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Abstract Accurate decadal climate predictions could be

used to inform adaptation actions to a changing climate. The

skill of such predictions from initialised dynamical global

climate models (GCMs) may be assessed by comparing with

predictions from statistical models which are based solely on

historical observations. This paper presents two benchmark

statistical models for predicting both the radiatively forced

trend and internal variability of annual mean sea surface

temperatures (SSTs) on a decadal timescale based on the

gridded observation data set HadISST. For both statistical

models, the trend related to radiative forcing is modelled

using a linear regression of SST time series at each grid box

on the time series of equivalent global mean atmospheric

CO2 concentration. The residual internal variability is then

modelled by (1) a first-order autoregressive model (AR1) and

(2) a constructed analogue model (CA). From the verification

of 46 retrospective forecasts with start years from 1960 to

2005, the correlation coefficient for anomaly forecasts using

trend with AR1 is greater than 0.7 over parts of extra-tropical

North Atlantic, the Indian Ocean and western Pacific. This is

primarily related to the prediction of the forced trend. More

importantly, both CA and AR1 give skillful predictions of

the internal variability of SSTs in the subpolar gyre region

over the far North Atlantic for lead time of 2–5 years, with

correlation coefficients greater than 0.5. For the subpolar

gyre and parts of the South Atlantic, CA is superior to AR1

for lead time of 6–9 years. These statistical forecasts are also

compared with ensemble mean retrospective forecasts by

DePreSys, an initialised GCM. DePreSys is found to out-

perform the statistical models over large parts of North

Atlantic for lead times of 2–5 years and 6–9 years, however

trend with AR1 is generally superior to DePreSys in the

North Atlantic Current region, while trend with CA is

superior to DePreSys in parts of South Atlantic for lead time

of 6–9 years. These findings encourage further development

of benchmark statistical decadal prediction models, and

methods to combine different predictions.

Keywords Decadal prediction � Statistical �
Sea surface temperatures � Global climate model

1 Introduction

Climate predictions for the near-term (up to about

30 years), especially on regional scales, can be used to

inform adaptation actions to a changing climate, for

example infrastructure planning and hazard preparedness

(Adger et al. 2005; Challinor 2009). In recent years, there

has been major progress in the development of such pre-

dictions based on global climate models (GCMs) initialised

with atmospheric and oceanic observations (e.g. Smith

et al. 2007; Keenlyside et al. 2008; Fyfe et al. 2011). As

part of the Fifth Coupled Model Intercomparison Project

(CMIP5; Taylor et al. 2011), experimental decadal pre-

dictions produced by initialised GCMs from different

modelling groups will be compared (e.g. Smith et al.

2012). Proper evaluation of these dynamical decadal pre-

dictions can aid efforts in improving future GCM simula-

tions, for example their initialisation schemes.
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On decadal timescales changes in climate are caused by

both its response to radiative forcing and its internal vari-

ability (Keenlyside and Ba 2010; Solomon et al. 2011;

Goddard et al. 2012b). With a non-stationary climate, an

initialised GCM can show significant prediction skill if it

predicts a long-term forced trend consistent with observa-

tions (e.g. Lee et al. 2006; van Oldenborgh et al. 2012), but

often users are also interested in the magnitude of the

internal variability. The skill of a particular initialised

GCM in predicting such internal variability may be

assessed by comparing its retrospective forecasts (also

known as hindcasts in the decadal prediction literature) and

those produced by the identical GCM without assimilation

of observations (e.g. Smith et al. 2007). Alternatively,

Laepple et al. (2008) proposed the use of bias-corrected

ensemble mean projections from multiple uninitialised

GCMs as benchmarks to evaluate the skill of decadal ret-

rospective forecasts by initialised GCMs.

Being much less computationally expensive to run,

predictions from statistical models can also serve as

benchmarks when assessing the skill of dynamical GCM

predictions. A good benchmark statistical model should be

able to capture the basic characteristics of the climate

system which we want to predict. Ideally it should also be

trained solely by historical observations without informa-

tion from physical climate models, but this is limited by the

length and quality of available observational record. Sim-

ple benchmarks such as persistence and climatology have

been extensively used in the evaluation of seasonal climate

predictions (e.g. Barnston et al 1994; Colman and Davey

2003). As for decadal climate predictions, since both

radiative forcing and internal variability can be important,

more advanced benchmark statistical models which also

incorporate these effects are more appropriate. For exam-

ple, Lean and Rind (2009) projected global annual mean air

temperatures using a multiple linear regression of temper-

ature on anthropogenic influence, solar radiation, ENSO

variability and volcanic aerosols. Krueger and von Storch

(2011) produced decadal retrospective forecasts of global

annual mean temperatures by separating the observed

temperature time series into two components representing

forced trend and internal variability respectively. The

forced trend was modelled by a linear regression between

multi-model ensemble mean temperatures and atmospheric

CO2 concentration. After removing this forced trend

component, the residual internal variability was modelled

as a first-order autoregressive process. Fildes and Kou-

rentzes (2011) compared retrospective forecasts of global

mean temperatures for up to 20 years ahead by the UK Met

Office Decadal Prediction System DePreSys (Smith et al.

2007; which will also be considered in this study, see Sect.

2.2) with those by various time series models, ranging from

a local linear trend model to a multivariate neural network.

DePreSys was found to be more skillful than the statistical

models for lead time of 1–4 years, while some of the more

complex statistical models, such as the neural network

model, have better prediction skill for longer lead times.

Some other studies have produced benchmark statistical

models for climate variables other than air temperatures.

With a perfect model approach using control integrations of

two GCMs, Hawkins et al. (2011) showed that two empirical

methods, namely Linear Inverse Modelling (LIM) and Con-

structed Analogue (CA), have significant skill in predicting

the internal variability of sea surface temperatures (SSTs)

over parts of the Atlantic for up to a decade. Zanna (2012)

applied LIM to gridded observed Atlantic SST anomalies,

with the forced trend removed using cubic splines. The ret-

rospective forecasts were found to be skillful relative to cli-

matology for a lead time of up to around 5 years.

In this paper we present two benchmark statistical

models for predicting annual mean SSTs with a lead time of

up to a decade based on the gridded observed data set

HadISST. Variations of SSTs have important implications

for atmospheric conditions, such as precipitation patterns

and tropical cyclone activity (e.g. Sutton and Hodson 2005;

Zhang and Delworth 2006; Smith et al. 2010). We will

assess the predictive skill of the two statistical models by

verifying a set of retrospective forecasts with start times

from mid-1960s to mid-2000s, with a focus on examining

the regional skill for different lead times. In addition, a brief

comparison will be made with the corresponding forecasts

by DePreSys to assess the relative strengths of dynamical

and statistical predictions for different regions. Predictions

for the Atlantic Ocean are particularly interesting and our

discussion will put greater emphasis on this sector.

This paper is structured as follows. Section 2 gives a

summary of HadISST, DePreSys and the external forcing

time series used in this study. This is followed by

descriptions of our benchmark statistical models and veri-

fication measures in Sect. 3. In Sect. 4 we assess the pre-

diction skill of the statistical models, while in Sect. 5 we

compare the skill of these models with DePreSys. The

statistical forecast of Atlantic SSTs for the years 2012 to

2021 is presented in Sect. 6. Further discussion on our

findings and concluding remarks are given in Sect. 7.

2 Observational and GCM data

2.1 HadISST

We use the HadISST data set (Rayner et al. 2003) to train

our statistical prediction models, correct biases in the

DePreSys predictions and verify retrospective forecasts

from both the statistical models and DePreSys. This data

set contains global monthly interpolated fields of SSTs on a
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1� 9 1� grid from 1870 to 2011. For the rest of this paper,

we consider the anomalies of annual means of SSTs. To

allow direct comparison between the statistical and DeP-

reSys retrospective forecasts, here the annual mean for a

certain year is defined to be the 12-month average from the

December of the previous year to the November of the year

concerned. The anomalies for each grid box are calculated

by removing the corresponding mean for the years 1986 to

2005. It should be noted that the amount of data (e.g. in-

situ SST observations, satellite data) used to construct this

gridded data set varies with space and time. Particularly,

because of the sparseness of observations over the southern

oceans and near the polar regions, we perform our analyses

only from 30�S to 70�N. Grid boxes covered with sea-ice

are also omitted in our analyses.

2.2 DePreSys

The UK Met Office Decadal Prediction System, DePreSys

(Smith et al. 2007), is based on the third Hadley Centre

coupled GCM HadCM3 (Gordon et al. 2000). Its atmosphere

component has a horizontal resolution of 2.5� 9 3.75� and

19 vertical levels, while its ocean component has a

1.25� 9 1.25� resolution with 20 vertical levels. We use a

perturbed physics ensemble of DePreSys with nine variants

designed to sample climate model uncertainty. One of these

nine variants uses the standard HadCM3 settings of physical

parameters, while for the other eight, simultaneous pertur-

bations of 29 atmospheric parameters are employed. These

variants are chosen from previous experiments with larger

perturbed physics ensembles (Collins et al. 2006, 2011),

with the aim of spanning a wide range of parameter values

while simulating physically plausible climate variability.

The equilibrium climate sensitivity of the ensemble ranges

from 2.6 to 7.1 �C.

For each model variant, atmospheric and oceanic anal-

yses were assimilated from December 1958 to November

2007 as anomalies with respect to the model climate to

create the initial conditions. Time-varying radiative forc-

ings derived from observed changes in greenhouse gases,

aerosol and solar irradiance were used up to the year 2000,

after which the forcing based on the SRES A1B scenario

(Nakićenović and Swart 2000) was applied. A total of 46

retrospective forecasts of global SSTs, starting on 1

November of each year from 1960 to 2005 with each

extending to 10 years ahead, are available for each

ensemble variant. We consider only the ensemble mean of

annual mean SST forecasts from December to November.

2.3 Global mean equivalent CO2 concentration

In the modelling of the forced trend of observed SSTs, we

use the global mean equivalent CO2 concentration from the

Representative Concentration Pathways (RCPs) green-

house gases concentration historical and projection data set

(Meinshausen et al. 2011). These data have been used to

drive the CMIP5 climate simulations. The equivalent CO2

concentration incorporates the global net effects of all

anthropogenic forcing agents, including greenhouse gases

and aerosols. Observed concentrations from 1760 to 2005

are available. For subsequent years, the RCP4.5 concen-

tration scenario is used for the forecasts we present in this

paper, but the sensitivity of our results to alternative sce-

narios have also been tested.

3 Statistical prediction models for SST hindcasts

and forecasts

In order to compare with DePreSys, our statistical retro-

spective forecasts for annual mean SSTs cover the same

time period, i.e. we produce 46 sets of retrospective fore-

casts starting from 1960 to 2005, each of 10 years in

length. In addition, we produce a forecast starting from

2011 for the years 2012–2021.

Variations in annual mean SSTs are caused by both the

changes in natural or anthropogenic radiative forcing and

the internal dynamics of the ocean. Internal variability at a

longer timescale may temporarily amplify or reduce the

underlying long-term trend in SSTs due to radiative forcing

(Ting et al. 2009; DelSole et al. 2011). For our predictions,

we attempt to model the two effects separately. We

decompose the time series of observed SST anomalies Xi,t

for each grid box i in year t (relative to the 1986–2005

mean) into two components,

Xi;t ¼ Xf
i;t þ Xv

i;t ð1Þ

where Xi,t
f and Xi,t

v represent the long-term trend due to

radiative forcing and internal variability, respectively. The

decomposition is done by first estimating Xi,t
f with a simple

regression of Xi,t on the equivalent CO2 concentration, as

explained in Sect. 3.1 below. The residuals of the linear

regression are taken as Xi,t
v , which are then modelled using

either an autoregressive model or a constructed analogue,

as described in Sects. 3.3 and 3.4.

3.1 Modelling the forced trend (Trend)

The time series of global mean equivalent CO2 concen-

tration is used to represent the variation of external radia-

tive forcing. We then use the following linear regression

model to estimate the response of SSTs in each grid box to

this forcing:

Xi;t ¼ a0 þ a1Ct�1 þ Xv
i;t; ð2Þ
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where Ct-1 is the equivalent CO2 concentration for the

previous year. The first two terms on the right hand side of

(2) represent the forced component of observed SSTs, Xi,t
f .

The residuals of this regression model, or the component

of the SST time series not explained by the CO2

concentration time series, are taken as the internal

variability. These residuals are assumed to be normally

distributed with zero mean and constant variance. For

each forecast, this model is fitted to data from all

available years excluding the 10 years to be predicted.

This simple regression model has two main assumptions:

SSTs at each location are only dependent on the

equivalent CO2 concentration with a lag time of 1 year

and such dependence is linear. Although a logarithmic

dependence might be more physically plausible, a linear

approximation is considered adequate for the range of

equivalent CO2 concentration variation in the past

140 years. A similar regression approach was adopted

by Krueger and von Storch (2011) to estimate the forced

component of surface air temperatures, but with the multi-

model ensemble mean temperatures from historical

simulations as the response variable. In contrast, our

model uses the observed SSTs and thus avoids the

inclusion of climate model data in our statistical

prediction scheme. Using estimates of the parameters, â0

and â1, the forced component of SST for a lead time of k

years is predicted by

X̂f
i;tþk ¼ â0 þ â1Ci;tþk�1: ð3Þ

Figure 1a shows estimates of the slope parameter (a1)

for the model fitted to data from all available years (1871 to

2011 for SSTs; 1870 to 2010 for equivalent CO2). For most

places, SST increases with equivalent CO2 concentration,

with the notable exceptions of the far North Atlantic and

parts of the tropical Pacific where the estimated a1 is close

to zero or even slightly negative. Note that among

individual retrospective forecasts, there is a small

variation in the magnitude (or even a change in the sign

for the above two regions) of â1; nevertheless Fig. 1a

represents the general spatial pattern.

3.2 Comparing the forced trend and internal variability

Before describing how the internal variability component

Xv is modelled, we first examine some of its features.

Figure 2a shows the standard deviation of the residuals of

model (2) (denoted by r) fitted to data from all available

years, and Fig. 2b shows the ratio of the estimated forced

change over the period (X̂f
i;2011 � X̂f

i;1871) to r. The latter

may be interpreted as the ‘signal-to-noise’ ratio of SSTs

over the 141 years, with larger magnitudes indicating

greater dominance of forced long-term change to internal

variability. Over parts of the western Pacific, the Indian

Ocean and the equatorial Atlantic, the forced change in

SST is around five times larger than r, therefore the effect

of forced long-term change is dominant. The R-squared

statistics of model (2) (not shown) indicate that the

equivalent CO2 concentration time series explain more

than 50 % of the variance in SSTs in these regions. In

contrast, over the tropical Pacific where the forced long-

term change is small and r is relatively large, the internal

variability dominates. Less than 10 % of the variance in

SSTs can be explained by model (2) (not shown).

A related variable, the time at which the climate change

signal emerges from the interannual variability, is often of

interest in climate change risk assessment. A number of

studies (e.g. Giorgi and Bi 2009; Mahlstein et al. 2011;

Diffenbaugh and Scherer 2011; Hawkins and Sutton 2012)

have examined this ‘time of emergence’ for future climate

change using climate model projections, but here we can

assess when and where the signal has already emerged in

the historical SST observations. Figure 2c shows the time

of emergence defined as the year when the ratio of the

magnitude in estimated forced change from the year 1871

(pre-industrial time) to r last crossed and exceeded the

threshold of one in the time series.1 The climate signal

(a)

−4 −2 −1.2 −0.4 0 0.4 1.2 2 3 4

(b)

−150 −100 −50 0 50 100 150 −150 −100 −50 0 50 100 150

−
20

0
20

40
60

−
20

0
20

40
60

0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 1 a Parameter estimate of

a1 in the forced trend regression

model (Eq. 2) fitted to data from

all available years, representing

the dependence of SST on

equivalent CO2 concentration

(in �C per 100 ppm); b Estimate

of the autoregression coefficient

c1 in the AR1 model (Eq. 4)

fitted to data from all available

years

1 The time of emergence may also be defined as the year when the

ratio first crossed and exceeded the threshold of one. We use a more

conservative measure here as the temporary reduction in equivalent

CO2 concentration in the 1950s led to a decrease in climate change

signal in some places.
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emerged over parts of the Indian Ocean in the 1960s, while

most of the Atlantic and western Pacific saw emergence in

the 1970s and 1980s. As the forced trend was small over

the far North Atlantic and eastern Pacific, the climate

signal remained smaller than the interannual variability

throughout the 141 years. Figure 2d also shows the time of

emergence but considers the forced change from the 1986–

2005 mean. Even with this more recent baseline, the cli-

mate change signal has already emerged in tropical Indian

Ocean and tropical Atlantic in the 2000s.

Another feature worth exploring is the importance of

longer timescale variability relative to interannual vari-

ability. This is because the former is related to slow ocean

processes and is considered to be, at least potentially, more

predictable. We consider a simple measure of the potential

predictability (Boer 2004, 2011; Boer and Lambert 2008)

of Xv for a timescale of N years, rN/r, where rN is the

standard deviation of the running N-year mean of estimated

Xv. Figure 2e, f show this measure for N = 5 and 10 years.

Larger potential predictability can be found over the most

of the North Atlantic. Previous observational and model-

ling studies have suggested that this is related to decadal

variations in the North Atlantic thermohaline circulation

and the North Atlantic Oscillation (e.g. Latif et al. 2006).

The potential predictability is smaller over the tropical

Pacific where ENSO-related interannual variability

dominates.

For the rest of this paper we will put greater emphasis on

the Atlantic sector for two reasons. First, the gridded his-

torical observations in the Atlantic are more reliable

(a) σ
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(b) Signal−to−noise ratio
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−
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0
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(c) Time of emergence (r.t. 1871)
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(d) Time of emergence (r.t. 1986−2005 mean)
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(e) σ5 σ
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−
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(f) σ10 σ

−150 −100 −50 0 50 100 150

−
20

0
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 2 a Standard deviation of

Xv estimated as the residuals of

the forced trend regression

model (2) (in �C); b Ratio of

estimated forced change in SST

(signal) to the standard

deviation of residuals (noise) of

model (2); c and d Time of

emergence of climate signal,

defined as the year when the

signal-to-noise ratio last crossed

and exceeded one, relative to

(r.t.) two reference baselines

(1871 and 1986–2005 mean);

e and f Potential predictability

as a ratio of the standard

deviation of 5 and 10 year

means to the standard deviation

of interannual variability in

SSTs after the forced trend is

removed
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because there were more available in-situ observations in

the region (Rayner et al. 2003). Second, over the Atlantic

there is spatial variation in the relative importance of

forced long-term trend and internal variability. In the far

North Atlantic where the internal variability is more

important, the longer timescale variability is also more

potentially predictable. This constrasts with the Indian

Ocean and western Pacific where the effect of long-term

forced trend dominates and the forced trend prediction

described in Sect. 3.1 is perhaps adequate for achieving

reasonable predictive skill.

3.3 First-order autoregressive model (AR1)

In the first model for the internal variability component of

SSTs, Xv for each grid box is modelled as a first-order

autoregressive process (AR1):

Xv
i;t ¼ c0 þ c1Xv

i;t�1 þ Zi;t; ð4Þ

where Zi,t represents a purely random process. To ensure

that the same length of time series is always used in the

model training, the AR1 model is fitted to a total of

90 years of SST data (the start year of each forecast plus

the previous 89 years). Autoregressive models of higher

orders (e.g. AR2) were considered, but there was no

significant improvement in predictive skill (not shown).

With the estimated parameters ĉ0 and ĉ1, Xv at a lead time

of k years is predicted iteratively:

X̂v
i;tþk ¼

ĉ0 þ ĉ1Xv
i;t for k ¼ 1

ĉ0 þ ĉ1X̂v
i;tþk�1 for k ¼ 2; . . .; 10:

�
ð5Þ

Figure 1b shows estimates of c1 in the AR1 model fitted

to data from all available years. The highest autoregression

coefficients can be found in the North Atlantic subpolar

gyre, indicating stronger persistence in the SST time series

(or memory at a longer timescale; see also Zhu et al. 2010).

The effect of persistence is generally weaker in the

equatorial regions. Similar results can be seen for the

AR1 models fitted for the individual retrospective forecasts

(not shown).

3.4 Constructed analogue (CA)

The use of a second and more complex model for pre-

dicting Xv, constructed analogue (CA; van den Dool 2007,

Chap. 7), is motivated by Hawkins et al. (2011) which

employed this model for decadal predictions of SSTs using

control integrations of two GCMs. It was found to be

skillful over the far North Atlantic. The CA method has

also been employed in operational seasonal SST fore-

casts for the Pacific (Barnston et al. 1994; Landsea

and Knaff 2000) and seasonal predictions of soil moisture

(van den Dool et al. 2003). The rationale behind CA is to

develop a weighted, linear combination of historical spatial

patterns of observations which is closest to the initial

spatial pattern. If the future evolution of such patterns

resembles the historical evolution, the CA can make pre-

dictions by carrying forward the estimated weights. An

analogue needs to be constructed because there is only a

remote chance of finding a ‘natural’ analogue where the error

between a state in the historical record and the desired initial

state is within observational errors (van den Dool 1994).2

In this study we apply the CA method for the Atlantic

sector (30�S–70�N, 100�W–20�E) only. For each forecast

and for each lead time (k), the field of the internal vari-

ability component of SSTs Xv at start year t is constructed

using a linear combination of Xv in the previous 89 years:

Xv
t ¼

X89

p¼k

bpXv
t�p; ð6Þ

where bp are the weights. The weights are estimated by

minimising

XM
i

~X
v

i;t �
X89

p¼k

bp
~X

v

i;t�p

 !
; ð7Þ

where ~X
v

are reconstructed fields of Xv using empirical

orthogonal functions (EOFs), and M is the total number of

grid boxes. This is analogous to estimating the coefficients

in a multiple linear regression by minimising the sum of

squared residuals on the previous 89 years of data, but here

ridging (Draper and Smith 1998, Chap. 17) needs to be

used to circumvent problems of an underdetermined sys-

tem. The reason for estimating the weights in the EOF

truncated space is to reduce the effects of noise. van den

Dool (2007, Chap. 7) suggests the number of EOFs to be

used should be half the number of training data length,

which is around 45 in our case. On average about 99 % of

the variance of Xv is explained using 45 EOFs. This gives

minimal reduction in noise, and the CA weights are found

to be unstable (not shown). After testing the effects of the

number of EOFs on the stability of weights and predictive

skill, we have chosen to use 9 EOFs, which explain on

average about 80 % of the Xv variance. We note that

making such a choice based on predictive skill may lead to

some overestimation of skill in our verification.

There are two differences between our CA and AR1

models. First, a single CA predicts the whole Atlantic field

of Xv for a particular year, while individual AR1 models

are fitted to the time series of Xv for each grid box. Second,

we use a direct prediction approach for the CA model

which is fitted individually for each lead time, while for

2 For example, Hawkins et al. (2011) estimated that for Atlantic

SSTs, one would need 105 years of data to find a natural analogue.
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AR1 predictions are made iteratively where the prediction

for lead time k ? 1 depends on the prediction for lead time

k. Also, for CA predictions with lead time k [ 1 year, Xv

between years t and t - k are not included in the con-

struction. This avoids the use of ‘future’ data beyond year t

in the prediction stage, where Xv fields are predicted by

X̂
v

tþk ¼
X89�k

p¼0

b̂pþkXv
t�p: ð8Þ

3.5 Verification for retrospective forecasts

We have seen how the forced trend (Xf) and the internal

variability (Xv) components of SSTs are modelled and pre-

dicted. The predictions of SST anomalies (X̂) are either the

sum of predicted Xf and predicted Xv using AR1

[i.e. (3) ? (5)] or the sum of predicted Xf and predicted Xv

using CA [i.e. (3) ? (8)]. We term these two anomaly pre-

dictions as ‘Trend?AR1’ and ‘Trend?CA’ respectively.

The three key questions in the evaluation of prediction

skill of statistical SST retrospective forecasts are: (1) Are

the retrospective statistical forecasts of the forced trend and

internal variability skillful? (2) How does the skill vary

spatially and with prediction lead times? (3) Where and for

what lead times are initialised dynamical retrospective

forecasts by DePreSys more skillful than the corresponding

benchmark statistical forecasts? We now describe how

these questions are to be addressed.

We mainly consider two skill measures, anomaly corre-

lation coefficient (ACC) and mean squared skill score

(MSSS), to verify up to 46 sets of statistical retrospective

forecasts by Trend?AR1 and Trend?CA.3 The ACC

considers the prediction and observation of the anomaly

(X̂ and X). Since the ACC does not inform about whether the

skill comes from the forced trend or internal variability (or

both), we also consider the correlation coefficient between

the prediction of the forced component (X̂f ; ‘Trend’ pre-

diction) and the observed anomaly (X) and the correlation

coefficient between the predicted internal variability com-

ponent (X̂v) and the estimated internal variability component

of the verifying observations (Xv). Note that there are two

major limitations of correlation coefficients in verification.

They measure only the linear association between predic-

tions and observations, and any conditional biases in the

predictions are ignored (Murphy and Epstein 1989).

MSSS is a dimensionless measure of the improvement

in mean squared error (MSE) of a prediction system rela-

tive to a reference prediction system. In the verification of

our statistical forecasts, the MSSS of anomaly predictions

relative to Trend predictions can be used to evaluate the

skill of our models in predicting the internal variability.

This is analogous to comparing the initialised and unini-

tialised retrospective forecasts produced by a GCM. For a

lead time of k years, we first calculate the MSE for X̂ and

X̂f with start year t:

MSEX̂ ¼
1

N

XN�1

j¼0

X̂tþkþj � Xtþkþj

� �2 ð9Þ

MSEX̂f ¼
1

N

XN�1

j¼0

X̂f
tþkþj � Xtþkþj

� �2

; ð10Þ

where N is the total number of available retrospective

forecasts. Then MSSS of X̂ relative to X̂f is given by

MSSS ¼ 1� MSEX̂

MSEX̂f

: ð11Þ

A positive (negative) MSSS indicates that the anomaly

predictions are more (less) skillful than the Trend predic-

tions in terms of MSE.

The statistical significance of the correlation measures

and MSSS is assessed using a non-parametric bootstrap-

ping approach. In particular, a block bootstrapping tech-

nique is used to account for the temporal autocorrelation

among successive observations (or forecasts). Details are

given in the section Appendix.

For decadal climate predictions, verification is com-

monly performed on predictions averaged over a range of

lead times, but there is no clear consensus on the choice of

temporal averaging period (e.g. Smith et al. 2010; Hawkins

et al. 2011; van Oldenborgh et al. 2012). We adopt the

framework suggested by Goddard et al. (2012a) and con-

sider three lead time periods, year 1, years 2–5 and years

6–9. Note that a skillful time-averaged (multi-annual)

prediction does not imply that the predictions for individual

years within the averaging period (annual predictions) are

skillful, as errors in the individual predictions with differ-

ent signs may cancel out by averaging.

The verification procedures for the ensemble mean

DePreSys retrospective forecasts are similar to those

described above but two additional steps are required.

Since the spatial resolution of DePreSys and HadISST are

different, the HadISST data are first interpolated onto the

grid of DePreSys using bilinear interpolation prior to ver-

ification. In addition, the mean bias of the ensemble mean

DePreSys retrospective forecasts (difference between the

modelled and observed climate) is removed for each lead

time. In order to avoid the introduction of artificial skill,

this is performed in a cross-validation manner, i.e. for each

lead time, we calculate and remove the mean bias for each

forecast individually using forecast and observation data

from all the other start times.

3 Hindcasts with start year from 2002 onwards give predictions

beyond year 2011, therefore less than 46 sets of retrospective

forecasts can be verified for lead times longer than 6 years.
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4 Skill of the statistical retrospective forecasts

We now assess the skill of retrospective forecasts by our

statistical models, Trend?AR1 and Trend?CA. We will

also compare our results with some other previous studies

on benchmark statistical models reviewed in the

Introduction.

4.1 Trend?AR1 forecasts

Figure 3 shows the global maps of correlation measures for

forecasts using AR1. For year 1, the largest positive values

of ACC for Trend?AR1 forecasts are found over parts of

the equatorial and North Atlantic, the Indian Ocean and

western Pacific. As we move to years 2–5 and 6–9, the

ACC increases to over 0.7 in these areas. The source of

skill may be explained by considering the other two cor-

relation measures shown in Fig. 3. The spatial pattern of

correlation between the predicted forced trend (Trend) and

observed anomalies matches well with that of Trend?AR1

for these two periods. Meanwhile, the correlation between

the predicted and observed internal variability (AR1) are

close to zero or even negative for many areas except the far

North Atlantic. It appears that the large positive ACC for

Trend?AR1 is primarily related to the prediction of the

forced trend. The MSSS of Trend?AR1 forecasts relative

to the Trend forecasts (Fig. 4) give consistent results. For

years 2–5 and 6–9, the MSSS is close to zero for most

areas, suggesting that AR1 predictions of the internal

variability give little improvement in skill.

For the tropical Pacific, there is little predictive skill for

all lead times. Despite large interannual variability

(Fig. 2a), the effect of persistence is generally weak

(Fig. 1b) as the timescale of ENSO is typically less than

1 year. Both the forced trend and AR1 forecasts for the

internal variability do not show obvious skill.

The predictive skill for the far North Atlantic is more

interesting. The ACC for Trend?AR1 drops from around
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Fig. 3 Correlation measures over different lead time periods for

Trend?AR1 and Trend retrospective forecasts with observed anom-

alies and for AR1 forecasts with the internal variability component of

observed anomalies. The forecast time series of grid boxes marked

with ‘?’ are shown in Fig. 5. The stippled areas indicate where the

correlation measure is significantly different from zero at the 10 %

level
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?0.7 to around -0.8 as we move from year 1 to years 6–9.

The correlation for Trend is negative for all three periods,

however the correlation for AR1 is greater than 0.5 for year

1 and years 2–5. The MSSS is also significantly greater

than zero (at 10 % level; same for below unless otherwise

stated) for these two periods. These suggest that the AR1

model gives skillful predictions of the internal variability

over the far North Atlantic for shorter lead times, but the

poor forced trend prediction offsets such skill. These

results are similar to the global decadal air temperature

retrospective forecasts by Krueger and von Storch (2011),

where the ACC is larger than 0.7 for year 1 but is not

significantly greater than zero (at 5 % level) for year 10.

Comparing the time series of observed and predicted

SSTs for one of the grid boxes in the far North Atlantic

(centred at 59.5�N 32.5�W; marked with a cross in Fig. 3)

shown in Fig. 5b can offer further insights. Over the past

140 years, the observed SST (thick black line) has a weak

negative long-term trend but large multi-decadal internal

variability. Meanwhile, the equivalent CO2 concentration

increased gradually (Fig. 5a). The estimates of the

parameter a1 in the regression model (Eq. 2) for the 46

retrospective forecasts are slightly below zero (refer to

Fig. 1a). Therefore with increasing equivalent CO2 con-

centration, the predictions have a negative forced trend.

This is not obvious in the time series of the year 1

Trend?AR1 forecasts (red line) in Fig. 5a because of

strong persistence from the start year with a high autore-

gression coefficient (refer to Fig. 1b). The impact of the

forced negative trend is much clearer in the time series of

the year 8 forecasts (blue line). However, during the veri-

fication period (mid-1960s to mid-2000s), the SST

increased by about 1 K. As a result, the correlation for

Trend prediction is negative and the ACC decreases shar-

ply with prediction lead time because the compensating

skill from persistence by AR1 diminishes.

4.2 Trend?CA forecasts

We now consider the skill of forecasts using CA for the

Atlantic using the correlation measures and MSSS shown in

Figs. 6 and 7 respectively. The highest values of ACC for

Trend?CA are found over parts of mid-latitude and equa-

torial Atlantic, especially for longer lead times. We have

already seen that in mid-latitude and equatorial Atlantic the

correlation coefficient for Trend prediction is also high.

Since the correlation for internal variability by CA is gen-

erally weak, the predictive skill is therefore mainly related

to the forced trend prediction like Trend?AR1. The MSSS

of the Trend?CA forecasts relative to the Trend forecasts is

significantly negative in mid-latitude and equatorial

Atlantic, suggesting that the predictions of internal vari-

ability by CA actually increases the error.

There is quite strong evidence that CA is skillful in

predicting the internal variability in the far North Atlantic,

and performs considerably better than the simple AR1

model. Significant positive correlation coefficients for the

internal variability (greater than 0.5) can be seen for all

three lead time periods, while the MSSS also shows that the

Trend?CA forecasts are significantly superior to the Trend

forecasts even for years 6–9. These explain the changes

in MSSS with lead time of Trend?CA relative to

Trend?AR1. Both methods are similarly skillful for year 1,

but Trend?CA has a significant advantage at extended lead

times. Similar to Trend?AR1, the ACC for Trend?CA in

the far North Atlantic changes from positive to negative as

we move from year 1 to years 6–9 because the predicted

forced trend is not consistent with observations within the

verifying period. However, the drop in magnitude for

Trend?CA is smaller as CA better predicts the internal

variability.

Another region worth noting is the South Atlantic. There

is some evidence that Trend?CA gives skillful predictions
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Fig. 4 Mean squared skill score (MSSS) of anomalies predicted by

Trend?AR1 relative to the predicted forced trend component (Trend)

for different lead time periods. Positive MSSS means that the mean

squared error for Trend?AR1 retrospective forecasts is lower. The

stippled areas indicate where the MSSS is significantly different from

zero at the 10 % level
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at longer lead times in parts of this region, even though we

have seen that the South Atlantic is less potentially pre-

dictable than the far North Atlantic (Fig. 2e, f). From

Fig. 1a the dependence of SSTs on radiative forcing

appears to be stronger near the coast than in the central

parts of the South Atlantic. This might explain the higher

correlation coefficients for the Trend forecasts nearer to the

coast. As for the CA predictions of internal variability, the

correlation coefficients are rather low for year 1, but

increase gradually as we move to longer lead time periods.

This is consistent with the positive MSSS of Trend?CA

relative to both Trend and Trend?AR1 forecasts, espe-

cially for years 6–9 with a large area of significantly

positive MSSS (Fig. 7). Figure 5c shows the time series of

observations and retrospective forecasts for a grid box in

South Atlantic (centred at 10.5�S 14.5�W; also marked

with a cross in Figs. 6, 7). The positive trend is well pre-

dicted. In addition, the Trend?CA forecasts for year 8

(purple line) appear to capture the interannual variability

quite well, particularly from around 1980 to 2000.

Over parts of the tropical Atlantic, CA appears to

have some predictive skill for the internal variability as

well. The correlation coefficient for the internal vari-

ability exceeds 0.4 for year 1 and years 2–5. The MSSS

of Trend?CA relative to both Trend and Trend?AR1

also shows that the CA is more skillful for these two

periods and perhaps even for years 6–9. However,

comparing the time series of observations and year 8

forecasts for the grid box centred at 17.5�N 57.5�W in

Fig. 5d, Trend?CA does not seem to have a clear

advantage over Trend?AR1.

Our results are generally consistent with Hawkins et al.

(2011). Their verification of retrospective forecasts by CA

using the control integration of HadCM3 also gave ACC

greater than 0.5 in the far North Atlantic for all lead time

periods (years 1, 2, 3–5 and 6–10). However, while we

have seen positive correlation coefficients for internal

variability in the South Atlantic at extended lead times for

our forecasts, the ACC for their CA forecasts in the region

was close to zero.

4.3 Regional average retrospective forecasts

We have so far examined the skill of retrospective forecasts

at a spatial scale identical to the resolution of HadISST

data set (1�). It is often useful to consider also the skill of

forecasts for larger regions. This is partly because certain

regions are particularly important for the development of

weather systems, for example tropical cyclone activity is

strongly related to the atmospheric and oceanic conditions

in the tropics (Goldenberg et al. 2001). Another reason is

that it will be easier to assess the predictive skill of large
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Fig. 5 a Time series of global

mean equivalent CO2

concentration (in ppm) from

1870 to 2011, with the portion

with dashed line indicating

projections based on RCP 4.5;

b–d Time series of observed

SSTs (in �C) for three grid

boxes (thick black solid lines) in

the Atlantic. The thin grey
horizontal line indicates the

1986–2005 mean. Retrospective

forecasts by Trend?AR1 and

Trend?CA for lead times of 1

and 8 years are overlaid with

thin lines of different colours as

indicated in the legend. The

ACC for such forecasts and the

corresponding 90 % bootstrap

confidence interval (in

parentheses) are also given in

the legend
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Fig. 6 As in Fig. 3 but for

forecasts for the Atlantic for

different lead time periods. The

boxes on the first row of maps

indicate the four regions

mentioned in Tables 1, 2 and

Fig. 8. The first, third and fourth

rows are zoomed-in versions of

the maps in Fig. 3
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scale variability by considering regional average forecasts,

because the local scale variability will be smoothed out

(Goddard et al. 2012a). Here we consider four regions in

the Atlantic: subpolar gyre (SPG), hurricane main devel-

opment region (MDR), North Atlantic (NATL) and South

Atlantic (SATL) (see Table 1 for definitions). The SSTs in

MDR are directly relevant to the formation of hurricanes,

while a modelling study by Smith et al. (2010) found

evidence of remote influence of temperatures in the SPG

region on atmospheric conditions in MDR, which in turn

affects hurricane activity. The results for NATL and SATL

can give a general indication of skill for different statistical

models over large areas. For each of the four regions, we

average the observations and predictions for Trend,
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Fig. 7 As in Fig. 4 but comparing Trend?CA, Trend?AR1 and Trend forecasts for the Atlantic for different lead time periods
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Trend?AR1 and Trend?CA for all the grid boxes. The

verification metrics are then calculated.

Tables 1 and 2 show the correlation measures and root-

mean-squared error (RMSE),4 respectively for the four

regions. For SPG, Trend?CA is the best performing model

with the highest ACC and the lowest RMSE for all three

lead time periods. The improvement in these two measures

from the Trend prediction, especially the significant

improvement in correlation, confirms the skill of CA in

predicting the internal variability at extended lead times.

The ACC for Trend?CA is also greater than that for

Trend?AR1 for years 6–9, but the improvement in RMSE

is small. Figure 8a shows a selection of retrospective

forecasts at different start years (indicated by thin lines of

different colours) for SPG. The Trend?CA forecasts (solid

lines) match the verifying observations slightly better than

the Trend?AR1 forecasts (dashed lines), especially in the

earlier part of the verification period.

For MDR, Trend?AR1 is the best performing model

for year 1, while Trend?CA is the best for years 2–5 and

6–9, however the improvement in the verification metrics

from the Trend prediction and Trend?AR1 to Trend?CA

is smaller compared to SPG. Trend?AR1 appears to be

the best for all lead times for NATL. For SATL, Trend?CA

performs better than the other models at longer lead

times.

We note that another possible method to obtain regional

average forecasts is to first average, year by year, the his-

torical observations for all grid boxes in the region and then

make forecasts from the spatially averaged annual mean

SSTs as described in Sects. 3.1 and 3.3. This alternative

method gives generally similar results.

5 Comparison with DePreSys retrospective forecasts

In order to illustrate the use of our statistical models as

benchmarks to verify decadal predictions by initialised

dynamical GCMs, we now compare the performance of

mean bias corrected ensemble mean retrospective forecasts

by DePreSys with forecasts by Trend?AR1 globally and

Trend?CA for the Atlantic using MSSS (Fig. 9). The

detailed evaluation of DePreSys, such as the investigation

of sources of its prediction skill and the verification of

probabilistic predictions by its ensemble, will be done in a

future analysis.

For year 1, DePreSys significantly outperforms

Trend?AR1 over large parts of the tropical Pacific, which

is likely to be related to its skill in predicting ENSO at the

Table 1 Correlation measures for predictions in four specified regions for different lead time periods

Model Year 1 Years 2–5 Years 6–9

Subpolar gyre (SPG; 60–66�N, 10–60�W)

Trend -0.58 [-0.73,-0.22] -0.64 [-0.83,-0.13] -0.39 [-0.72,0.34]

Trend?AR1 0.65 [0.42,0.75] -0.09 [-0.48,0.27] -0.70 [-0.84,0.01]

Trend?CA 0.66 [0.40,0.77] 0.27 [0.01,0.43] 0.15 [-0.27,0.48]

DePreSys 0.77 [0.55,0.85] 0.84 [0.58,0.92] 0.80 [0.38,0.89]

Main development region (MDR; 10–20�N, 20–80�W)

Trend 0.06 [-0.26,0.39] 0.24 [-0.14,0.58] 0.40 [-0.05,0.73]

Trend?AR1 0.49 [0.20,0.67] 0.30 [-0.18,0.56] 0.42 [-0.03,0.73]

Trend?CA 0.44 [0.12,0.64] 0.53 [0.16,0.74] 0.47 [0.15,0.65]

DePreSys 0.63 [0.37,0.79] 0.61 [0.16,0.79] 0.54 [0.09,0.76]

North Atlantic (NATL; 10–60�N, 0–75�W)

Trend 0.43 [0.10,0.69] 0.59 [0.34,0.80] 0.68 [0.45,0.86]

Trend?AR1 0.87 [0.66,0.93] 0.78 [0.52,0.89] 0.73 [0.51,0.90]

Trend?CA 0.85 [0.65,0.92] 0.71 [0.33,0.85] 0.57 [0.15,0.76]

DePreSys 0.89 [0.68,0.93] 0.91 [0.75,0.96] 0.89 [0.71,0.95]

South Atlantic (SATL; 10–30�S, 50�W–20�E)

Trend 0.45 [0.23,0.65] 0.65 [0.41,0.83] 0.60 [0.36,0.78]

Trend?AR1 0.47 [0.27,0.61] 0.64 [0.40,0.83] 0.60 [0.38,0.79]

Trend?CA 0.41 [0.18,0.57] 0.58 [0.32,0.80] 0.65 [0.45,0.79]

DePreSys 0.56 [0.35,0.72] 0.43 [0.08,0.67] 0.32 [0.07,0.51]

These four regions are marked by boxes with dashed lines in the top row of Fig. 6. The largest correlation coefficient for each lead time period in

each region is shown in bold. The 90 % bootstrap confidence intervals for the correlation measures are shown in parentheses

4 We use the RMSE, the square root of MSE here as the RMSE is

intuitively easier to interpret.
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seasonal timescale. It also performs better than

Trend?AR1 for parts of the Indian Ocean and better than

both statistical models over parts of the tropical Atlantic.

However, both Trend?AR1 and Trend?CA have clear

advantages over DePreSys in the NAC region.

A different pattern evolves at longer lead times. The

advantages of DePreSys in the tropical Pacific diminish,

and DePreSys performs worse than Trend?AR1 for most

parts of the Pacific and the Indian Ocean for years 2–5. On

the other hand, DePreSys is clearly superior to Trend?AR1

over large parts of north Atlantic including the SPG for

years 2–5 and 6–9. Similar results can be seen for the

comparison between DePreSys and Trend?CA. For parts

of the MDR and South Atlantic, however, Trend?CA

performs significantly better than DePreSys.

Tables 1 and 2 also show the ACC and RMSE of the

regional average DePreSys retrospective forecasts for the

four regions we considered in Sect. 4.3. DePreSys gener-

ally ourperforms the statistical models, especially for the

SPG where for years 2–5 and 6–9, it has significantly

higher ACC and lower RMSE than the best statistical

model, Trend?CA. The results for SATL are different.

Although the RMSE for DePreSys is the lowest for all

three lead time periods, Trend and Trend?CA have higher

ACC for years 2–5 and years 6–9 respectively.

6 Statistical forecast for 2012–2021

We finally give an overview of the forecasts for future

Atlantic SST anomalies by Trend?AR1 and Trend?CA

for three periods, 2012, the 2013–2016 average and the

2017–2020 average (Fig. 10). For the start year of this

forecast, 2011, warm anomalies of less than 0.5 K (relative

to the 1986–2005 mean) were observed in the SPG and the

tropical North Atlantic. There is generally good agreement

between the forecasts by Trend?AR1 and Trend?CA.

Both predict the far North Atlantic SSTs to decrease

gradually, but this should be viewed cautiously given the

rather poor skill in predicting the past forced trend in this

region. Meanwhile, the warm anomalies in the NAC region
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Fig. 8 Time series of observations (in �C; thick black solid lines)

averaged over four specified regions (refer to Table 1 for definitions).

Statistical retrospective forecasts for selected start times are overlaid

using lines of different colours—dashed lines for Trend?AR1 and

solid lines for Trend?CA. Each line starts at the observed SST at the

start year of the forecast and ends at predicted value for year 10. The

forecasts which start at year 2011 (for years 2012–2021) are shown by

thick dark red lines, with dots and squares indicating the predicted

values for each individual year. The light grey and dark grey shadings
indicate the average root-mean-squared error (RMSE) for the

retrospective forecasts of Trend?AR1 and Trend?CA respectively

Table 2 As in Table 1 but for root-mean-squared error (RMSE; in K)

Model Year 1 Years 2–5 Years 6–9

Subpolar gyre (SPG; 60–66�N, 10–60�W)

Trend 0.47 [0.39,0.53] 0.44 [0.36,0.51] 0.46 [0.36,0.50]

Trend?AR1 0.31 [0.26,0.33] 0.38 [0.31,0.44] 0.46 [0.36,0.50]

Trend?CA 0.30 [0.25,0.33] 0.37 [0.31,0.41] 0.42 [0.33,0.47]

DePreSys 0.26 [0.23,0.29] 0.21 [0.16,0.24] 0.22 [0.19,0.26]

Main development region (MDR; 10–20�N, 20–80�W)

Trend 0.32 [0.28,0.36] 0.23 [0.20,0.27] 0.23 [0.19,0.27]

Trend?AR1 0.26 [0.23,0.30] 0.23 [0.19,0.26] 0.23 [0.19,0.28]

Trend?CA 0.27 [0.24,0.30] 0.21 [0.18,0.23] 0.23 [0.19,0.27]

DePreSys 0.25 [0.20,0.30] 0.21 [0.17,0.25] 0.24 [0.19,0.29]

North Atlantic (NATL; 10–60�N, 0–75�W)

Trend 0.23 [0.19,0.26] 0.21 [0.18,0.24] 0.22 [0.18,0.25]

Trend?AR1 0.14 [0.12,0.16] 0.19 [0.16,0.21] 0.22 [0.19,0.25]

Trend?CA 0.13 [0.11,0.15] 0.19 [0.16,0.21] 0.23 [0.18,0.28]

DepreSys 0.13 [0.11,0.14] 0.12 [0.10,0.14] 0.14 [0.11,0.16]

South Atlantic (SATL; 10–30�S, 50�W–20�E)

Trend 0.26 [0.20,0.32] 0.18 [0.14,0.23] 0.18 [0.13,0.23]

Trend?AR1 0.24 [0.20,0.28] 0.18 [0.14,0.22] 0.19 [0.14,0.23]

Trend?CA 0.24 [0.20,0.29] 0.18 [0.12,0.22] 0.16 [0.12,0.18]

DePreSys 0.22 [0.18,0.26] 0.16 [0.13,0.19] 0.16 [0.13,0.18]

The lowest RMSE for each lead time period in each region is shown

in bold
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are predicted to persist. As the rise in equivalent CO2

concentration is projected to continue, both models predict

the SSTs in other parts of the Atlantic to become warmer.

The regional average forecasts by Trend?AR1 and

Trend?CA are shown by thick dark red dashed and solid

lines respectively in Fig. 8. To give an indication of

Year 1 Years 2−5 Years 6−9
D

eP
re

S
ys

r.
t. 

T
re

nd
+

A
R

1
D

eP
re

S
ys

r.
t. 

T
re

nd
+

C
A

−10 −1.5 −0.67 −0.25 0 0.1 0.3 0.5 0.8 1

Fig. 9 As in Fig. 4 but comparing DePreSys with Trend?AR1 and Trend?CA
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Fig. 10 Forecast anomalies (in �C, relative to the 1986–2005 mean) of annual mean Atlantic SSTs for 2012, the 2013–2016 average and the

2017–2020 average by Trend?AR1 and Trend?CA. The observed anomalies for 2011 are also shown as a comparison
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possible errors in these forecasts, the corresponding aver-

age RMSE of the retrospective forecasts for different lead

times are shown by the grey shadings. As in what we have

seen in the forecast maps (Fig. 10), there is no major

disagreement between forecasts by Trend?AR1 and

Trend?CA. A slow cooling trend is predicted for SPG,

while NATL and SATL are expected to have a warming

trend. In particular, the magnitude of predicted rise in the

average SST in SATL (about 0.5 K) is slightly larger than

the average historical RMSE (about 0.3 K).

We note that the above forecasts are based on projected

equivalent CO2 concentration for the RCP4.5 concentration

pathway. Forecasts using alternative pathways (e.g.

RCP2.6 and RCP8.5) were considered. Since the difference

in equivalent CO2 concentration among various pathways

are small (less than 10 ppm difference from RCP4.5), the

forecasts are generally similar to those presented above

(not shown).

7 Conclusions

With their potential benefits to climate change adaptation

planning, accurate decadal climate predictions made by

initialised dynamical GCMs are required. In this paper, we

have presented two statistical models for the decadal pre-

diction of SSTs which may be used as benchmarks in the

evaluation of initialised GCM predictions. The two statis-

tical models apply the same linear regression of SSTs on

equivalent CO2 concentration to model the effects of long-

term trend due to radiative forcing, but use different

methods to model the residual internal variability. The

verification of retrospective forecasts by these two models

give encouraging results. The main findings of this paper

are:

• Both the simple AR1 model and the more complex CA

model provide skillful predictions of the internal

variability in the far North Atlantic for years 2–5, and

the skill of CA extends to years 6–9.

• CA gives skillful predictions of the internal variability

for parts of the South Atlantic for years 6–9.

• Although DePreSys, an initialised GCM, performs

significantly better than the statistical models for most

parts of the North Atlantic at extended lead times,

Trend?AR1 or Trend?CA outperforms DePreSys

significantly for certain regions, such as the NAC and

South Atlantic.

• With a projected increase in equivalent CO2 concen-

tration, both statistical models forecast a small cooling

trend in the subpolar gyre region for the years

2012–2021, while most other parts of the Atlantic are

expected to warm, especially in the South Atlantic.

We have also attempted to understand the source of

predictive skill in our statistical forecasts. We have iden-

tified certain regions where the prediction of the forced

trend plays a dominant role in having skillful forecasts,

such as parts of mid-latitude and tropical Atlantic, the

Indian Ocean and the western Pacific. The prediction of

internal variability is more important for some other

regions, such as the far North Atlantic and perhaps parts of

South Atlantic. These findings can help identify areas

where decadal predictions may be improved by adding

more observations.

We have seen that the relative skill of different predic-

tion methods vary both spatially and with lead time. This is

further illustrated in Fig. 11 which show summary maps of

the best statistical prediction method for different lead time

periods in terms of having the lowest MSE. Over the

Atlantic, while Trend?AR1 is generally the best per-

forming model for year 1, the more complex Trend?CA

performs better for years 2–5 and 6–9. Even for these

longer lead times, however, the forced trend model, which

is the simplest benchmark in this study, performs best for

certain regions. We can also see that the regions where

Year 1 Years 2−5 Years 6−9

Trend Trend+AR1 Trend+CA

Fig. 11 The best prediction model with the lowest MSE as shown by shades of different colours. Note that Trend?CA forecasts are performed

in the Atlantic sector only. The stippled areas are where DePreSys outperforms all the available statistical models
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DePreSys outperforms all the statistical models (stippled

areas in Fig. 11) vary with lead time. Combining predic-

tions using different methods in order to improve accuracy

has been attempted in seasonal forecasting (e.g. Colman

and Davey 2003). The possibility of performing similar

work on decadal predictions should be considered, for

example combining different statistical forecasts to provide

a better benchmark or combining statistical and dynamical

predictions to give the ‘best possible’ forecast to the end

user.

There is much scope for further work on developing

benchmark statistical models for decadal predictions. While

the retrospective forecasts by our two statistical models are

skillful for certain regions on a decadal timescale, other

modelling strategies may be considered. Specifically, the

separation of the effects of radiative forcings and internal

variability on SST variability is not trivial. The negative

correlation for our forced trend prediction in the far North

Atlantic suggests that our model is far from ideal. One

aspect worth noting is the effect of tropospheric aerosols.

The equivalent CO2 concentration data used in this study

represent the total net global effects of greenhouse gases

and aerosols, however the spatial distribution of aerosols is

not uniform which means that our model is unlikely to

capture the regional climate effects of aerosols. Meanwhile,

recent work by Booth et al. (2012) suggested that aerosols

have played a key role in forcing North Atlantic SST

changes. Some other known radiative forcing effects are

also not included in this study, for example solar activity

and volcanic eruptions. Further work is required to explore

the best modelling option. In addition, for the modelling of

the forced trend and AR1 processes, a separate model has

been fitted to each grid box. A modelling approach in which

all grid boxes are fitted together and parameters for each

grid box assumed to be related would be worth exploring.

Finally, this study has considered SSTs because of their

influence on weather systems and climate patterns. It will be

also interesting to explore if our statistical models can offer

skillful regional predictions of other climate variables, for

example land surface temperatures.
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Appendix: Assessing the statistical significance

of verification metrics

The statistical significance of correlation coefficients and

MSSS is assessed using a non-parametric bootstrapping

approach. Here we use the MSSS of the anomaly predic-

tions (by Trend?AR1 or Trend?CA) relative to the forced

trend predictions (Trend) as an example. The bootstrapping

for the correlation coefficients is done in a similar manner.

For lead time of k years, we have the anomaly predictions

X̂ ¼ X̂tþk; X̂tþkþ1; . . .; X̂tþkþðN�1Þ
� �

and the forced trend

predictions X̂f ¼ X̂f
tþk; X̂

f
tþkþ1; . . .; X̂f

tþkþðN�1Þ

n o
, where t is

the start year and N is the total number of predictions

available for verification. We also have the verifying

observations X ¼ Xtþk;Xtþkþ1; . . .;XtþkþðN�1Þ
� �

.

We produce B = 999 bootstrap samples of X̂, X̂f and X,

each of length N. In the resampling process for each of the

B bootstrap samples, we need to account for both the

dependence among the three variables and the serial

dependence within samples. We preserve the dependence

among the three variables by resampling X̂q and X̂f
q

whenever Xq is chosen, where t ? k B q B t ? k ? (N - 1).

For the serial dependence, a block bootstrapping technique

(Davison and Hinkley 1997, Chap. 8) is adopted. We first

create overlapping blocks of data with length m within each

original sample, then we resample the N - m ? 1 blocks

uniformly with replacement to produce each of the

B bootstrap samples. Here we choose m = 5 based on

studying the autocorrelation structure for SST time series at

selected grid boxes.

After the resampling process, we calculate the MSSS for

each bootstrap sample as described in Sect. 3.5. The

100(1 - a)% confidence interval (CI) of MSSS is con-

structed based on the empirical a/2 and (1 - a)/2 quantile

of the MSSS distribution. If zero is not included in the CI,

then MSSS is considered significant at the a level.
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