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Bayesian Analysis (2011) 6, Number 1, pp. 49–76

Likelihood-free estimation of model evidence

Xavier Didelot∗, Richard G. Everitt†, Adam M. Johansen‡ and Daniel J. Lawson§

Abstract. Statistical methods of inference typically require the likelihood function
to be computable in a reasonable amount of time. The class of “likelihood-free”
methods termed Approximate Bayesian Computation (ABC) is able to eliminate
this requirement, replacing the evaluation of the likelihood with simulation from
it. Likelihood-free methods have gained in efficiency and popularity in the past
few years, following their integration with Markov Chain Monte Carlo (MCMC)
and Sequential Monte Carlo (SMC) in order to better explore the parameter space.
They have been applied primarily to estimating the parameters of a given model,
but can also be used to compare models.

Here we present novel likelihood-free approaches to model comparison, based
upon the independent estimation of the evidence of each model under study. Key
advantages of these approaches over previous techniques are that they allow the
exploitation of MCMC or SMC algorithms for exploring the parameter space, and
that they do not require a sampler able to mix between models. We validate
the proposed methods using a simple exponential family problem before providing
a realistic problem from human population genetics: the comparison of different
demographic models based upon genetic data from the Y chromosome.

1 Introduction

Let xobs denote some observed data. If a model M has parameter θ, with p(θ|M)
denoting the prior and p(xobs|M, θ) the likelihood, then the model evidence (also termed
marginal likelihood or integrated likelihood) is defined as:

p(xobs|M) =
∫

p(xobs|M, θ)p(θ|M)dθ. (1)

To compare two models M1 and M2 one may compute the ratio of evidence of two
models, called the Bayes Factor (Kass and Raftery 1995; Robert 2001):

B1,2 =
p(xobs|M1)
p(xobs|M2)

. (2)

In particular, if we assign equal prior probabilities to the two models M1 and M2,
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50 Model evidence from ABC

then their posterior odds ratio is equal to the Bayes Factor:

p(M1|xobs)
p(M2|xobs)

=
p(xobs|M1)
p(xobs|M2)

p(M1)
p(M2)

=
p(xobs|M1)
p(xobs|M2)

. (3)

Jeffreys (1961) gave the following qualitative interpretation of a Bayes Factor: 1 to
3 is barely worth a mention, 3 to 10 is substantial, 10 to 30 is strong, 30 to 100 is very
strong and over a 100 is decisive evidence in favor of model M1. Values below 1 take
the inverted interpretation in favor of model M2.

The many approaches to estimating Bayes Factors can be divided into two classes:
those that estimate a Bayes Factor without computing each evidence independently and
those that do involve such an explicit calculation. Without exhaustively enumerating
these approaches, it is useful to mention those which are of particular relevance in the
present context. In the first category we find the reversible jump technique of Green
(1995), as well as the methods of Stephens (2000) and Dellaportas et al. (2002). In the
second category we find the harmonic mean estimator of Newton and Raftery (1994) and
its variations, the method of Chib (1995), the annealed importance sampling estimator
of Neal (2001) and the power posteriors technique of Friel and Pettitt (2008).

Here we present a method for estimating the evidence of a model when the likelihood
p(xobs|M, θ) is not available in the sense that it either cannot be evaluated or such
evaluation is prohibitively expensive. This difficulty arises frequently in a wide range of
applications, for example in population genetics (Beaumont et al. 2002) or epidemiology
(Luciani et al. 2009).

2 Background

2.1 Approximate Bayesian Computation for Parameter Estimation

Approximate Bayesian Computation is the name given to techniques which avoid evalu-
ation of the likelihood by simulation of data from the associated model. The main focus
of ABC has been the estimation of model parameters and we begin with a survey of
the basis of these methods and the various computational algorithms which have been
developed for their implementation.

Basic ABC algorithm

When dealing with posterior distributions that are sufficiently complex that calcula-
tions cannot be performed analytically, it has become common place to invoke Monte
Carlo approaches: drawing samples which can be used to approximate the posterior
distribution and using that sample approximation to calculate quantities of interest.
One of the simplest methods of sampling from a posterior distribution p(θ|xobs) is to
use rejection sampling, drawing samples from the prior distribution and accepting them
with probability proportional to their likelihood. This, however, requires the explicit
evaluation of the likelihood p(xobs|θ) for every simulated parameter value. Representing
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the likelihood as a degenerate integral:

p(xobs|θ) =
∫

p(x|θ)δxobs(dx),

suggests that it could be approximated by replacing the singular mass at xobs with
a continuous distribution (or a less concentrated discrete distribution in the case of
discrete observations) to obtain the approximation:

p̂(xobs|θ) =
∫

p(x|θ)πε(x|xobs)dx, (4)

where πε(x|xobs) is a normalized kernel (i.e. a probability density with respect to the
same measure as p(x|θ)) centered on xobs and with a degree of concentration determined
by ε.

The approximation in Equation 4 admits a Monte Carlo approximation that is unbi-
ased (in the sense that no further bias is introduced by the use of this additional step).
If X ∼ p(x|θ) then the expectation of πε(X|xobs) is exactly p̂(xobs|θ). One can view
this approximation in the following intuitive way:

EX∼p(x|θ)(πε(X|xobs)) =
∫

πε(x|xobs)p(x|θ)dx

= EX∼πε(x|xobs)(p(X|θ))
≈ p(xobs|θ) when ε is small. (5)

This approximate equality holds in the sense that under weak regularity conditions,
for sufficiently-small, positive ε the error due to the approximation is a small and mono-
tonically decreasing function of ε which converges as ε ↓ 0. Using this approximation
in place of the likelihood in the rejection sampling algorithm above results in the basic
Approximate Bayesian Computation (ABC) algorithm:

Algorithm 1.

1. Generate θ∗ ∼ p(θ)

2. Simulate x∗ ∼ p(x|θ∗)
3. Accept θ∗ with probability proportional to

πε(x∗|xobs) otherwise return to step 1

The ABC algorithm was first described in this exact form by Pritchard et al. (1999)
although similar approaches were previously discussed by (Tavaré et al. 1997; Fu and
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Li 1997; Weiss and von Haeseler 1998). Here and below we assume that the full data
xobs is used in the inference. It is usually necessary in real inference problems to make
use of summary statistics (Pritchard et al. 1999) which we discuss in Section 3.2 in a
model comparison context.

If πε(x|xobs)dx places probability 1 on {xobs} then the algorithm is exact, but the
acceptance probability is zero unless the data is discrete. Indeed, the above represen-
tation of the ABC procedure only admits the exact case as a limit when dealing with
continuous data (the Dirac measure admits no Lebesgue density). Any other choice of
kernel results in an algorithm producing samples from an approximation of the posterior
distribution p(θ|xobs). For example, Pritchard et al. (1999) and many later applications
used a locally uniform density

πε(x|xobs) ∝
{

1 if D(x, xobs) < ε
0 otherwise, (6)

where D(·, ·) is some metric and ε is a (small) tolerance value. Other choices for
πε(x|xobs) are discussed in Beaumont et al. (2002). It is interesting to note that the
use of such an approximate kernel πε in the ABC algorithm can be interpreted as exact
sampling under a model where uniform additive error terms exist (Wilkinson 2008).

ABC-MCMC

Markov Chain Monte Carlo (MCMC, Gilks and Spiegelhalter 1996; Robert and Casella
2004) methods are a family of simulation algorithms intended to provide sequences of
dependent samples which are marginally distributed according to a distribution of in-
terest. Application of ergodic theory and central limit theorems justifies the use of these
sample sequences to approximate integrals with respect to that distribution. MCMC
is often considered in situations in which more elementary Monte Carlo techniques,
such as rejection sampling, are unable to provide sufficiently efficient simulation. In the
ABC context, if the likelihood is sharply peaked relative to the prior, then the rejec-
tion sampling algorithm described previously is likely to suffer from an extremely low
acceptance rate. MCMC algorithms intended to improve the efficiency of ABC-based
approximations have been developed. In particular, Marjoram et al. (2003) proposed
the incorporation of the ABC approximation of Equation 4 into an MCMC algorithm.

This algorithm, like any standard Metropolis-Hastings algorithm, requires a muta-
tion kernel Q to propose new values of the parameters given the current values and
accepts them with appropriate probability to ensure that the invariant distribution
of the Markov chain is preserved. This algorithm can be interpreted as a standard
Metropolis-Hastings algorithm on an extended space. It involves simulating a Markov
chain over the space of both parameters and data, (θ, x), with an invariant distribution
proportional to p(θ)p(x|θ)ID(xobs,x)<ε in the usual way. At stationarity, the marginal
distribution of θ is proportional to p(θ)p̂(xobs|θ) in the notation of Equations 4 and 6.
Marjoram et al. (2003) demonstrated that the stationary distribution of this MCMC
algorithm converges in an appropriate sense to the posterior distribution p(θ|xobs) as
ε ↓ 0.
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ABC-SMC

The Sequential Monte Carlo sampler (SMC sampler, Del Moral et al. 2006) is another
Monte Carlo technique which can be employed to sample from complex distributions. It
can provide an alternative to MCMC in some settings. It employs importance sampling
and resampling techniques in order to efficiently produce a (weighted) sample from a
distribution or sequence of distributions of interest. It is particularly well suited to
situations in which successive members of the sequence of distributions are increasingly
concentrated.

In the ABC context, it is natural to consider the use of SMC techniques applied
to the joint distribution of (θ, x) in the same way as the ABC-MCMC algorithm. A
natural sequence of distributions is obtained by considering a decreasing sequence of
values of ε. Although such an approach may seem computationally costly, it does not
require a successful global exploration of the final distribution in order to characterize
it well and hence may outperform MCMC in situations in which it is rather difficult to
design fast-mixing transition kernels. However, the need to resimulate data sets from
the prior during each iteration reduces the benefit which can be obtained in the ABC
setting.

Sisson et al. (2007) proposed the integration of the ABC approximation of Section
2.1 within an SMC sampler in the following manner:

Algorithm 2.

1. Set t = 1. For i = 1, . . . , N, sample θi
1 ∼ p(θ) and

set wi
1 = 1/N.

2. Increment t = t + 1. For i = 1, . . . , N

(a) Generate θi
t ∼ Qt(θ|θi

t−1),

(b) Simulate x∗ ∼ p(x|θi
t)

(c) Compute

wi
t =

p(θi
t)πεt(x

∗|xobs)∑N
j=1 Qt(θi

t|θj
t−1)

(7)

3. If t < T, resample the particles in population t
and return to step 2.

Unlike standard SMC algorithms this approach employs a Monte Carlo estimate of
an importance weight defined on only the marginal space at the current iteration. Such
strategies (which can be justified via Slutzky’s lemma, the delta method and appropriate
conditioning arguments — see, for example, Shao 1999) have been previously employed
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in particle filtering (Klaas et al. 2005) and come at the cost of increasing the computa-
tional complexity from O(N) to O(N2). There is no fundamental need to employ such
a marginalization and a more standard SMC algorithm could also be considered — this
point was made explicitly by Del Moral et al. (2008) who proposed an O(N) approach
and also developed adaptive versions of the algorithm.

These algorithms can be understood in the framework of Del Moral et al. (2006),
with appropriate choices of auxiliary kernel. In the case of algorithm 2, the auxiliary
kernel is the sample approximation of the optimal kernel first proposed by Peters (2005).
In the case of the algorithm of Del Moral et al. (2008), this is the time reversal kernel
associated with the MCMC kernel, with the selection and mutation steps exchanged
because the importance weight at time t depends only upon the sample at time t − 1
when this approximation is employed.

2.2 Existing methods for likelihood-free model selection

The ABC techniques described so far were designed to infer the parameters of a given
model. Methods to test the fit of a model without explicit comparison to other models
(i.e. Bayesian model criticism) have been proposed by Thornton and Andolfatto (2006)
who computed posterior predictive p-values (Meng 1994), and by Ratmann et al. (2009)
who extended a model with additional error terms, the posterior distributions of which
indicate how good the fit is. Model criticism and assessment of goodness-of-fit are
important in their own right, but there are situations in which explicit comparison of
the models using Bayes Factors is desirable (Robert et al. 2010) and the idea of using
ABC in this context dates back to at least Wilkinson (2007).

When the two models that we wish to compare are nested, the basic ABC algorithm
and its MCMC and SMC extensions can be used directly to estimate a Bayes Factor.
This is achieved by performing inference under the larger model, but placing half of
the prior weight on the subspace of the full parameter space which corresponds to the
simpler model. This technique was first used by Pritchard et al. (1999) to compare
a population genetics model in which the population size grows exponentially at rate
r > 0 with the model with r = 0.

In order to compute the Bayes Factor of two models M1 and M2 with parameters
θ1 and θ2, Grelaud et al. (2009) considered the model M with parameters (m, θ1, θ2)
where m is a priori uniformly distributed in {1, 2}, θ1 = 0 when m = 2 and θ2 = 0 when
m = 1. In this way, both models M1 and M2 are nested within model M and each has
equal prior weight 0.5 in model M .
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Algorithm 3.

1. Set M∗ = M1 with probability 0.5, otherwise set
M∗ = M2

2. Generate θ∗ ∼ p(θ|M∗)

3. Simulate x∗ ∼ p(x|θ∗,M∗)

4. Accept (M∗, θ∗) if D(x, xobs) < ε otherwise return
to step 1

The ratio of the number of accepted samples for which M = M1 to those for which
M = M2 when the above algorithm is run many times is an estimator of the Bayes
Factor between models M1 and M2. One drawback of this algorithm is that it is
based on the ABC rejection sampling algorithm and does not take advantage of the
improved exploration of the parameter space available in the ABC-MCMC or ABC-
SMC algorithms. Toni et al. (2009) proposed an ABC-SMC algorithm to compute the
Bayes Factor of models once again by considering a metamodel in which all models
of interest are nested. Here we propose a different approach which is to estimate the
evidence of each model separately.

3 Methodology

This section presents an approach to the direct approximation of model evidence, and
thus Bayes Factors, within the ABC framework. It is first shown that the standard ABC
approach can provide a natural estimate of the normalizing constant that corresponds
to the evidence of each model, and then algorithms based around the strengths of
MCMC and SMC implementation are presented. The choice of summary statistics when
applying ABC-based algorithms to the problem of model selection is then discussed.

3.1 Estimation of model evidence

Just as in the standard parameter estimation problem, the following ABC approach to
the estimation of model evidence is based around a simple approximation. This approx-
imation can be dealt with directly via a rejection sampling argument which subject to
certain additional constraints leads to the approach advocated by Grelaud et al. (2009).
Considering a slightly more general framework and casting the problem as that of esti-
mating an appropriate normalizing constant allows the use of other sampling methods
based around the same distributions.
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Basic ABC setting

When the likelihood is available, the model evidence can be estimated using importance
sampling. Let q(θ) be a distribution of known density over the parameter θ which
dominates the prior distribution and from which it is possible to sample efficiently.
Using the standard importance sampling identity, the evidence can be rewritten as
follows:

p(xobs) =
∫

p(xobs|θ)p(θ)dθ =
∫

p(xobs|θ)p(θ)
q(θ)

q(θ)dθ

≈ 1
N

N∑

i=1

p(xobs|θi)p(θi)
q(θi)

with θi ∼ q(θ), (8)

where w(θi) = p(xobs|θi)p(θi)
q(θi)

is termed the weight of θi and Equation 8 shows that the
evidence can be estimated by the empirical mean of the weights obtained by drawing
a collection of samples from q. This approach provides an unbiased estimate of the
evidence but requires the evaluation of the importance weights including the values of
the likelihood.

When the likelihood is not available, we can use the ABC approximation of Equation
4 in place of the likelihood in Equation 8 to obtain the following algorithm:

Algorithm 4.

1. For i = 1, . . . , N

(a) Generate θi ∼ q(θ)

(b) Simulate xi ∼ p(x|θi)

(c) Compute wi = πε(xi|xobs)p(θi)
q(θi)

2. Return 1
N

∑N
i=1 wi

The average of the importance weights is an unbiased estimator of the normalising
constant associated with the ABC approximation to the posterior; it is shown in the
appendix that this converges as ε ↓ 0 to the marginal likelihood under mild continuity
conditions. In principle, the algorithm above can be used with any proposal distribution
which dominates the true distribution; in order to control the variance of the importance
weights it is desirable that the proposal should have tails at least as heavy as those of
the target. One possibility is to use the prior p(θ) as proposal distribution. In this case,
the algorithm above becomes similar to the ABC rejection sampling algorithm and the
weights simplify into wi = πε(xi|xobs). If πε(x|xobs) is taken to be an indicator function
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as in Equation 6, then the result of the algorithm above is simply equal to the proportion
of accepted values times the normalizing constant of πε. If this algorithm is applied to
two models M1 and M2, then the Bayes Factor B1,2 is approximated by the ratio of the
number of accepted values under each model which is equivalent to algorithm 3.

This approach suffers from the usual problem of importance sampling from a pos-
terior using proposals generated according to a prior distribution (Kass and Raftery
1995). If the posterior is concentrated relative to the prior, most of the weights will be
very small. In the ABC context this phenomenon exhibits itself in a particular form:
the θi will have small probabilities of generating an xi similar to xobs and therefore most
of the weights wi will be small. Thus the estimate will be dominated by a few larger
weights where θi happened to be simulated from a region of higher posterior value, and
therefore the estimate of the evidence will have a large variance. Such a problem is
well known when performing importance sampling generally (Liu 2001). In the sce-
nario in which the likelihood is known this problem can be dealt with by employing
an approximation of the optimal proposal distribution (see, for example, Robert and
Casella 2004). Unfortunately, it is not straightforward to do so in the ABC context.
To avoid this issue, we show how the algorithm above can be applied to take advantage
of the improvements in parameter space exploration introduced by ABC-MCMC and
ABC-SMC.

Working with an approximate posterior sample

Let θ1, . . . , θN denote a sample approximately drawn from p(θ|xobs,M), for example
the output from the ABC-MCMC algorithm. Let Q denote a mutation kernel, let θ∗i
be the result of applying Q to θi and let q(θ) denote the resulting distribution of the
θ∗i . Then a Monte Carlo approximation of the unknown marginal proposal distribution,
q(θ), is given by:

q(θ) ≈ 1
N

N∑

j=1

Q(θ|θj). (9)

Using this proposal distribution q(θ) in algorithm 4 together with the estimate above
for its density leads to the following algorithm to estimate the evidence p(xobs|M):

Algorithm 5.

1. For i = 1, . . . , N

(a) Generate θ∗i ∼ Q(θ|θi)

(b) Simulate x∗i ∼ p(x|θ∗i )

(c) Compute wi =
p(θ∗i )πε(x∗i |xobs)
1
N

∑N
j=1 Q(θ∗i |θj)

(10)

2. Return 1
N

∑N
i=1 wi
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Equation 10 provides a consistent estimate of the exact importance weight. There-
fore algorithm 5 is valid in the sense that under standard regularity conditions, it pro-
vides a consistent estimate of the ABC approximation of the evidence discussed in the
previous section. The kernel Q should be chosen to have heavy tails in order to have
heavy tails in the proposal distribution q and thus prevent the variance of the weights
from becoming infinite. Note that algorithm 5 is of complexity O(N2). We did not find
this to be an issue in our applications. In situations where this is too computationally
expensive an alternative would be to choose the proposal distribution q(θ) to be a stan-
dard distribution with parameters determined by the moments of the sample θ1, . . . , θN .
However, this becomes equivalent to an importance sampler with a fine-tuned proposal
distribution, which might perform badly in general.

ABC-SMC setting

The ABC-SMC algorithm produces weighted samples suitable for approximating the
posterior p(θ|xobs,M). These samples could be resampled and algorithm 5 applied to
produce an estimate of the evidence. However, like any SMC sampler, the ABC-SMC
algorithm produces a natural estimate of the unknown normalizing constant which in
the present case is the quantity which we seek to estimate. An indication of this is given
by the fact that algorithm 5 takes a very similar form to one step of the ABC-SMC
algorithm.

In particular, the weights estimated in Equation 7 of the ABC-SMC algorithm of
Sisson et al. (2007) are of the exact same form as those calculated in Equation 10. It is
therefore straightforward to obtain an estimate of the evidence (noting that this differs
from the MCMC version slightly in that in the SMC case the distribution of the previous
sample was intended to target πεt−1 rather than πεt):

p(xobs|M) ≈ 1
N

N∑

i=1

wi
T . (11)

In contrast, the ABC-SMC algorithm of Del Moral et al. (2008) allows for estimation
of the normalizing constant via the standard estimator:

p(xobs|M) ≈
T∏

t=1

1
N

N∑

i=1

wi
t. (12)

Notice that the estimator in Equation 12 employs all of the samples generated within the
SMC process, not just those obtained in the final iteration as does Equation 11. That
SMC algorithms can produce unbiased estimates of unknown normalizing constants has
been noted before (Del Moral 2004; Del Moral et al. 2006).
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3.2 Working with summary statistics

Summary statistics in ABC

The ABC algorithms described in Section 2.1 were written as though the full data xobs

was being used and compared to simulated data using πε. In practice this is not often
possible because most data is of high dimensionality, and consequently any simulated
data is, with high probability, in some respect different from that which is observed. To
deal with this difficulty some summary statistic, s(xobs), is often used in place of the full
data xobs in the algorithms of Section 2.1, and compared to the corresponding statistics
of the simulated data. A first example of this is found in Pritchard et al. (1999).

Sufficient statistics are ubiquitous in statistics, but when considering model com-
parison it is important to consider precisely what is meant by sufficiency. A summary
statistic s is said to be sufficient for the model parameters θ if the distribution of the
data is independent of the parameters when conditioned on the statistic:

p(x|s(x), θ) = p(x|s(x)). (13)

If s is sufficient in this sense, then substituting s(x) for x in the algorithms of Section
2.1 has no effect on the exactness of the ABC approximation (Marjoram et al. 2003). It
remains the case that the approximation error can be controlled to any level by choosing
sufficiently small ε. If the statistics are not sufficient then it introduces an additional
layer of approximation. A compromise is required: the simpler and lower the dimension
of s the better the performance of the simulation algorithms (Beaumont et al. 2002)
but the more severe the approximation.

Summary statistics in ABC for model choice

The algorithms in Section 3.1 intended for the calculation of Bayes Factors have also
been written assuming that the full data xobs is being used. For the same reasons as
above, this is not always practical and summary statistics often have to be used. If a
summary statistic s(xobs) is substituted for the full data xobs in the algorithms of Section
3.1, the result is that they estimate p(s(xobs)|M) instead of the evidence p(xobs|M).

As s(xobs) is a deterministic function of xobs, the relationship between these two
quantities can be written as follows:

p(xobs|M) = p(xobs, s(xobs)|M) = p(s(xobs)|M)p(xobs|s(xobs),M). (14)

Unfortunately the last term in Equation 14 is not readily computable in most models
of interest. Here we consider the conditions under which this does not affect the estimate
of a Bayes Factor. In general, we have:

B1,2 =
p(xobs|M1)
p(xobs|M2)

=
p(s(xobs)|M1)
p(s(xobs)|M2)

p(xobs|s(xobs),M1)
p(xobs|s(xobs),M2)

. (15)
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We say that a summary statistic s is sufficient for comparing two models, M1 and
M2, if and only if the last term in Equation 15 is equal to one, so that:

B1,2 =
p(s(xobs)|M1)
p(s(xobs)|M2)

. (16)

This definition can be readily generalized to the comparison of more than two models.
When Equation 16 holds, the algorithms described in Section 3.1 can be applied using
s(xobs) in place of xobs for two models M1 and M2 to produce an estimate of the Bayes
Factor B1,2 without introducing any additional approximation.

As was noted by Grelaud et al. (2009), it is important to realize that sufficiency
for M1, M2 or both (as defined by Equation 13) does not guarantee sufficiency for
comparing them (as defined in Equation 16). For instance, consider xobs = (x1, . . . , xn)
where each component is independent and identically distributed. Grelaud et al. (2009)
consider models M1 where xi ∼ Poisson(λ) and M2 where xi ∼ Geom(µ). In this case
s(x) =

∑n
i=1 xi is sufficient for both models M1 and M2, yet p(xobs|s(xobs),M1) 6=

p(xobs|s(xobs), M2) and it is apparent that s(x) is not sufficient for comparing the two
models.

Finding a summary statistic sufficient for model choice

A generally applicable method for finding a summary statistic s sufficient for comparing
two models M1 and M2 is to consider a model M in which both M1 and M2 are nested.
Then any summary statistic sufficient for M (as defined in Equation 13) is sufficient for
comparing M1 and M2 (as defined in Equation 16):

p(x|M1) =
∫

p(x|θ, M1)p(θ|M1)dθ =
∫

p(x|θ, M)p(θ|M1)dθ

=
∫

p(x|s(x), θ, M)p(s(x)|θ, M)p(θ|M1)dθ

= p(x|s(x),M)
∫

p(s(x)|θ, M1)p(θ|M1)dθ

= p(x|s(x),M)p(s(x)|M1). (17)

Similarly p(x|M2) = p(x|s(x),M)p(s(x)|M2) and therefore:

p(x|M1)
p(x|M2)

=
p(x|s(x), M)p(s(x)|M1)
p(x|s(x), M)p(s(x)|M2)

=
p(s(x)|M1)
p(s(x)|M2)

, (18)

which means that Equation 16 holds and therefore s is sufficient for comparing M1 and
M2.

Note that this approach exploits the fact that under these circumstances the problem
of model choice becomes one of parameter estimation, albeit in a context in which the
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prior distributions take a particular form which may impede standard approaches to
computation. Of course, essentially any model comparison problem can be cast in this
form.

Summary statistics sufficient for comparing exponential family models

We now consider the case where comparison is made between two models that are
both members of the exponential family. In this case, the likelihood under each model
i = {1, 2} can be written as:

p(x|Mi, θi) ∝ exp(si(x)T θi + ti(x)), (19)

where si is a vector of sufficient statistics (in the ordinary sense) for model i, θi the
associated vector of parameters and ti(x) captures any intrinsic relationship between
model i and its data which is not dependent upon its parameters. The ti(x) terms are
important when comparing members of the exponential family which have different base
measures: they capture the interaction between the data and the base measure which is
independent of the value of the parameters but is important when comparing models.
It is precisely this ti term which prevents statistics sufficient for each model from being
adequate for the comparison of the two models.

Consider the extended model M with parameter (θ1, θ2, α1, α2), where θ1 and θ2 are
as before and αi ∈ {0, 1}, defined via:

p(x|M, θ1, θ2, α) ∝ exp
(
s1(x)T θ1 + s2(x)T θ2 + α1t1(x) + α2t2(x)

)

∝ exp


[s1(x)T , s2(x)T , t1(x), t2(x)]




θ1

θ2

α1

α2





 . (20)

M reduces to M1 if we take θ2 = 0, α1 = 1, α2 = 0, and M reduces to M2 if
we take θ1 = 0 and α1 = 0, α2 = 1. Thus both M1 and M2 are nested within M .
It is furthermore clear that the model M is an exponential family model for which
S(x) = [s1(x), s2(x), t1(x), t2(x)] is sufficient. Following the argument of Section 3.2,
S(x) is a sufficient statistic for the model choice problem between models M1 and M2

(as defined by Equation 16). A special case of this result is that the combination of the
sufficient statistics of two Gibbs Random Field models is sufficient for comparing them,
as previously noted by Grelaud et al. (2009).
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4 Applications

4.1 Toy Example

The problem

It is convenient to first consider a simple example in which it is possible to evaluate the
evidence analytically in order to validate and compare the performance of the algorithms
described. We turn to the example described by Grelaud et al. (2009) in which the
observations are assumed to be independent and identically distributed according to a
Poisson(λ) distribution in model M1 and a Geometric(µ) distribution in model M2 (cf.
Section 3.2). The canonical form of the two models (as defined in Equation 19), with n
observations, is:

p(x|θ1, M1) ∝ exp




n∑

j=1

xjθ1 −
n∑

j=1

log xj !


 , (21)

p(x|θ2, M2) ∝ exp




n∑

j=1

xjθ2


 , (22)

where θ1 = log λ and θ2 = log(1 − µ) under the usual parametrization. Hence, we can
incorporate both in a model of the form:

p(x|θ, α, M) ∝ exp


(θ1 + θ2)

∑

j

xj + α
∑

j

log xj !


 . (23)

In this particular case θ1 and θ2 can be merged as they both multiply the same statistic.
This leads to the conclusion that (s1, t1) = (

∑
j xj ,

∑
j log xj !) is sufficient for comparing

models M1 and M2. Here
∑

j xj is a statistic sufficient for parameter estimation in either
model whilst

∑
j log xj ! captures the differing probabilities of the data under the base

measure of the Poisson and geometric distributions.

We assign equal prior probability to each of the two models and complete their
definition by assigning an Exponential(1) prior to λ in model M1 and a Uniform([0,1])
prior to µ in model M2. These priors are conjugate to the likelihood function in each
model, so that it is possible to compute analytically the evidence under each model:

p(x|M1) =
s1!

exp(t1)(n + 1)s1+1
, (24)

p(x|M2) =
n!s1!

(n + s1 + 1)!
. (25)
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Figure 1: Comparison of the exact and estimated values of the log- Bayes Factor for
each of the three estimation schemes for the example of Section 4.1.

Comparison of algorithms

In order to test our approximate method of model choice in this context, we generated
datasets of size n = 100 made of independent and identically distributed random vari-
ables from Poisson(0.5). We generated (using rejection sampling) 1000 such datasets
uniformly covering the range of p1 = p(x|M1)

p(x|M1)+p(x|M2)
from 0.01 to 0.99, to ensure that

testing is performed in a wide range of scenarios. For each dataset, we estimated the
evidence of the two models M1 and M2 using three different schemes:

1. The rejection algorithm 4 using the prior for proposal distribution, N = 30, 000
iterations and tolerance ε. This is equivalent to using the algorithm of Grelaud
et al. (2009).

2. The MCMC algorithm run for N = 15, 000 iterations with tolerance ε and mu-
tation kernel x → Norm(x, 0.1) followed by algorithm 5 to estimate the evidence
using kernel Q equal to Student’s t distribution with 4 degrees of freedom.

3. The SMC algorithm 2 run with N = 10, 000 particles and the sequence of toler-
ances {3ε, 2ε, ε}, followed by Equation 11 to estimate the evidence.

Note that each of these three schemes requires exactly 30,000 simulations of datasets,
so that if simulation was the most computationally expensive step (as is ordinarily the
case when complex models are considered) then each of the three schemes would have
the same computational cost. Furthermore, we used the same tolerance ε = 0.05 in the
three schemes so that they are equally approximate in the sense of Equation 4. The
main difference between these three schemes therefore lies in how well they explore this
approximate posterior, which directly affects the precision of the evidence estimation.

Figure 1 compares the values of the log- Bayes Factor B1,2 = p(x|M1)
p(x|M2)

computed
exactly (using Equations 24 and 25) and estimated using each of the three schemes. All
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Figure 2: Boxplot of the log-ratio of the exact and estimated values of the Bayes Factor
for each of the three estimation schemes for the example of Section 4.1.

three schemes perform best when the Bayes Factor is moderate in either direction. When
one model is clearly preferable to the other, all three methods become less accurate
because the estimate of the evidence for the unlikely model becomes more approximate.
However, as pointed out by Grelaud et al. (2009), precise estimation of the Bayes Factor
is typically less important when one model is clearly favored over the other since it does
not affect the conclusion of which model is “correct”. In cases where it is less clear
which of the two models is correct (for example where the log- Bayes Factor is between
-2 and 2) the estimation of the Bayes Factor is less accurate using the rejection scheme
than using the MCMC or SMC schemes.

Figure 2 shows the log-ratio of the exact and estimated values of the Bayes Factor
represented as a boxplot for each of the three estimation schemes. The interquartile
ranges are 0.33 for the rejection scheme, 0.24 for the MCMC scheme and 0.23 for the
SMC scheme. It is therefore clear that both the MCMC and SMC schemes perform
better at estimating the Bayes Factor than the rejection scheme. This difference is ex-
plained by the fact that the MCMC and SMC schemes explore the posterior distribution
of parameter under each model more efficiently than the rejection sampler, thus result-
ing in better estimates of the evidence of each parameter and therefore of the Bayes
Factor. Because the example we considered here is relatively simple, with only one
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Figure 3: Boxplot of the log-ratio of the exact and estimated values of the Bayes Factor
in the SMC scheme with 4 different values of the final tolerance ε for the example of
Section 4.1.

parameter in each model, the rejection scheme was still able to estimate Bayes Factors
reasonably well (Figure 1). But for more complex models where the prior distribution of
parameters would be very diffuse relative to their posterior distribution, the acceptance
rate of a rejection scheme would become very small for a reasonably small value of the
tolerance ε (Marjoram et al. 2003; Sisson et al. 2007). In such cases it becomes necessary
to improve the sampling of the posterior distribution using MCMC or SMC techniques.
We also implemented a scheme based on the algorithm of Del Moral et al. (2008) and
Equation 12 which resulted in an improvement over the rejection sampling scheme but
which did not perform as well as the other schemes considered. Due to the different
form of the estimator used by this algorithm it is not clear that this ordering would be
preserved when considering more difficult problems. The question of which sampling
scheme provides the best estimates of evidence is highly dependent on the problem and
exact implementation details as it is when sampling of parameters is the aim.

Choice of the tolerance ε

A key component of any Approximate Bayesian Computation algorithm is the choice
of the tolerance ε (e.g. Marjoram et al. 2003). If the tolerance is too small then the
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acceptance rate is small so that either the posterior is estimated by only a few points
or the algorithm would need to be run for longer. On the other hand if the tolerance
is too large then the approximation in Equation 4 becomes inaccurate. We found that
the choice of the tolerance is also paramount when the aim is to estimate an evidence
or a Bayes Factor. Figure 3 shows the log-ratio of the exact and estimated values of
the Bayes Factor for the SMC scheme described above, using four different values of
the final tolerance ε: 0.1, 0.075, 0.05 and 0.025 (similar results were obtained using the
rejection and MCMC schemes). As ε goes down from 0.1 to 0.05, the estimation of the
Bayes Factor improves because each evidence is calculated more accurately thanks to a
more accurate sampling of the posterior. However, estimating the Bayes Factor is less
accurate when using ε = 0.025 than ε = 0.05 because the number of particles accepted
in each model becomes too small for the approximation in Equation 8 to hold well.

It should be noted that all three techniques produce better estimates with greater
simulation effort. Figure 4 shows that ε = 0.05 performs best, but this is only true for
the number of simulation (30,000) that we allowed. Using a larger number of simulations
allows both the use of a smaller ε, reducing the bias of the ABC approximation, and
the use of a larger number of samples which reduces the Monte Carlo error.

4.2 Application in population genetics

The problem

Pritchard et al. (1999) used an Approximate Bayesian Computation approach to analyze
microsatellite data from 8 loci on the Y chromosome and 445 human males sampled
around the world (Pérez-Lezaun et al. 1997; Seielstad et al. 1998). This data was also
later reanalyzed by Beaumont et al. (2002). The population model assumed by both
studies was the coalescent (Kingman 1982a,b,c) with mutations happening at rate µ per
locus per generation. A number of mutational models were considered by Pritchard et al.
(1999), but here we follow Beaumont et al. (2002) in focusing on the single-step model
(Ohta and Kimura 1973). Pritchard et al. (1999) used a model of population size similar
to that described by Weiss and von Haeseler (1998), where an ancestral population of
previously constant size NA started to grow exponentially at time tg generations before
the present and at a rate r per generation. Let M1 denote this model of population size
dynamics. Thus if t denotes time in generations before the present, the population size
N(t|M1) at time t follows:

N(t|M1) =
{

NA if t > tg,
NAexp(r(tg − t)) if t ≤ tg.

(26)

Pritchard et al. (1999) also considered a model where the population size is constant
at NA. This can be obtained by setting tg = 0 in Equation 26. The constant population
size model is therefore nested in the above model, which allows to perform model com-
parison between them directly as described in Section 2.2 by performing inference under
the larger model with half of the prior weight placed on the smaller model, i.e. tg = 0.
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Pritchard et al. (1999) used this method and found strong support for the exponential
growth model, with a posterior probability for the constant model < 1%.

Algorithmic framework

Here we propose to reproduce and extend those results by considering other population
size models which are not necessarily nested into one another. Simulation of data under
the coalescent with any population size dynamics can be achieved by first simulating
a coalescent tree under a constant population size model (Kingman 1982a) and then
rescaling time according to the function N(t) of the population size in the past as
described by Griffiths and Tavaré (1994); Hein et al. (2005).

We summarize the data using the same three statistics as Pritchard et al. (1999),
namely the number of distinct haplotypes n, the mean (across loci) of the variance in
repeat numbers V̄ and the mean effective heterozygosity H̄. For the observed data, we
find that n = 316, V̄ = 1.1488 and H̄ = 0.6358. Beaumont et al. (2002) supplemented
these with a number of additional summary statistics but found little improvement.
Note that the summary statistics we use are not sufficient either for estimating the
parameters of a given model (i.e. in the sense of Equation 13) or for the comparison of
two models (i.e. in the sense of Equation 16). We will return to this difficulty in the
discussion. We also use the same definition of πε as Pritchard et al. (1999), namely an
indicator function (Equation 6) with a Chebyshev distance.

µ (×10−4) r (×10−4) tg NA (×103)

Prior Γ(10,8·10−5) Exp(0.005) Exp(1000) Log-N (8.5,2)
8 [4;14] 50 [1.3;180] 1000 [25;3700] 36 [0.1;250]

Pritchard et al. (1999) 7 [4;12] 75 [22;209] 900 [300;2150] 1.5 [0.1;4.9]

Beaumont et al. (2002) 7.2 [3.5;12] 75 [23;210] 900 [320;2100] 1.5 [0.14;4.4]

This study 7.4 [3.6;12] 76 [22;215] 920 [310;2300] 1.4 [0.08;4.4]

Table 1: Means and 95% credibility intervals for the estimates of the parameters of the
model M1 used by Pritchard et al. (1999) and defined by Equation 26.

Pritchard et al. (1999) used the rejection ABC algorithm to sample from the pa-
rameters (µ, r, tg, NA) of their model (Equation 26) assuming the priors shown in Table
1. Beaumont et al. (2002) repeated this approach, and found that they get ∼ 1600
acceptable simulation when performing 106 simulations with ε = 0.1. We repeated this
approach once again and found that it took ∼600000 simulations to get 1000 accep-
tances, which is in accordance with the acceptance rate reported by Beaumont et al.
(2002). To generate this number of simulations took ∼ 12 hours on a modern computer.

To reduce this computational cost, we implemented an ABC-SMC algorithm with
the sequence of tolerances {ε1 = 0.8, ε2 = 0.4, ε3 = 0.2, ε4 = 0.1}, and a requirement
of 1000 accepted particles for each generation. The final generation therefore contained
1000 accepted particles for the tolerance ε = 0.1, making it comparable to the sample
produced by the rejection algorithm, with the difference that it only required ∼5% of
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the number of simulations needed by the rejection algorithm. The results of this analysis
are shown in Table 1 and are in agreement with those of Pritchard et al. (1999) and
Beaumont et al. (2002).

Other models

As an alternative to the model M1 used by Pritchard et al. (1999), we consider the
model denoted M2 of pure exponential growth as used for example by Slatkin and
Hudson (1991):

N(t|M2) = N0exp(−rt). (27)

This model has three parameters: the mutation rate µ, the current effective popula-
tion size N0 and the rate of growth r. We assume the same priors for µ and r as in the
model M1 of Pritchard et al. (1999), and for N0 use the same diffuse prior as for NA in
M1.

As a third alternative, we consider the model of sudden expansion (Rogers and
Harpending 1992) denoted M3 where tg generations back in time the effective population
size suddenly increased to its current size:

N(t|M3) =
{

N0 if t < tg,
N0 · s if t ≥ tg.

(28)

This model M3 has four parameters: the mutation rate µ, the current population
size N0, the time tg when the size suddenly increased and the factor s by which it used
to be smaller. The priors for µ, N0 and tg were as defined previously for models M1 and
M2, and for s we followed Thornton and Andolfatto (2006) in using a Uniform([0,1])
prior.

Finally we consider a bottleneck model M4 as described by Tajima (1989) where the
effective population size was reduced by a factor s between time tg and tg + tb before
the present:

N(t|M4) =





N0 if t < tg,
N0 · s if tg ≤ t < tg + tb,
N0 if t ≥ tg + tb.

(29)

This model has five parameters: the mutation rate µ, the current population size
N0, the time tg when the bottleneck finished, its duration tb and its severity s.

Comparison of models and consequences

For each of the 4 models described above, we computed the evidence using Equation
11 (excluding the multiplicative constant πε which is the same for all evidences since
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Figure 4: Plots of the posterior densities for the TMRCA under model M1 (black)
and model M2 (gray). The mean of each distribution is indicated by an arrow of the
corresponding color.

the same tolerance and summary statistics were used). The Bayes Factors for the
comparison of the 4 models are shown in Table 2. According to the scale of Jeffreys
(1961) (cf. Introduction), we have equivalently good fit to the data of models M1 and
M2, substantial ground to reject model M3 and very strong evidence to reject model M4.
The fact that models M1 and M2 have a Bayes Factor close to 1 means that there is no
evidence to support a period during which the effective population size was constant (as
assumed in the model of Pritchard et al. 1999) before it started its exponential growth.

M1 M2 M3 M4

M1 (Pritchard et al. 1999) 1.00 0.96 8.54 33.32
M2 (pure exponential growth) 1.04 1.00 8.92 34.80
M3 (sudden increase) 0.12 0.11 1.00 3.90
M4 (bottleneck) 0.03 0.03 0.26 1.00

Table 2: Bayes Factors for the comparison between models M1, M2, M3 and M4. The
value reported on the i-th row and the j-th column is the Bayes Factor Bi,j between
models Mi and Mj .

We estimated the time to the most recent common ancestor (TMRCA) of the human
male population by recording for each model the TMRCAs of each simulation accepted
in the last SMC generation. In spite of the fact that they fit equally well to the data, the
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models M1 and M2 produce fairly different estimates of the TMRCA of the human male
population (Figure 4). The pure exponential growth model results in a point TMRCA
estimate of 1600 generations which is almost half of the model of Pritchard et al. (1999)
with an estimate of 3000 generations. The TMRCA estimate under the pure exponential
model is in better agreement with the results based on different datasets of Tavaré et al.
(1997) and Thomson et al. (2000).

5 Discussion

We have presented a novel likelihood-free approach to model comparison, based on the
independent estimation of the evidence of each model. This has the advantage that
it can easily be incorporated within an MCMC or SMC framework, which can greatly
improve the exploration of a large parameter space, and consequently results in more
accurate estimates of evidence and Bayes Factor for a given computational cost. We also
proposed a general method for finding a summary statistic sufficient for comparing two
models, and showed how this could be applied in particular to models of the exponential
family. Following this method ensures that the only approximation being made comes
from the use of the tolerance ε, and the advanced sampling techniques that we use
allow to reach low values of the tolerance in much less time than would be needed
using rejection sampling. We illustrated this point on a toy example where marginal
likelihoods can be computed analytically and sufficient statistics are available.

However, for more complex models such as the ones we considered in our population
genetics application, sufficient statistics of reasonably low dimensionality (as required
for ABC to be efficient) are not available. In such situation one must rely on statis-
tics that are thought to be informative about the model comparison problem. This
is analogous to the necessity to use non-sufficient statistic in standard ABC (where
sampling of parameters is the aim) when complex model and data are involved (Beau-
mont et al. 2002; Marjoram et al. 2003). Joyce and Marjoram (2008) have described
a method to help find summary statistics that are close to sufficiency in this setting,
and given the relationship that we established between sufficiency for model comparison
and sufficient for parameter estimation (cf. Section 3.2), these should prove useful also
in the likelihood-free model comparison context. A number of sophisticated method-
ological techniques have been described in recent years and could be directly applied in
the model selection context (Peters et al. 2008; Del Moral et al. 2008; Fearnhead and
Prangle 2010).

Although the proposed method inherits all of the difficulties of both ABC and
Bayesian model comparison based upon a finite collection of candidate models, the
results of Section 4 suggest that when these difficulties (particularly the interpretation
of the procedure, the selection of appropriate statistics and the choice of prior distribu-
tions for the model parameters) can be adequately resolved good results can be obtained
by these methods.
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Appendix: Convergence of the Evidence Approximation

Our strategy involves two steps:

1. Approximate the joint density of a phantom x and θ under a given model with:

p̂(x, θ) =
p(θ)p(x|θ)πε(x|xobs)

Zε
,

where πε is a probability density with respect to the same dominating measure as
p(x|θ).

2. Estimate Zε numerically for each model using Monte Carlo methods.

Here we demonstrate that the Zε of the first step approximates the normalising
constant of interest, Z =

∫
p(xobs, θ)dθ = p(xobs). The approximation techniques used

in the second step are essentially standard and their convergence follows by standard
arguments.

Proposition 1. If p(x|θ) is continuous for almost every θ (with respect to the prior
measure over θ) and either:

1. supp (πε(·|xobs)) ⊂ Bε(xobs) = {x : |x− xobs| < ε}, or,

2. For p(θ)p(x|θ)dxdθ-almost every (θ, x): p(xobs|θ) ≤ M < ∞ and πε(·|xobs) be-
comes increasingly and arbitrarily concentrated around xobs for sufficiently small
ε in the sense that:

∀ε, α > 0 : ∃ε?
α > 0 such that ∀γ ≤ ε?

α :
∫

Bε(xobs)

πγ(x|xobs)dx > 1− α (30)

then:
lim
ε→0

Zε = p(xobs) = Z.

Proof. Consider first the case in which condition 1 holds. For any δ > 0 there exists
εδ > 0 such that:

∀ε ≤ εδ, ∀x ∈ Bε(xobs) : |p(x|θ)− p(xobs|θ)| < δ.

For given δ, consider Zε − Z for ε ≤ εδ:

|Zε − Z| =
∣∣∣∣
∫

p(θ)
∫

p(x|θ)πε(x|xobs)dxdθ −
∫

p(θ)p(xobs|θ)dθ

∣∣∣∣

≤
∫

p(θ)
∫
|p(x|θ)− p(xobs|θ)|πε(x|xobs)dxdθ

≤
∫

p(θ)δdθ = δ
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As this holds for arbitrary δ, limε→0 Zε → Z.

The second case, with general πε, uses similar logic: For any δ > 0, there exists
ε′δ > 0 such that:

∀ε ≤ ε′δ, ∀x ∈ Bε(xobs) : |p(x|θ)− p(xobs|θ)| < δ/2.

Furthermore, for any δ, ε > 0, we can find ε′(δ, ε) > 0 such that:

∀γ < ε′(δ, ε) :
∫

Bε(x|xobs)

πγ(x|xobs)dx > 1− δ/2M.

For any given δ > 0, for any ε < ε′(δ, ε′δ) ∧ ε′δ:

|Zε − Z| =
∣∣∣∣
∫

p(θ)
∫

p(x|θ)πε(x|xobs)dxdθ −
∫

p(θ)p(xobs|θ)dθ

∣∣∣∣

≤
∫

p(θ)





∫

Bε′
δ
(xobs)

|p(x|θ)− p(xobs|θ)|πε(x|xobs)dx +

∫

Bε′
δ
(xobs)

|p(x|θ)− p(xobs|θ)|πε(x|xobs)dx



 dθ

≤ δ/2 + M · δ/2M = δ.

Where the first integral is bounded by a simple continuity argument and the second
by bounding the difference between a positive function evaluated at two points by its
supremum and noting that the integral of πε over Bε′δ(xobs) is at most δ/2M . Again,
this result holds for any δ > 0 and so Zε converges to Z as ε → 0.

Comments

Condition a holds for any sequence πεi with compact support that contracts to a point
as εi ↓ 0 by simple relabelling.

Although the result is reassuring and holds under reasonably weak conditions, veri-
fying these assumptions will often be difficult in practice as ABC is generally used for
models which are not analytically well characterised.

Similar arguments would allow rates of convergence to be obtained with the addi-
tional assumption of (local) Lipschitz continuity.

The proof in the case of discrete data spaces is direct: for ε smaller than some
threshold the approximation is exact.
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Pérez-Lezaun, A., Calafell, F., Seielstad, M., Mateu, E., Comas, D., Bosch, E., and
Bertranpetit, J. (1997). “Population genetics of Y-chromosome short tandem repeats
in humans.” Journal of Molecular Evolution, 45(3): 265–270.
URL http://www.hubmed.org/display.cgi?uids=9302320 66

Peters, G., Fan, Y., and Sisson, S. (2008). “On sequential Monte Carlo, partial rejection
control and approximate Bayesian computation.” Arxiv preprint arXiv:0808.3466. 70

Peters, G. W. (2005). “Topics In Sequential Monte Carlo Samplers.” M.Sc., University
of Cambridge, Department of Engineering. 54

Pritchard, J., Seielstad, M., Perez-Lezaun, A., and Feldman, M. (1999). “Population
growth of human Y chromosomes: a study of Y chromosome microsatellites.”
Molecular Biology and Evolution, 16(12): 1791–1798.
URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=
pubmed\&dopt=Abstract\&list_uids=10605120 51, 52, 54, 59, 66, 67, 68, 69, 70

Ratmann, O., Andrieu, C., Wiuf, C., and Richardson, S. (2009). “Model criticism
based on likelihood-free inference, with an application to protein network evolution.”
Proceedings of the National Academy of Sciences, 106(26): 10576–10581.
URL http://www.hubmed.org/display.cgi?uids=19525398 54

Robert, C. P. (2001). The Bayesian Choice. Springer Texts in Statistics. New York:
Springer Verlag, 2nd edition. 49

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods. New York:
Springer, 2nd edition. 52, 57

Robert, C. P., Mengersen, K., and Chen, C. (2010). “Model choice versus model criti-
cism.” Proceedings of the National Academy of Sciences, 107(3): E5–E5.
URL http://www.pnas.org/content/107/3/E5.short 54

Rogers, A. R. and Harpending, H. (1992). “Population growth makes waves in the
distribution of pairwise genetic differences.” Molecular Biology and Evolution, 9(3):
552–569.
URL http://www.hubmed.org/display.cgi?uids=1316531 68

Seielstad, M. T., Minch, E., and Cavalli-Sforza, L. L. (1998). “Genetic evidence for a
higher female migration rate in humans.” Nature Genetics, 20(3): 278–280.
URL http://www.hubmed.org/display.cgi?uids=9806547 66

Shao, J. (1999). Mathematical Statistics. Springer. 53

Sisson, S. A., Fan, Y., and Tanaka, M. M. (2007). “Sequential Monte Carlo without
likelihoods.” Proceedings of the National Academy of Sciences, 104(6): 1760–1765.
URL http://www.pnas.org/content/104/6/1760.abstract 53, 58, 65

Slatkin, M. and Hudson, R. R. (1991). “Pairwise comparisons of mitochondrial DNA
sequences in stable and exponentially growing populations.” Genetics, 129(2): 555–
562.
URL http://www.hubmed.org/display.cgi?uids=1743491 68

http://www.hubmed.org/display.cgi?uids=9302320�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10605120�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10605120�
http://www.hubmed.org/display.cgi?uids=19525398�
http://www.pnas.org/content/107/3/E5.short�
http://www.hubmed.org/display.cgi?uids=1316531�
http://www.hubmed.org/display.cgi?uids=9806547�
http://www.pnas.org/content/104/6/1760.abstract�
http://www.hubmed.org/display.cgi?uids=1743491�


76 Model evidence from ABC

Stephens, M. (2000). “Bayesian analysis of mixture models with an unknown number
of components-an alternative to reversible jump methods.” The Annals of Statistics,
28(1): 40–74. 50

Tajima, F. (1989). “The effect of change in population size on DNA polymorphism.”
Genetics, 123(3): 597–601.
URL http://www.hubmed.org/display.cgi?uids=2599369 68
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