diagonal is the one with the stationary
points and the integrand is slowly varying. (By contrast the domain below
the main diagonal has an oscillatory integrand, but this causes us no di�-
culty since the change of variable (4.43) has no stationary points here and
so this integral can be treated with the transformation (4.43) and then FCC
rules, as described above.)

We now consider the case of a convex polygon. For this example, the
evaluation of (4.19) can be considered under two distinct scenarios: the case
that � j and � j � are on the same side of the polygon, and the case that �j and
� j � are on di�erent sides of the polygon. For both cases, the basic strategy
is identical to that for the smooth convex obstacles described above, namely
to use a change of variables in order to transform the integral into a form
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s0 s1

t0

t1

�

� j

� j�

Figure 4.4. Oscillatory integration on the convex polygon:
the case where �j and � j � are supported on di�erent sides.

amenable to evaluation via the FCC quadrature rules of Section 4.3. Further
details for this example can be found in Melenk and Langdon (2007, 2012).

First we consider the case for which �j and � j � each lie on the same
side of the polygon. Without loss of generality, we assume that the side on
which they lie is parametrized by � (s) = { (s,0) : s � [0, 1]} , and we suppose
further that � j = { (s,0) : s � [s0, s1]} and � j � = { (t, 0) : t � [t0, t1]} , where
0 < s 0 < t 0 < s 1 < t 1 < 1, so that � j and � j � overlap (the most general
situation). In this case the integral (4.40) (with 	( s, t) given by (4.41)) is
given explicitly by

Jk =
� s1

s0

� t1

t0

g(s, t) exp(ik(|s Š t| + �s + 
t )) d t ds = J [1]
k + J [2]

k + J [3]
k ,

where � � [Š1, 1], 
 � {Š 1, 1} , and

J [1]
k =

� t0

s0

� t1

t0

g(s, t) exp(ik(( � Š 1)s + ( 
 + 1) t)) d t ds,

J [2]
k =

� s1

t0

� s1

t0

g(s, t) exp(ik(|s Š t| + �s + 
t )) d t ds,

J [3]
k =

� s1

t0

� t1

s1

g(s, t) exp(ik(( � + 1) s + ( 
 Š 1)t)) d t ds.

The integrals J [1]
k and J [3]

k can be trivially put into the form (4.30); supposing
for example that 
 = 1 and � �= 1, we have

J [1]
k =

� t0

s0

� � t1

t0

g(s, t) exp(2ikt ) dt
�

exp(ik(� Š 1)s) ds,

and both the inner and outer integrals can be evaluated by the FCC rules of
Section 4.3 (noting that, in this case,g(s, t) is singular at the point s = t =
t0). Evaluation of the integral J [2]

k follows in an identical fashion, splitting
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the square (s, t) � [t0, s1] × [t0, s1] into the two triangles corresponding to
s > t and s < t , and evaluating both the inner and outer integrals of each
via the FCC rules of Section 4.3, using a Du�y transformation to deal with
the singularity on the triangle boundaries corresponding tos = t.

Next we consider the case for which �j and � j � lie on di�erent sides of
the polygon. Under the assumption that these sides are not parallel to each
other (if the two sides are parallel, similar ideas can be applied, although
in that case stationary points may occur; see Melenk and Langdon 2012
for details), we may assume, without loss of generality, the geometrical
con“guration shown in Figure 4.4, with � j = { (s,0) : s � [s0, s1]} and � j � =
{ (t cos�, t sin � ) : t � [t0, t1]} . In this case the integral (4.40) (with 	( s, t)
given by (4.41)) is given explicitly by

Jk =
� s1

s0

� t1

t0

g(s, t) exp(ik(
!

s2 Š 2st cos� + t2 + �s + 
t )) d t ds,

where � � [Š1, 1] and 
 � {Š 1, 1} . As above, we will utilize the change of
variables (4.43); in this caset �� � , where

� =
!

s2 Š 2st cos� + t2 + �s + 
t =: 	 [s](t) = 	 [t ](s), (4.47)

and we then have
� s1

s0

� � [t 1 ] (s)

� [t 0 ] (s)
�g
�
s, �

	
exp(ik� ) d� ds,

with �g again given by (4.45). It is shown in Melenk and Langdon (2012)
that, for � � (Š1, 1),

��
�s

= 0 at s =

"

cos� Š �

#
sin2 �
1 Š � 2

$

t,

and � 2� /�s 2 > 0 for all t > 0 (if � = ± 1 then �� /�s �= 0). This can
be clearly seen in Figure 4.5, where we plot the image of the rectangle
[0, 4] × [1, 2] under the transformation (4.47), for � = 0 .5, � = �/ 4 and

 = 1. As for the case of the smooth convex obstacle outlined above, we
again proceed by breaking the outer integral up into “ve pieces, analogous
to (4.46) (as shown with the dotted lines in Figure 4.5), and evaluating each
of the pieces via a composite FCC rule, grading towards the singularities.
We do not give any further details here. The functions corresponding to
Fj in (4.46) have a logarithmic singularity (from the fundamental solution
appearing in �g) if s0 = t0 = 0, that is, if � j and � j � meet at a corner, and
algebraic singularities where 	 [t0 ] and 	 [t1 ] have turning points. The change
of variables (4.47) has no stationary points for the geometrical con“guration
shown in Figure 4.4.
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Figure 4.5. The image of the rectangle
[0, 4] × [1, 2] under the transformation (4.47).

4.5. Oscillatory integration in non-variational hybrid schemes

The major advantage of the Galerkin approach in the design of hybrid meth-
ods is that the variational framework allows the establishment of error es-
timates, and most importantly, as we will see in Section 6, these error esti-
mates can be explicit in the wavenumberk. The error estimates permit the
development of more e�cient methods, for example giving guidance on how
to tune the coupling parameter � in the combined potential formulation.

However in practical codes, especially those which are based on second-
kind formulations, collocation and Nystr öm methods often play a promi-
nent role and it is often claimed that these are cheaper to implement than
Galerkin methods, due to the apparent reduction in the amount of numerical
integration which has to be done.

In collocation methods the solution is approximated by a linear combi-
nation of basis functions and the coe�cients in the expansion are found by
forcing the residual to vanish at a suitable set of points (equivalent to an
application of an interpolatory … rather than orthogonal … projection onto
the approximation space). Therefore the introduction of hybrid basis func-
tions in collocation methods is straightforward.

The classical •Nyström scheme• was originally formulated for second-
kind integral equations with continuous kernels, and combined a standard
quadrature approximation of the integral operator with collocation at the
quadrature points: see,e.g., Atkinson (1997) and the (much earlier) refer-
ences therein. In the modern literature the term •Nyström• is now often used
to describe various methods based on combining quadrature and collocation,
even if the collocation points have no relation to the quadrature points.
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In this subsection we describe three families of hybrid methods (par-
ticularly appropriate for computing scattering by smooth convex obsta-
cles), which are based either on a collocation, Nystr¨om or practical discrete
Galerkin approach, focusing particularly on the numerical integration prob-
lems which arise and how these are resolved. These are: (i) the Nystr¨om
methods of Bruno et al. (Bruno et al. 2004, Bruno and Geuzaine 2007),
which are implemented using a number of innovative ideas including an
extension of the method of stationary phase; (ii) the collocation meth-
ods of Huybrechset al. (Huybrechs and Vandewalle 2007b, Asheim and
Huybrechs 2010b), which employ a variation on the method of steepest de-
scent to compute the integrals; (iii) the spherical-harmonics-based discrete
Galerkin method of Ganesh and Hawkins (2011).

Let us start our discussion by recalling the direct combined potential
integral equation (4.2), with solution v expressed using the ansatz (3.14).
Then the integral equation to be solved forV is of the form (3.11), that is,

�
1
2

I + �Dk
�
Š i� �Sk

�
V = f, (4.48)

where �Sk and �Dk
�

are the modulated integral operators given by (3.12) and
(3.13). Following the discussion in Section 4.1.2, the integral operators�Sk

and �Dk
�

both have an action of the form

(RV )(x) =
�

�
g(x, y) exp(ik	( x, y))V (y) ds(y), x � � , (4.49)

where, analogously to (4.19),g(x, y) is smooth, except at the diagonalx = y,
and non-oscillatory.

In a collocation approach, the action of an operator of the form (4.49) on
suitable basis functions has to be computed for some discrete set of collo-
cation points x. (For example, at least in 2D, the FCC methods described
in Section 4.3 could be employed for this task.) In a Nyström approach, a
quadrature approximation of the integral operator of the form (4.49) is “rst
devised, taking as input a suitable set of point values ofV . This yields cor-
responding approximations of the integral operators in (4.48). The equation
(4.48) could then be solved for example by an iterative method which only
required the action of these operators. In this way it is possible to devise a
Nystr öm method without needing to adopt the classical collocation method
of solving for the Nyström solution.

The work of Bruno et al. (2004) and Bruno and Geuzaine (2007) adopts
a Nyström approach. We summarize this for the 3D case. The “rst step is
to cover the scattering surface � with an atlas of overlapping charts, each
assumed to be the image of a rectangle inR2, under a local invertible map
(here assumed smooth). Then introduce a partition of unity subordinate to
this covering and note that determining any function V on � is equivalent
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to determining V for each member of the partition of unity. Using the
local parametrization, determining V on � is equivalent to determining
it on the parameter rectangles. SinceV is smooth and vanishes on the
boundary of its parameter rectangle, the FFT can be used to obtainV at
any point on � quickly from point values on uniform grids in parameter
space. (The actual algorithm is quite technical and is described in detail in
Bruno and Geuzaine 2007,§3.2.)

Now, turning to computation of the action of the integral operator R
in (4.49), the starting point is the observation that as k � � , for each
x � �, RV (x) is dominated by contributions from V and its derivatives at
the critical points (namely the singular point y = x =: x0 and any points
x1, . . . , xn where the phase 	 is stationary, that is, where 
 y	( x, y)|y= xi =
0). The stationary points could be determined by Newton•s method with
starting guesses obtained by geometrical arguments (at least when � is
convex). Then the integral operator R is approximated by

RV (x) �
n�

i =0

�

� i

g(x, y) exp(ik	( x, y))ci (y)V (y) ds(y),

where each �i is a neighbourhood ofxi with k-dependent radius chosen to
shrink to zero with a rate depending on whetheri = 0 (singular point) or
i = 1 , . . . , n (stationary points), and ci is a smooth •windowing function•
with support in � i .

Finally, given that values of V at all points on � are cheap to compute
(see above), the integrals over each �i are obtained by integrating in po-
lar coordinates around eachxi . This has the bene“t that the Jacobian of
the polar coordinate transformation cancels the singularity in the singu-
lar integral (over � 0) but also oscillations in the transformed integrand are
prominent only in the radial direction and so this reduces the complexity
of the computation of the contributions to RV . Full details are in Bruno
and Geuzaine (2007), and related results using the same ideas are described
in Bruno and Reitich (2007). (The observation that such changes of vari-
ables can cancel weak singularities in boundary integral operators goes back
at least to Wienert (1990); see also Ganesh, Graham and Sivaloganathan
(1998) and Graham and Sloan (2002).)

The key novelty of the collocation method employed in Huybrechs and
Vandewalle (2007b) is the sparsity of the resulting linear system. This is
achieved via the use of locally supported basis functions, coupled with the
observation that integrals for which the integrand does not contain singu-
larities (those for which the collocation point lies outside the support of the
basis function) and for which the phase does not contain stationary points,
decay rapidly ask grows. The integrals that remain, which contain compli-
cated phase functions, are evaluated using a special quadrature rule, that
combines features of generalized Filon quadrature (Iserles 2005, Iserles and



194 S. Chandler-Wilde, I. Graham, S. Langdon and E. Spence

Nørsett 2005, Olver 2007, Olver 2010) and the numerical method of steepest
descent (Huybrechs and Vandewalle 2006, Asheim and Huybrechs 2010a).
Crucially, this rule requires only local approximation of the amplitude near
special points, and this localization is what allows the sparse formulation to
hold. The method described in Huybrechs and Vandewalle (2007b) is not
supported by a rigorous analysis, but the results suggest that this algorithm
is comparable in accuracy to others described in this subsection, appearing
to o�er arbitrary accuracy with a computational cost that is independent of
k, and with the added advantage of a sparse rather than a full linear system.

The work in Asheim and Huybrechs (2010b) builds upon these ideas,
making the observation that, for complicated scattering con“gurations, if
one is only interested in the solution on a particular part of the boundary,
then reasonable accuracy can be achieved via a consideration of mainly just
local e�ects, leading to substantial cost savings compared to algorithms for
which the solution is sought throughout the domain.

An alternative but closely related approach to the hybrid numerical-
asymptotic schemes described in this article is the partition-of-unity-based
method with plane wave enrichment, developed by workers such as Bettess
and Trevelyan for the solution of general Helmholtz problems for which, in
general, identi“cation of the leading-order asymptotic behaviour would be
extremely challenging (see,e.g., Perrey-Debainet al. 2004 and the references
therein). In recent work, Honnor, Trevelyan and Huybrechs have applied
the integration rules developed by Huybrechs and Vandewalle (2006, 2007a)
in the implementation of these methods (Honnor et al. 2010, Trevelyan,
Honnor and Huybrechs 2007) to good e�ect.

Another integration scheme for these problems was proposed in Trevelyan
and Honnor (2009), with the main idea there being to attempt to line up
the direction of the oscillations with the coordinate axes, so as to convert
multidimensional oscillatory integrals into oscillatory integrals for which the
oscillation is only in one direction. This idea is similar in some ways to the
change of variables / FCC approach described in Section 4.4, and has been
shown to lead to a sign“cant reduction in computational cost compared to
standard (Gaussian) quadrature.

A fully discrete hybrid Galerkin method for scattering by smooth 3D
obstacles (di�eomorphic to the sphere) is introduced in Ganesh and Hawkins
(2011). The idea is to approximate V in (4.48) globally using spherical
harmonics. This provides an accurate approximation away from the shadow
boundary, but is not so e�ective in the vicinity of the shadow boundary.
However, it is argued in Ganesh and Hawkins (2011) that this does not
matter in the context of achieving reasonable (global) results, since the
amplitude of the oscillations is small near the shadow boundary; numerical
results suggest that this amplitude is of the order of a hundredth of the
maximum amplitude of V over the entire boundary. A Galerkin scheme is
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then used to discretize the integral equation, leading to quadruple integrals
to be evaluated over the entire surface of the scatterer. The outer Galerkin
integrals are discretized by a discrete sum de“ned using a Gauss-rectangle
quadrature rule (similar to the quadrature scheme of Ganesh and Graham
(2004), where a fully discrete scheme for low- to mid-range frequency three-
dimensional scattering was proposed). The rectangle rule is exponentially
accurate for smooth periodic functions (in the azimuthal direction), and
the Gauss rule is superalgebraically accurate in the latitudinal direction;
indeed this scheme is exact for products of spherical harmonics up to a
given order. To maintain global accuracy, the number of quadrature points
for these outer integrals must grow with O(k2/ 3).

The inner integrals are then approximated using surface patches, de“ned
for three di�erent types of critical points, namely: the observation point
(where the integrand has a removable singularity); the stationary points;
and so-called •steepness points•, which correspond to points around which
the gradient of the phase is non-zero but small. These points represent, in
some sense, the next term in an asymptotic expansion of a method of sta-
tionary phase type of approximation. Each of these three types of critical
point has a spherical cap placed around it, and the integral is evaluated
numerically on this cap, with the radius of the patch depending both on the
nature of the critical point and on the distance to the shadow boundary.
The singular critical points are evaluated via a rotation and translation pro-
cedure, with the Jacobian of the polar coordinate transformation cancelling
the singularity in a very similar way to that described above for the scheme
of Bruno and Geuzaine (2007). The remaining integrations are carried out
via a rectangle rule in the azimuthal direction, and a uniform partition in
the non-periodic direction. On each interval of the uniform partition, stan-
dard quadrature is applied if the integrand is slowly oscillating, and Filon
quadrature (as described in Section 4.3, but using a cubic polynomial in-
terpolatory rule) is applied if the remaining integrand is highly oscillatory.
Results are presented for spherical and non-spherical convex scatterers, for
a range of wavenumbers 1� k � 100000, and it appears that accuracy
(either high- or low-order prescribed tolerance) can be maintained for only
a mild growth of O(k2/ 3) in the number of unknowns ask increases.

5. Conditioning and coercivity

In Section 2 we met various standard integral equation formulations of scat-
tering problems and saw that, in many cases, for everyk > 0, the BVPs
were well-posed, with the relevant integral operators bounded as mappings
between appropriate Sobolev spaces. In this section we aim to determineex-
plicitly the dependence of the integral operators onk, in order to understand
better their behaviour for high frequencies. (In many cases the dependence
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on k is known for the whole frequency rangek > 0, but we focus on the
high-frequency case, which is the subject of the article.) Since the integral
operators depend onk in a complicated non-linear way, determining this k-
dependence is, in many cases, a challenging problem. We restrict ourselves
to discussing mainly the exterior Dirichlet problem (2.12) (which includes
the sound-soft scattering problem (2.15)), although some of the bounds we
obtain on integral operators will be applicable to other BVPs.

In the context of the three questions posed in Section 1, this section will
provide the remaining ingredients to provek-explicit error estimates of the
form (1.7), addressingQ3; these ingredients are then assembled in Section 6.

In this section, (·, ·) will denote the L 2(�) inner product and � · � will
denote either the L 2(�) norm of an element of L 2(�) (as in Section 3), or
the L 2(�) � L 2(�) norm of an operator. We will mainly be concerned
with the combined potential operators A�

k,� and Ak,� , de“ned by (2.69) and
(2.72) respectively, but we will also give results, where available, for the
new class of integral operators introduced in Section 2.9, namelyA�

k,�,Z
de“ned by (2.99), a special case of which is the star-combined operatorA k
(2.103). Recall from Remark 2.24 that � A�

k,� � = � Ak,� � , and similarly for
their inverses. Thus any results on theL 2(�) norms of A�

k,� and (A�
k,� )Š 1

also hold for Ak,� and AŠ 1
k,� , respectively. For the same reasons, ifA�

k,� is
coercive, thenAk,� is coercive with the same coercivity constant.

The outline of the section is as follows: we begin in Section 5.1 with a
summary of the main bounds on� A�

k,� � and � (A�
k,� )Š 1� , and thus on the

condition number of A�
k,� ,

cond(A�
k,� ) = � A�

k,� �� (A�
k,� )Š 1� . (5.1)

These bounds immediately suggest how to choose the parameter� to min-
imize the condition number of A�

k,� for k large. The next two subsections,
Section 5.2 and Section 5.3, give a summary of relevant results and tech-
niques from scattering theory that are key components of the bounds on
� (A�

k,� )Š 1� (together with the representation of (A�
k,� )Š 1 in Theorem 2.33),

and of the methods used to establish coercivity ofA�
k,� and A k. There have

been several investigations of conditioning and coercivity in the special cases
when � is the circle or sphere. This is because for these two domains the
integral operators diagonalize in the Fourier and spherical harmonic bases
respectively, and thus bounds on the quantities of interest,e.g., the norms
of the operators, can be obtained by bounding eigenvalues of the operators.
We discuss the conditioning and coercivity results obtained in this way
for these two special domains in Section 5.4. Sections 5.5 and 5.6 discuss
bounds on � A�

k,� � and � (A�
k,� )Š 1� , respectively, for more general domains

than the circle and sphere. Section 5.7 discusses conditions under which
A�

k,� is coercive, and the corresponding bounds on its coercivity constant.
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Establishing coercivity of A�
k,� and the related star-combined operatorA k

are vital requirements for the error analysis in Section 6. We note that,
whereas bounds on� A�

k,� � can be obtained by norm estimation techniques
that apply to general oscillatory integral operators, the bounds on� (A�

k,� )Š 1�
and the coercivity constant rely heavily on methods and results from clas-
sical scattering theory.

Similarly to Section 3, for two quantities D and E which may depend on
k we write D � E if D � C E for some constantC that is independent of
k. Also we write D � E if D � E and E � D .

5.1. Summary of the main results on the conditioning ofA�
k,� and Ak,�

Some examples of the behaviour of� A�
k,� � and � (A�

k,� )Š 1� for di�erent do-
mains are shown in Figure 5.1. The following is a short summary of the
main bounds onA�

k,� and (A�
k,� )Š 1 discussed in this section.

€ For a general Lipschitz domain (in 2D or 3D),

1
2

� � A�
k,� � = � Ak,� � � 1 + k(dŠ 1)/ 2

�
1 +

|� |
k

�
, (5.2)

for all k > 0. The upper bound is sharp in 2D if the domain contains a
straight line segment. (See Theorem 5.14 and Lemmas 5.17 and 5.18.)

Rectangular cavity

Circle Rectangle

Elliptical cavity

� (A�
k,k)Š1� � 1

� A�
k,k� � k1/ 2

� (A�
km,km

)Š1� � e�k m, � > 0

� A�
k,k� � k1/ 3

� (A�
k,k)Š1� � 1

� A�
k,k� � k1/ 2

� (A�
km,km

)Š1� � k9/ 10
m

� A�
k,k� � k1/ 2

Figure 5.1. Examples of the behaviour of� A�
k,k � and � (A�

k,k )Š 1� as k � � .
Here km denotes a speci“c sequence of wavenumbers, which are di�erent for
the rectangular and elliptical cavities (see Section 5.6.2 for more details).
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€ For a star-shaped (in the sense of De“nition 5.5 below) Lipschitz do-
main (in 2D or 3D),

2 � � (A�
k,� )Š 1� = � AŠ 1

k,� � � 1 +
1 + k

|� |
, (5.3)

for all k > 0 (see Theorem 5.22 and Lemma 5.17). For a general
(smooth) non-trapping domain (in the sense of De“nition 5.4 below)
the upper bound is multiplied by a factor of k2+( dŠ 1)/ 2, although this
should be considered a preliminary bound and not a de“nitive one.
Indeed, numerical experiments suggest that the upper bound in (5.3)
holds for some non-trapping domains that are not star-shaped. The
precise de“nitions of trapping and non-trapping are given in De“ni-
tion 5.4, but, roughly speaking, a trapping domain is one that contains
an open cavity that can •trap• high-frequency waves.

€ There exist trapping domains such that, for some� > 0,

� (A�
km ,� )Š 1� = � AŠ 1

km ,� � � exp (�k m )
�

1 +
|� |
km

� Š 1

,

for some sequencekm � � ; an example is the so-called elliptical cavity
domain in Figure 5.1 (see Theorem 5.24).

Remark 5.1. The commonly recommended choices of� in the literature
are to take � proportional to k for all but small values of k, and then � either
constant (for d = 3) or proportional to (log k)Š 1 (for d = 2) for k small. Up
until the last few years, these choices have been based on investigations when
� is the circle or sphere (see the references in Section 5.4) or computational
experience (Bruno and Kunyansky 2001).

The bounds (5.2) and (5.3) show that the choice� � k is optimal for
large k in the sense that it minimizes the rate of growth with respect to k
of the upper bound on cond(A�

k,� ). Thus

cond(A�
k,k ) � k(dŠ 1)/ 2, as k � � (5.4)

for star-shaped Lipschitz domains. This bound is sharp for any star-shaped
polygon.

The upper bound in (5.2) is not sharp ask � 0. However, sharp bounds
on � A�

k,� � can be obtained in thek � 0 limit which back up the previously
recommended choices of� for small k mentioned above (Betckeet al. 2011,
§2.6, §2.7).

Remark 5.2. A natural question is whether or not the norm bounds given
above continue to hold if the operators are approximated by their discrete
counterparts, and so to what extent the bounds above are relevant to under-
standing conditioning at a discrete level. For conventional Galerkin bound-
ary element discretizations this question has been addressed to a large extent
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in Betcke et al. (2011), in particular showing that (5.4) holds at a discrete
level for a variety of 2D star-shaped domains.

Remark 5.3. For reasons of space we do not treat in this article the
important implications of condition number estimates and coercivity for the
behaviour of iterative solvers for the linear systems that arise in Galerkin
methods. A recent review of these issues in the context of BIEs for high-
frequency scattering is that of Antoine and Darbas (2012).

5.2. Relevant classical scattering results

In this subsection we collect some classical results about the high-frequency
Helmholtz equation. Whereas in Section 3 we discussed the high-frequency
asymptotics of the solution, here we discuss some classical results that bound
the solution in terms of the data (in suitable norms).

These results are taken from a large body of work concerned with both
the Helmholtz equation and the wave equation. The problem involving
the Helmholtz equation that has received most interest is the question of
how the solutions behave ask � � . For scattering problems involving
the wave equation the most-studied problem is the long-time behaviour of
the energy in a neighbourhood of the obstacle. These two problems are
obviously related, since when one takes the Fourier transform in time of the
wave equation one obtains the Helmholtz equation; however, to understand
rigorously the relationship between the two problems one must understand
how solutions of the wave equation with singularities in the initial data (such
as a delta function) behave when they hit the obstacle. Understanding this
so-calledpropagation of singularities was one of the main motivations for
the development of the tools ofmicrolocal analysis.

Some classic books and monographs describing this body of work in scat-
tering theory from di�erent perspectives are Babich and Buldyrev (2008),
Borovikov and Kinber (1994), Hörmander (1985a, 1985b), Lax and Phillips
(1989), Melrose (1995), Morawetz (1975b) and Vainberg (1989) (with the
Russian texts translations of earlier Russian originals).

A key concept in scattering theory is the geometrical classi“cation of
domains as eithertrapping or non-trapping. We give the non-technical def-
inition; see, for instance, Lax and Phillips (1989, Epilogue). For a more
mathematical, but technical, de“nition see Melrose and Sjöstrand (1982,
De“nition 7.20) or Melrose (1979, De“nition 1.3). In this de“nition and the
rest of the section, as in Section 2,BR := { x � Rd, |x| < R } .

DeÞnition 5.4. (Trapping and non-trapping for smooth domains)
Assume that � + is smooth, that is, � is C� . For any R > 0 such that
� Š � BR, consider all possible rays starting in � + � BR (i.e., starting
from every point and travelling in every possible direction). Whenever a
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ray hits �, continue it according to the law of re”ection (angle of incidence
equals angle of re”ection) until it leaves BR. We call � + trapping if there
are arbitrarily long paths or closed paths of rays; otherwise �+ is called
non-trapping.

(Note that De“nition 5.4 does not cover rays that hit the boundary at
a tangent, and there are additional subtleties with these. Indeed, Taylor
(1976) showed that, in some cases, one cannot uniquely de“ne the re”ection
of rays tangent to the boundary.)

We have de“ned trapping and non-trapping for C� domains since the
propagation of singularities of the wave equation onC� domains is fully
understood by the results of Melrose and Sj¨ostrand (1978, 1982). However,
when � + is not C� , and especially when it is notC1, understanding how
a ray re”ects is more complicated. Following the development of the very
e�ective but non-rigorous Geometrical Theory of Di�raction (Keller 1962),
there has been much work on rigorously understanding the propagation of
singularities on domains with corners and edges. The recent papers by
Melrose, Vasy and Wunsch (2008, 2012) both contain good overviews of
this work.

To illustrate the di�culty involved in formulating a de“nition of trapping
for non-smooth domains, consider the particular example of rays hitting
a convex polygon. When a ray hits a corner it produces di�racted rays
emanating from the corner, and in particular some that travel along the
sides of the polygon (understanding these rays on the boundary is implicit
in the approximation results for the convex polygon in Section 3.3). This
means that there exist •glancing rays• that travel around the boundary of
the polygon (hitting a corner and then either continuing on the next side or
travelling back) and do not escape to in“nity; thus the exterior of a convex
polygon is, in this sense, a trapping domain. At each di�raction from a
corner, however, these rays lose energy, and thus the trapping is in a weaker
sense than having a closed path of rays (as in De“nition 5.4).

We state below some results about solutions of the Helmholtz equation
in non-trapping domains (Theorems 5.6 and 5.7) that depend on the prop-
agation of singularities results of Melrose and Sj¨ostrand (1978, 1982) for
C� domains. Using the recent results about propagation of singularities on
manifolds with corners and edges from the programme of work by Melrose,
Vasy and Wunsch, it is reasonable to believe that analogous (or slightly
weaker) results to Theorems 5.6 and 5.7 would hold for the exterior of a
non-trapping polygon (in the weaker sense discussed above), for example.
However, although the relevant technical tools now exist, such results have
not yet been proved. (Actually, we note that, in the special case of the
exterior of a polygon, either the results of Gérard and Lebeau (1993), about
propagation of singularities from wedges with analytic boundaries, or the
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results of Hillairet (2005), about propagation of singularities on Euclidean
surfaces with conic singularities, may be su�cient to achieve this goal, again
with some non-trivial technical work outstanding.)

A slightly di�erent, but related, question is whether there exists the ap-
propriate analogue of the propagation of singularities results of Melrose and
Sjöstrand (1978, 1982) for, say,C2 domains (instead ofC� domains), pos-
sibly allowing for higher-order di�ractive e�ects. To the authors• knowledge
this does not appear to be the case, although we note that Ivrii•s work
on the Weyl law and spectral asymptotics on domains slightly better than
C1 (Bronstein and Ivrii 2003, Ivrii 2003) contains some results for non-
tangent rays.

The preceding paragraphs hopefully give an indication of some of the
subtleties associated with the concepts of trapping and non-trapping on non-
smooth domains. For the remainder of this section we will consider domains
such as the rectangular and elliptical cavities in Figure 5.1 as trapping
domains, despite not satisfying De“nition 5.4, since they are notC� , since
for these obstacles there exist closed paths of rays that hit only smooth
parts of the boundary.

We have just encountered a slight •culture clash• between the classic scat-
tering literature and the numerical analysis literature: classical scattering
theory is happiest in smooth domains, whereas from the point of view of
practical applications we want to consider domains with corners and edges.
What then should we aim for in the numerical analysis of scattering prob-
lems? An important class ofC� domains for which the non-trapping con-
dition holds consists of domains that are star-shaped in the following sense.

DeÞnition 5.5. (Star-shaped) We say that � Š is star-shaped with re-
spect to the point x0 � � Š if there exists c > 0 such that (x Š x0) · n 	 c
for almost every x � �, where n is the normal vector pointing outwards
from � Š . We say that � Š is star-shaped if it is star-shaped with respect to
somex0 � � Š .

If � Š is star-shaped andC� then � + is non-trapping in the sense of
De“nition 5.4 (Lax and Phillips 1989, Chapter 5, Proposition 3.1) (star-
shapedness guarantees that the rays can only be re”ected a “nite number of
times before escaping from the obstacle). Since the normal vector is de“ned
almost everywhere on Lipschitz boundaries, star-shapedness is a well-de“ned
property for Lipschitz domains, and thus a reasonable aim from the point
of view of numerical analysis of scattering problems is to prove results for
star-shaped Lipschitz domains, and then also for (smooth) non-trapping
domains.

Another •culture clash• is that classical scattering theory is happiest in
3D (essentially because the fundamental solution for the Helmholtz equation
� k(x, y) is an analytic function of k in 3D, but not in 2D). However, from a
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numerical analysis perspective one often starts in 2D, where computations
are easier, and then progresses to 3D.

One way to understand the signi“cance of trapping and non-trapping is
the following. Recall that the Helmholtz operator with k > 0 in a bounded
domain can have non-trivial solutions for certain homogeneous boundary
conditions (these are eigenfunctions of the Laplacian). In an unbounded
domain the Helmholtz equation with k > 0 cannot have any non-trivial
solutions satisfying homogeneous boundary conditions, provided an appro-
priate radiation condition is prescribed (Corollary 2.9). However, ask � � ,
solutions of the Helmholtz equation behave more and more like rays (this is
the whole notion of ray theory), and thus if the domain is trapping then, for
certain k, there will be solutions of the Helmholtz equation localized in the
trapping part of the obstacle and behaving almost like non-trivial solutions
satisfying homogeneous boundary conditions. This informal discussion can
be made mathematically precise through the concepts ofresonancesand
quasimodes(see the references in Section 5.6.2).

In Section 5.6.2 we take a closer look at the type of behaviour that so-
lutions of the Helmholtz equation can exhibit in trapping domains (and
de“ne the concepts of a resonance and a quasimode); for the remainder of
this subsection we look at bounds on the solution operator of the Helmholtz
equation in non-trapping domains.

Theorem 5.6. (Vainberg 1975) Let � + be a non-trapping domain (in
the sense of De“nition 5.4) in 2D or 3D. If g � L 2(� + ) has compact support,
and v � H 2

loc(� + ) satis“es

� v + k2v = g,

the Sommerfeld radiation condition (2.9), and either

�v = 0 or � nv = 0 on � ,

then, given any R > 0 such that � Š � BR, for every k0 > 0,

k� v� L 2(� + � B R ) + � v� H 1(� + � B R ) +
1
k

� v� H 2(� + � B R ) � � g� L 2(� + ) , (5.5)

for k 	 k0.

We will not go into detail about how this bound was obtained, referring
the reader to the original paper by Vainberg (1975) and also the accounts
in Vainberg (1999) and Vainberg (1989) for this information, but we will
make two brief remarks: “rstly, that the bound is sharp in terms of the
powers of k in its k-dependence, and secondly that it relies on the results
on propagation of singularities in Melrose and Sjöstrand (1978, 1982). See
also Remark 5.9 for more discussion on this type of bound.

Whereas Theorem 5.6 obtained bounds on solutions to the inhomoge-
neous Helmholtz equation in � + , we now discuss bounds on the Dirichlet
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to Neumann map for the homogeneous Helmholtz equation (1.1) in �+ (the
map P+

DtN introduced in Section 2.7). Via results in Section 2.7 (in partic-
ular Theorem 2.33) these will help us obtain bounds on� (A�

k,� )Š 1� . The
following theorem giving bounds on this map has recently been obtained
from Theorem 5.6.

Theorem 5.7. (Lakshtanov and Vainberg 2012) Let � + be a non-
trapping domain (in the sense of De“nition 5.4) in 2D or 3D. If u is a
solution of (1.1) in � + satisfying the Sommerfeld radiation condition (2.9),
then, for every k0 > 0,

� � nu� H Š 1/ 2(�) � k3� �u � H 1/ 2(�) ,

and

� �u � H 1/ 2(�) � k� � nu� H Š 1/ 2(�) ,

for all k 	 k0.

We note that this paper also contains analogous bounds fork � C with
0 < argk < �/ 2 that hold for general Lipschitz obstacles.

Using certain •multiplier methods•, applicable only to bounding � nu in
L 2(�) (to be explained in more detail in Section 5.3), one can obtain the
following bound on P+

DtN that is better than the “rst bound in Theorem 5.7
from the point of view of k-dependence.

Theorem 5.8. Let � Š be a Lipschitz star-shaped domain in 2D or 3D. Let
u be a solution of (1.1) in � + satisfying the Sommerfeld radiation condition
(2.9). Then, if �u � H 1(�),

� � nu� L 2(�) � �
 � �u � L 2(�) + k� �u � L 2(�) , (5.6)

for all k > 0 (where 
 � is the surface gradient operator de“ned in (A.14)).

The bound (5.6) was essentially proved in Morawetz and Ludwig (1968);
the authors only considered the smooth star-shaped case, but the arguments
are valid for Lipschitz domains with a little extra technical work (for exam-
ple, (5.6) was proved in the case that � is Lipschitz and piecewise smooth
in Chandler-Wilde and Monk (2008)).

Using a mixture of the arguments of Lakshtanov and Vainberg (2012) and
the multiplier methods used to prove Theorem 5.8, Spence (2012) proved
that, when � + is non-trapping, for every k0 > 0,

� � nu� L 2(�) � k2� �u � H 1(�) , (5.7)

for all k 	 k0. However, a sharper bound than (5.7) can almost certainly
be obtained (at least in 2D) by translating the results of Morawetz (1975a)
into this setting.
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Remark 5.9. (Resolvent estimates) The bound in Theorem 5.6 is a
bound on the operator R(k) := (� + k2)Š 1, that is, the resolvent of the
Laplacian. We now brie”y discuss bounds of this type because (a) they are
a crucial component of scattering theory, and (b) some of the recent devel-
opments in the error analysis of BIEs for the Helmholtz equation for large
k provide an alternative perspective on these bounds.

(a) Rewriting (5.5) in terms of R(k), it becomes

� R (k) � L 2(Rd )� H j (Rd ) � kj Š 1, j = 0 , 1, 2, (5.8)

for any  � C�
0 (Rd), and this is the form in which resolvent estimates usu-

ally appear in the scattering theory literature. (The bound (5.8) is known
as a •local resolvent estimate• because of the pre- and post-multiplication of
R(k) by a cut-o� function.) The simplest situation where one encounters
a bound of this form is that of the Helmholtz equation in Rd (the resol-
vent of the so-called •free Laplacian•). In this case the estimate (5.8) ap-
pears in, for example, Vainberg (1975, Theorem 3) and Burq (2002,§2.1).
Generalizations of this estimate (which remove the •local• nature at the
cost of working in more technical function spaces) appear in, for example,
Hörmander (1983b, Theorem 14.3.7) and Perthame and Vega (1999) (note
that Theorem 14.3.7 of Hörmander (1983b) is for “xed k, but a rescaling of
the independent variable yields the result for arbitrary k). In the case of the
Laplacian in the exterior of a bounded obstacle, resolvent estimates were
obtained by Vainberg (1975, Theorem 7) (quoted as Theorem 5.6 above)
and Morawetz (1975a, Theorem I.2D) (although the latter is not quite in
the form of (5.8)).

(b) The error analysis for the Helmholtz equation recently developed by
Melenk and co-workers, and reviewed in the BIE context in Section 6.3,
has at its heart an additive splitting of the solution into a part with “nite
regularity but k-independent bounds, and a part that is analytic with k-
explicit bounds for all its derivatives. In Rd this splitting leads to an alter-
native proof of the classical local free resolvent estimate (5.8) (Melenk and
Sauter 2010, Lemma 3.5). See also Esterhazy and Melenk (2012,§3) for an
overview of this work.

5.3. Rellich- and Morawetz-type identities

In this subsection we discuss the so-called Rellich- and Morawetz-type iden-
tities. We do this because many of the results about� (A�

k,� )Š 1� and co-
ercivity of A�

k,� that we discuss in Sections 5.6 and 5.7 have been proved
using these techniques, and several key results that we quoted in Section 2
have been proved using them, notably the regularity result in Theorem 2.12
which follows from Ne�cas (1967) and the results of Verchota (1984).
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The method of multipliers is one of the few truly general techniques in
PDE theory. It consists of multiplying the PDE by a judiciously chosen func-
tion and integrating (often by parts). In our case we consider the Helmholtz
equation, written as Lu = 0 with L = � + k2, and restrict attention to the
case where the multiplier is a function ofu, namely N u, where N is some
linear operator.

In this framework Green•s “rst identity (given in the Appendix as equa-
tion (A.26)) with v = u is equivalent to the choiceN u = u. Rellich-type
identities are obtained by choosingN u to be some derivative ofu: for exam-
ple, the derivative in the radial direction in the case of star-shaped domains
(so N u = x · 
 u) or a derivative along the vertical coordinate axis in the
case of domains that are the hypograph of a function.

The multiplier x ·
 u was originally introduced by Rellich (1940) to obtain
an expression for the eigenvalues of the Laplacian in star-shaped domains
as an integral over the boundary (as opposed to the usual expression as an
integral over the domain used, for example, in the Rayleigh…Ritz method).
Following on from their work using the Rellich multiplier for Laplace•s equa-
tion (Payne and Weinberger 1955), Payne and Weinberger (1958) general-
ized the resulting identity to second-order elliptic systems with variable
coe�cients. This general identity, in which the multiplier is an arbitrary
derivative of u (that is Z ·
 u for some arbitrary vector “eld Z ) was indepen-
dently introduced by Hörmander (1954). We note that the Rellich identity
with multiplier x · 
 u is often known as the Derrick…Pohozaev identity (see,
for example, Evans (1998,§9.4.2)). This is because it was independently
introduced by both Pohozaev (1965) and Derrick (1964) in their studies
of the possible non-existence of solutions of �u + �f (u) = 0. (Actually,
Derrick•s proof of the identity was not via the multiplier x · 
 u, but via a
scaling argument: see Berestycki and Lions (1983,§2.1) for a nice account
of both proofs.)

Morawetz-type identities consist of taking certain linear combinations of
both derivatives of u and u itself (that is, linear combinations of the Rellich
and Green multipliers). These are discussed in more detail for the Helmholtz
equation in Section 5.3.1; see, for example, Morawetz (1961, 1968), Strauss
(1975) and Morawetz, Ralston and Strauss (1977) for their use in the context
of wave equations.

Rellich- and Morawetz-type identities have been used in many di�erent
contexts since their introduction; in the following three subsections we dis-
cuss three uses relevant to this article.

(1) Bounding the Dirichlet to Neumann map for second-order elliptic PDEs
(including the Laplace and Helmholtz equations), Section 5.3.1.

(2) Bounding the energy norm of solutions of the Helmholtz equation,
Section 5.3.2.
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(3) Proving coercivity of integral operators related to the Helmholtz equa-
tion, Section 5.3.3.

Remark 5.10. Here we have understood Rellich- and Morawetz-type iden-
tities in the context of multiplier methods. An alternative approach is to
view them as consequences of Noether•s theorem (relating symmetry groups
and conservation laws); see, for example, Olver (1993, Notes to Chapter 4).

5.3.1. Bounding the Dirichlet to Neumann map
For simplicity, let d = 2 (the three-dimensional case,d = 3, is slightly more
complicated) and consider the simplest Rellich-type multiplier: N u = x·
 u.

Multiplying Lu = 0 by N u and integrating by parts leads to the following
identity for solutions of Lu = 0:


 ·
�
2Re

�
x · 
 u
 u

	
+

�
k2|u|2 Š |
 u|2

	
x

	
= 2k2|u|2 (5.9)

(for details see,e.g., Spenceet al. 2011, Lemma 2.1). AssumingLu = 0
in � Š , integrating this identity over � Š and using the divergence theorem
yields

�

�

�
(x · n)

�
|� nu|2 + k2|u|2 Š |
 � u|2

	
+ 2Re

�
x · 
 � u� nu

	�
ds

= 2k2
�

� Š

|u|2 dx. (5.10)

In the simplest possible case ofk = 0 ( i.e., the Laplace equation) the right-
hand side of (5.10) is zero, and so if min(x · n) > 0 then (5.10) can be used
to bound � � nu� 2

L 2(�) by �
 � u� 2
L 2(�) and vice versa. Indeed, from (5.10) it

follows that

min
x� �

(x ·n)� � nu� 2
L 2(�) � max

x� �
(x ·n)�
 � u� 2

L 2(�) Š 2Re
�

�
x ·
 � u� nu ds. (5.11)

Using the standard inequality 2ab � �a 2 + b2/� on the “nal term yields
� � nu� 2 � �
 � u� 2. All this relies on � Š being star-shaped with respect to
the origin (recall De“nition 5.5). For more general domains one must use
a more general vector “eld Z in the multiplier with Z · n > 0 on �, and
then control the resulting non-divergence terms, but a similar result can be
obtained; see, for example, McLean (2000, Theorem 4.2.4).

A key advantage of identities such as (5.10) is that, modulo some non-
trivial technical work, they hold when � is Lipschitz. Indeed this method
of bounding the Dirichlet to Neumann map was used by Ne�cas (1967) in
his proof of Theorem A.5 of the Appendix, by Jerison and Kenig, who
independently discovered the Rellich identity (5.9) in their famous work on
the Laplacian on Lipschitz domains (see,e.g., Kenig 1994), and implicitly
by Verchota (1984) in his proof that 1

2I Š D0 is invertible in L 2(�) when �
is Lipschitz.
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Whereas Ne�cas, and Jerison and Kenig applied the identity (5.9) in an
interior domain, Verchota needed to apply (5.9) both in � Š and the exterior
domain � + . When (5.9) is applied in � + , in order for there to be no
contribution from in“nity, one requires the surface integral over a large ball
to tend to zero as the radiusR of the ball tends to in“nity. This integral is
equal to

�

� R

�
R

�
|� nu|2 + k2|u|2 Š |
 � u|2

	
+ 2Re

�
x · 
 � u� nu

	�
ds, (5.12)

where � R := �B R. When k = 0 and u is a solution of the Laplace equation
in � + that vanishes at in“nity, (5.12) tends to zero as R � � . However,
when u is a solution of the Helmholtz equation that satis“es the radiation
condition (2.9), the integral (5.12) does not tend to zero (this is because the
derivatives of the Helmholtz solution decay more slowly at in“nity than the
derivatives of the Laplace solution). Thus, if one seeks to bound the exterior
Dirichlet to Neumann map for the Helmholtz equation using (5.9), the sign
of the volume terms in (5.10) is such that the terms on � bound � � nu� 2

L 2(�)

in terms of �
 � u� 2
L 2(�) but (5.12) does not tend to zero asR � � , and

this non-zero contribution cannot be immediately controlled.
Because of this, Morawetz and Ludwig (1968) introduced the multiplier

N u = r M u, where

M u :=
x
r

· 
 u Š iku +
d Š 1

2r
u, (5.13)

and r = |x|. This leads to an identity very similar to the Rellich identity
(5.9), namely that, for solutions of Lu = 0,


·
�
2Re

�
r M u
 u

	
+

�
k2|u|2Š|
 u|2

	
x

	
=

�
|
 u|2Š|ur |2

	
+ |ur Š iku|2, (5.14)

where ur = ( x · 
 u)/r . As with the Rellich identity, the non-divergence
terms are all positive, and when integrated over �+ the resulting integral
over � is the same as in (5.10), except that the left-hand side now contains
an extra term proportional to Re ( u� nu) (which can be controlled using the
same inequality that we used to deal with the “nal term in (5.11)). In
contrast to the Rellich identity, however, the choice of terms subtracted
from x · 
 u in the multiplier (5.13) means that the analogue of the integral
over � R (5.12) tends to zero asR � � . This is because, ifu satis“es the
radiation condition (2.9), the multiplier r M u is lower order at in“nity than
x · 
 u: the “rst two terms in the multiplier M u de“ned in (5.13) equal the
quantity in the radiation condition (2.9), and the term dŠ 1

2r u subtracts o�
the next term in the asymptotic expansion, so that

M u(x) = O
�

1
r (d+3) / 2

�
as r � �
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(compared tour Š iku = O(r Š (d+1) / 2) from (2.10)). Thus, the identity (5.14)
can be used to obtain a bound on the Dirichlet to Neumann map for the
Helmholtz equation in � + , ultimately resulting in Theorem 5.8. Following
the introduction of the multiplier M u in Morawetz and Ludwig (1968),
more general multipliers were then used by Morawetz (1975a) to obtain
estimates for the Helmholtz equation (as a stepping stone to estimates for
the wave equation).

One area where Rellich identities have been used extensively to treat time
harmonic scattering problems is rough surface scattering. A standard model
of this phenomenon is the Helmholtz equation posed in the in“nite region
above the graph of a functionf : RdŠ 1 � R. Here the radiation condition is
more subtle than in the bounded obstacle case, and the notion of •outgoing•
must be formulated in terms of the Fourier transform of the solution at a
certain height above the surface; see Chandler-Wilde and Monk (2005) and
the references therein.

The appropriate Rellich identity to use in this case is that with multiplier
e · 
 u, where e is a unit vector in the vertical d-coordinate direction: this
ensures thate·n > 0 on the boundary (in this case, the graph of the function
f ). When this identity is applied in the analogue of � + (the region above
the graph of f ), we again want there to be no contribution from in“nity;
this is the case if an integral analogous to (5.12) tends to zero asR � �
(where R is now the height above the graph off ). Similar to the bounded
obstacle case, this integral does not tend to zero asR � � . However,
whereas in the bounded obstacle case this problem can be “xed by adding
terms to the Rellich multiplier x · 
 u to mirror the radiation condition,
adding terms to the Rellich multiplier e · 
 u does not appear helpful in
the rough surface case (this is related to the more complicated behaviour of
the scattered “eld at in“nity when the scatterer is unbounded). Neverthe-
less, the integral analogous to (5.12) can be controlled using bounds on the
Fourier transform of the solution above the surface (Chandler-Wilde and
Monk 2005, Lemma 2.2), and thus a Dirichlet to Neumann map estimate
can still be obtained (Chandler-Wilde, Heinemeyer and Potthast 2006). It
is shown in Spence (2012) that the analogue of these bounds in the bounded
obstacle case (Chandler-Wilde and Monk 2008, Lemma 2.1) is almost ex-
actly equivalent to using the Morawetz…Ludwig multiplier (5.13).

5.3.2. Bounding the energy norm of solutions of the Helmholtz equation
By slightly changing the Rellich multiplier x · 
 u one can ensure that the
non-divergence terms in the resulting identity become the energy norm of
the solution u, that is, � u� 1,k,D , where

� u� 2
1,k,D := �
 u� 2

L 2(D ) + k2� u� 2
L 2(D ) (5.15)
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(where D is either � Š or � + ). Indeed, the multiplier N u = x · 
 u + �u for
� a real constant yields


 ·
�
2Re

�
x · 
 u + � u

	

 u +

�
k2|u|2 Š |
 u|2

	
x

	

= ( d Š 2 Š 2� )|
 u|2 + (2 � Š d)k2|u|2, (5.16)

where d is the dimension. (This identity can also be understood as adding
a multiple of the pointwise form of Green•s identity to the Rellich identity,
and indeed this is the way it has been understood in most of the instances of
its use.) Choosing 2� = dŠ 1 means that the non-divergence terms in (5.16)
becomeŠ� u� 2

1,k,D . Although of obvious independent interest, bounds on the
energy norm can be translated into bounds on the inf-sup constant for the
standard variational formulations of the Helmholtz equation that are the
starting point for “nite element discretizations; see, e.g., Chandler-Wilde
and Monk (2008, Lemma 3.4).

The fact that Rellich identities can give bounds on the energy norm was
used for the Helmholtz equation in interior domains by Makridakis, Ihlen-
burg and Babu�ska (1996, Proposition 2.1), Melenk (1995), Cummings and
Feng (2006) and Hetmaniuk (2007). In exterior domains, Chandler-Wilde
and Monk (2008) used them to prove the bound (5.5) without the third
term on the left-hand side when � Š is a star-shaped domain in 2D and 3D,
obtaining an explicit value for the hidden constant on the right-hand side of
the bound. (In this application the problem that (5.12) does not tend to zero
as R � � was overcome via Chandler-Wilde and Monk 2008, Lemma 2.1.
An e�ective alternative is to use the Morawetz…Ludwig multiplier (5.13);
see Spence 2012.) For rough surface scattering modelled by the Helmholtz
equation, bounds on the energy norm of the solution were obtained via
Rellich identities by Chandler-Wilde and Monk (2005), Claeys and Haddar
(2007) and Lechleiter and Ritterbusch (2010). Finally, we note that Rellich
identities were used to prove analogous results for the equations of linear
elasticity by Cummings and Feng (2006), and for the Maxwell equations by
Hiptmair, Moiola and Perugia (2011b) and Haddar and Lechleiter (2011).

5.3.3. Proving coercivity of integral operators
As discussed in Section 5.3.1 above, the Rellich identity was a key compo-
nent of Verchota•s bound on�

� 1
2I Š D0

	 Š 1� (Verchota 1984). In essence,
Verchota•s argument can be seen as applying the Dirichlet to Neumann map
bounds in � Š and � + , that follow from (5.11), to the particular solution of
the Laplace equationu = S0� . Verchota combines these bounds with the
jump relations (2.41) to obtain bounds on � ( 1

2I Š D �
0)Š 1� = � ( 1

2I Š D0)Š 1� .
Recently it has become clear that the exact structure of the Rellich-

identity terms on � when u = Sk� can be used to prove the stronger
property (compared to invertibility) of coercivity in the sense of (2.124)
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(Spenceet al. 2011). This discovery was motivated by the relatively well-
known fact that applying Green•s “rst identity (A.26) with u = Sk� in � Š
and � + , and then using the jump relations (2.41), yields

Re (Ši(Sk �, � )L 2(�) ) 	 0, (5.17)

for all � � L 2(�); see, e.g., Engleder and Steinbach (2007, Lemma 3.1)
or Spenceet al. (2011, §1.3). (A di�erent proof of this result is given in
Nédélec 2001,§3.4.4.) Given that this use of Green•s “rst identity gives
information about part of the combined potential operator A�

k,� (namely the
part involving Sk), a natural question is whether repeating the argument
with a di�erent identity can obtain information about more, or even all,
of A�

k,� .
Repeating the argument leading to (5.17) with Green•s identity replaced

by the Morawetz…Ludwig identity (5.14) yields the inequality

Re
��

x · n D �
k + x · 
 � Sk Š i�S

	
�, �

	
L 2(�) 	 0, (5.18)

for all k > 0 with the particular choice of � (x) = k|x| + i( d Š 1)/ 2; this
shows that the star-combined operator (2.103) is coercive uniformly ink for
all star-shaped Lipschitz domains (see Theorem 5.26 below).

Looking at the terms on the left-hand side of (5.18), we see that if the
vector “eld x in the Morawetz…Ludwig identity is replaced by a more general
vector “eld Z (x), and if Z (x) is equal to the normal vector on � (so that
Z · 
 � Sk = 0 and Z · n = 1), then the left-hand side becomes Re (D �

k Š
i�S )�, � )L 2(�) . Thus, if Z (x) is also such that the inequality in (5.18) is
maintained after replacing x by Z (x), then this inequality shows that the
standard combined-potential operator A�

k,� is coercive, that is, for some
� k,� > 0,

|(A�
k,� �, � )| 	 � k,� � � � 2, (5.19)

for all � � L 2(�) (and hence Ak,� is also coercive by the considerations
leading to Remark 2.24). Necessary conditions for the inequality analogous
to (5.18) to hold are that the non-divergence terms of the analogue of the
identity (5.14) are non-negative, and alsoZ (x) must be proportional to x
as r � � for there to be no contribution from in“nity (the analogue of
(5.12) must tend to zero asR � � ). In this way, one can prove A�

k,� is
coercive by showing there exists a vector “eldZ (x) satisfying the constraints
outlined above (Spence, Kamotski and Smyshlyaev 2012). This is analogous
to Morawetz•s reformulation of the energy decay of solutions to the wave
equation in terms of the existence of an appropriate multiplier in Morawetz
(1975a); however, we note that the multipliers that need to be constructed
to prove coercivity satisfy more stringent requirements than Morawetz•s
multipliers; see Spenceet al. (2012). Coercivity results obtained using this
technique are discussed in Section 5.7.
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5.4. Bounds obtained by Fourier analysis

The majority of this subsection discusses investigations of conditioning and
coercivity in the case where � is either a circle or a sphere, in which case a
complete theory is possible due to the diagonalization of the operators in the
Fourier (d = 2) or spherical harmonic (d = 3) bases. However, we want to
emphasize at the beginning that these are not the only domains where these
(in some sense) explicit methods can be used. Indeed, the real requirement
is that the domain is one in which the Helmholtz equation is separable, in
which case classical analytical techniques of applied mathematics can be
brought to the problem. For example, boundary integral operators on the
ellipse are considered in Kress and Spassov (1983) and Rodin and Steinbach
(2003) for the Laplace equation, and in Betcke, Phillips and Spence (2012b)
for the Helmholtz equation. The separability requirement can be relaxed
slightly, but then the analytical techniques become more involved and only
yield approximate results; see,e.g., the investigations of the conditioning
of “rst-kind BIEs for the Helmholtz equation in several canonical domains
(including the exterior of a crack) in Warnick and Chew (1999, 2001, 2004).

Remark 5.11. One particularly noteworthy investigation using Fourier
analysis is Ha-Duong•s work on scattering by a ”at screen (in 3D) and
a crack (in 2D). Coercivity for both Sk and Hk, as mappings between the
appropriate trace spaces, was proved in Ha-Duong (1990), but under the as-
sumption that Im ( k) > 0 (for an alternative proof, which essentially repeats
the argument using Green•s identity leading to (5.17) but with Imk > 0, see
Ha-Duong 2003). Frequency-explicit coercivity estimates forHk for k > 0
were shown in Ha-Duong (1992), and a non-frequency-explicit coercivity es-
timate for Sk for k > 0 was stated in Costabel (2004, Proposition 2.3) but
without proof. These results have recently been sharpened and extended in
Chandler-Wilde and Hewett (2012).

The case where� is the circle or sphere. As with the rest of this section we
focus on the exterior Dirichlet problem (2.12) (which includes the sound-
soft scattering problem (2.16)). Partial results for the analogous formula-
tion of the Neumann problem, that is, (2.73) and (2.77) with 	 = 0, are
given in Kress (1985), Amini (1990) and Amini (1993). The conditioning of
the combined-potential integral equations for electromagnetic scattering in
these domains was studied for smallk in Kress (1985), and the conditioning
of certain •regularized• formulations of the acoustic Dirichlet problem was
considered in Bu�a and Sauter (2006) (these •regularized• formulations were
discussed brie”y in Section 2.11).

When � is the circle or sphere, the analysis is simpli“ed by the fact that
D �

k = Dk and thus A�
k,� = Ak,� (Kress 1985).
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Suppose � is the unit circle, with parametrization � (� ) = (cos �, sin � ).
With this parametrization L 2(�) is isometrically isomorphic to L 2[0, 2� ].
We can write any � � L 2[0, 2� ] = L 2(�) as

� (� ) =
1

2�

�

m� Z

�� (m) exp(im� ), where �� (m) :=
� 2�

0
� (� ) exp(Šim� ) d�,

in which case theL 2-inner product and norm are given by

(�, � ) =
1

2�

�

m� Z

�� (m) �� (m) and � � � 2 =
1

2�

�

m� Z

| �� (m)|2.

On the circle the operators Sk, Dk, and henceAk,� are convolution op-
erators and all act diagonally on the basis{ exp (im� )} m� Z with the corre-
sponding eigenvalues given by

� Sk (m) =
� i
2

H (1)
|m|(k)J|m|(k), (5.20a)

� D k (m) =
� ik
2

H (1)
|m|(k)J �

|m|(k) Š
1
2

, (5.20b)

� A k,� (m) =
�
2

H (1)
|m|(k)

�
ikJ �

|m|(k) + �J |m|(k)
	
. (5.20c)

By this we mean that

R� (� ) =
1

2�

��

m= Š�

� R(m)eim� �� (m),

for R = Sk, Dk, or Ak,� ; see,e.g., Kress (1985, equation (4.4)) or Domš́nguez
et al. (2007, Lemma 1)). Thus � R(m) is the eigenvalue associated with the
eigenfunction exp(im� ).

On the sphere the eigenvalues for these operators (in the spherical har-
monic basis) are proportional to the expressions (5.20) withm replaced by
m + 1 / 2 (where the constant of proportionality is independent ofk and m);
see,e.g., Kress (1985), Domš́nguezet al. (2007).

Since the eigenfunctions exp(im� ), m � Z, are an orthonormal basis of
L 2[0, 2� ] = L 2(�), bounding norms can be recast as bounding eigenvalues.
In particular, with N0 := N  { 0} ,

� R� = sup
m� N0

|� R(m)|, � RŠ 1� =
%

inf
m� N0

|� R(m)|
&Š 1

. (5.21)

Obtaining a bound on the coercivity constant of Ak,� in (5.19) can also be
translated into obtaining a bound on the eigenvalues. Indeed, the variational
form obtained when solvingAk,� � = g with the Galerkin method (see (1.6))
can be rewritten in the Fourier basis as

ak,� (�, � ) = ( Ak,� �, � ) =
1

2�

�

m� Z

� A k,� (m) �� (m) �� (m). (5.22)
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If, for example, � k,� > 0, where

� k,� := inf
m� N0

Re (� A k,� (m)) , (5.23)

then for � � L 2(�),

Re (ak,� (�, � )) =
1

2�

�

m� Z

Re (� A k,� (m)) | �� (m)|2 	 � k,� � � � 2; (5.24)

so that � k,� is a coercivity constant for A�
k,� . (Another potential way of

getting a lower bound for the coercivity constant would be to consider the
imaginary parts of � A k,� (m). However, Figure 5.2 shows that the imaginary
parts are not bounded away from zero even in a case where the operator is
coercive.)

Using (5.21), and bounding above the appropriate combinations of Bessel
and Hankel functions, the following upper bounds on� Sk� , � Dk � , and � Ak,� �
can be obtained.

Theorem 5.12. For � the circle or sphere, for k > 0,

� Sk � � kŠ 2/ 3, � Dk � = � D �
k � � 1, (5.25)

so that

� Ak,� � � 1 + |� |kŠ 2/ 3. (5.26)

The bound for � Sk � in (5.25) was proved for the circle and sphere by
Giebermann (1997), Domš́nguezet al. (2007) and Banjai and Sauter (2007).
The bound for � Dk� in (5.25) was proved by Banjai and Sauter (2007), with
Giebermann (1997) and Domš́nguezet al. (2007) proving the weaker bound
� Dk� � k1/ 3. (To be precise we note that Domš́nguezet al. (2007) do not
explicitly state the bound for � Sk � , but obtain the appropriate bound on
the eigenvalues (5.20a), and Banjai and Sauter (2007) state the bound for
� Sk � for the sphere only, but due to the fact that the eigenvalues on the
circle are very similar to those on the sphere their result is easily extended
to the circle case.)

The bound (5.26) indicates that with the usual choice of� = k, � Ak,� � �
1 + k1/ 3. The lower bounds obtained by more general methods in Sec-
tion 5.5.2 show that this upper bound is sharp. The bound (5.26) also
shows that the choice� � k2/ 3 means that � Ak,� � is bounded uniformly in
k. Although this might at “rst suggest that � = k2/ 3 is a better choice than
� = k, the former choice apparently leads to� AŠ 1

k,� � growing like k1/ 3 (this
is suggested by Theorem 5.22 and numerical experiments of Betckeet al.
2011) and thus the condition number ofAk,k 2/ 3 in the case of a circle and
sphere grows at the same rate ask � � as that of Ak,k .
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Theorem 5.13. (Dom« õnguez et al. 2007) When � is the circle, with
� k,� de“ned by (5.23), there exists ak0 > 0 such that

� k,k 	
1
2

,

for all k 	 k0, so that Ak,k is coercive with a coercivity constant of 1/ 2.
When � is the sphere, (5.19) holds for � = k for su�ciently large k, with

� k,k 	
1
2

Š O
�

1
k2/ 3

�
, as k � � .

These lower bounds on the eigenvalues, “rst conjectured by Giebermann
(1997), are much harder to prove than the upper bounds of Theorem 5.12.

Recall that � k,� in (5.19) and � (A�
k,� )Š 1� are related by

� (A�
k,� )Š 1� � 1/� k,� (5.27)

(this follows immediately from equation (2.125)). Thus the bounds of The-
orem 5.13 immediately imply that

� AŠ 1
k,k � � 2

for all k 	 k0 for the circle, and

� AŠ 1
k,k � � 2 + O

�
1

k2/ 3

�
, as k � � ,

for the sphere.

5.5. Bounds on norms of boundary integral operators

We now discuss bounds on the norms ofSk, Dk, D �
k , Ak,� and A�

k,� for much
more general domains than just the circle and sphere. (Recall from Re-
mark 2.24 that � Dk� = � D �

k � and � Ak,� � = � A�
k,� � .)

5.5.1. Upper bounds

Theorem 5.14. (Chandler-Wilde et al. 2009) If � is Lipschitz then

� Sk� � k(dŠ 3)/ 2, � Dk � � 1 + k(dŠ 1)/ 2, � D �
k � � 1 + k(dŠ 1)/ 2, (5.28)

for k > 0; thus

� A�
k,� � = � Ak,� � � 1 + k(dŠ 1)/ 2

�
1 +

|� |
k

�

for k > 0 (uniformly in � ).
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These bounds were obtained by using the following idea. IfT is an integral
operator on � with kernel t(x, y) then

� T� L 1(�) � L 1(�) = ess sup
y� �

�

�
|t(x, y)| ds(x),

� T � L � (�) � L � (�) = ess sup
x� �

�

�
|t(x, y)| ds(y)

(provided these integrals exist); see,e.g., Jörgens (1982). Thus, by the
Riesz…Thorin interpolation theorem,

� T � L 2(�) � L 2(�) �
�
� T � L 1(�) � L 1(�) � T � L � (�) � L � (�)

	 1/ 2;

see,e.g., Stein and Weiss (1971, Chapter V, Theorem 1.3). Furthermore, if
|t(x, y)| � �t(x, y), where �t is such that �t(x, y) = �t(y, x), then

� T� L 2(�) � L 2(�) � ess sup
x� �

�

�

�t(x, y) ds(y). (5.29)

In the case of Sk the bound (5.29) is applied with T = Sk (with �t(x, y)
chosen as|� k (x, y)|), whereas forDk and D �

k it is applied to the perturbation
Dk Š D0 (since the singularity of these double-layer operators is too strong
for the operators themselves to be bounded onL 1(�) and L � (�) for general
Lipschitz �). In the 2D case the bounds on Dk and D �

k in (5.28) are then
proved using bounds on (the derivatives of) Hankel functions similar to
those in Lemma 4.6.

It is important to note that these bounds ignore the oscillation in k. For
example, the method described above gives the bound, fork > 0,

� Sk � � ess sup
y� �

�

�
|� k (x, y)| ds(y) (5.30)

= ess sup
y� �

�

�

1
4� |x Š y|

ds(y) � 1, for d = 3 .

Despite this apparent crudeness the bound (5.30) is sharp in itsk-depen-
dence for many geometries in 2D (and so are the bounds on� A�

k,� � and
� Ak,� � ); we will see this below in Lemma 5.18 when we discuss lower bounds.

The same idea can be used to bound the surface gradients ofSk, Dk Š D0,
and D �

k Š D �
0 and this gives bounds on the operatorsSk, Dk, and D �

k as
mappings from L 2(�) into H 1(�) (provided � is smooth enough for these
operators to be bounded), again using bounds similar to those in Lemma 4.6
in the 2D case.

Theorem 5.15. (Graham et al. 2012) If � is Lipschitz then

� Sk� H 1(�) � L 2(�) � 1 + k(dŠ 1)/ 2, (5.31)
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for all k > 0, and if � is C2,µ , for someµ � (0, 1), then

� Dk� H 1(�) � L 2(�) � 1 + k(d+1) / 2, � D �
k � H 1(�) � L 2(�) � 1 + k(d+1) / 2,

for all k > 0.

We remark that the requirement that � is C2,µ ensures that the mappings
D0, D �

0 : L 2(�) � H 1(�) are bounded; see Kirsch (1989, Theorem 4.2),
Colton and Kress (1998, Theorem 3.6).

The bounds of the previous theorem are an important ingredient both
in the proof of k-explicit quasi-optimality for the h-version of the BEM
discussed in Section 6.1, and in the upper bounds on� (A�

k,� )Š 1� in Sec-
tion 5.6.1.

In Section 2.9 we introduced the integral operatorA�
k,�,Z , de“ned by (2.99)

for k > 0, � � L � (�), and Z � (L � (�)) d. This de“nition involves D �
k and

Sk (like A�
k,� ) but also 
 � Sk. Supplementing the bounds (5.28) with (5.31)

we obtain that

� A�
k,�,Z � � 1 + k(dŠ 1)/ 2

�
1 +

� � � �

k

�
(5.32)

for all k > 0.
Finally, a technique for obtaining upper bounds on � Sk � and � Dk� that

does take into account the oscillatory nature of the kernels is the following
standard idea from harmonic analysis (see,e.g., Stein 1993, Chapter 7,§2),
whose use in this context was suggested in Chandler-Wilde and Graham
(2009). Observe that, for example,

� Sk � = � S�
k Sk � 1/ 2,

where S�
k is the Hilbert space adjoint of Sk (so its kernel is the complex

conjugate of the kernel of Sk). Now S�
k Sk is an integral operator whose

norm can be estimated using (5.29) above. The kernel ofS�
k Sk is itself an

integral, and this can be estimated using standard techniques for oscillatory
integrals. The use of this method of estimating norms is ongoing research,
but an initial bound obtained by this technique is the following.

Theorem 5.16. Let � Š be a strictly convex C2 domain with strictly pos-
itive curvature in 3D. Then given � > 0 there exists ak0 > 0 such that

� Sk � �
1

k1/ 20Š �
,

for k 	 k0.

This “nal bound should be contrasted with the cruder bound � Sk� � 1
for d = 3 obtained in Theorem 5.14 above. This shows that taking into
account the oscillatory nature of the kernels can, at least for some domains
(and especially in 3D), provide better bounds.
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5.5.2. Lower bounds
The technique used so far to obtain lower bounds on� Sk � , � Dk � , and � A�

k,� �
is to design a particular � k � L 2(�), depending on k and the geometry
of the obstacle, to make� Sk� k � / � � k � (or the analogous expressions with
Sk replaced by Dk or A�

k,� ) as large as possible. This technique strongly
depends on the geometry of the obstacle, and has almost exclusively to date
been used in 2D. The “rst bound we discuss is an exception in that it holds
both in 2D and 3D. It relies on the fact that A�

k,� is a compact perturbation
of the identity on C1 domains.

Lemma 5.17. (Chander-Wilde et al. 2009, Theorem 4.3) In both
2D and 3D, if part of � is C1 then � Ak,� � 	 1/ 2 and � (A�

k,� )Š 1� 	 2.

A variety of lower bounds on � Sk� and � Dk� were obtained in Chandler-
Wilde, Graham, Langdon and Lindner (2009). We give four examples.

Lemma 5.18. (Chandler-Wilde et al. 2009, Theorem 4.2) In the 2D
case, if � is Lipschitz and contains a straight line section, then there exists
k0 > 0 such that

� Sk � �
1

k1/ 2
(5.33)

for k 	 k0, and

� A�
k,� � = � Ak,� � 	

|� |
k1/ 2

Š 1 + O
�

|� |
k

�

for k 	 k0, uniformly in � > 0.

The lower bounds of Lemma 5.18 shows that the upper bounds on� Sk�
and � Ak,� � (for � � k) in Theorem 5.14 are sharp in the 2D case if part of
� contains a straight line segment.

The following two lemmas show that the upper bounds when � is a circle,
(5.25), are sharp.

Lemma 5.19. (Chandler-Wilde et al. 2009, Theorem 4.4) In the
2D case, if � is Lipschitz and C2 in a neighbourhood of some point on the
boundary then there existsk0 > 0 such that

� Sk � �
1

k2/ 3

for k 	 k0.

Lemma 5.20. (A special case of Chandler-Wilde et al. 2009, The-
orem 4.7) If � is C1 then there exists k0 > 0 such that

� Dk� � 1

for k 	 k0.
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Lemma 5.21. (A special case of Chandler-Wilde et al. 2009, The-
orem 4.6) If � is a 2D polygon then there exists k0 > 0 such that

� Dk� � k1/ 4

for k 	 k0.

5.6. Bounds on inverses

5.6.1. Upper bounds on� (A�
k,� )Š 1�

The bounds on � A�
k,� � in Section 5.5 were obtained directly from the def-

inition of the integral operator, with the fact that this operator is used to
solve the Helmholtz equation entering only via the fact that its kernel is
given in terms of the fundamental solution (1.2). In contrast, the bounds
on � (A�

k,� )Š 1� that we discuss in this subsection are obtained by using The-
orem 2.33, which expresses (A�

k,� )Š 1 in terms of solution maps to BVPs
involving the Helmholtz equation.

The known upper bounds on � (A�
k,� )Š 1� are collected in the following

theorem.

Theorem 5.22. If � Š is a star-shaped Lipschitz domain in 2D or 3D,
then

� (A�
k,� )Š 1� � 1 +

1 + k
|� |

, (5.34)

for k > 0 (Chandler-Wilde and Monk 2008), and if � + is a non-trapping
domain (in the sense of De“nition 5.4) in 2D or 3D then, for everyk0 > 0,

� (A�
k,� )Š 1� � k2+( dŠ 1)/ 2

�
1 +

k
|� |

�
(5.35)

for k 	 k0 (Spence 2012).

This theorem is proved using Theorem 2.33, which gives a bound on
� (A�

k,� )Š 1� in terms of bounds on the exterior Dirichlet to Neumann map,
and on the interior impedance to Dirichlet map. To bound the exterior
Dirichlet to Neumann map we use Theorem 5.8 (in the star-shaped case)
and equation (5.7) (in the non-trapping case). To bound the interior im-
pedance to Dirichlet map when � Š is star-shaped we use the Rellich identity
(using the ideas in Section 5.3.1), and for more general domains we use a
weaker bound obtained using Green•s representation theorem along with the
bounds of Theorem 5.15; for details see Chandler-Wilde and Monk (2008)
and Spence (2012).

An explicit value for the hidden constant in the bound (5.34) is given in
Chandler-Wilde and Monk (2008, Theorem 4.3). For example, for a square
of side length 2a, with the choice � = k, � (A�

k,� )Š 1� < 51
4 if ka 	 1, for a
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cube of side 2a, again with � = k, � (A�
k,� )Š 1� < 8 for ka 	 1. The hidden

constant in (5.35) ultimately depends on the hidden constant in (5.5), which
is in principle computable.

Regarding the sharpness of the bounds of Theorem 5.22, ifk/ |� | = O(1)
ask � � , then Lemma 5.17 implies that (5.34) is sharp in itsk-dependence.
The bound (5.35) for the non-trapping case is almost certainly not sharp,
with the numerical experiments of Betcke et al. (2011) and Betcke and
Spence (2011) indicating that the stronger bound (5.34) holds for several
2D non-trapping and non-star-shaped domains, at least for moderate values
of k. (Betcke and Spence (2011) investigate the coercivity constant ofA�

k,� ,
which implies bounds on� (A�

k,� )Š 1� via (5.27).)

5.6.2. Lower bounds on� (A�
k,� )Š 1�

From the analysis and numerical experiments described above it is not im-
plausible to conjecture that the upper bound (5.34) on � (A�

k,� )Š 1� holds
whenever � + is non-trapping in both 2D and 3D.

This motivates the question: •How fast can� (A�
k,� )Š 1� grow when � + is

trapping?• This question was investigated in both 2D and 3D in Chandler-
Wilde et al. (2009) and Betckeet al. (2011), with further work in Betcke,
Chandler-Wilde, Graham and Langdon (2012a). In this subsection we dis-
cuss two theorems taken from the “rst two of these papers. These theorems
give examples of 2D trapping domains for which� (A�

k,� )Š 1� grows through
some increasing sequence of wavenumbers; analogous results for certain 3D
trapping domains can be found in Betckeet al. (2012a). In these theorems
the � notation means that the implied constants in (5.36) and (5.37) below
are both independent ofm.

Theorem 5.23. (Chandler-Wilde et al. 2009, Theorem 5.1) If � +
contains a square of side length 2a, two parallel sides of which form part of
� (an example is the rectangular cavity in Figure 5.1), and if km = m�/ 2a,
m � N, then

� AŠ 1
km ,� � � (km a)9/ 10

�
1 +

|� |
km

� Š 1

. (5.36)

Theorem 5.24. (Betcke et al. 2011, Theorem 2.8) If, for somea1 >
a2 > 0, � + contains the ellipseE := { (x1, x2) : (x1/a 1)2 + ( x2/a 2)2 < 1} ,
and if � coincides with the boundary of this ellipse in neighbourhoods of
the points (0, ± a2), then there exists a sequence 0< k 0 < k 1 < k 2 < · · · ,
with km � � as m � � , such that, for some� > 0,

� AŠ 1
km ,� � � exp (�k m )

�
1 +

|� |
km

� Š 1

(5.37)

(an example of such a domain is the elliptical cavity in Figure 5.1).
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Numerical evidence for both these estimates was given in Betckeet al.
(2011), with evidence for (5.36) also given in Löhndorf and Melenk (2011,
Example 4.7).

These two theorems are proved by looking at particular solutions of the
Helmholtz equation, in the rectangular cavity and elliptical cavity respec-
tively, and translating the properties of the solutions into properties of the
integral operator A�

k,� . In order to understand the solutions that we use
to prove the theorems, we “rst need to discuss brie”y the concepts ofreso-
nances and quasimodes.

A resonance of the exterior Dirichlet problem (2.12) is a complex wave-
number kres such that there exists a non-trivial solution ures of the Helmholtz
equation in � + satisfying (2.10) and zero Dirichlet boundary conditions.
From Corollary 2.9 we know that resonances cannot occur for Imk 	 0
(because in this case ifu = 0 on � then u = 0 in � + ), and thus any
resonances must lie in the lower half complex plane (actually Corollary 2.9
only considers realk, but the result also holds for Imk 	 0). Note that (2.10)
implies that, for Im k < 0, the solution ures(x) must grow exponentially as
r � � .

The location of resonances in the lower half complex plane and their
relationship to trapping are classic questions in scattering theory, with ap-
propriate generalizations of these questions still active research topics today.
In the 1967 “rst edition of Lax and Phillips (1989) it was conjectured that:

(1) for any non-trapping domain there are no resonances in a strip
{ k : Š� � Im{ k} � 0} for some constant� > 0;

(2) for any trapping domain there is a sequence of resonances{ km } �
m=1

such that Im{ km } � 0 asm � � .

The “rst conjecture (intimately linked to the question of local energy decay
for solutions of the wave equation that was mentioned brie”y in Section 5.2)
was proved to be true in Vainberg (1975) and Melrose (1979) (using the
results of Melrose and Sjöstrand 1978). However, an example of a trapping
domain for which there are no resonances in a strip below the real axis was
given in Ikawa (1983), and thus the second conjecture is false. The second
conjecture is true if one restricts attention to trapping domains that contain
a trapped ray that is stable under perturbation … a so-called •elliptic• trapped
ray (this was proved by Stefanov and Vodev using the link with quasimodes;
see the references in the discussion of quasimodes below). Thus the elliptical
cavity domain in Figure 5.1 contains a sequence of resonances converging
to the real axis, but the square cavity domain in the same “gure need not.
More details about these results can be found in Lax and Phillips (1989,
Epilogue), Vainberg (1999), Melrose (1995), for example. (The 2D case is
more subtle than the 3D case due to the presence of a branch point in the
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fundamental solution (1.2) at k = 0.) A nice non-technical discussion of
resonances is given in Zworski (1999).

A related concept is that of a quasimode. In the context of acoustic scat-
tering, a quasimode is a solution of the inhomogeneous Helmholtz equation
for k > 0 where the source is small relative to the solution. (We index ev-
erything by m at this stage since in what follows we will always consider a
family of quasimodes with wavenumberskm strictly increasing as m � � .)
We call vm a quasimode if, for some compactly supportedgm � L 2(� + ),

� vm + k2
m vm = gm ,

where km > 0, vm satis“es zero Dirichlet boundary conditions and the
Sommerfeld radiation condition (2.9), and, for someR > 0 such that � Š �
BR, the bound

� vm � L 2(� + � B R ) � L (km )� gm � L 2(� + ) (5.38)

holds where the factorL (km ) is •large•. Thus, one can think ofk2
m as being

•nearly• an eigenvalue of the Laplacian.
How large can we expectL (km ) to be? Theorem 5.6 tells us that a solution

v of the Helmholtz equation in a non-trapping domain with zero Dirichlet
boundary conditions and sourceg satis“es

� v� L 2(� + � B R ) �
1
k

� g� L 2(� + ) .

Thus a bound of the form (5.38) cannot hold, even withL(km ) constant,
for non-trapping domains.

One intuitively expects that, if there is a resonancekres in the lower half
complex plane close to the positive real axis, then there will be a quasimode
with km > 0 close tokres. This intuition turns out to be correct, and the
relationship between resonances and quasimodes was elucidated in Stefanov
and Vodev (1995), Stefanov and Vodev (1996), Tang and Zworski (1998)
and Stefanov (1999, 2003). For more information on quasimodes in general
see,e.g., Lazutkin (1999).

Theorems 5.23 and 5.24 are proved by constructing quasimodes with

L(km ) =

�
1 for the square cavity domain,
exp (	k m ) for some 	 > 0, for the elliptical cavity domain.

The construction of the quasimodes in the square cavity domain given in
Chandler-Wilde et al. (2009) is based on the fact thatu(x) = sin( km x1) with
km = m�/a, m � N is an eigenfunction of the 1D Laplacian with eigenvalue
k2

m on [0, a] under Dirichlet boundary conditions. The quasimodevm is then
de“ned by  (x)u(x), where  (x) is a smooth function with compact support
in the cavity. In a similar way, the quasimodes in the elliptical cavity domain
constructed in Betckeet al. (2011) are based on the fact that, for the ellipse
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{ (x1/a 1)2 + ( x2/a 2)2 < 1} , with a1 > a 2 > 0, there are eigenfunctions of
the Laplacian that become exponentially localized about the stable periodic
orbit { (0, x2) : |x2| � a2} as km � � .

Given a domain with a family of quasimodes satisfying (5.38), one can
show that

� (A�
k,� )Š 1� �

�
L (km )

kdŠ 2
m

Š
1

k(dŠ 1)/ 2
m

��
1 +

|� |
km

� Š 1

. (5.39)

In the case of the elliptic cavity, this bound combined with the exponential
growth of L (km ) establishes Theorem 5.24, that is, (5.37) holds for any
� < 	 . SinceL(km ) does not increase for the square cavity, a more subtle
argument is needed to obtain the growth in Theorem 5.23.

In the rest of this subsection we brie”y sketch how the bound (5.39) is
obtained, in large part following Betcke et al. (2011,§2.5). We also indicate
how to prove Theorem 5.23 given that the bound (5.39) is too crude to
achieve this.

Given a quasimodevm such that both vm and gm are compactly sup-
ported, “rst de“ne vI

m as the Newtonian potential

vI
m (x) :=

�

� +

� k (x, y)gm (y) dy, x � Rd.

(The I superscript indicates that we will think of vI
m as an incident “eld for

a Helmholtz scattering problem; in particular note that vI
m is an incident

“eld in the sense of De“nition 2.11.) Now, by standard properties of the
Newtonian potential (see,e.g., McLean 2000, Chapter 6, Sauter and Schwab
2011, Chapter 3),

� vI
m + k2

m vI
m =

�
gm in supp(gm ) � � + ,
0 otherwise.

De“ne vS
m by vS

m = vm Š vI
m (the superscript S indicates that we think of vS

m
as the scattered “eld). Then vS

m satis“es the sound-soft scattering problem
(2.16) for incident “eld vI

m . It follows from Theorem 2.46 that

A�
k,�

�
�v m

�n

�
= f m ,

where

f m :=
�

�v I
m

�n
Š i�v I

m

� �
�
�
�
�
.

To prove the bound (5.39), we need only show that
'
'
'
'

�v m

�n

'
'
'
'

L 2(�)
�

�
L (km )
kdŠ 2 Š

1

k(dŠ 1)/ 2
m

��
1 +

|� |
km

� Š 1'
' f m

'
'

L 2(�) . (5.40)
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This bound follows from combining (5.38) with the bounds
'
'
'
'

�v m

�n

'
'
'
'

L 2(�)
� � vm � L 2(� + )

�
k(3Š d)/ 2

m Š
1

L(km )

�
(5.41)

and

� gm � L 2(� + ) � kŠ (dŠ 1)/ 2
m

�
1 +

|� |
k

� Š 1

� f m � L 2(�) . (5.42)

The bound (5.41) can be established by using Green•s integral representation
theorem to write vm in � + in terms of the Newtonian potential of gm and
the single-layer potential of �v m /�n (the analogue of Theorem 2.21 for the
inhomogeneous Helmholtz equation; see,e.g., McLean 2000, Theorems 7.5
and 9.6), using bounds on the norms of the potentials as mappings from �
to � + similar to those obtained in Section 5.5.1, and “nally using (5.38) to
relate the norm of gm to that of vm . The bound (5.42) can be established
by using the de“nition of vI

m in terms of the Newtonian potential, and then
results on the norms of the potentials used for the “rst bound (for details
see Betckeet al. 2011,§2.5).

As noted above, the lower bound on� (A�
k,� )Š 1� is too crude to prove

Theorem 5.23. Instead the result can be obtained by directly obtaining a
bound from below on� �v m /�n � L 2(�) , and a bound from above on� f m � L 2(�) .
The former follows trivially from the de“nition of vm , whereas the latter
requires carefully estimating the oscillatory integrals in the de“nition of vI

m
(for details see Chandler-Wildeet al. 2009,§5).

5.7. Bounds on coercivity constants

The results obtained by Fourier analysis show thatAk,k is coercive for suf-
“ciently large k when � is the circle and sphere. Given that it is sur-
prising that coercivity holds, even in these special cases (as discussed in
Section 2.11), a numerical investigation of the conditions under which co-
ercivity holds was undertaken in Betcke and Spence (2011). Before we
report the results of that investigation we discuss the information about
� k,� , the coercivity constant of A�

k,� in (5.19), that can be obtained through
its relationship with � (A�

k,� )Š 1� (5.27). The fact that � (A�
k,� )Š 1� 	 2 from

Theorem 5.17 means that� k,� � 1/ 2. Furthermore, Theorems 5.23 and 5.24
imply that, for the rectangular and elliptical cavities respectively,

� km ,� � kŠ 9/ 10
m

�
1 +

|� |
km

�
, � km ,� � exp (Š�k m )

�
1 +

|� |
km

�
(5.43)

(where the km are di�erent for each domain). Thus, with the standard
choice � � k, even if coercivity holds for somek, it cannot hold uniformly
as k � � for these two domains.
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Figure 5.2. Eigenvalues and boundary of the numerical range
of the boundary integral operator A�

k,k when � is the unit
circle (a) and the equilateral triangle with side length 1 (b) for
k = 50, where × marks the origin.

Coercivity constants for a range of 2D domains were computed using the
connection between the coercivity constant of an operator and its numerical
range in Betcke and Spence (2011). Recall that the numerical range of a
bounded linear operatorT on a Hilbert spaceV is de“ned by

W (T) := { (T �, � ) : � � V , � � � = 1 } .

From this de“nition it is straightforward to see that if T is coercive with
coercivity constant � then � = inf z� W (T ) |z|. Thus T is coercive if and only
if 0 /� W (T).

Standard algorithms from numerical linear algebra exist for computing
the numerical range of “nite-dimensional operators. Betcke and Spence
(2011) used these to compute the numerical range of Galerkin discretizations
of A�

k,k and proved that these numerical ranges converge toW (A�
k,k ) (in an

appropriate sense) as the dimension of the Galerkin approximation space
tends to in“nity.

Figure 5.2 shows both the boundary of the numerical range and the eigen-
values ofA�

k,k when � is the unit circle and the equilateral triangle for k = 50.
The circle plot shows that Ak,k is coercive with constant 1/ 2, con“rming
Theorem 5.13. The triangle plot shows thatA�

k,k is also coercive in this case.
A striking di�erence between these two plots is that for the circle the nu-
merical range is the convex hull of the eigenvalues, but for the triangle this
is not the case. Recalling the result that the closure of the numerical range
of a normal operator is the convex hull of its spectrum (see,e.g., Gustafson



High-frequency acoustic scattering 225

�1. 5 �1 � 0.5 0 0.5 1

�0.5

0

0.5

1

1.5

� /5

Figure 5.3. A particular rectangular cavity
domain. The open cavity has a width of �/ 5.

and Rao 1997, Theorem 1.4-4), this indicates thatA�
k,k is a normal opera-

tor on the circle but not on the triangle. From the other computations in
Betcke and Spence (2011) it appears that in 2DA�

k,� is normal if and only
if � is a circle. Proving one direction is easy: the fact that A�

k,� and its
adjoint both diagonalize in the Fourier basis mean that they commute, and
thus A�

k,� is normal (this is also true for the sphere). Proving the converse
is more di�cult, and at the time of writing still an open problem. However,
the analogous result forSk has been proved in Betckeet al. (2012b), and
this paper also contains an investigation of the non-normality ofA�

k,� using
tools such as pseudospectra (as advocated by Trefethen and Embree 2005).

From the computations in Betcke and Spence (2011) it was conjectured
that A�

k,k is coercive whenever the domain is non-trapping. Indeed these
computations showA�

k,k to be coercive uniformly in k for k between 10 and
100 for several non-trapping domains (including non-smooth ones such as
an L-shaped polygon), but not coercive for the particular rectangular cavity
domain in Figure 5.3. (Computations for higher k were not performed,
because of the large matrix dimensions: here the Galerkin discretizations
of A�

k,k used a piecewise polynomial basis and followed the •ten points per
wavelength• convention.)

The numerical range ofA�
k,k for k = 4 and 5, when � Š is the trapping

domain shown in Figure 5.3, is shown in Figure 5.4. These wavenumbers
were chosen becausek = 5 is the “rst of the sequence of wavenumbers for
which quasimodes of the exterior Helmholtz problem in this domain can be
constructed, with a corresponding resonance in the lower half-plane close
to the real axis (recall the discussion in Section 5.6.2). AlthoughA�

k,k is
invertible for every k > 0. Figure 5.4 shows that A�

5,5 is not coercive,
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Figure 5.4. The numerical range ofA�
k,k when � Š is the

trapping domain from Figure 5.3 in the casesk = 4 (a) and
k = 5 (b), where × marks the origin.

whereasA�
4,4 is. Thus, not only is A�

k,k not uniformly coercive as k � � ,
as shown by (5.43), but it is not coercive for at least one “nite value ofk.

Interestingly, the spectra of A�
k,k for k = 4 and 5 are almost the same,

and in particular are both contained in the right half-plane. This illustrates
the fact that the spectrum does not determine the behaviour of non-normal
operators, as explained in more detail in Trefethen and Embree (2005).

We now discuss two theorems about coercivity; the “rst regardingA�
k,� ,

and the second regarding the star-combined operatorA k de“ned in (2.103).
The “rst theorem says that, with a choice of � proportional to k, A�

k,� is
coercive on smooth convex domains oncek is large enough.

Theorem 5.25. (Spence et al. 2012) Let � Š be a strictly convex C3

domain with strictly positive curvature in either 2D or 3D. Then there exists
a constant � 0 such that, given � > 0, there existsk0 > 0 (depending on� )
such that, for � = � 0k and k 	 k0,

Re (A�
k,� �, � )L 2(�) 	

�
1
2

Š �
�

� � � 2
L 2(�) , (5.44)

for all � � L 2(�). This bound also holds with A�
k,� replaced byAk,� .

This result essentially includes the earlier results of Domš́nguezet al.
(2007) for the circle and sphere, as special cases.

The second theorem shows that, when �Š is star-shaped, if we are pre-
pared to use the star-combined operatorA k, which is a slight modi“cation
of A�

k,� (as discussed in Section 2.9), coercivity holds uniformly for allk > 0
with only the requirement that � is Lipschitz.
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Theorem 5.26. (Spence et al. 2011) Suppose that � Š is a bounded
Lipschitz domain that is star-shaped with respect to the origin. Then, for
all � � L 2(�),

Re (A k�, � )L 2(�) 	 � � � � 2
L 2(�) , (5.45)

where the star-combined operatorA k is given by

A k = ( x · n)
�

1
2

I + D �
k

�
+ x · 
 � Sk Š i�S k (5.46)

with the function � chosen as

� = k|x| + i
d Š 1

2
, (5.47)

and the k-independent coercivity constant � is given by

� =
1
2

ess inf
x� �

(x · n(x)) > 0. (5.48)

Note that Theorem 2.37 (about the invertibility of A k) follows from (5.45)
using the analogue of (5.27) (withA�

k,� replaced byA k).

These two theorems were proved using Rellich…Morawetz-type identities
and the ideas in Section 5.3.3. Proving thatA�

k,� , or some modi“ed version
of A�

k,� , is coercive is still open in the general non-trapping case.

6. Error analysis

In this section we return to the problem of proving, explicitly in k, the con-
vergence of various boundary element methods for the Helmholtz equation.
The key “rst step in doing this is to obtain the quasi-optimal error estimate
(1.7) with explicit estimates for C and N0 in terms of k (Q3 of the Intro-
duction). Then k-explicit convergence rates are obtained by estimating the
best approximation error inf wn �V N � vŠ wN � explicitly in k (recall that for a
function w � L 2(�), � w� denotes� w� L 2(�) unless otherwise speci“ed). We
discuss this question for the direct and indirect combined potential equa-
tions and the star-combined equation, namely

Ak,� v :=
�

1
2

I + Dk Š i�S k

�
v = f, (6.1)

A�
k,� v :=

�
1
2

I + D �
k Š i�S k

�
v = f, (6.2)

(for real � �= 0), and

A kv := ( x · n)
�

1
2

I + D �
k

�
v + x · 
 � Skv Š i�S kv = f, (6.3)
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where � is the smooth function of x � � given by (2.102). These equations
are well-posed in L 2(�); see Theorems 2.27 and 2.37. Speci“cally, this
section contains the following.

€ For general piecewise polynomial Galerkin methods,k-explicit quasi-
optimality results for (6.1) and (6.2) on smooth (but otherwise general)
boundaries � are given in Sections 6.1 and 6.3. In addition ak-explicit
estimate of the best approximation error infwn �V N � v Š wN � for a par-
ticular class of boundaries � in the case of the sound-soft scattering
problem (2.16) is given in Section 6.2.

€ For a range of hybrid Galerkin methods taken from those discussed
in Section 3,k-explicit quasi-optimality and convergence estimates are
given in Section 6.4.

For second-kind integral equations such as (6.2) and (6.1), there are sev-
eral classical approaches to error analysis, all based on viewing the inte-
gral operator as a compactk-dependent perturbation of a well-posedk-
independent operator. The classical choice for the latter operator is1

2I ,
although a di�erent choice is made in Löhndorf and Melenk (2011): see
Section 6.3. The abstract theory of projection methods (e.g., Atkinson
1997) then provides an error analysis, which covers not only the Galerkin
method but also collocation and even Nyström methods. Another (closely
related) classical approach is via the general variational theory of Galerkin
methods, based on the discrete inf-sup condition. Here approximations such
as collocation can be treated through an application of the Strang lemma
(Ciarlet 2002). Up until recently, neither of these classical approaches has
easily lent itself to explicit estimation of C and N0 in (1.7) in terms of k, so
recent research has had to develop new ideas for this task. A recent contribu-
tion is Banjai and Sauter (2007), along with the already-mentioned Löhndorf
and Melenk (2011). In earlier work, for the particular integral equation
(3.30) studied in Section 3.2, a completek-explicit error analysis was de-
veloped in Chandler-Wilde et al. (2002) for a simple h-version piecewise-
polynomial discrete collocation method, in particular showing that (1.7)
holds with C independent ofk, provided that kh is below some threshold.

In Section 6.1 we discuss the application of the classical projection analysis
for general smooth � and for the h-version BEM in 2D and 3D following
Graham, Löhndorf, Melenk and Spence (2012). In this analysis, not only
must the mesh diameterh decrease with some negative power ofk to ensure
that the Galerkin equations are solvable (•mesh threshold•), but alsoC in
(1.7) may grow with k. The key ingredients for this theory are bounds on the
inverse ofAk,� (respectively A�

k,� ) given in Theorem 5.22 and estimates for
the smoothing properties of the compact parts ofAk,� , A�

k,� as mappings
from L 2(�) to H 1(�) given in Theorem 5.15. At the end of Section 6.1,
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we compare the results obtained for theh-version BEM via the projection
analysis with those obtained using the Galerkin variational framework in
Banjai and Sauter (2007). In Section 6.2 we combine the quasi-optimal
error estimate from Section 6.1 with an estimate of the best approximation
error to obtain a convergence rate for a special case of (6.2) approximated
with a low-order BEM.

The standard piecewise polynomial methods considered in Sections 6.1,
6.2 and 6.3 are not •high-frequency• methods since they use only conven-
tional piecewise polynomial basis functions, and the particular character of
these basis functions is heavily exploited in the analysis. Nevertheless the
derivation of k-explicit error estimates for such methods is a topic of recent
research interest so it has a natural place in this review. In this case, the
highly oscillatory nature of the solution means that the mesh diameter must
decrease with increasingk. The general convention is that

h � kŠ 1 (6.4)

(i.e., a “xed number of grid points per wavelength) should be su�cient for
adequate approximation of the solution. While the analysis of Section 6.1
suggests that a somewhat smallerh is required for quasi-optimality (1.7)
to hold independently of k, the example in Section 6.2 proves that (6.4) is
indeed su�cient for accurate best approximation in the special case of scat-
tering from a smooth convex obstacle, using low-order conventional BEM.

In Section 6.3 we give an overview of the substantial progress made in
Melenk (2012) and Löhndorf and Melenk (2011), concerning the analysis
of hp-BEM ( i.e., boundary elements of orderp on meshes of diameterh,
with re“nement in both h and p allowed). This theory provides su�cient
conditions that ensure (1.7) holds, with C independent of k, for general
analytic boundaries �. These conditions are satis“ed if, for example,hk/p
is su�ciently small and p grows logarithmically in k.

An alternative and very powerful way to obtain quasi-optimality is to
establish the (rather strong) property of coercivity for the relevant bound-
ary integral operator. Despite the fact that the Helmholtz equation with
high wavenumber is typically viewed as highly inde“nite, some correspond-
ing boundary integral formulations have remarkable coercivity properties,
as discussed in Section 5.7. These allow us to establish quasi-optimality
for Galerkin methods using any approximating subspace without a mesh
threshold and would provide alternative proofs of quasi-optimality for h- or
hp-BEM. However, more importantly for this article, this approach gives us
the only currently known way of establishing quasi-optimality for the hybrid
methods introduced in Section 3. This error analysis for hybrid spaces is
discussed in Section 6.4.

The error analysis of this section assumes that all (highly oscillatory) Ga-
lerkin integrals are computed exactly. Estimates for fully discrete Galerkin
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methods which combine results of this section with some of the quadra-
ture error estimates from Section 4 to provide rigorous fully discrete error
estimates for some hybrid methods are presented in Kim (2012).

Concerning notation in this section, for the h-version BEM (where the
polynomial degreep of the basis functions is “xed), the approximating space
is denoted byVh, while for the hp version, we denote it byVh,p. We do not
give a formal de“nition of such families of spaces here, but refer the reader
for example to Sauter and Schwab (2011,§4.1) or Löhndorf and Melenk
(2011, §3.3). We implicitly assume that the meshes are quasi-uniform and
that exact representation of � is used. Since we work inL 2(�), our boundary
element spaces may be either continuous or discontinuous piecewise poly-
nomials. In Section 6.4 we will be concerned with hybrid spaces, which in
general depend on piecewise polynomials of various degrees and also onk.
In this case the relevant spaces, already described in detail in Section 3, will
be denoted in the abstract way asVN . Similar to Sections 3 and 5, for two
quantities D and E which may depend onh, p, and k, in this section we
write D � E if D � C E for some constantC which is independent ofh, p,
and k (hence C is also independent ofN , the dimension of VN ). Also we
write D � E if D � E and E � D .

6.1. k-explicit error estimates for the h-version of the BEM

In this subsection we write the combined potential operators on the left-
hand side of (6.2) and (6.1) in abstract form as�I + L k, where � = 1 / 2.
We also make the assumption that� � R is chosen so that

CŠ 1 � �/k � C (6.5)

for some constantC > 0, and the parameter � does not appear explicitly
in the abstract notation L k. Thus, in abstract form, we are solving the
equation

(�I + L k)v = f. (6.6)

Recall that since �I + L k denotes one of the operatorsAk,� , A�
k,� de“ned

by (6.1) and (6.2) this operator is always invertible on L 2(�) when � is
Lipschitz; see Theorem 2.27. Moreover, the bounds on� AŠ 1

k,� � presented in
Theorem 5.22 are a key ingredient to the theory below.

Now let us consider theh version of the Galerkin method, that is, we seek
an approximation vh � V h, � L 2(�), the space of piecewise polynomials of
some “xed degreep 	 0 on shape-regular meshes of diameterh, with h
decreasing to zero. The Galerkin equations may be written

��
�I + L k

	
vh, wh

	
=

�
f, w h

	
, for all wh � V h. (6.7)

With Ph being the orthogonal projection from L 2(�) onto Vh, the Galerkin
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equations (6.7) are equivalent to the operator equation
�
�I + PhL k

	
vh = Phf. (6.8)

We begin with a simple classical lemma.

Lemma 6.1. Suppose for some� > 0,

� (I Š Ph)L k �� (�I + L k)Š 1� �
�

1 + �
. (6.9)

Then the Galerkin equations have a unique solution and satisfy the quasi-
optimal error estimate

� v Š vh� � � (1 + � )� (�I + L k)Š 1� inf
wh �V h

� v Š wh� . (6.10)

Proof. Since� > 0, the hypothesis implies that

� I Š (�I + L k)Š 1(�I + PhL k)� �
�

�
1 + �

�
< 1.

Using the fact that ( I Š A) is invertible if � A� < 1 (with � (I Š A)Š 1� �
(1 Š � A� )Š 1), the previous bound implies that (�I + L k)Š 1(�I + PhL k) is
invertible, with

� (�I + PhL k)Š 1(�I + L k)� �
1

1 Š �/ (1 + � )
= 1 + �.

Thus (�I + PhL k) is invertible and

� (�I + PhL k)Š 1� � (1 + � )� (�I + L k)Š 1� .

Since we also have

v Š vh = v Š (�I + PhL k)Š 1Phf

= ( �I + PhL k)Š 1(�v Š Ph(f Š L kv))

= �
�
�I + PhL k

	 Š 1(I Š Ph)v,

the required estimate (6.10) follows readily.

The following corollary is the consequence of Lemma 6.1 when we have
at our disposal an estimate of the smoothing power ofL k.

Corollary 6.2. Suppose

N (k) := � L k � H 1(�) � L 2(�) < � . (6.11)

Then, for all � > 0 there existsC
 > 0 such that the condition

hN (k)� (�I + L k)Š 1� � C
 (6.12)

is su�cient to ensure that the quasi-optimal estimate (6.10) holds.
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Proof. By standard approximation theory (see, for example Sauter and
Schwab (2011,§§4.3.4, 4.3.5)),

� (I Š Ph)L k � � h N (k), (6.13)

and so the result then follows from Lemma 6.1 (withC
 taken to be �/ (1+ � )
multiplied by the hidden constant in (6.13)).

While Lemma 6.1 and Corollary 6.2 provide general criteria which ensure
that the quasi-optimality estimate (6.10) holds, a bit more work is needed
to obtain k-explicit requirements on h. Combining Theorems 5.14 and 5.15
from Section 5.5 and recalling the choice (6.5) of� , we see that fors � [0, 1],
and provided C2,µ , for someµ � (0, 1), then for all k0 > 0

� L kv� s � k� d + s� v� , where 	 d = ( d Š 1)/ 2, (6.14)

for k 	 k0 where � · � s denotes the norm in H s(�). (Theorem 5.14 gives
this estimate for s = 0, Theorem 5.15 gives it for s = 1, and the case
of s � (0, 1) follows by interpolation.) Using this estimate with s = 1,
we obtain directly the following result that quanti“es the mesh threshold
required for quasi-optimality.

Theorem 6.3. Suppose that (6.14) holds fors = 1. Then, for each � > 0
there exists C
 > 0 (independent ofh and k) such that the condition

h � C
 kŠ (� d +1) � (�I + L k)Š 1� Š 1 (6.15)

ensures that the Galerkin equations have a unique solution satisfying the
quasi-optimality estimate (6.10).

Remark 6.4. For star-shaped domains, Theorem 5.22 gives us the upper
bound � (�I + L k)Š 1� � 1, and combining this with Theorem 6.3 immediately
shows that the quasi-optimality estimate (6.10) holds for star-shapedC2,µ

domains provided h � kŠ 3/ 2 in 2D, and provided h � kŠ 2 in 3D. While
these requirements are somewhat stronger than the convention (6.4), they
are su�cient to ensure that quasi-optimality holds with the constant in front
of the best approximation error in (6.10) independent ofk, at least for these
domains.

In fact, as we shall now show, with a bit more work and with an additional
assumption, one can sharpen the quasi-optimality estimate (6.10) to show
that the Galerkin solution is asymptotically just as good as the best possible
approximation to v from Vh, that is, we shall show that

� v Š vh�
inf wh �V h � v Š wh�

� 1 ash � 0. (6.16)

Theorem 6.5. Suppose (6.11) holds, and suppose also that

M (k) := � (�I + L �
k )Š 1L k � H 1(�) � L 2(�) < � , (6.17)




















































































































































