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Abstract 7 

Flood extents caused by fluvial floods in urban and rural areas may be predicted by hydraulic 8 

models. Assimilation may be used to correct the model state and improve the estimates of the 9 

model parameters or external forcing. One common observation assimilated is the water level at 10 

various points along the modelled reach. Distributed water levels may be estimated indirectly 11 

along the flood extents in Synthetic Aperture Radar (SAR) images by intersecting the extents 12 

with the floodplain topography. It is necessary to select a subset of levels for assimilation 13 

because adjacent levels along the flood extent will be strongly correlated. A method for selecting 14 

such a subset automatically and in near real-time is described, which would allow the SAR water 15 

levels to be used in a forecasting model. The method first selects candidate waterline points in 16 

flooded rural areas having low slope. The waterline levels and positions are corrected for the 17 

effects of double reflections between the water surface and emergent vegetation at the flood 18 

edge.  Waterline points are also selected in flooded urban areas away from radar shadow and 19 

layover caused by buildings, with levels similar to those in adjacent rural areas. The resulting 20 

points are thinned to reduce spatial autocorrelation using a top-down clustering approach. The 21 

method was developed using a TerraSAR-X image from a particular case study involving urban 22 



2 
 

and rural flooding. The waterline points extracted proved to be spatially uncorrelated, with levels 23 

reasonably similar to those determined manually from aerial photographs, and in good agreement 24 

with those of nearby gauges. 25 
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1. Introduction 31 

Flood extents caused by fluvial floods in urban and rural areas may be predicted by hydraulic 32 

models, given knowledge of the topography of the floodplain and channel together with other 33 

boundary conditions that may include the input flow rate at the upstream boundary of the reach 34 

being modelled and the water stage at the downstream boundary. Uncertainty in the flood extents 35 

predicted may be reduced by using data assimilation to combine the model state variables with 36 

observations. Assimilation may be used to correct the model state and to improve the estimates 37 

of the model parameters (e.g. channel friction) or external forcing (e.g. input flow rate).  38 

 39 

One common observation that may be assimilated is the water level at various points along the 40 

modelled reach. Water levels may be obtained from river gauges, and assimilation of gauge 41 

water levels into models has been considered by Romanowicz et al. (2006) and Neal et al. 42 

(2007).  In the UK as in many other places, a difficulty is that gauges are typically sited only 43 

every 20kms or so, thus giving little information on the spatial variations in the flood level, 44 

which may be particularly important in urban areas. Much more spatial information is contained 45 

in the flood extents captured in satellite SAR images. SARs are generally used for flood 46 

detection rather than visible-band sensors because of their all-weather day-night capability. 47 

Spatially distributed water levels may be estimated indirectly along the flood extents in SAR 48 

images by intersecting the extents with a floodplain Digital Elevation Model (DEM) (Raclot 49 

2006, Lane et al. 2003, Horritt et al. 2003, Schumann et al. 2007, Hostache et al. 2009). 50 

Assimilation of water levels derived from SAR images of flood extent into hydraulic models has 51 

been investigated by Matgen et al. (2007), Matgen et al. (2010), Giustarini et al. (2011) and Neal 52 

et al.  (submitted). 53 
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Given that 50% of the world’s rivers contain no gauges, and that the number that exist is actually 54 

declining (Vorosmarty et al. 1996), a further advantage of measuring water levels from SAR 55 

flood extents is that the method will work in un-gauged catchments. Direct space-borne 56 

measurement of surface water level has been made in the past by the Shuttle Radar Topography 57 

Mission (SRTM) (Alsdorf et al. 2007), ICESAT (Frappart et al. 2006) and altimeters such as 58 

RA-2 on Envisat, and can currently be made by altimeters such as Poseidon 2 on JASON-1, 59 

though the altimeter footprints are such that they are limited to level measurement in rivers ~1km 60 

wide. In the future, NASA’s Surface Water and Ocean Topography (SWOT) Mission will use 61 

Ka-band radar interferometry to measure surface water levels to 10cm accuracy on smaller rivers 62 

~ 100m wide such as are found in the UK when in flood (Biancamaria et al. 2010). Assimilation 63 

of simulated SWOT water levels into hydraulic models has been considered by Andreadis et al. 64 

(2007) and Biancamaria et al. (2011). As SWOT is not scheduled for launch until 2020 and will 65 

not measure levels for floods less than 100m wide, the water levels from SAR flood boundaries 66 

should continue to be an important source of data for assimilation into models, especially in the 67 

near future. It is worth noting that the water levels used in conjunction with the hydraulic 68 

model/assimilation system provide an indirect method of measuring river discharge from space. 69 

 70 

Although models run in hindcasting mode can provide useful information for minimising the 71 

effects of future floods, the ultimate goal must be to use SAR water levels in a forecasting 72 

model, which means that they have to be estimated in near real-time. It might be questioned 73 

whether it is possible, having acquired a raw SAR image, to perform the processing required to 74 

extract a set of water levels in near real-time, given the substantial number of tasks involved. It is 75 

necessary to download the image to the ground station, process the raw SAR data to a multi-look 76 
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SAR image, perform automatic geo-registration using the spacecraft orbit parameters, extract the 77 

flood extent from the image automatically, and select a distributed subset of water levels for 78 

assimilation. It appears that there are reasons for optimism on this front. ESA has already 79 

developed the FAIRE system for ASAR data, which while Envisat was functioning was able to 80 

provide processed geo-registered ASAR images only 3 hours after acquisition of the raw data 81 

(Cossu et al. 2009). While such systems still have to be developed for newer high resolution 82 

SARs such as TerraSAR-X and COSMO-SkyMed, they do at least appear technically feasible. In 83 

addition, algorithms have been developed for extracting a flood extent from a SAR image 84 

automatically and in near real-time, for flooding in rural areas by Martinis et al. (2009, 2011), 85 

and in both urban and rural areas by Mason et al. (2012).  86 

 87 

It would be useful to complete the chain of automation by developing an automatic near real-88 

time method of selecting a subset of water levels from a SAR flood extent (Schumann et al. 89 

2011). Assimilation techniques such as the Ensemble Kalman Filter (EnKF) assimilate water 90 

levels from a subset of points along a flood extent by generating an ensemble of model runs in 91 

which the levels are varied about their observed values by an amount governed by their variance. 92 

It is necessary to select a subset of levels because adjacent levels along the flood extent will be 93 

strongly correlated and add little new information, while a large number of levels will increase 94 

the computational cost unnecessarily. The subset of points selected should be at positions at 95 

which the water level can be accurately determined, with the points distributed uniformly over 96 

the flood extent, sufficiently sparsely that adjacent water levels are spatially uncorrelated. This 97 

could be viewed as an extension of an automatic near real-time algorithm for SAR flood extent 98 

delineation. Without such an algorithm, it is not possible to perform near real-time assimilation 99 
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of SAR-derived flood water levels into a flood forecasting model. The objective of this paper is 100 

to develop and test a suitable algorithm satisfying the above requirements. 101 

 102 

2. Study area and data set 103 

In common with a number of previous studies, the data set used for this study was acquired 104 

during the 1-in-150-year flood that took place on the lower Severn around Tewkesbury, U.K., in 105 

July 2007 (Mason et al. 2010, Schumann et al. 2011). This resulted in substantial flooding of 106 

urban and rural areas, about 1500 homes in Tewkesbury being flooded. Tewkesbury lies at the 107 

confluence of the Severn, flowing in from the northwest, and the Avon, flowing in from the 108 

northeast. The peak of the flood occurred on July 22, and the river did not return to bank-full 109 

until July 31. On July 25, TerraSAR-X acquired a 3m-resolution StripMap image of the region 110 

(Fig.1), showing considerable detail in the flooded urban areas (Fig. 2). The TerraSAR-X 111 

incidence angle was 24°, and the image was HH polarisation multi-look ground range spatially 112 

enhanced. At the time of overpass, there was relatively low wind speed and no rain. Aerial 113 

photos of the flooding were acquired on July 24 and 27, and these were combined to validate the 114 

flood extent and candidate water level points extracted from the TerraSAR-X image (Mason et 115 

al. 2010). The data set also included airborne scanning laser altimetry (LiDAR) data (2m 116 

resolution, 0.1m height accuracy) of the un-flooded area, with coincident LiDAR and aerial 117 

photography covering the two regions identified in Fig. 1. Rectangular region A covers the 118 

Tewkesbury urban area (2.6 x 2km) (Fig. 2), while region B covers a larger more rural area along 119 

the Severn (with north-south extent 12.3km, east-west extent 6km). The TerraSAR-X and 120 

LiDAR data in region A were re-sampled to 1m pixel size to maintain resolution in the urban 121 
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flood detection procedure (Mason et al. 2012), while the data in region B were sampled at a 122 

lower resolution (2.5m pixel size). 123 

 124 

3. Flood extent extraction algorithm 125 

The input to the method for selecting a subset of candidate water levels is a flood extent 126 

extracted from a high resolution SAR image. Although it would be possible to detect candidate 127 

waterline points in the image directly, there are significant advantages in selecting these from the 128 

waterline of a flood extent extracted using a sophisticated algorithm based on object 129 

segmentation and classification, which takes into account, for example, object heights as well as 130 

SAR backscatter, and the presence of radar shadow and layover in urban areas. Previous work 131 

has involved the development of such an algorithm for the extraction of flood extent in both 132 

urban and rural areas from a high resolution SAR image automatically and in near real-time. This 133 

is described in (Mason et al. 2012) and only a summary is given here. 134 

 135 

The algorithm first detects the flood in the rural areas. Instead of using per-pixel classification, 136 

the image is segmented into homogeneous regions, which are then classified on the basis of their 137 

spectral, textural, shape and contextual features. Classification is performed by assigning all 138 

segmented regions with mean SAR backscatter less than a threshold to the ‘flood’ class. To 139 

determine the threshold, training regions for ‘flood’ are automatically selected from regions 140 

giving no return in the LiDAR data (i.e. water that has acted as a specular reflector), and for 141 

‘non-flood’ from un-shadowed areas well above the flood level. The initial segmentation is 142 

refined using a variety of rules e.g. flood regions having mean heights significantly above the 143 

local flood height are reclassified as non-flood. 144 
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 145 

A simpler region-growing technique is used in the urban areas, guided by knowledge of the local 146 

waterline heights in adjacent rural areas. A SAR simulator is used in conjunction with LiDAR 147 

data to estimate regions of the image in which water would not be visible due to shadow or 148 

layover caused by buildings and taller vegetation. A set of seed pixels having backscatter less 149 

than the threshold, and heights less than or similar to the adjacent rural waterline heights, is 150 

identified. Seed pixels are clustered together provided that they are close to other seeds. Regions 151 

of shadow and layover are masked out in the processing. 152 

 153 

The algorithm was developed using the TerraSAR-X image and associated data acquired for the 154 

Tewkesbury 2007 flood. The algorithm proved capable of detecting flooding in rural areas using 155 

TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated 156 

false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly 157 

detected, with a false positive rate of 24%. Fig. 3 shows the flood extents extracted in urban and 158 

rural areas. 159 

 160 

4. Method of candidate water level selection 161 

4 .1. Overview 162 

The method consists of five stages, as shown in Fig. 4 : 163 

 164 

(a) Candidate waterline point selection in rural areas. 165 

(b) Correction of rural waterline positions and levels due to the presence of emergent 166 

vegetation at the flood edge. 167 
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(c) Candidate waterline point selection in urban areas. 168 

(d) Candidate point thinning to reduce spatial autocorrelation, using a top-down clustering 169 

approach. 170 

(e) Estimation of spatial autocorrelation, possibly involving repeating step (d) with different 171 

clustering thresholds until the remaining candidate water levels are uncorrelated. 172 

 173 

Table 1 gives the input and output images, optimum parameter values and acceptable parameter 174 

ranges for the stages shown in Fig. 4. 175 

 176 

This method is aimed at providing input to an assimilation system in which a single set of 177 

candidate waterline positions is identified, prior to performing an ensemble of model-forecast-178 

assimilation runs by varying the water levels at these points about their observed values by 179 

amounts governed by the level variance. This method is employed because there are usually 180 

fixed measurement positions along the reach (e.g. at gauges), but this is not so if a flood extent is 181 

available. An alternative in this case might be to select random subsets of candidates from the 182 

flood extent waterline, which would vary in position, only retain those subsets in which the 183 

errors on the levels within the subset were uncorrelated (Stephens et al. 2012), then perform an 184 

ensemble of model-forecast-assimilation runs using the observed water levels directly, which 185 

would contain the level errors. A difficulty with this approach is that, while the errors on each 186 

subset of levels would be uncorrelated within a subset, the errors on different subsets might be 187 

correlated with each other and might not be independent. 188 

 189 
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4.2. Candidate waterline point selection in rural areas. 190 

Candidate waterline points are first selected from the flood extent in rural areas. Sections of 191 

waterline in the interior of the flood extent caused by regions of emergent vegetation (e.g. 192 

hedges) may have erroneously low water levels associated with them. While most of these will 193 

have been removed at the segmentation stage, residual sections must be removed prior to further 194 

processing. As such sections bound regions that are often thin, they can generally be removed by 195 

performing a dilation and erosion operation on the binary flood extent, whereby the extent is first 196 

dilated by 30m, then eroded by the same amount. Waterline pixels are detected by applying a 197 

Sobel edge detector (Castleman 1996) to the modified flood extent, and retaining only the 198 

external edge pixels. It is required that an edge pixel is present at the same location before and 199 

after dilation and erosion, in order to select for true waterline segments on straighter sections of 200 

exterior boundaries in the flood extent. Fig. 6a shows candidate waterline points remaining after 201 

the dilation/erosion operation in a small test area of region B. 202 

 203 

To cope with the fact that candidate water levels will invariably exhibit a trend down the reach, 204 

the reach is divided up into sub-areas of a few km length. Within each sub-area, false positives 205 

are further suppressed by selecting waterline points in regions of low DEM slope within a certain 206 

height range centred on the mean water height in the sub-area. A waterline point may be 207 

heighted more accurately if it lies on a low slope rather than a high slope because any error in its 208 

position will cause only a small error in height. The slope threshold must be set quite high (0.25), 209 

because in a valley-filling event the waterlines may be on moderate rather than shallow slopes. In 210 

addition, selected points must be more than 30m away from any pixel with slope higher than the 211 
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slope threshold, to avoid selecting points in areas of radar shadow caused by taller vegetation or 212 

buildings. 213 

 214 

In order to find the allowed waterline level range in a sub-area, a histogram is constructed of the 215 

waterline levels, and the positions of the histogram maxima are found, including that of the 216 

largest maximum. Generally, the representative waterline level in the sub-area is set to 217 

correspond to the level of the largest maximum. However, if any substantial maxima greater than 218 

half that of the largest maximum is present at a higher level, the highest of these is chosen 219 

instead. This latter rule copes with the situation where a substantial number of erroneous low 220 

waterline levels in the interior of the flood extent have not been eliminated. A normal 221 

distribution N(µ, σ) is fitted around the maximum µ, with the standard deviation σ estimated 222 

from the histogram frequencies above  µ. Candidate waterline points with levels more than 2.5 σ 223 

away from µ are suppressed. Fig. 5 shows the histogram for sub-area covering the northern half 224 

of region B, together with the upper and lower bounds of the allowed candidate level range. Fig. 225 

6b shows candidate waterline points selected from a second small test area of rural region B at 226 

the end of this stage. 227 

 228 

4.3. Correction of rural waterline positions and levels due to the presence of emergent 229 

vegetation at the flood edge. 230 

While the candidate waterline points selected in rural areas will be in regions of low slope and 231 

short vegetation, there will generally still be some vegetation present at the flood edge. This may 232 

cause increased backscatter compared to that from a smooth open water surface due to double 233 

reflection between the water surface and any emergent vegetation. Bright returns from flooded 234 
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marshland using X-band SAR have been observed by Ormsby et al. (1985), though they 235 

observed no backscatter enhancement in forests, probably due to low canopy penetration. At 236 

longer wavelengths (C- and L-band), enhanced backscatter has also been observed in inter-tidal 237 

marshland by Horritt et al. (2003) and Ramsay (1995), and at forest edges by Hess et al (1990). 238 

Horritt et al. (2003) reviews the substantial literature on this topic, and considers how double 239 

reflection may change the water level at the flood edge as well as the flood extent. The current 240 

flood extraction algorithm searches for regions of low backscatter less than a threshold, and Fig. 241 

7 illustrates how this may cause an underestimation of the true flood extent and also of the flood 242 

level, as the waterline of the reduced extent may intersect the floodplain DEM at a lower level. 243 

 244 

LiDAR has been used to map short vegetation heights (Cobby et al. 2001, Weltz et al. 1994), and 245 

these heights can be used to correct the estimated waterline levels by adding the height of the 246 

vegetation at the waterline. This information, together with knowledge of the local slope, also 247 

enables a corrected waterline position to be estimated. However, the LiDAR data will have been 248 

obtained over the un-flooded reach, perhaps at a different time of year to the SAR image of the 249 

flood event, and the vegetation height might have been different at the different times. An 250 

alternative approach might be to correct the observed levels by calibrating them against those of 251 

nearby gauges, as there is unlikely to be a significant cross-transect level gradient between the 252 

gauge position and the flood edge. However, this method would not work for the many rivers not 253 

containing gauges.  254 

 255 

The method of correction used here attempts to estimate a corrected waterline level and position 256 

directly from the SAR image. At each pixel on the flood edge, the direction perpendicular to the 257 
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edge moving away from the flood is calculated using a 3 x 3-pixel Prewitt edge detector 258 

(Castleman 1996). A transect of backscatter values is constructed along this direction, traversing 259 

from inside the flood, across the waterline and across the region in which emergent vegetation 260 

might be expected (Fig. 8). Each backscatter value along the transect is constructed by averaging 261 

SAR backscatter values in a window 1 pixel long in the direction of the transect and 5 pixels 262 

long perpendicular to it centred on the transect. The minimum backscatter (minf) in the flood 263 

region between transect positions 0 (within the flood) and d1 (at the waterline) is found. The 264 

position (maxpos) of the first maximum in the backscatter values moving from d1 to d2 (the 265 

transect position furthest into dry vegetation) is also calculated. The first point of maximum 266 

positive curvature (maxpcurv) greater than a threshold (pcurv_thresh) moving from maxpos to d2 267 

is taken as the corrected position of the waterline for this transect. However, if the height at 268 

maxpcurv is not significantly higher (by 0.1m or more) than the height at the position of 269 

minimum SAR backscatter minf, the waterline point is aborted as the transect may lie across an 270 

artefact such as a flooded hedge. In the event that no point of maximum positive curvature is 271 

found, it is assumed that no enhanced backscatter due to vegetation affects this waterline point, 272 

and its original position is retained. While the procedure corrects the waterline position and level, 273 

the uncertainty in determining the true waterline position introduces additional noise into the 274 

estimates. This is due to the fact that the position of the true waterline, lying between emergent 275 

and dry vegetation, is inherently more uncertain than the position of the uncorrected waterline at 276 

the junction of open water and emergent vegetation, as there is generally a larger change in 277 

backscatter across the latter junction (see Fig. 8). Fig. 6b shows corrected candidate waterline 278 

point positions after this stage in the second test area of rural region B. 279 

 280 
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4.4. Candidate waterline point selection in urban areas. 281 

Although the vast majority of a flooded area may be rural rather than urban, it is very important 282 

to detect candidate points in urban areas because of the higher risks and costs associated with 283 

urban flooding. The level observations in urban areas can be assimilated into urban flood models 284 

to improve their estimated levels. 285 

 286 

The flood extent extraction algorithm ensures that urban flood pixels must be outside regions of 287 

radar shadow and layover. They must also have heights less than the spatially-varying flood 288 

height threshold that is applied in urban areas, based on flood heights in the adjacent rural areas. 289 

This height threshold is set sufficiently high above the adjacent rural flood height that the heights 290 

of urban flood waterline pixels can be regarded as independent of those in the adjacent rural 291 

areas. The aim of this step is to select candidate waterline pixels that are less likely to be 292 

influenced by the nearby presence of radar shadow and layover, and by the spatially-varying 293 

height threshold, and are consequently more likely to be accurately heighted. The input to the 294 

step is the flood extent in the urban area. Because urban flood pixels are likely to be few in 295 

number compared to rural ones, a specific slope threshold is not applied. 296 

 297 

The method uses a weighted distance-with-destination transform (see e.g. Mason et al. 2006). In 298 

the normal Euclidean distance transform (Castleman 1996) each non-flood pixel’s value is the 299 

Euclidean distance to the nearest flood pixel, with the distances at flood pixels being set to zero. 300 

To approximate a Euclidean distance, distance increments of 2 and 3 are used between adjacent 301 

pixels in the axial and diagonal directions, respectively. The distance-with-destination transform 302 

is a form of distance transform that stores for each non-flood pixel its distance to the nearest 303 
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flood pixel, and also the direction from which the minimum distance was propagated. This 304 

allows back-tracking from a non-flood pixel to find its nearest flood pixel. In the weighted 305 

distance-with-destination transform, assuming logical h_dist is TRUE if pixel (i, j) is not in a 306 

shadow/layover region and not above the spatially-varying flood height threshold, the distance 307 

increments are weighted by a function w(h) of the form – 308 

 309 

w(h) = 1      if h_dist is TRUE 310 

        = │h(i, j) – h(i+x, j+y)│  otherwise  [1] 311 

 312 

where (i+x, j+y) is the neighbour adjacent to (i, j) (with -1 ≤ x ≤ 1, -1 ≤ y≤ 1) for which the 313 

distance increment is minimum and h (i, j) is the height at (i, j). For pixels not in shadow or 314 

layover regions and below the urban flood height threshold, their distance increments are 315 

weighted to be simply the geometric increments, whereas other pixels have larger weights 316 

multiplying their geometric increments depending on the height differences at adjacent pixels.  317 

 318 

A set of urban flood waterline pixels is chosen using the weighted and unweighted distance 319 

transforms. For an urban non-flood pixel at a certain threshold distance d_thresh from its nearest 320 

urban flood pixel, its associated weighted distance is found. If its normalised distance (i.e. 321 

weighted distance/unweighted distance) is less than a threshold d_norm (>1), the weighted 322 

distance-with-destination transform is used to track back to find the flood waterline pixel 323 

associated with this non-flood pixel. This urban flood waterline pixel is then selected as a 324 

candidate for further processing. Fig. 9 shows candidate waterline points selected in a small test 325 

urban area of rectangle A. 326 
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4.5. Candidate waterline point thinning. 327 

At this stage in the processing of the flood extent, there will generally be a large number of 328 

candidate points remaining in both rural and urban areas. These will often be clustered together 329 

so that their levels will be strongly spatially correlated with adjacent points adding little new 330 

information, in addition to being so numerous as to increase the computational cost of the 331 

assimilation unnecessarily. To ameliorate this problem, an adaptive thinning algorithm due to 332 

Ochotta et al. (2005) is applied to the candidates in both rural and urban areas to reduce their 333 

number while retaining their essential information content. The method adopts a top-down 334 

clustering approach using a distance metric that combines spatial distance with difference in 335 

observation values. Observations with similar spatial positions and water levels are grouped into 336 

clusters which are approximated by one representative measure (i.e. the mean of the cluster).  337 

 338 

The method begins by approximating the full dataset P0 by the cluster mean with respect to a 339 

distance measure. Specifically, the dataset is considered as a cluster C with elements p ∈ C, p = 340 

(x, y, z)
T
 that groups the observations at the positions p with water levels f(p). A distance metric 341 

df(p,q) is defined that simultaneously takes into account the distances in space and water level 342 

between two observations at positions p and q using the scaling factor α – 343 

 344 

df
2
 

½
                    [2] 345 

 346 

where || denotes the Euclidean metric. The cluster mean is defined as observation  that 347 

minimises the sum of squared distances to all cluster elements q ∈ C- 348 
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 349 

 350 

              [3] 351 

 352 

e(C) = e(C, ) is taken as the cluster error, and is an estimate of the approximation quality of C. 353 

Initially all observations are taken to be in one cluster, so that C0 := P0 and U :=  (Fig. 354 

10(a)). In the splitting phase, any cluster C ∈ U with an error e(C) that is larger than a given 355 

threshold t > 0 is subdivided. Principal Component Analysis is used to split C across its major 356 

principal axis through the cluster centroid (Fig. 10b) (see Ochotta et al. 2005). The process of 357 

cluster splitting is continued until all clusters in C ∈ U satisfy e(C) ≤  t (Fig. 10c). 358 

 359 

The clustering phase of the algorithm is followed by a relaxation phase, which may reduce the 360 

total approximation error further. Each cluster element p ∈ Ci is reassigned to the cluster Cj for 361 

which the distance to the cluster mean is minimum with respect to df. This may change the 362 

means for affected clusters and require their recomputation. This process is repeated until 363 

convergence. The cluster centroids i in the thinned dataset Pi are used to represent the original 364 

observations p ∈ P0. The errors on the centroid water levels should be smaller than those on the 365 

original observations, and should tend towards the errors on the cluster means. Fig. 6b shows the 366 

candidate waterline point remaining after thinning in the second test area of rural region B. 367 

 368 

 369 

 370 
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4.6. Estimation of spatial autocorrelation. 371 

The errors on the resulting set of candidate water levels should be spatially uncorrelated, so that 372 

the observation error covariance matrix used in the subsequent assimilation procedure can be 373 

treated as diagonal. The spatial autocorrelation of a set of features can be measured using 374 

Moran’s I test, which measures spatial autocorrelation based on both feature values and feature 375 

locations simultaneously (Moran 1950). The feature values (water levels) used in the test will be 376 

the means of the values used to generate the ensemble employed in the assimilation. Even so, the 377 

spatial autocorrelation obtained using the mean values should be a good indication of the spatial 378 

autocorrelations of the individual ensemble members, as the feature locations would remain the 379 

same. 380 

Moran's I is defined as 381 

      [4] 382 

where N is the number of spatial units (i.e. candidate points) indexed by i and j, X is the variable 383 

of interest (in this case water level),  is the mean of X, and wij is an element of a matrix of 384 

spatial weights. The weights wij (0 <  wij  < 1) take values that are high for neighbours that are 385 

close, and low for neighbours far apart. In this case, wij  was set to be the inverse distance 386 

between candidate points i and j. Weights wii are set to zero. Moran’s I values range from -1 387 

(perfect dispersion) to +1 (perfect correlation), with values of 0 for a random spatial pattern. For 388 

statistical hypothesis testing, these values can be converted to a Z score, where -1.96 < Z < 1.96 389 

represents candidate sets with no spatial autocorrelation (dispersion or correlation) at the 5% 390 
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significance level. Moran’s I has been used to measure spatial autocorrelation in the errors on 391 

water levels derived from SAR flood extents previously by Stephens et al (2012). 392 

The candidate water levels will invariably exhibit a drift to lower values travelling down the 393 

modelled reach, and there may also be cross-reach drift. As with variogram construction in the 394 

presence of drift, it is necessary to remove the drift component from the levels before estimating 395 

their spatial autocorrelation. To effect the drift removal, a 2-D planar surface is fitted through the 396 

candidate points, and the value (Xi – ) is the difference between the level at point i and the level 397 

of the planar surface at that point. The variance of the resulting differences is an estimate of the 398 

observation variance that may be used in the subsequent assimilation. 399 

 400 

If the spatial autocorrelation is significant, the cluster threshold t in the Ochotta method must be 401 

raised and the thinning repeated for the higher value, in order to reduce the number of candidates 402 

further. This process may be repeated until the candidate set remaining is uncorrelated. 403 

 404 

5. Experiment results 405 

The flood extents in regions A and B were processed through the five stages of the method. 406 

Table 2 gives the number of candidate waterline points surviving after each stage. 407 

 408 

Considering the initial candidate waterline point selection in rural areas (stage (a)), for rural 409 

areas of region A, 114497 pixels were initially marked as being edge pixels in the flood extent. 410 

After selection of those pixels on straighter external boundaries that were on low slopes, distant 411 

from regions of high slope and within the required height range of the most frequent water level, 412 

845 pixels (0.7%) remained. For rural region B, 3726 (2.9%) of the initial 128848 edge pixels in 413 
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the flood extent were selected for further processing. The higher initial edge density in region A 414 

is a result of the higher image resolution used in region A. 415 

 416 

We next consider the correction of rural waterline positions and levels due to the presence of 417 

vegetation at the flood edge (stage (b)). For rural areas of region A, 606 pixels out of the 845 418 

pixels input to this stage were successfully corrected (72%), with pixels that could not be 419 

corrected being ignored in the subsequent processing. The average increase in water level of the 420 

corrected pixels was 0.31m, with a standard deviation on this increase of 0.25m, so that the 421 

correction procedure introduced an additional noise component into the corrected water levels. 422 

This reflects that fact that the position of the corrected waterline cannot be determined as 423 

accurately as the position of the uncorrected waterline. For rural region B, 2937 pixels of the 424 

3726 pixels input to this stage were successfully corrected (79%), though the average increase in 425 

water level of the corrected pixels was higher at 0.48m, with a standard deviation on this increase 426 

of 0.54m. 427 

 428 

Candidate waterline point selection in urban areas (stage (c)) was applied only to the urban areas 429 

of region A. The number of candidate urban flood waterline pixels subjected to the normalised 430 

distance threshold test was 9943, and the number accepted, with distances below the threshold, 431 

was 252 (2.5%). A normalised distance threshold of 2.0 was applied.  432 

 433 

In the candidate waterline point adaptive thinning stage (stage (d)), the scaling factor α scaling 434 

the water level difference between two observations compared to their Euclidean separation 435 

distance was set to 100. It was found that results were insensitive to the exact value of α over a 436 
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range 10 < α < 1000. The cluster threshold t was set to a lower value in region A than region B, 437 

so that more candidates could be obtained in the urban area and its rural surround than in the 438 

largely rural area B. This made it easier to see spatial differences in water level in the urban area. 439 

In region A, t was set to 200m, and the observations in the rural area of A were thinned from an 440 

initial number of 606 to a final number of 8 (1.3%), while in the urban area observations were 441 

thinned from 9943 to 4 (0.04%). In rural region B, t was set to 500m, and observations were 442 

thinned from 2937 to 11 (0.4%). Fig. 11 shows the candidate waterline points remaining after 443 

thinning in regions A and B. 444 

 445 

The spatial autocorrelation of the remaining candidate waterline points was calculated in stage 446 

(e) using Moran’s I test, for regions A and B separately and also combined (table 3). The Z 447 

scores indicate that all three candidate sets were spatially uncorrelated at the 5% significance 448 

level. The standard deviations of the water level differences from the fitted 2-D planar surface 449 

were 0.11m for region A, 0.23m for region B, and 0.24m for both regions combined. These 450 

values indicate that the Ochotta top-down clustering thinning has reduced the uncertainties of the 451 

water levels, which were increased by the correction of waterline positions and levels in stage 452 

(b). An indication of the utility of the thinning stage can be obtained from the fact that, if the 453 

spatial autocorrelation of the errors on the waterline level point set existing prior to thinning was 454 

calculated for rural region B, the Z score was extremely large, indicating high correlation among 455 

the levels. 456 

 457 

The spatial variation in waterline levels across a region can also be seen by examining the 2-D 458 

planar surface fitted to the candidates in the region during the Moran’s I test. In region B, the 459 



22 
 

predominant slope (-0.013) of the levels is in the direction of the river flow (almost N-S), while 460 

the cross-river slope is only -0.003. However, in region A, while there is still significant slope in 461 

the N-S river flow direction (-0.026), there is also a significant W-E slope (-0.045) , indicating 462 

that levels in the East of Tewksbury were generally lower than those in the West, falling by 463 

0.45m per km (see also Schumann et al. 2011). This information was extracted from the SAR-464 

derived waterline levels, and is not available from the local gauge levels. 465 

 466 

Fig. 12 compares the candidate waterline point levels with the levels at gauges at Saxon’s Lode 467 

(386349E, 239041N) and Mythe Bridge (388899E, 233722N) in region B, at the time of the 468 

TerraSAR-X overpass. The gauge levels are not dependent on the LiDAR DEM, so that the 469 

gauges provide independent measurements of water level. From table 3, the standard deviation of 470 

waterline point levels about the fitted planar surface is 0.23m. The trend of this surface is 471 

predominantly in the N-S direction and is shown in Fig. 12. From modelling results, no 472 

significant difference should be expected between the water level at the gauge position near the 473 

centre of the river and the level of the waterline at the same distance downstream. For both 474 

gauges, the difference in level from the trend surface is less than one standard deviation, so that 475 

no significant bias between the SAR-derived and gauge levels could be detected. 476 

 477 

We also investigated whether the candidate waterline points selected automatically appeared to 478 

be at the correct position and level by manual inspection of aerial photographs. The aerial photos 479 

were not exactly contemporaneous with the TerraSAR-X overpass on 25
th

 July, as those of 24
th

 480 

July were acquired about 19 hours before the overpass and those of 27
th

 July about 53 hours after 481 

it. It was established that the gauge level changed almost linearly over this 72-hour period, so 482 
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that by estimating the position and level of a particular waterline point in the two sets of aerial 483 

photos, its position and level at TerraSAR-X overpass time could be estimated for comparison 484 

with the SAR-derived values. A set of 9 candidate waterline points selected by the Ochotta 485 

method in region B were identified, which were also visible in both sets of aerial photos. The 486 

waterlines in the aerial photos appeared quite sharply defined, so that it was possible to estimate 487 

their positions to within about 2 pixels. The aerial photo waterline levels in the set proved to be 488 

slightly but significantly lower (0.14 ± 0.11 m) than those derived from the TerraSAR-X image, 489 

which were shown above to be not significantly different from the gauge levels. Part of the 490 

reason for this difference may be that a slight underestimation of the true waterline may be being 491 

made in the aerial photos, perhaps due to the presence of vegetation. To test this, the levels of 492 

waterline positions on roads visible in the aerial photos were compared to the levels in fields 493 

adjacent to the roads, on the basis that roads would be unvegetated areas. Based on a set of 6 494 

measurement pairs, it was found that the levels on the roads exceeded those on the adjacent 495 

fields by 0.20 ± 0.36m, though the difference was not significantly non-zero. The large spread on 496 

the differences was partly due to the fact that the measurements could not always be made on 497 

low slopes because of the paucity of flooded roads in region B. 498 

 499 

6. Discussion and Conclusions 500 

A method for selecting a subset of high resolution SAR waterline levels for assimilation into a 501 

hydraulic model has been developed. This is automatic and near real-time to allow the levels to 502 

be used in a forecasting mode. The method selects candidate waterline points in flooded rural 503 

areas having low slope, and corrects their levels and positions for the effects of double 504 

reflections between the water surface and emergent vegetation at the flood edge. Waterline 505 
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points with levels similar to those in adjacent rural areas are also selected in flooded urban areas 506 

away from radar shadow and layover. The resulting points are thinned to reduce spatial 507 

autocorrelation using a top-down clustering approach. The waterline points extracted from a 508 

TerraSAR-X image containing urban and rural flooding proved to be spatially uncorrelated, with 509 

levels reasonably similar to those determined from contemporaneous aerial photos. They were 510 

also in good agreement with those of nearby gauges, and sufficiently accurate to be useful in any 511 

subsequent assimilation procedure. 512 

 513 

The method of subset selection is based on the twin premises that it is necessary to select a 514 

subset of levels because adjacent levels along the flood extent will be strongly correlated and add 515 

little new information, and that a large number of levels will increase the computational cost of 516 

assimilation unnecessarily. Even so, at this stage the impact that the data reduction may have on 517 

a subsequent assimilation stage remains unclear. This might depend on other factors in addition 518 

to the number of observations and the spatial correlation of their errors, such as the complexity 519 

of the hydrodynamic model and the type of filter used for assimilation. Further work is required 520 

to investigate this aspect, by coupling the subset selection procedure with the assimilation stage 521 

and investigating the information content and computation time associated with different subsets 522 

of points obtained using different clustering thresholds, in order to try to find some optimum. 523 

 524 

It should be borne in mind that the method presented has been developed using a TerraSAR-X 525 

image of a single flood event. It would probably be incorrect to assume that the parameter set 526 

optimised for this case study would necessarily be applicable to other flood events or SAR data 527 

types. Further development of the method to extract level subsets for flood events on other types 528 
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of reach using other types of SAR data is necessary before the method could be considered a 529 

general one. While the method has been developed for high resolution SAR images, in principle 530 

it should be applicable to lower resolution SAR images such as those obtained from Radarsat-1, 531 

perhaps using a simpler automatic segmentation algorithm such as that described in Mason et al. 532 

(2007. 533 

 534 

The TerraSAR-X image was acquired 3 days after the peak of the flood, when the flood was 535 

entering its recessional phase. Fig. 11b shows a number of examples of levels selected along the 536 

waterlines of water bodies not connected to the main channel. Assimilation of these levels into 537 

the hydraulic model is helpful in allowing this to make an improved prediction of the rate of 538 

floodplain dewatering. This is a further illustration of the additional information that can be 539 

obtained from SAR-derived waterline levels compared to simply using levels from gauges. 540 

 541 

The computing time required to perform the automatic waterline point selection for the larger 542 

region B was a few minutes using IDL on a Sun SPARC station, with the dominant time being 543 

the time to perform the adaptive top-down clustering. This time could be significantly reduced 544 

using parallel processing However, it is important to stress that, in order to obtain a SAR flood 545 

extent and a set of candidate waterline levels automatically and in near real-time, it is assumed 546 

that a number of pre-processing operations will have been carried out in parallel with tasking the 547 

satellite to acquire the image of flooding. These include procedures such as the generation of the 548 

DEM and the delineation of the urban area, which could be performed offline at an earlier date 549 

and retrieved between satellite tasking and image acquisition. The generation of the 550 

shadow/layover map for the urban area by running a SAR simulator on the LiDAR data of the 551 
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urban area, given the SAR trajectory and proposed look angle, could also be carried out during 552 

this time. It is further assumed that download of the image to the ground station, processing of 553 

the raw SAR to a multi-look image and automatic geo-registration using the spacecraft orbit 554 

parameters could be carried out by a system analogous to ESA’s FAIRE system, but one that 555 

works in near real-time for newer high resolution SARs such as TerraSAR-X and COSMO-556 

SkyMed. 557 

 558 

The method presented extracts a subset of candidate waterline levels automatically. It would 559 

obviously be difficult to extract an equivalent subset of levels manually because of the 560 

requirement that the levels should be extracted in near real-time to allow them to be used in a 561 

forecasting mode. It is also likely that a manually-selected subset would be less accurate than one 562 

determined automatically. The latter set would be corrected for the effects of double reflection 563 

due to emergent vegetation using an objective algorithm, and the adaptive top-down clustering 564 

would tend to reduce level errors by selecting waterline points whose levels were close to the 565 

means of the clusters containing them. 566 

 567 

Future work will concentrate on using the method as a pre-processor in the development of 568 

techniques to assimilate SAR-derived waterline and gauge levels into coupled 569 

hydrologic/hydraulic models in order to improve the model states and estimate model parameters 570 

and external forcing. The method will also be tested under different conditions in order to assess 571 

its generality, by extracting level subsets for flood events on other types of reach using other 572 

types of SAR data, and assessing its sensitivity to the parameters given in table 1. 573 

 574 
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Tables 708 

Table 1. Input and output images, optimum parameter values and acceptable parameter ranges 709 

for the stages of candidate water level selection (see text for definitions) 710 

Stage Input images Output image Parameters Optimum 

parameter 

value 

Acceptable 

parameter 

range 

(a) Waterline 

point selection 

in rural areas. 

1. Rural flood 

extent image 

(binary). 

2. DEM. 

3. DEM slope 

image. 

Candidate rural 

water line levels. 

Dilation/erosion 

distance. 

Reach sub-area 

length. 

Slope threshold. 

Distance from 

high slope. 

30m 

 

6km 

 

0.25 

30m 

 

 

20 – 40m 

 

4 – 8km 

 

0.2 – 0.3 

25 – 35m 

(b) Correction 

of waterline 

position/level 

due to flood 

edge vegetation. 

1. Candidate 

rural water line 

levels. 

2. DEM. 

3. SAR image. 

Corrected 

candidate rural 

water line levels. 

Maximum 

positive curvature 

threshold 

pcurv_thresh. 

Height difference 

between pixels at 

maxpcurv and 

minf. 

1DN/m
2
 

 

 

 

0.1m 

0.3 – 3DN/m2
 

 

 

 

0.05 – 0.15m 

(c) Waterline 

point selection 

in urban areas. 

1. Urban flood 

extent image 

(binary). 

2. Urban extent 

image (binary). 

3. DEM. 

4. Shadow-

layover mask 

(binary). 

5. Water height 

threshold image 

(binary). 

6. Corrected 

candidate rural 

water line levels. 

Corrected 

candidate rural 

and urban 

waterline levels. 

Normalised 

distance threshold 

d_norm. 

2.0 1.5 – 2.5 

(d) Waterline 

point thinning. 

1. Corrected 

candidate rural 

and urban 

waterline levels. 

2. DEM. 

Thinned 

corrected 

candidate rural 

and urban 

waterline levels. 

Cluster distance 

threshold t. 

Scaling factor α. 

200m (urban), 

500m (rural). 

100 

User-selectable. 

10 - 1000 

 711 

 712 

713 
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 714 

Table 2. Number of candidate waterline points surviving after each stage of reduction. 715 

Stage Region A (rural) Region A (urban) Region B 

Input to (a) 114497  128848 

After (a) 845  3726 

After (b) 606  2937 

Input to (c)  9943  

After (c)  252  

After (d) 8 4 11 

 716 

 717 

Table 3. Results of spatial autocorrelation test. 718 

719 

Variable Region A Region B Combined regions 

No. of samples 12 11 23 

Moran’s I value -0.22 -0.14 -0.02 

Z score -1.39 -0.33 0.34 

Standard deviation of 

water levels (m) 

0.11 0.23 0.24 
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Figure captions 720 

1. TerraSAR-X image of the lower Severn/Avon July 2007 flood (dark areas are water) (© DLR 721 

2007). Rectangle A includes the urban area of Tewkesbury, and region B the rural validation 722 

area. 723 

 724 

2. TerraSAR-X image showing detail in the urban areas of Tewkesbury (2.6 x 2 km) (© DLR 725 

2007). 726 

 727 

3. Flood extents extracted in (a) rural area (blue = predicted flood, superimposed on TerraSAR-X 728 

image), and (b) urban area (yellow = predicted flood, brown = shadow/layover areas that may be 729 

flooded, superimposed on LiDAR data) (after Mason et al. accepted). 730 

4. Steps in the processing chain. 731 

 732 

5. Histogram of candidate waterline levels for the northern half of region B (see Fig. 1). The 733 

allowed candidate level range is 11.6m – 13.6m. 734 

 735 

6. Test areas of rural region B showing (a) TerraSAR-X image, flood extent (blue) and candidate 736 

waterline points selected after dilation and erosion in stage (a) (red); (b) TerraSAR-X image, 737 

flood extent (blue), candidate waterline points selected at the end of stage (a) (green), corrected 738 

candidate waterline point positions after stage (b) (magenta), and candidate waterline point 739 

remaining after thinning in stage (d) (red). 740 

 741 
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7. The effect of short vegetation on estimation of water surface elevations. The vegetation moves 742 

the SAR waterline towards the flooding and the water level is underestimated (after Horritt et al. 743 

2003). 744 

 745 

8. Example transect of averaged SAR backscatter values across a flood edge into emergent 746 

vegetation; (a) transect superimposed on SAR image; (b) SAR backscatter along transect. The 747 

original waterline position d1 is at pixel 6. The transect position d2 furthest into dry vegetation is 748 

at pixel 16. The position of maximum positive curvature (maxpcurv) greater than the first 749 

maximum (maxpos) after d1 is at pixel 12. The height at pixel 12 is 11.93m, whereas that at d1 is 750 

11.43m. 751 

 752 

9. Urban test area of rectangle A showing LiDAR image, urban flood extent (blue), candidate 753 

waterline points selected in stage (c) (magenta), and candidate waterline point remaining after 754 

thinning in stage (d) (red). 755 

 756 

10. Concept of clustering method (after Ochotta et al. 2005). (a) Observations are grouped to a 757 

cluster with a cluster centre (filled dot); (b) when the associated cluster error is too large, the 758 

cluster is split by Principal Component Analysis, providing two new clusters; (c) this procedure 759 

is repeated until all cluster errors are below a given threshold, t > 0. The set of centroids is the 760 

reduced observation set. 761 

11. Candidate waterline points remaining after Ochotta clustering thinning in (a) region A and 762 

(b) region B. 763 
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12. Water level versus position along northerly axis for candidate waterline points and gauges in 764 

region B. 765 
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