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Abstract 28 

We describe a model-data fusion inter-comparison project (REFLEX), aimed at comparing 29 

the strengths and weaknesses of various model-data fusion algorithms for estimating 30 

parameters, states and fluxes of a simple ecosystem carbon cycle model. Participants were 31 

provided with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) 32 

data, generated from a simple C model with added noise, and observed NEE and LAI data 33 

from two eddy covariance observations sites within FLUXNET. Participants endeavoured to 34 

estimate model parameters and states for all cases over the two years for which data were 35 

provided, and generate predictions for one additional year without observations. Nine 36 

participants contributed results using Metropolis algorithms, Kalman filters and a genetic 37 

algorithm. For the synthetic data case, parameter estimates compared well with the true 38 

values. The results of the analyses indicated that parameters linked directly to gross primary 39 

production and ecosystem respiration, such as those related to foliage allocation and turnover, 40 

or temperature sensitivity of heterotrophic respiration, were best constrained and 41 

characterised. Estimates of confidence intervals varied among algorithms, but several 42 

algorithms successfully located the true values of annual fluxes from synthetic experiments 43 

within relatively narrow 90% confidence intervals, achieving >80% success rate and mean 44 

NEE confidence intervals <110 gC m
-2

 yr
-1

 for the synthetic case. For the observed data case, 45 

the annual C flux estimates generally agreed with gap-filling approaches using half-hourly 46 

data. The estimation of gross fluxes, by partitioning daily NEE data, agreed well with outputs 47 

from earlier studies using half-hourly data. The study was revealing in that confidence limits 48 

on annual NEE was 88% larger in the prediction year, than in the previous year, when data 49 

were available. Confidence intervals on annual NEE also increased by 30% when observed 50 

data were used instead of synthetic data, reflecting and quantifying the addition of model 51 

error. Finally, our analyses indicated that incorporating additional constraints, using data on 52 
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large, slow C pools (wood and soil) would help to reduce uncertainties for model parameters 53 

poorly served by eddy covariance data. 54 

55 
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Introduction 56 

The carbon cycle is a critical determinant of the Earth‟s climate, but the carbon-climate 57 

relationship is complicated by feedbacks between the climate, the terrestrial biosphere and the 58 

atmosphere (Heimann and Reichstein 2008). Recent model inter-comparisons have shown 59 

that there are significant differences among model predictions of the future C cycle at decadal 60 

timescales (Friedlingstein et al. 2006). The causes of these differences among models are not 61 

well understood, but are likely to be related to subtle differences in process representation, 62 

which can have significant impacts over longer time scales.  63 

Model-data comparison provides an opportunity to highlight areas (in space or time) of 64 

poor process representation, and to guide model improvement. Thus, the modelling 65 

community is now seeking to test its terrestrial ecosystem models against the growing array of 66 

observations (Bonan 2008). One of the critical datasets to be used in evaluating ecosystem 67 

models is the FLUXNET database (Baldocchi et al. 2001). FLUXNET is an international 68 

network of eddy covariance (EC) flux measurement towers. There are data sets from hundreds 69 

of sites worldwide, some with more than a decade of data collection. However, these data are 70 

associated with uncertainties and complications. There are gaps in time series that must be 71 

filled to obtain integrated (daily to annual) flux sums (Moffat et al. 2007). Also large areas of 72 

the globe are poorly sampled, and measurements are affected by systematic and random errors 73 

(Lasslop et al. 2008, Richardson et al. 2008), both of which can be large. EC towers measure 74 

net ecosystem exchanges (NEE) of CO2, meaning that the underlying processes of 75 

photosynthesis (GPP) and ecosystem respiration (Re) are not directly measured during 76 

daytime (Desai et al. 2008). 77 

A meaningful comparison between models and data is complicated by the need to assess 78 

and account for both model and observational errors. Thus, the probability of a model being 79 

correct should be assessed by taking into account observational uncertainties. When 80 
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comparing a model against multiple datasets, then weighting the confidence one has in the 81 

different observations becomes critical (Raupach et al. 2005). Model uncertainty is also an 82 

important factor in any comparison with data. Models may be uncertain because of how they 83 

represent key processes, how initial conditions are set, or because their parameters are poorly 84 

determined. Separating these causes of uncertainty is important for guiding model 85 

development.  86 

Model-data fusion approaches, previously used mainly in hydrology and weather 87 

forecasting, are now being used more frequently by the terrestrial C community (Raupach et 88 

al. 2005). Model-data fusion (MDF) combines models with observations, taking account of 89 

model and observational uncertainties. In theory, MDF provides a means to cope with the 90 

problems arising from incomplete and noisy observational data, and uncertainty in model 91 

processes, initial states and parameters. MDF combines models with observations, and 92 

estimates of their uncertainties, to produce estimates of system dynamics with confidence 93 

intervals (Williams et al. 2005) and to determine model parameterizations consistent with 94 

data. We refer to these outputs of MDF schemes as “analyses” hereafter. MDF can be used as 95 

a developmental tool to test hypotheses and then improve model structural representation 96 

(Sacks et al. 2007, Stockli et al. 2008, Moore et al. in press). However, in practice, MDF 97 

results are conditional both on the model and data used, as well as associated uncertainties 98 

and assumptions made about uncertainties.  99 

The capabilities and weaknesses of the various existing MDF approaches remain poorly 100 

understood. One recent study, the OptIC experiment, used pseudo-data from a highly 101 

simplified test model with 4 parameters to compare parameter estimation methods (Trudinger 102 

et al. 2007). OptIC found different methods equally successful, but that the choice of the cost 103 

function (quantifying the model-data mismatch) caused the most variation in the estimated 104 

parameters. OptIC also demonstrated that the effort expended and experience of the user was 105 
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a factor in successful solutions. However, OptIC did not use observed data, nor did it test state 106 

estimation or model forecast capabilities. With observed data, MDF is complicated by 107 

observational and model error and bias. 108 

Here we describe the REgional FLux Estimation eXperiment. REFLEX is a model-data 109 

fusion inter-comparison project, aimed at comparing the strengths and weaknesses of various 110 

MDF algorithms for estimating carbon model parameters and carbon fluxes and states. 111 

REFLEX participants fuse an existing C model with observed and synthetic daily NEE data. 112 

The key question addressed here is: what are the confidence intervals on model parameters 113 

calibrated from eddy covariance (EC) data, and on model analyses and estimates and 114 

predictions of net C exchange and carbon stocks over multiple years? The experiment has an 115 

explicit focus on how different algorithms and protocols quantify the confidence intervals on 116 

parameter estimates and model forecasts, given the same C model and a range of datasets.   117 

In generating analyses and predictions of C dynamics with confidence intervals, resulting 118 

error can be attributed to a combination of factors (Liu and Gupta 2007). Errors may be 119 

related to the particular MDF algorithm employed (for instance, does the algorithm find local 120 

or global minima)  - the algorithmic error - and the choice of subjective components of the 121 

MDF process, including prior assumptions about the probability distributions of parameters 122 

and initial conditions – the user error. Error may also be related to the observations, as a 123 

function of instrumental precision. And models may contain errors, due to misrepresented or 124 

missing fundamental processes. Driver error (i.e. meteorological forcing) is likely to be small 125 

in local studies, but is increasingly important at coarser scales due to representativeness, the 126 

extent to which a point measurement can represent the surrounding area. The structure of 127 

Reflex allowed investigation of several of these components of error. 128 

In REFLEX, participants first used synthetic data, generated from the specified C model with 129 

noise and gaps added, to explore the capabilities of a range of users and algorithms to retrieve 130 
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parameters and states consistent with the C model. This synthetic experiment dealt with 131 

observational and algorithmic error, and user error including assumptions related to initial 132 

conditions and parameter priors. There was no model error or driver error. REFLEX 133 

participants then went on to fuse data from eddy covariance systems and local measurements 134 

of leaf area index (LAI) with the C model. This exercise introduced model and, to a lesser 135 

extent, driver error, because the model used does not perfectly describe the forest ecosystem, 136 

and because meteorological observations may contain small errors. Finally, REFLEX 137 

participants used the C model in a prognostic, rather than diagnostic, mode. One year of daily 138 

driver data were provided to produce forecasts of C dynamics, using parameters generated in 139 

the diagnoses, and the forecasts were tested against withheld data, both synthetic and 140 

observed. 141 

What is novel in this study is an explicit focus on comparing how an ensemble of MDF 142 

algorithms perform in terms of estimating C model states and parameters, and the 143 

uncertainties on these quantities. By using a single common model, and both synthetic and 144 

observed data sets, and diagnostic and prognostic tests, we are able to generate insights into 145 

current capabilities for assessing and forecasting ecosystem C dynamics using the model-data 146 

fusion approach  147 

Methods 148 

Model Description 149 

The requirements for the Reflex C model included simplicity, a C mass balance, a daily time 150 

step, and vegetation and soil C pools with time constants covering days to decades. The 151 

model outputs had to include daily NEE and LAI. We selected the Data Assimilation Linked 152 

Ecosystem Carbon (DALEC) model (Williams et al. 2005), originally designed for evergreen 153 

forests, and a modified version (DALEC-D) for deciduous forests (Figure 1). DALEC is a 154 
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simple box model of carbon pools connected via fluxes running at a daily time-step. For the 155 

evergreen model there are five C pools representing foliage (Cf), woody stems and coarse 156 

roots (Cw), and fine roots (Cr) along with fresh leaf and fine root litter (Clit) and soil organic 157 

matter and coarse woody debris (Csom). In the deciduous model there is an additional labile 158 

pool (Clab). The following assumptions were made to determine the fluxes between the C 159 

pools: 160 

1. All C fixed during a day is expended either in autotrophic respiration or else allocated to 161 

one of the three plant tissue pools, Cf, Cw or Cr.  162 

2. Autotrophic respiration is a constant fraction of the C fixed during a day (Waring et al. 163 

1998). 164 

3. Allocation fractions to vegetation pools are donor-controlled functions which have 165 

constant rate parameters. 166 

4. For the deciduous model, the timing of initial leaf-out is controlled by a simple growing 167 

degree day accumulation, and leaf-fall by a minimum temperature threshold. The 168 

maximum amount of C that can be allocated to leaves is also limited by a parameter 169 

(cfmax) 170 

5. All C losses are via mineralization (i.e. no dissolved losses). 171 

The aggregated canopy model (ACM) (Williams et al. 1997) is used to calculate daily GPP in 172 

DALEC. ACM is a „big leaf‟, daily time-step model that estimates GPP using a simple 173 

aggregated set of equations operating on cumulative or average values of leaf area index 174 

(LAI), foliar nitrogen, total daily irradiance, minimum and maximum daily temperature, day 175 

length, atmospheric CO2 concentration, water potential gradient (ψd) and total soil-plant 176 

hydraulic resistance (rtot). ACM contains 10 parameters which have been calibrated using a 177 

fine-scale model (the Soil-Plant-Atmosphere model (SPA), (Williams et al. 1996) across a 178 

wide range of driving variables producing a „universal‟ parameter set which maintains the 179 
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essential behaviour of the fine-scale model but at a much reduced complexity. The sole ACM 180 

parameter included in the optimisation is the nitrogen use efficiency parameter (a1), which 181 

determines the maximum rate of carboxylation per g foliar N.  For the purposes of this 182 

experiment the sites were treated as being non-drought stressed. Those variables related to 183 

drought effects in ACM, specifically ψd and rtot, were given a fixed value in accordance with 184 

this assumption. 185 

Datasets 186 

Four datasets (two synthetic and two based on actual measurements) were provided to 187 

participants. Each dataset included a variety of information (Table 1), including continuous 188 

daily meteorological drivers, intermittent NEE and LAI data, estimates of the initial values of 189 

the pools of soil organic matter and wood, and input data on leaf characteristics for the GPP 190 

model (Table 2). Initial conditions for foliar, fine root, litter and labile C were not provided.  191 

Synthetic datasets were generated for three years for an evergreen (EV-SYN) and deciduous 192 

(DE-SYN) forest, using DALEC and DALEC-D model runs, with nominal parameters, and 193 

meteorological driver data selected from European eddy covariance flux tower sites. Gaps 194 

were introduced into the synthetic NEE and LAI data time series by thinning the model 195 

outputs to match the data availability from the real data. Noise was added to the remaining 196 

model outputs to reflect measurement error, by adding Gaussian errors with a variance of 0.5 197 

g C m
-2

 d
-1

 for the NEE and 10% of the truth for the LAI.  Though the half hourly 198 

measurements may have non-Gaussian errors, once you start aggregating at longer time scales 199 

the noise on the sum/mean becomes Gaussian. Participants were provided with the first two 200 

years of synthetic  observations. 201 

For the observed data, the sites (Loobos, Netherlands and Hesse, France) and site-years 202 

(2000-2) were selected on the basis of relatively long, continuous records of fluxes and site 203 

meteorology, good quality control, and little or no drought stress. The observed data included 204 
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eddy covariance (EC) data, LAI data, and local meteorological data from a deciduous broad-205 

leaf forest (identified as DE-EC) and an evergreen needle-leaf forest (EV-EC). Daily NEE 206 

was calculated by summing half-hourly observations, but only if >43 of the possible 48 207 

observations passed quality control. Missing data were filled by the daily mean of remaining 208 

data. It is possible that some small bias was introduced by this simple gap-filling, but for the 209 

purposes of this study such impacts were deemed insignificant. Typical data coverage was 20-210 

30% of days. LAI data were sparse, usually collected on just a few days. Gap-filled flux data 211 

were not used in this experiment, but complete daily meteorological data were required to 212 

drive the model, and so gap filled weather data were used. All data were obtained via the 213 

FLUXNET site (www.fluxnet.ornl.gov), from relevant, site specific literature and/or from site 214 

PIs. Three sequential years of data were assembled, of which the first two years were 215 

provided to participants. The source of the EC data was withheld from participants. 216 

Experiments 217 

All participants used DALEC and DALEC-D, the same models used to generate the synthetic 218 

data. The use of common reference models allowed direct comparison among MDF 219 

algorithms. Upper and lower bounds for the parameters of both deciduous and evergreen 220 

versions of the model were provided (Table 3). These bounds were set broad to ensure a high 221 

likelihood that reasonable parameters were located in the EC experiments. Participants 222 

applied the MDF algorithm of their choice to four experiments ( 223 

Table 4). The first two experiments were diagnostic, testing parameter and state estimation 224 

using two years of incomplete daily NEE and LAI data, at both an evergreen and deciduous 225 

site. These data were either real, collected at a FLUXNET site (experiment 1) or artificial, 226 

synthesised from model output with added noise (experiment 2). The final two experiments 227 

were prognostic, testing forecast capability, again at the real sites (experiment 3) and the 228 

artificial sites (experiment 4). Forecasts of daily C fluxes and pool dynamics were generated 229 

http://www.fluxnet.ornl.gov/fluxnet/index.cfm
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using parameter distributions from the first two experiments, forced by a single extra year of 230 

meteorological data. The flux/stock data, both observed and synthetic, for this third year were 231 

withheld for later assessment. 232 

Algorithms 233 

A wide range of different MDF algorithms are currently applied (e.g. Raupach et al. 2005). 234 

They range from relatively simple Monte Carlo and grid-search approaches in which limited 235 

numbers of parameters can be estimated (Van Wijk and Bouten 2002, Williams et al. 2006); 236 

local optimization algorithms like the Levenberg–Marquardt algorithm or the Gauss-Newton 237 

algorithm (Janssen and Heuberger 1995, Trudinger et al. 2007, Wang et al. 2007, Van Wijk et 238 

al. 2008); generic search algorithms that in principle can deal with large numbers of 239 

parameters like Genetic Algorithms (Van Wijk and Bouten 2001); an algorithm based on the 240 

Metropolis-Hastings algorithm (Metropolis et al. 1953) and using Markov Chain Monte Carlo 241 

samplers that recently has become popular (Vrugt et al. 2003, Braswell et al. 2005, Knorr and 242 

Kattge 2005, Van Oijen et al. 2005, Ricciuto et al. 2008); and finally algorithms like the 243 

Kalman filter that can combine parameter estimation with state updating ((Vrugt et al. 2005, 244 

Williams et al. 2005, Quaife et al. 2008, Trudinger et al. 2008). A key element in all of these 245 

approaches is the quantification of the uncertainty of the parameters, which requires that 246 

uncertainty in the measurements is quantified (Hagen et al. 2006, Richardson et al. 2006, 247 

Richardson et al. 2008). 248 

Reflex was an open intercomparison experiment, so the algorithms employed were not 249 

selected according to any criteria, rather they were dependent upon the community interest 250 

and experience (Table 5). Many of the methods used Monte Carlo approaches based on the 251 

Metropolis-Hastings algorithm or variants thereof. There were differences in the 252 

implementation, with various cost functions, uncertainty specifications and convergence tests 253 

employed. The cost function weights the difference between observations and simulated 254 
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quantities, often using observation error estimates, and sometimes model error estimates. 255 

There was also a genetic algorithm approach, and an Ensemble Kalman Filter (EnKF). In two 256 

cases a Metropolis approach was supplemented by a Kalman filter (one Unscented KF, one 257 

EnKF). All the algorithms (bar the free-standing EnKF) used ~10
5
 iterations to produce the 258 

full set of parameter and state estimates. Most of the algorithms assumed that prior parameter 259 

distributions were uniform across the range supplied. The use of a uniform prior suggests that 260 

the researcher has a prior belief that all setting of parameters within the range are equally 261 

likely. The users made a variety of assumptions about initial conditions for some state 262 

variables. 263 

Analyses 264 

To quantify and summarise these different approaches for parameter assessment, we 265 

computed for each parameter two (EC) or three (SYN) relative-distance metrics, d1-d3. Here, 266 

for a given parameter, mx is algorithm x‟s best estimate of the parameter; CIx is
 
the width of 267 

the parameter‟s confidence interval for algorithm x; t is the true value of the parameter; pmax 268 

and pmin are the pre-specified upper and lower limits on the parameter (Table 3);  is a 269 

standard deviation and  is a mean: 270 

d1. Consistency among algorithms:  (m1,…,m9)/(pmax-pmin) 271 

d2.  CI constrained by the data:  (CI1,…,CI9)/(pmax-pmin) 272 

d3. Consistent with truth (SYN only): |t (m1,…,m9)|/(pmax-pmin) 273 

Then the total distance is: D d1
2 d2

2 d3
2  for SYN and 

2

2

2

1 ddD  for EC datasets; the 274 

closer the value D is to zero, the better the parameter is estimated, according to this measure. 275 

We determined two further metrics to aid a comparison among algorithms of parameter 276 

estimation capabilities, for the SYN cases only. Mean normalised parameter confidence 277 
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interval (d4) is similar to the d2 statistic but rates individual algorithm‟s mean 90% confidence 278 

intervals across all parameters, normalised by the size of the parameter priors: 279 

d4: n
pp

CIn

i ii

i /
1 minmax

  280 

where CIi is
 
the width of the algorithm‟s 90% confidence interval for parameter x; n is the 281 

number of parameters (11 for EV, 17 for DE), pmax i and pmin i are the pre-specified upper and 282 

lower limits on each parameter prior.  283 

The metric for consistency with true parameter value (d5) is similar to the d3 statistic, but 284 

again rates consistency for an individual algorithm across all parameters: 285 

d5. n
pp

m
t

n

i ii

i /
1 minmax

 |t (m1,…,mn)|/(pmax-pmin) 286 

where mx is parameter x‟s best estimate by the algorithm. 287 

 288 

Results 289 

Parameter estimation 290 

Each algorithm produced sets of parameter estimates for each dataset in experiments 1 and 2, 291 

describing a multi-dimensional probability density volume. Because of their high 292 

dimensionality, these hyper-volumes are not easily described or visualised, so a range of 293 

metrics and methods are used. Firstly, we determined the “best” parameter set estimate of 294 

each algorithm (Figure 2), based on the minimum of the cost function (e.g. Metropolis 295 

algorithm) or the mean value of an ensemble (Ensemble Kalman filter). The best estimates 296 

were supplemented by estimates of the 90% confidence intervals on each parameter, 297 

determined from the full spread of accepted parameters.  298 

Some parameters were well constrained (Figure 2), so that the analysis resulted in a much 299 

reduced spread in the parameter compared to the upper and lower bounds that defined the 300 
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prior (Table 3). Conversely, some parameters were poorly constrained, with little reduction in 301 

spread from the initial upper and lower bounds. In some cases there was consistency among 302 

algorithms in the estimates of the parameter best estimates, but not in others. For the SYN 303 

datasets only, it was possible to gauge how effectively the algorithms retrieved the true 304 

parameter estimates.  305 

The parameter analysis for both synthetic data (Table 6) and eddy covariance data (Table 7) 306 

revealed that, for the both evergreen and deciduous models, turnover rate parameters such as 307 

Ts, Tl, and Tf, as well as the temperature parameter Et, were well estimated overall, across the 308 

range of methods. By comparison, the turnover rate parameters Td and Tw, as well as the 309 

allocation parameter Fnrr, tended to be poorly estimated overall. In some cases the poor 310 

estimates were scattered around the truth (Tw estimate in DE-SYN) while in others there was a 311 

clear bias in the algorithms‟ estimates (Tw estimate in EV-SYN). The allocation parameter Fnf 312 

was well-estimated for EV-SYN but biased in DE-SYN. Of those parameters used only in the 313 

deciduous model, Fll and Tlab were poorly estimated, whereas Flr was more successfully 314 

estimated. 315 

There was a significant correlation of d1 distances between EC and SYN for EV (r=0.73, 316 

P=0.01) but not DE (r=0.31, P=0.24). So the EV parameters that were consistently estimated 317 

(across methods) were similar for synthetic and eddy covariance data, while this was not so 318 

for DE datasets, perhaps because of the greater number of parameters. There was a significant 319 

correlation between EC and SYN d2 distances for both EV (r=0.87, P=0.0004) and DE (r = 320 

0.84, P<0.0001). Thus parameters that were well constrained (low d2) by the synthetic data 321 

were well constrained by the eddy covariance data.  322 

There was a general trend for those algorithms with large parameter confidence intervals to 323 

encompass a large fraction of true parameter values within their 90% confidence intervals 324 

(Figure 3). For the DE case, three algorithms (E1, E2, M1) managed to generate relatively 325 
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small and reliable confidence intervals. But the for EV case, none of the algorithms managed 326 

to balance small confidence intervals with reliability. For the DE case, three algorithms (E1, 327 

E2, M1) generated parameters that were most consistent with true values and also had the 328 

smallest confidence intervals. For the EV case there was no clear pattern among algorithms; 329 

although E2 had the closest agreement with true parameters and the narrowest confidence 330 

intervals, it had the smallest fraction of true parameters within the 90% CI, suggesting over-331 

confidence. 332 

Eigenvector analyses of the error covariance matrices were used to supplement the parameter 333 

analyses, and these suggested that the best constrained parameter was the turnover rate of 334 

SOM, Ts. The next best constrained parameter identified was the temperature rate parameter, 335 

Et. Turnover rate of foliage was well constrained for EV analyses. Allocation to and turnover 336 

of roots were poorly constrained for EV analyses. The results for the DE eigenvector analyses 337 

were less clear, with differences between DE-EC and DE-SYN. Turnover rate of wood and 338 

roots were least well constrained in DE-SYN, while the GDD threshold for leaf out and the 339 

turnover rate of labile C were least well constrained in DE-EC. There was some variation in 340 

the eigenvectors from the different methods, due to variation in covariance matrices. Some 341 

parameters seemed to be well constrained by some methods, but not by others. Comparison of 342 

eigenvectors with the distance metric d2 were largely, but not totally, consistent. Eigenvector 343 

analyses did not identify any consistent correlation features, apart from one between fraction 344 

of GPP respired (Fg) and the NUE parameter, Pr. 345 

Flux estimates – synthetic data 346 

The seasonal patterns of variation in NEE were generally well reproduced by most algorithms 347 

across all three years of each of the different  data sets (for example, Figure 4). For the 348 

synthetic datasets, where true values were known, daily NEE predictions were generally 349 

good. RMSE values ranged from 0.07-0.55 gC m
-2

 d
-1

, with a mean over all algorithms and 350 
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years of 0.20 gC m
-2

 d
-1

. These error values compared well with the noise added to the truth in 351 

order to generate synthetic observations. Partitioning synthetic NEE into GPP and Re was 352 

generally successful, with mean RMSE values over all algorithms of 0.6 gC m
-2

 d
-1

 in both 353 

cases. There was no evidence that best-fit or mean predictions of fluxes deteriorated in year 3, 354 

the prognostic period when no data were assimilated. 355 

Flux estimates – observed data 356 

For the eddy covariance (EC) datasets, the algorithms‟ predictions were compared to 357 

observed NEE. In years 1 and 2, when observations were provided to participants, RMSEs 358 

varied from 0.7-1.8 gC m
-2

 d
-1

 (DE) or 0.6-0.9 gC m
-2

 d
-1

 (EV), with a mean value of 1.3 gC 359 

m
-2

 d
-1

 for DE datasets and 0.7 gC m
-2

 d
-1

 for EV. In year 3, when observations were not 360 

provided to participants, RMSEs varied from 1.1-2.3 gC m
-2

 d
-1

 (DE) or 1.3-1.7 gC m
-2

 d
-1

 361 

(EV), with a mean value of 1.5 gC m
-2

 d
-1

 for both EC and DE datasets ( 362 

Table 9). Thus the best NEE estimates of the algorithms tended to agree less well in the 363 

prognostic period (year 3) compared to the assimilation period (years 1-2), though this was 364 

most striking for the evergreen (EV) case in this study.  365 

Flux confidence intervals – daily data 366 

There was less agreement among algorithms in the assessment of 90% confidence intervals 367 

(CI) on daily fluxes (Figure 4) than in the assessment of best estimates. There were 368 

differences in confidence interval estimates both in magnitudes and in temporal variability 369 

among algorithms. For instance, the mean daily 90% CI varied among algorithms from 0.35  - 370 

1.92 gC m
-2

 d
-1

 in DE-SYN and 0.29 – 2.49 gC m
-2

 d
-1

 in DE-EC. Algorithm confidence 371 

intervals typically had large excursions during spring leaf out for DE, but the magnitude of 372 

these excursions varied (Figure 4). 373 
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We tested whether the 90% CI on daily analyses (years 1 and 2) and predictions (year 3) 374 

encompassed the truth from the synthetic datasets for NEE, GPP and Re for all years, and for 375 

observed NEE in year 3 for the EC datasets. The days of each year which passed this test 376 

were counted. We expected that 85-95% of the days would pass, roughly consistent with the 377 

magnitude of the confidence interval, 90%. For the synthetic experiments (NEE tests are 378 

shown in  379 

Table 8) this was rarely the case. In some cases the fraction was 100%, which indicates that 380 

the daily CI were likely set too large. In other cases, the fractions were <85% suggesting that 381 

the CI were too small or the predictions were biased. For the eddy covariance datasets in year 382 

3, the majority of algorithms‟ confidence intervals on daily NEE were too narrow, with an 383 

average of only 40% (DE) or 20% (EV) of the observed year 3 data lying within the 90% 384 

confidence interval ( 385 

Table 9). This result suggests the algorithms were over-confident in the assessments of daily 386 

fluxes. 387 

Flux confidence intervals – annual sums 388 

A comparison of 90% confidence intervals on annual estimates of NEE, GPP and Re for all 389 

years revealed differences of up to an order of magnitude in width (Figure 5, Figure 6, Figure 390 

7). There was no clear relationship between size of CI and algorithm type – for instance, M1 391 

and M2 tended to have small CI compared to M3 and M4, although all used Metropolis 392 

algorithms. This result makes clear the importance of the user in determining the confidence 393 

interval, rather than the algorithm itself. The mean confidence interval size for NEE (124 gC 394 

m
-2

 yr
-1

) was ~3-fold smaller than those for GPP (389 gC m
-2

 yr
-1

) and Re (387 gC m
-2

 yr
-1

). A 395 

comparison of the mean 90% confidence intervals on annual NEE estimates (Table 10) 396 

indicated that CI were largest during year 3, the prediction period, and smallest in year 2. Of 397 

the 36 cases (4 datasets  9 algorithms), 34 had larger confidence intervals on year 1 than 398 
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year 2, and 35 had larger CI on year 3 than year 2, so this pattern was general across 399 

algorithms and datasets. Averaged over all cases, the 90% CI in the prediction period (year 3) 400 

were 88% larger than in the second year of the assimilation period (year 2).  Patterns were 401 

similar in comparison between outputs from observed and synthetic datasets. However, mean 402 

90% CI across all algorithms were ~31% larger for EC datasets than for SYN datasets. 403 

Among algorithms, the increase in 90% CI on EC datasets compared to SYN datasets ranged 404 

from 0% (E1) to 100% (E2). 405 

Testing annual flux estimates and confidence intervals 406 

Annual flux outputs estimated and forecast using the synthetic datasets were compared with 407 

the synthetic truth. Each algorithm‟s annual output of NEE, GPP and Re was tested to 408 

determine whether the truth lay within the 90% CI for estimates. The fraction of tests that 409 

were successful was compared with the mean size of the 90% confidence interval for each 410 

specific algorithm (Figure 5). There was evidence of a positive relationship between success 411 

rate and confidence interval size, but some algorithms managed to contain the truth within 412 

relatively narrow confidence intervals. In the comparison for annual NEE, four algorithms 413 

(E1, E2, M1, M3) produced analyses with >80% success rate and mean confidence intervals 414 

<110 gC m
-2

 yr
-1

. In the comparison against component fluxes (GPP and Re), two algorithms 415 

(E2, M2) produced more balanced analyses, with relatively high success rates (>65%) and 416 

narrow confidence intervals (<300 gC m
-2

 yr
-1

). M3 was always 100% successful in 417 

containing the truth within its 90% confidence intervals, and this over-confidence was 418 

because associated CI were the largest of all algorithms for GPP and Re. There were 419 

successful tests for prognoses in year 3 by several algorithms, indicating that predictions of C 420 

fluxes beyond the observational period were successful also ( 421 

Table 8). 422 
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GPP and Re estimates 423 

The decomposition of observed NEE data into GPP and Re revealed major differences among 424 

algorithms, with best estimates varying by up to 900 gC m
-2

 yr
-1

 (Figure 6, Figure 7). 425 

However there were similar patterns among algorithms across years. For instance, M4 tended 426 

to estimate lower magnitudes of these fluxes than other algorithms. In most cases the 427 

algorithms ranked the GPP and Re similarly across years at each site, but not always. For 428 

instance, M1 and M5 ranked Re differently for DE-EC across years (Figure 6). Flux analyses 429 

were compared with estimates from other gap-filling and GPP-Re decomposition algorithms 430 

using data from the same sites (Desai et al. 2008).  In some cases there was close agreement 431 

between estimates, for instance NEE at Loobos in 2000 (Figure 7), but in other, such as 432 

Loobos in 2001, there was disagreement. 433 

Stocks 434 

The analyses and predictions of foliar C matched the seasonal cycles and magnitudes of the 435 

truth from the synthetic studies adequately (Figure 8). Predictions of year 3 foliar C in the 436 

eddy covariance datasets had a mean RMSE among algorithms of 11 gC m
-2

 for DE and 22 437 

gC m
-2

 for EV. However, assessments of confidence intervals were generally poor; most 438 

algorithms had 90% CI either too broad or too narrow ( 439 

Table 9). 440 

For the synthetic data, the algorithms reproduced the seasonal cycles in fine root biomass, but 441 

the magnitude of the cycles and the mean biomass varied among the algorithms by ~+50% 442 

(data not shown). This result reflected the choice of initial conditions, or their method of 443 

assessment, by the users. We found similar patterns in litter and labile C pools. Seasonal data 444 

on the variation in these C pools would be a useful addition to model-data fusion studies. 445 

There were some important differences in the analyses and predictions of the slow turnover C 446 

pools in all datasets. Csom in most analyses showed slight increases or decreases over time, but 447 
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some algorithms showed stocks doubling over three years (Figure 9). Such doublings were 448 

unrealistic outcomes, but in these cases the algorithms were able to make these changes 449 

consistent with the flux observations. For Cw (Figure 10) most algorithms suggest a small 450 

increase in C stocks over time, but the algorithms with increasing Csom matched this with 451 

decreases in Cw of similar magnitude. 452 

Discussion 453 

There have been previous attempts to parameterise C models using time series of C fluxes 454 

(Braswell et al. 2005, Knorr and Kattge 2005, Wang et al. 2007). These studies have tended to 455 

focus on calibrating physiological parameters, related to photosynthetic and respiration rates, 456 

rather than parameters related to allocation and turnover of C pools. The calibration of 457 

parameters interacting on a range of timescales and links to data over several years is thus an 458 

important and novel component of REFLEX. The feedbacks between fluxes and stocks (e.g. 459 

photosynthesis and foliar C), and between soil organic matter and temperature, are 460 

particularly important determinants of NEE in the DALEC model that are investigated in 461 

REFLEX. 462 

Parameter estimation 463 

We expected that parameters linked to fast-response processes that mostly determine net 464 

ecosystem exchange of CO2 (NEE) would be well constrained and well characterised, while 465 

parameters for slow processes would be poorly characterised. Our analyses largely supported 466 

this expectation. The turnover of litter and foliage were well estimated according to our 467 

criteria, and these parameters are closely associated with foliage mass and/or gaseous 468 

exchanges of C. We had not expected the turnover rate of SOM, a large slow turnover pool, to 469 

be so well constrained, but it is an important determinant of heterotrophic respiration 470 

nevertheless. Parameters associated with the turnover of wood and allocation to roots were 471 
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poorly estimated, and sometimes biased. These parameters were not directly associated with 472 

gas exchange or leaf area, and so were only weakly constrained by NEE and LAI data.  473 

Flux and stock estimation 474 

There was weak agreement among algorithms in estimations of 90% CI on NEE and its 475 

component fluxes, for all datasets. The differences in CI size were closely related to 476 

differences among algorithms in parameter confidence intervals. There were considerable 477 

differences in assessments among similar algorithms (e.g. Metropolis), suggesting that the 478 

subjective choices of convergence tests versus statistical tests, priors for the parameters, and 479 

likelihood function within the method were important determinants of CI. None of the 480 

algorithms consistently included ~90% of the synthetic true daily NEE values, or observed 481 

EC year 3 daily NEE data, within the 90% confidence interval of the best-fit NEE (Table 482 

8and Table 9). All algorithms at some point over- or underestimated the confidence interval. 483 

For annual assessments of NEE, GPP and Re, there was more success, with some algorithms 484 

successful locating the true value from synthetic experiments within relatively narrow 90% 485 

confidence intervals (Figure 5). 486 

Assimilation results for annual flux predictions were in overall agreement with previous 487 

estimates from gap-filling studies on half-hourly data (Desai et al. 2008). However, in a 488 

number of cases the mean 90% CI did not include the gap-filled value (Figure 6 and Figure 489 

7), for instance NEE in 2001 for Loobos. Some differences were to be expected, because the 490 

REFLEX database used only a subset of the measured data (when > 90% of half-hourly 491 

periods were measured in a day), and the assimilation was based on daily sums rather than 492 

half-hourly measurements. The general agreement in the partitioning of NEE into GPP and Re 493 

using daily NEE data by REFLEX and half-hourly data by Desai et al. (2008) is notable. 494 

Respiration data can be easily extracted from hourly exchange data, but partitioning using 495 

daily data requires an effective GPP model, and sound predictions of foliar C. The 496 
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partitioning result suggests that the DALEC GPP and phenology sub-models have worked 497 

reasonably at the FLUXNET sites. These results indicate that daily data are effective for 498 

model calibration, and that hourly resolution is not necessarily an advantage in generating 499 

predictions of annual C exchanges. 500 

Model error 501 

We expected that with EC datasets there would be an increase in parameter uncertainty, and 502 

perhaps only 3-4 constrained parameters, because the model would misrepresent key 503 

processes affecting the observations. However, we found mean similar values of d1 and d2 for 504 

both EC and SYN datasets (Table 6 and Table 7). There did not seem to be any improved 505 

parameter constraint resulting in the synthetic case, where the model error was zero, as it was 506 

known to be valid. However, a comparison of confidence interval size on annual NEE 507 

estimates generated from synthetic and observed data did reveal a common pattern, with 508 

larger CI for EC datasets. Based on the comparison between CI on SYN and EC datasets, we 509 

conclude that the impact of model error was to increase the size of confidence intervals on 510 

annual NEE estimates by ~31%.  511 

Prediction error 512 

Prediction error, determined by forcing the model for 12 months beyond the assimilation 513 

period, was more complex to determine, because confidence intervals varied strongly between 514 

years 1 and 2 of the analysis. The only factor in common to all datasets was the lack of priors 515 

for initial conditions of Cf, Clit and Cr. Thus, it is likely that erroneous initial conditions and/or 516 

large uncertainties on the initial values caused larger CI in year 1. The initial pools were often 517 

out of equilibrium with parameters, and so changed relatively quickly at first. By year two, 518 

parameter and state equilibria for these fast C pools reduced uncertainty. For predictions in 519 

year 3, lacking constraint of observations, uncertainty increased. CI on predictions (year 3) 520 
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were > twice those for year 2 analyses. For the SYN experiments, the year 3 predictions 521 

among algorithms were similarly successful to years 1 and 2 – that is, a similar fraction of 522 

90% confidence intervals on annual flux estimates encompassed the truth. This result suggests 523 

that the quantification of increasing CI was reasonable. 524 

Algorithm assessment 525 

We examined the different algorithms, to determine if there were distinct winners or losers. 526 

All approaches produced broadly similar parameter retrievals (Figure 2) for both synthetic 527 

and observed datasets (Table 6, Table 7). All approaches generated effective best estimates 528 

and predictions of daily NEE, as shown by the small RMSEs. But the focus of this study was 529 

also on the generation of sound confidence intervals to supplement these estimates. At the 530 

daily time-step the results were equivocal, with a tendency for algorithms to be over- or 531 

under-confident (Table 8). But at the annual timescale, perhaps the most relevant for C 532 

studies, we found that most of the algorithms encompassed the truth within 90% CI. A 533 

complementary test was to check the mean size of confidence intervals, to identify and weed 534 

out those cases where a successful test was obtained by using very broad CI. Thus, the test of 535 

annual NEE, GPP and Re retrievals (year 1 and 2) and predictions (year 3) against the known 536 

truth from the synthetic experiments (Figure 5) is perhaps the most useful judgement on the 537 

individual algorithms. According to this test, metropolis methods, Kalman filters and genetic 538 

algorithms were all capable of correctly identifying a large proportion of true fluxes with 539 

relatively small confidence intervals. Thus all approaches were valid, but some 540 

implementations were more effective in terms of this test on confidence intervals than others 541 

(see appendix for more information on algorithms). 542 

For the Metropolis methods, confidence intervals on fluxes were generated as a function of 543 

the set of acceptable parameter sets. These parameters sets were fed into the model to produce 544 

a set of possible outcomes, that were then sampled to determine the 90% CI. Differences in 545 
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the size of the CI depend on the accept/reject criterion employed by each algorithm in 546 

generating acceptable parameter sets (Table 5). The methods employing the Kalman filter 547 

employed a further step, once acceptable parameter sets were determined. The state variables 548 

of the model, including flux estimates, were updated using sequential assimilation of 549 

observations through the times series. This sequential updating, allowing shifts in states 550 

through the model run unconnected to parameters, may be connected to the success of the 551 

Kalman filter methods (E1, E2, U1) in generating effective, but narrow confidence intervals. 552 

Some algorithms had problems with large changes to Cw and Csom pools, which could be 553 

made consistent with the flux data, but are not ecologically sound in an undisturbed 554 

ecosystem. This seems to be partly related to a steady state assumption being made where 555 

pool sizes are first confined to equilibrium which likely leads to a wrong initial system state, 556 

potential biases in parameters and inflation of their confidence intervals as shown recently in 557 

a specific study by Calvalhais et al. (2008). These symptoms are, for example, also seen in the 558 

approach M4, where a spin-up was performed. Hence, a way to estimate the initial state of the 559 

system without an ad-hoc steady state assumption is crucial to successful MDF and should be 560 

explored further. A constraint on the annual changes in these pools based on repeated 561 

inventories would help solve this problem. Stem inventories are likely to be easier to 562 

undertake with quantifiable error than those on SOM, and so should be the focus for future 563 

studies. Nevertheless, if longer time scale are to be addressed there is a need to imposed 564 

constraints from soil carbon data, e.g. via chronosequences or profile data. Some algorithms 565 

did not explicitly include searching for initial conditions on Cf, Clab and Clit, and this caused 566 

some problems for e.g. E2. All algorithms need to assess their estimates of uncertainties and 567 

develop new approaches for uncertainty estimates that are consistent with the observations.  568 

This experiment has demonstrated the value of using synthetic datasets in understanding data 569 

assimilation problems. It is clear that even with a perfect model, existing model-data fusion 570 
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approaches find it difficult to analyse parameters using synthetic, noisy and sparse datasets. 571 

The information content of data that can be extracted by MDF depends on data quality and 572 

coverage. Further synthetic studies will illuminate the relationship between data availability 573 

and parameter constraint. It is clear that there is little consensus on how to generate 574 

confidence intervals, with very broad ranges among algorithms. Tests using confidence 575 

intervals provide a useful first look at assessing the uncertainties quantified by the various 576 

algorithms, although representing continuous probability distributions with a confidence 577 

interval suffers from using an arbitrary cutoff criteria. Algorithms that are not well 578 

constrained by the data, and thus have wide CI's, will be more likely to contain the true value 579 

but this suggests they are less able to make use of all the information in the data.  580 

 581 

Conclusions 582 

A range of model-data fusion algorithms exist that can generate useful estimates of parameter 583 

probability density functions and state estimates for C models using a C model and daily net 584 

ecosystem exchange data, derived either from observations or synthetically. While there was 585 

less agreement among algorithms on the size of confidence intervals on parameter and state 586 

estimates, some algorithms were able to make effective estimates of annual fluxes within 587 

relatively small CI, when compared to detailed gap-filled estimates or the synthetic „truth‟. 588 

Overall, algorithms generated narrower confidence intervals in analyses using synthetic data 589 

compared to observed data. Likewise, confidence intervals were larger by 88% for forecast 590 

periods than during data-fusion periods. These results suggest that some algorithms were 591 

generally able to make a reasonable quantification of error propagation in prediction periods, 592 

and of the likely size of model error, but that differences in estimated confidence intervals 593 

suggests further improvements are required. Further studies should explore the importance of 594 

assumptions about parameter priors (Gaussian or uniform), and the handling of unknown 595 
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initial conditions. Exploring the growth in CI over forecast periods of multiple years also 596 

needs to be explored in a further study. Data on slow, large C pools should be included in 597 

assimilation experiments, even with large confidence intervals. Such data can help constrain 598 

the parameters poorly served by eddy covariance data, which are those related to allocation 599 

and turnover of wood and roots. 600 
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Appendix: Details of algorithms 731 

E1: Stage 1. Parameter estimation. Parameters were initially estimated using a simple 732 

Metropolis MCMC-type approach. (e.g. (Mosegaard and Tarantola 1995, Knorr and Kattge 733 

2005)). Initial prior distributions were assumed to be uniform and encompass the entire 734 

possible suggested range and so a single stage accept/reject criterion was used based on 735 

comparison of model output with data alone. Initial values for Cr, Clit and Clab were 736 

estimated in the same manner as parameters, initial values for Cf were based on first available 737 

observation (EV case) or set to zero (DE case). The model was initialized from a random 738 

location, and step size was constant and determined as 0.001 of log-transformed parameter 739 

range. This was determined through „tuning‟ initial runs to ensure an acceptance probability 740 

of between 0.2 and 0.8 at each step. The number of steps required to sufficiently sample the 741 

parameter space was assessed using the Gelman criteria (Gelman 1995)) to test convergence 742 

between chains. 743 

E1: Stage 2. State estimation. 8000 parameter sets were randomly sampled from the accepted 744 

parameters from Stage 1. These were then used in an 8000 member Ensemble Kalman Filter 745 

(EnKF, Evensen, 1994; Williams et al., 2005). A unique parameter set was assigned to each 746 

ensemble member with the intention this would cause divergence between ensemble members 747 

representing model error and cause a growth in state uncertainty equivalent to that inherent 748 

from parameter uncertainty alone. This was done instead of adding a stochastic forcing term 749 

at each time step. This is possibly correct in the SYN cases when model „structural‟ error is 750 

known to be zero, but will probably underestimate model error in the EC cases and overly 751 

restrict growth in state uncertainty. Nonetheless, assimilation of observations did alter the 752 

state variables in the resulting analysis and reduce uncertainties in state estimates even though 753 

these same observation data had already been used to generate the parameter sets in Stage 1 754 

so offered little additional information to the EnKF.  755 

 756 

E2: Ensemble Kalman filter. This method was set up for joint estimation of states and 757 

parameters, so parameters were included within the state vector for assimilation. Model 758 

parameter errors were set within bounds - small enough to avoid tracking daily noise in 759 

observations, and large enough to shift over weekly-seasonal timescales in response to 760 

process signals.  Errors on model states were set smaller than for parameters, so that 761 

assimilation was focused on updating parameters rather than states. Initial values for all 762 

parameters and initial conditions for Cf, Clab and Cr were estimated. After an initial 763 

assimilation of observations, these initial parameter estimates were updated with the final 764 

estimates from the assimilation. We assumed that Cf, Clab and Cr would be in approximate 765 

steady state over annual cycles, and adjusted initial values accordingly. A further EnKF 766 

assimilation was then applied, using these updated initial parameters and initial conditions, to 767 

generate final analyses.  768 

 769 

U1: Unscented Kalman filter. The UKF was used to provide state estimates for each of the 770 

experiments. The UKF (Julier and Uhlmann 2004) is a nonlinear version of the traditional 771 

linear Kalman filter (Kalman 1960), that uses a deterministic sampling of so-called sigma 772 

points in order to capture the mean and covariance of the state. Similar to other Kalman type 773 

filters it employs a two-step `predictor-corrector' scheme where model predictions are 774 

corrected by measurements as they arrive sequentially in time. At time periods where 775 

measurements are missing, only the prediction step is used.  To employ the UKF, the general 776 

nonlinear state space model was assumed, with the variants of the model taking the form of 777 

the state evolution equations. A linear measurement model was used in all runs. Both the state 778 
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and measurement equations assume zero mean random noise processes with associated full-779 

dimensional covariance matrices (Gove and Hollinger 2006). The later were estimated from 780 

the information provided. The parameter estimates used in the filter runs were arrived at via 781 

simulated annealing method M3. Parameters for the unscented transformation were set to 782 

=1, =2 and =1 for all experiments (see Gove and Hollinger 2006 for an explanation). 783 

 784 

G1: Genetic algorithm: The implementation was from Haupt and Haupt (2004). The 785 

population size was 100, and was run for 1000 iterations (generations). Initial stores Cr, Clit, 786 

Cf and Clab were estimated by the GA as additional parameters. To estimate uncertainties, the 787 

roughly 1600 (unique) parameter sets with cost function values closest to the final best cost 788 

function value were saved, and used to estimate the covariance matrix and 90% CI. 789 

 790 

M1: This method sought to make as few approximations as possible to Bayes Theorem, 791 

choosing the simplest algorithm to generate a representative sample from the posterior. We 792 

chose the beta distribution for our prior. The Metropolis algorithm (Metropolis et al. 1953) 793 

generates a chain that sequentially “walks through parameter space” in such a way that the 794 

chain of visited points is the sought-after sample from the posterior. Each new point in the 795 

chain is found by randomly generating a multivariate normal step away from the current 796 

vector. In this case a simple diagonal variance matrix defined this multivariate normal 797 

“proposal distribution”. Whether a proposed candidate vector was accepted or not depended 798 

on the Metropolis ratio, which is the ratio of two products: likelihood times prior for the 799 

candidate and likelihood times prior for the current point. If the Metropolis ratio was larger 800 

than 1 (i.e. the candidate point has a higher posterior probability then the current point), it was 801 

always accepted. If the Metropolis ratio was less than 1 (i.e. the candidate was “less probable” 802 

than the current vector), the candidate could still be accepted but only with probability equal 803 

to the Metropolis ratio. The chain was stopped when it “converged”, i.e. it had explored the 804 

parameter space adequately. Convergence was confirmed visually using the trace plots of the 805 

different parameters, i.e. plots that show how the chain moves through parameter space for 806 

each individual parameter. If one or more of the trace plots was still showing drift towards 807 

unexplored parts or parameter space, the chain was deemed not to have converged. 808 

 809 

M2: A combined optimization approach estimated model parameters and state variables.  A 810 

genetic algorithm, Stochastic Evolutionary Ranking Strategy (SRES) was used to find the 811 

global optimum (Runarrsson and Yao, 2000). Markov chain monte carlo (MCMC) using the 812 

Metropolis-Hastings algorithm was then used to explore the parameter space around the 813 

optimum to estimate the full joint distribution of parameters and to estimate predictive 814 

uncertainty.  Two chains were run for each experiment; convergence was determined by 815 

visually comparing the parameter PDFs from both chains.  The ranges given for p1-17 were 816 

used as uniform distributions; no additional information was used.   The initial values of pools 817 

Cr, Clit and Clab were also estimated as model parameters, using the prior range 20-200 gC m
-2

 818 

as recommended.   All observations are assumed to drawn from independent distributions. 819 

Both NEE and LAI errors were assumed normally distributed. 820 

 821 

M3: Optimization of parameters and initial values of C pools took place in three stages. First, 822 

the parameter and initial state space was randomly explored for 50,000 iterations, at which 823 

point the parameter set and initial conditions with the lowest cost function was used as the 824 

starting point for the Metropolis algorithm. Second, the Metropolis algorithm was 825 

implemented to ensure progressive down-slope movement while at the same time avoiding 826 

local minima. The cost function was a weighted-sum-of-squares of both NEE and LAI 827 

deviations. 200,000 steps were taken in this manner. Third, reverting to the best parameter set 828 
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obtained, the parameter space was explored again until 1,000 parameter sets have been 829 

accepted as “almost as good as” the optimal parameter set, using a 
2 

test to determine the 830 

threshold contour (90% confidence interval) (assuming n – 1 degrees of freedom for LAI and 831 

n – p – 1 degrees of freedom for NEE. These parameter sets were used to define the 832 

uncertainty estimates on both parameters and model predictions.  833 

  834 

M4: Markov Chain Monte Carlo Metropolis. The algorithm adopted a global search method 835 

with an uniform walk in the model parameter space. The method is based on a Bayesian 836 

approach where the comparison between model output and data is used to update our prior 837 

knowledge of the parameter distribution. The prior distributions were considered to be 838 

uniform. The Metropolis rules prevented the algorithm from being trapped in local minima, 839 

allowing for changes in the searching direction. Spin-up was used to initialize the C pools (Cr, 840 

Clit and Clab); we sampled the parameters and we ran the model replicating the meteorological 841 

data until the total difference between one year and the other was less than 1g of C. The other 842 

C pools were initialized as from the experiment description. 843 

 844 

M5. The SCEM-UA algorithm (Vrugt et al., 2003) is a modified version of the original SCE-845 

UA global optimization algorithm (Duan et al., 1992). The algorithm is Bayesian in nature 846 

and operates by merging the strengths of the Metropolis algorithm, controlled random search, 847 

competitive evolution, and complex shuffling to continuously update the proposal distribution 848 

and evolve the sampler to the posterior target distribution. The SCEM-UA algorithm uses the 849 

Metropolis-Hastings (Metropolis et al., 1953) search strategy to generate a sequence of 850 

parameter sets (θ1, θ2,..., θn) that adapts to the target posterior distribution. It starts with an 851 

initial population of points (parameter sets) randomly distributed throughout the feasible 852 

parameter space defined by the prior parameter distributions. The population is partitioned 853 

into q complexes, and in each complex k (k = 1, 2, ..., q) a parallel sequence is launched from 854 

the point that exhibits the highest posterior density. A new candidate point in each sequence k 855 

is generated using a multivariate normal distribution either centred around the current draw of 856 

the sequence k, or the mean of the points in complex k, augmented with the covariance 857 

structure induced between the points in complex k. The Metropolis-annealing criterion is used 858 

to test whether the candidate point should be added to the current sequence. Subsequently the 859 

new candidate point randomly replaces an existing member of the complex. Finally, after a 860 

certain number of iterations new complexes are formed through a process of shuffling the old 861 

complexes. The objective function used in this study is a combination of the model errors 862 

(expressed as SSE, Sum of Squared Errors) of describing the CO2 fluxes and the Leaf Area 863 

Index, weighted by the error variance of each variable. 864 

865 
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Tables 866 

Observation Units Interval Source 

Global Radiation MJ m-2 d-1 Daily Fluxnet data portal 

Min Temperature °C Daily Fluxnet data portal 

Max temperature °C Daily Fluxnet data portal 

CO2 conc. mol mol-1 Daily Fluxnet data portal 

NEE g C m-2 d-1 Daily Fluxnet data portal 

LAI m2 m-2 When available References/site PI 

Foliar N * gN m-2 leaf area Constant References/site PI 

Aboveground C mass* kg C m-2 Initial condition References/site PI 

SOM C mass* kg C m-2 Initial condition References/site PI 

Leaf mass per area* g C m-2 leaf area Constant References/site PI 

Table 1. Time series data available for use in the experiments.  Data with a “constant” interval are fixed 867 

values throughout model runs. *Ancillary data contained in Table 2 for all experiments. 868 

869 
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 870 

Site 

 

Latitude 

(°N) 

Soil organic matter C  

(g C m-2)  

Above-ground  

biomass (g C m-2)  

Leaf mass per area 

(g C m-2 leaf area) 

Foliar N (g N 

m-2 leaf area) 

EV-EC 

(Loobos) 

52 11000 9200 110 

4.0 

EV-SYN 50 9700 12400 110 3.8 

DE-EC 

(Hesse) 

48 7100 8800 22 

1.0 

DE-SYN 51 9900 8900 22 1.1 

Table 2. Site details, including latitude, initial conditions for large C pools, and foliage parameters. 871 

872 
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 873 

 Description Code Range (low/high) 

p1 Decomposition rate  (per day) Td 1 x 10-6/0.01 

p2 Fraction of GPP respired Fg 0.2/0.7 

p3 Fraction of NPP allocated to foliage Fnf 0.01/0.5 

p4 Fraction of NPP2 allocated to roots Fnrr 0.01/0.5 

p5 Turnover rate of foliage (per day) Tf 1 x 10-4/0.1 

p6 Turnover rate of wood  (per day) Tw 1 x 10-6/0.01 

p7 Turnover rate of roots  (per day) Tr 1 x 10-4/0.01 

p8 Mineralisation rate of litter  (per day) Tl 1 x 10-5/0.1 

p9 Mineralisation rate of SOM/CWD  (per day) Ts 1 x 10-6/0.01 

p10 Parameter in exponential term of temperature 

dependent rate parameter 

Et 0.05/0.2 

p11 Nitrogen use efficiency parameter (a1) in 

ACM 

Pr 5/20 

p12 * GDD value causing leaf out Lout 200/400 

p13 * Minimum daily temperature causing leaf fall Lfall 8/15 

p14 * Fraction of leaf loss transferred to litter Fll 0.2/0.7 

p15 * Turnover rate of labile carbon (per day) Tlab 1 x 10-4/0.1 

p16 * Fraction of labile transfers respired Flr 0.01/0.5 

p17 * Maximum Cf value (gC m-2) Cfmax 100/500 

Table 3. Model parameters requiring calibration.  NPP2 is NPP remaining after allocation to foliage.  874 

* parameters p12-17 are used in DALEC-deciduous only. 875 

 876 

877 
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 878 

Experiment Data Drivers Sites Parameters States 

1 FLUXNET NEE and 

LAI data, 2000-1 

Observed, 

2000-1 

DE-EC, 

EV-EC 

Generated by 

MDF, with 90% CI 

Generated by MDF 

with 90% CI 

2 Artificial /synthetic Artificial  DE-SYN, 

EV-SYN 

Generated by 

MDF, with 90% CI 

Generated by MDF 

with 90% CI 

3 None Observed, 

2002 

DE-EC, 

EV-EC 

From Expt 1 Generated by MDF 

with 90% CI 

4 None Artificial DE-SYN, 

EV-SYN 

From Expt 2 Generated by MDF 

with 90% CI 

 879 

Table 4. Experimental summary for Reflex. The table shows for each experiment the input data, the 880 

source of the meteorological drivers, and the site codes. The first two experiments generated parameter 881 

estimates and estimates of model states (fluxes and pools of C), while the final two experiments were 882 

forecasts of model states only. Acronyms: DE - deciduous vegetation, EV - evergreen vegetation, SYN – 883 

synthetic data, EC- observed eddy covariance and LAI data. 884 
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Participant Name – type of 
methodology 

Code Prior Cost/objective function Initial pools Convergence 
tests 

Number of 
parameter 
sets 
produced 

Number 
of model 
iterations 

Programming 
language 

E1 (stage 1)  
 
MCMC Metropolis, 
then EnKF 

 Uniform 

J=
1

2
∑
i=1

N

f
xi ,p − OBS i

2

σ obs,i
2

 

Parameters to be 
estimated 

Gelman and 
Rubin (1992) 

~400000 ~1000000 Fortran  
 

E1 (stage 2) Evensen 
(2003) 

PDFs 
from 
stage 1 

Kalman gain PDFs from stage 1 n/a State only 8000 Fortran  
 

E2 Ensemble Kalman 
filter 

Evensen 
(2003) 

Gaussian Kalman gain Cr=Cfmax, 
Clit=0.5Cfmax, 
Clab=0.5Cfmax +  
EnKF 2 times  

n/a  
 

~2000 800  
 

Fortran 

U1 Unscented Kalman 
filter 

Gove & 
Hollinger 
(2006) 

Gaussian Minimize posterior error covariance via the Kalman gain. As estimated by M3 n/a State only n/a R 

G1 Genetic algorithm Based on 
Haupt 
and 
Haupt 
(2004) 

uniform 

J=∑
i=1

N f i − OBSi

2

σobs,i
2

+a× [c 365 − c 0

c 0 ]
2

[c 730 − c 0

c 0 ]
2

 

Tuned with 
parameters 
 

n/a ~100000 
 

 
 

Fortran 

M1 MCMC – Metropolis   Gaussian likelihood Included in 
calibration 

visual  300000  Fortran 

M2 MCMC – Metropolis MCMC1 uniform 

J=
1

2
∑
i=1

N

f
xi ,p − OBS i

2

σ obs,i
2

 

Parameters to be 
estimated 
 

Visual 
comparison of 
parameter 
PDFs from 2 
chains 
 

1000000 
 

1000000 
 

Fortran  
 

M3 Simulated 
annealing-
Metropolis 

SAM uniform 

J=2
f x,p − OBS

2

σobs
2

⋅
1

N  

Parameters to be 
estimated 
 

n/a 1000 

 

~250000 Fortran 

M4 MCMC – Metropolis MCMC3 uniform 

J=
1

2
∑
i=1

N

f
xi ,p − OBS i

2

σ obs,i
2  

Spinup to equilibrium 
of total C 
 

Heidelberger 
and Welch 
(1983) 
 

80000 

 

~300000 

 

R 

M5 Multiple complex 
MCMC – Metropolis 

SCEM uniform 
J=

SSEOBS

σOBS
2  

Parameters to be 
estimated 
 

Gelman and 
Rubin (1992) 
 

~500000 
 

150000 
 

Matlab 

Table 5. A summary of the algorithms used in the experiment. Methods using Metropolis algorithm alone are labelled Mx. U1 and E1 used a Kalman filter after an initial 

Metropolis algorithm search for parameters. G1 and E2 are the only methods not using the Metropolis algorithm. 
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Evergreen: EV-SYN     Deciduous: DE-SYN    

Param d1 d2 d3 D Rank  d1 d2  d3 D Rank 

Td 0.26 0.36 0.75 0.87 11  0.26 0.42 0.72 0.87 17  

Fg 0.30 0.41 0.02 0.51 6  0.11 0.42 0.09 0.45 8 

Fnf 0.07 0.49 0.00 0.50 5  0.26 0.53 0.37 0.70 16  

Fnrr 0.24 0.65 0.31 0.76 9  0.19 0.60 0.07 0.64 15  

Tf 0.06 0.20 0.03 0.21 1  0.05 0.16 0.01 0.17 3  

Tw 0.22 0.40 0.69 0.83 10  0.27 0.37 0.22 0.51 12  

Tr 0.27 0.52 0.03 0.59 8  0.04 0.28 0.02 0.28 5  

Tl 0.07 0.22 0.03 0.23 2  0.03 0.15 0.03 0.15 2  

Ts 0.05 0.16 0.21 0.27 4  0.04 0.08 0.01 0.09 1  

Et 0.04 0.24 0.00 0.24 3  0.05 0.17 0.04 0.18 4  

Pr 0.21 0.47 0.15 0.54 7  0.14 0.46 0.06 0.49 10  

Lout       0.22 0.40 0.19 0.49 11  

Lfall       0.14 0.25 0.10 0.30 6  

Fll       0.13 0.52 0.24 0.59 14  

Tlab       0.19 0.54 0.01 0.57 13  

Flr       0.18 0.33 0.00 0.38 7  

Cfmax       0.22 0.36 0.17 0.46 9 

  

Mean 0.16 0.38 0.20 0.51   0.15 0.36 0.14 0.43 

 

Table 6. Parameter estimation metrics using 9 different algorithms based on synthetic data for evergreen (left) 

and deciduous (right) forest. Metric d1 quantifies consistency among methods; d2 quantifies the data constraint 

on the confidence intervals; and d3 quantifies the consistency with the truth. D is the sum of the d1-3. The rank 

column identifies the rank of D for each parameter, with lower values of D, and lower ranks, indicating better 

estimation.  
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Evergreen EV-EC     Deciduous DE-EC  

    

 d1 d2 D Rank  d1 d2 D Rank 

Td 0.28 0.42 0.5 9  0.29 0.36 0.47 14  

Fg 0.11 0.36 0.37 6  0.08 0.3 0.31 7  

Fnf 0.16 0.31 0.35 5  0.2 0.55 0.58 17  

Fnrr 0.29 0.6 0.66 11  0.15 0.53 0.55 16   

Tf 0.08 0.19 0.2 3  0.12 0.25 0.28 6  

Tw 0.24 0.35 0.42 7  0.21 0.35 0.4 12  

Tr 0.29 0.35 0.45 8  0.32 0.2 0.38 9  

Tl 0.09 0.23 0.25 4  0.08 0.18 0.2 1  

Ts 0.08 0.1 0.13 1  0.05 0.2 0.21 2  

Et 0.02 0.2 0.2 2  0.09 0.19 0.21 3  

Pr 0.14 0.52 0.53 10  0.17 0.35 0.39 11  

Lout      0.21 0.37 0.43 13  

Lfall      0.2 0.32 0.38 10  

Fll      0.16 0.32 0.36 8  

Tlab      0.1 0.49 0.5 15  

Flr      0.12 0.23 0.25 5  

Cfmax      0.03 0.25 0.25 4 

  

Mean 0.16 0.33 0.37   0.15 0.32 0.36 
 

Table 7 Parameter estimation metrics using 9 different algorithms based on observed data for evergreen (left) 

and deciduous (right) forest. Metric d1 quantifies consistency among methods; d2 quantifies the data constraint 

on the confidence intervals. D is the sum of the d1-2. The rank column identifies the rank of D for each parameter, 

with lower values of D, and lower ranks, indicating better estimation.  
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 DE-Syn EV-Syn 

 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 

Algorithm       

M1 0.95 0.97 0.99 0.81 0.89 1.00 

M2 0.73 0.65 0.81 0.95 0.61 0.51 

M3 1.00 1.00 1.00 1.00 1.00 1.00 

M4 0.95 0.97 0.96 0.80 0.86 0.85 

M5 0.66 0.37 0.36 0.39 0.25 0.35 

E1 0.90 0.83 0.95 0.93 0.77 0.69 

E2 0.85 0.99 1.00 0.44 0.61 0.60 

U1 0.99 0.99 1.00 0.99 0.98 1.00 

G1 1.00 1.00 0.98 1.00 0.99 1.00 
 

Table 8. Fraction of days in each year where 90% confidence interval encompassed the synthetic “true” value of 

NEE. Fractions are shown for each of the 3 individual years for DE-SYN and EV-SYN datasets. Values between 

0.85-0.95 are in bold and are consistent with the 90% CI. Values of 1.0 are indicated by italics. 
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 Foliar C mass (Cf) Daily NEE  

 RSME   (gC m
-2

) CI frac RMSE (gC m
-2

 d
-1

) CI frac 

Algorithm DE-EC EV-EC DE-EC EV-EC DE-EC EV-EC DE-EC EV-EC 

M1 12.3 29.9 1 0.5 1.42 1.50 0.14 0.14 

M2 7.6 16.6 0 0.83 1.21 1.34 0.11 0.06 

M3 6.9 19.4 1 0.94 1.35 1.42 0.56 0.16 

M4 16.9 18.9 1 1 1.57 1.73 0.39 0.19 

M5 10.6 17.8 0 0.17 2.25 1.37 0.2 0.16 

E1 6.1 20.3 1 0.33 1.10 1.49 0.14 0.08 

E2 30.2 37.8 1 1 1.70 1.45 0.86 0.16 

U1 4.1 15.5 1 1 1.34 1.37 0.84 0.61 

G1 4.2 22.6 1 0.83 1.24 1.54 0.43 0.16 

n 1 18 1 18 218 171 218 171 
 

Table 9. Assessment of year 3 best-fit predictions and 90% confidence intervals (CI) for the EC datasets. 

Comparisons with both foliar carbon mass (Cf) and daily net ecosystem exchange (NEE) are shown. Assessment 

of best fit predictions is through root mean square error (RMSE) on observations for year 3 for deciduous (DE) 

and evergreen (EV) forests. Assessment of confidence intervals is through quantifying the fraction of days in 

year 3 where the 90% confidence interval encompassed the observed NEE. Values between 0.85-0.95 are in bold 

and are deemed consistent with the 90% CI. Algorithms are identified by codes. n is number of observations in 

year 3, which were withheld from the experimental team. 
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Dataset Year 1 Year 2 Year 3 

DE-EC 181.0 96.6 186.2 

EV-EC 119.3 92.6 169.4 

DE-SYN 139.3 83.8 148.9 

EV-SYN 95.4 58.1 117.9 

 

Table 10. Mean size of 90% confidence interval on annual NEE for 3 years. Assessments were made with outputs 

from the nine algorithms, and compared for different years and datasets. The outputs for the first two years 

were analyses, based on model-data fusion. The output for the final year was generated from model predictions 

using estimated parameters and meteorological forcing, and no data.  Units are gC m
-2

 yr
-1

.
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Figures 

 

 

 

Figure 1 A schematic of the DALEC (black) and DALEC-deciduous (black and grey) models. The figures show 

pools (boxes) and fluxes (arrows) of C. Feed back between DALEC and the photosynthesis model is indicated by 

dotted line. Allocation fluxes are A, litter-fall fluxes by L, and respiration by R, split between autotrophic (a) and 

heterotrophic (h). D is decomposition and GPP is gross primary productivity.    
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Figure 2. Parameter estimation for deciduous synthetic (DE-SYN) data. The panels shows each of the algorithms‟ best estimate of each parameter, and the magnitude of 

each 90% confidence intervals. The „true‟ value of the parameter used in generating the synthetic data is indicated by the d vertical line. The upper and lower bounds of 

each parameter, as provided to the experimenters, is indicated by the range of each x-axis. X-axes are log scaled for turnover rates (all parameters beginning T). For an 

explanation of parameter symbols see Table 5. 
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Figure 3. A comparison of two metrics of parameter calibration success against mean parameter 90% confidence intervals of each algorithm (d4, see text). Parameter 

calibration success is judged in two ways: (1) by the fraction of 90% confidence intervals encompassing the true parameter values obtained by each algorithm, see left 

panels – high values are better; (2) by the mean normalized difference between best estimate and true parameter values obtained by each algorithm (d5, see text), see right 

panels – low values are better.  Individual algorithms are identified by alphanumerics (Table 5). The top two panels are generated from the deciduous synthetic data, the 

bottom two from evergreen synthetic data. Data for the synthetic experiments are shown, where true values of the parameters are known. 
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Figure 4. Estimated time series of net ecosystem exchange of CO2 (NEE) over 3 years from each algorithm using observations from the DE-EC dataset over the first 2 

years (top panel) and 90% confidence intervals on the estimates (lower panel). The eddy covariance data is shown as open symbols. 
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Figure 5. A comparison between the summary success rate of annual estimates of GPP (left), Re (centre) and 

NEE (right) for each algorithm plotted against the mean size of the 90% confidence interval used in the tests. 

The tests were for DE-SYN and EV-SYN, the synthetic datasets. Success was judged on whether each “true” 

annual flux was within the 90% confidence interval of the estimate. There were 6 tests (3 years x 2 datasets) for 

each flux. On the right panel the results for E1 and M1 were very similar. All panels have the same scale. 
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Figure 6. Annual analyses of NEE, GPP and Re for 2000, 2001 and prognoses for 2002 generated with the DE-EC dataset from Hesse, France.  Results are shown for each 

algorithm for NEE and for 8 algorithms for GPP and Re, with 90% confidence intervals indicated. The dashed lines show the best estimates from gap-filling routines using 

hourly NEE data, while the dotted lines show interquartile range among the estimates from the array of gap-filling routines for 2001 and 2002. (Desai et al. 2008).
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Figure 7 Annual analyses of NEE, GPP and Re for 2000, 2001 and prognoses for 2002 generated with the EV-EC dataset from Loobos, Netherlands.  Results are shown for 

each algorithm for NEE and for 8 algorithms for GPP and Re, with 90% confidence intervals indicated. The dashed lines show the best estimates from gap-filling routines 

using hourly NEE data (Desai et al. 2008). 
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Figure 8 Retrieved estimates of foliar C stocks over three years for the EV-EC deciduous site with 

observations of NEE fluxes and LAI assimilated. The upper panel shows best fit or mean for Cf, with 

observations marked, and the lower panel shows the width of the 90% confidence interval. 
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Figure 9. Retrieved estimates of soil organic matter/coarse woody debris C stocks over three years for the 

DE-EC deciduous site with observations of NEE fluxes and LAI assimilated. The upper panel shows best 

fit or mean for Csom, and the lower panel shows the width of the 90% confidence interval. 
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Figure 10. Retrieved estimates of woody C stocks over three years for the DE-EC deciduous site with 

observations of NEE fluxes and LAI assimilated. The upper panel shows best fit or mean for Cw, and the 

lower panel shows the width of the 90% confidence interval. 
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