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ABSTRACT

Previous studies using coupled general circulation models (GCMs) suggest that the atmosphere model
plays a dominant role in the modeled El Nin÷oÐSouthern Oscillation (ENSO), and that intermodel differences
in the thermodynamical damping of sea surface temperatures (SSTs) are a dominant contributor to the ENSO
amplitude diversity. This study presents a detailed analysis of the shortwave ßux feedback (aSW) in 12
Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, motivated by Þndings thataSW is the
primary contributor to model thermodynamical damping errors.

A ÔÔfeedback decomposition method,ÕÕ developed to elucidate theaSW biases, shows that all models un-
derestimate the dynamical atmospheric response to SSTs in the eastern equatorial PaciÞc, leading to un-
derestimatedaSW values. Biases in the cloud response to dynamics and the shortwave interception by clouds
also contribute to errors in aSW. Changes in theaSW feedback between the coupled and corresponding
atmosphere-only simulations are related to changes in the mean dynamics.

A large nonlinearity is found in the observed and modeled SW ßux feedback, hidden when linearly cal-
culating aSW. In the observations, two physical mechanisms are proposed to explain this nonlinearity:
1) a weaker subsidence response to cold SST anomalies than the ascent response to warm SST anomalies and
2) a nonlinear high-level cloud cover response to SST. The shortwave ßux feedback nonlinearity tends to be
underestimated by the models, linked to an underestimated nonlinearity in the dynamical response to SST.
The process-based methodology presented in this study may help to correct model ENSO atmospheric biases,
ultimately leading to an improved simulation of ENSO in GCMs.

1. Introduction

The past decade has seen steady progress in the simu-
lation of the tropical PaciÞc and its interannual variability
in coupled general circulation models (GCMs)
(Delecluse et al. 1998; Latif et al. 2001; Davey et al. 2001;
Guilyardi et al. 2009b). Advances in model formulation,
such as improved parameterizations and increased hori-
zontal and vertical resolutions, have given rise to an im-
proved simulation of the El Nin÷oÐSouthern Oscillation

(ENSO) (AchutaRao and Sperber 2006). This ability to
represent interannual variations in the tropical PaciÞc is
an impressive achievement, especially given that the
majority of present-day models do not use ßux correc-
tion (a technique used in earlier GCMs to correct model
biases) in simulating the complex oceanÐatmosphere in-
teractions involved in ENSO variability.

However, despite this progress, present-day GCMs still
show deÞciencies in simulating ENSO, associated with
model errors in the mean climate and annual cycle of the
tropical PaciÞc (van Oldenborgh et al. 2005; AchutaRao
and Sperber 2006; Guilyardi 2006; Guilyardi et al. 2009b).
Typical ENSO problems include errors in the ENSO am-
plitude and frequency, spatial structures that extend too far
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to the west (Leloup et al. 2008), and biases in the seasonal
phase locking. Indeed, the ENSO properties exhibited by
these models are too diverse to allow any clear projection
of ENSO evolution in a warmer climate (Meehl et al. 2007;
Collins et al. 2010). Furthermore, the complexity of the
tropical oceanÐatmosphere interactions makes it difÞcult
to elucidate the precise origin(s) of modeled ENSO errors.

Nevertheless, many recent studies suggest that the
atmospheremodel plays a dominant role in determining
the ENSO properties in GCMs. Guilyardi et al. (2004)
used different combinations of atmosphere and ocean
GCMs to show that the atmosphere model is instrumental
in determining both El Nin÷o periodicity and amplitude.
Toniazzo et al. (2008), using a suite of integrations in which
the atmospheric parameters of a coupled GCM are simul-
taneously perturbed, showed that the resulting ensemble
has a range of ENSO characteristics comparable to that
seen in multimodel ensembles(e.g., van Oldenborgh et al.
2005; Guilyardi 2006). Other studies have demonstrated
that altering the modelÕs convection scheme, either by
adjusting individual processes (Wittenberg et al. 2003;
Wu et al. 2007; Kim et al. 2008; Neale et al. 2008) or by
implementing an entirely new scheme (Guilyardi et al.
2009a) can have large impacts on the modeled ENSO
properties.

Current theory describes the atmospheric processes
involved in ENSO using two relatively simple linear
feedbacks (Zebiak and Cane 1987; Battisti and Hirst 1989;
Jin et al. 2006; Philip and van Oldenborgh 2006). First,
the dynamical feedback (m), also known as the Bjerknes
feedback (Bjerknes 1969; Lin 2007), represents the re-
mote zonal wind stress response to a given central-eastern
equatorial PaciÞc SST anomaly; it is a positive feedback
that maintains an eastÐwest asymmetry across the equa-
torial PaciÞc. Second, a central-eastern equatorial PaciÞc
SST anomaly will also trigger a thermodynamical response,
that is, a change in the oceanÐatmosphere heat ßux budget.
In this region, changes in the net heat ßux act to dampen
SST anomalies, giving rise to a negative feedback,a
(Zebiak and Cane 1987; Jin et al. 2006).

Lloyd et al. [2009 (Part I)] took a step toward un-
derstanding the role of the atmosphere in the modeled
ENSO by calculating these two atmospheric feedbacks
in 12 of the coupled GCMs provided by the Coupled
Model Intercomparison Project phase 3 (CMIP3) mul-
timodel dataset. It was found that both mand a are too
weak compared to reanalysis datasets, indicating an er-
ror compensation in most present-day coupled GCMs.
The net heat ßux feedback was also shown to be inversely
related to the ENSO amplitude in the models, suggesting
that a is a prime candidate for explaining ENSO errors in
these GCMs. This result is further conÞrmed by Kim and
Jin (2011), who applied the Bjerknes (BJ) stability index

[a linear stability analysis based on the recharge oscillator
framework (Jin et al. 2006)] to show that intermodel
differences in the thermodynamicaldamping (a) are one
of the dominant contributors to the ENSO amplitude
diversity in the CMIP3 models.

To shed light on the a biases, the neta feedback was
split into its four individual components: the shortwave
(SW), longwave (LW), latent heat (LH), and sensible
heat ßux feedbacks (Lloyd et al. 2009). The SW and LH
ßux feedbacks were found to dominate in the central-
eastern equatorial PaciÞc region. However, whereas all
models successfully simulate a negative LH ßux feed-
back, the majority of models fail to capture the overall
negative SW ßux feedback observed in this region. The
SW ßux feedback,aSW, is thus the main source of model
uncertainty in a, with 11 out of the 12 GCMs exhibiting
a larger error in aSW than in any of the other heat ßux
feedback components. This result is supported by other
studies that investigate the SW ßux feedback in present-
day GCMs (Sun et al. 2006, 2009; Guilyardi et al. 2009a).

Lloyd et al. (2011) followed up on Lloyd et al. (2009) by
analyzing the ENSO atmospheric feedbacks in the corre-
sponding Atmospheric Model Intercomparison Project
(AMIP) simulations of the CMIP3 models, a method that
can help to pin down the source of feedback biases (e.g., Sun
et al. 2006; Guilyardi et al. 2009a). It was found that bothm
and a exhibit improvements over their coupled counter-
parts and that the error compensation between the feed-
backs present in the coupled GCMs is no longer evident.
Although aSW is also improved in the AMIP simulations,
this feedback continues to be the main source of model
uncertainty in the overall a. Intermodel differences in the
AMIP aSW values are dominated by biases in the eastern
equatorial PaciÞc cloud properties, and their response to
changes in the large-scale circulation during ENSO events.
This important role for cloud biases is supported by Bony
and Dufresne (2005), who showthat the tropical cloud re-
sponse to SST in present-day coupled GCMs disagrees the
most with observations in regimes of large-scale subsidence,
such as in this eastern equatorial PaciÞc region.

An open question is whether the atmospheric model
biases that account for the AMIP aSW errors also account
for the large coupled aSW errors revealed by Lloyd et al.
(2009). Analysis of aSW is complicated by the fact that
two SW ßux feedback regimes coexist in the central-
eastern equatorial PaciÞc region. First, an increased SST
in a region of subsidencereduces the static stability of
the atmospheric boundary layer. This acts to break up
the dominant marine stratiform clouds, increase the
surface SW ßux, and provide a positive feedback on the
SST (Klein and Hartmann 1993; Philander et al. 1996;
Park and Leovy 2004; Xie 2005; Lloyd et al. 2011).
Second, a SST increase in a region ofascenttends to

4276 J O U R N A L O F C L I M A T E V OLUME 25



increase the amount of convective cloud cover, reduce
the surface SW ßux, and hence provide a negative feed-
back on the SST (Ramanathan and Collins 1991; Bony
et al. 1997). In this study, a ÔÔfeedback decomposition
methodÕÕ based on these mechanisms is introduced as
a means of elucidating the complexaSW model biases.

Until now, aSW has been deÞned as alinear feedback.
This is an extension of the fact that the net heat ßux
feedback,a, is treated as a linear response in simple ENSO
models and frameworks (e.g., Zebiak and Cane 1987;
Battisti and Hirst 1989; Gordon and Corry 1991; Jin et al.
2006; Guilyardi et al. 2009a; Lloyd et al. 2009; Kim and Jin
2011; Lloyd et al. 2011). However, Zebiak and Cane (1987)
admit that this linear heat ßux parameterization is ÔÔclearly
oversimpliÞed and is probably incorrect in some local re-
gions,ÕÕ and Barnett et al. (1991) similarly remark that the
linear approximation masks important processes such as
cloud effects. There is therefore no reason to assume that
the SW ßux feedback is linear. Here, the SW ßux feedback
nonlinearity is considered for the Þrst time.

This study of the SW ßux feedback over the central-
eastern equatorial PaciÞc is thus motivated by the fol-
lowing questions.

(i) Do the atmospheric model biases that account for
the AMIP aSW errors (i.e., biases in the mean cloud
properties and their response to dynamical changes)
also apply to the coupledaSW errors?

(ii) Does the SW ßux feedback exhibit a nonlinearity
that is masked by the linear aSW deÞnition?

(iii) What explains the coupled versus AMIP differences
in the aSW feedback values?

In section 2, the CMIP3 simulations analyzed in this
study are presented, followed by a description of the
observational and reanalysis datasets against which the
models are assessed. Section 3 recaps the methodology
used to calculate the SW ßux feedback, and presents the
coupled and AMIP aSW values. In section 4, analysis of
the coupled aSW feedback begins with a diagnosis of the
SW ßux behavior during modeled El Nin÷os and the in-
troduction of a ÔÔfeedback decomposition method.ÕÕ In
section 5, the SW ßux feedback nonlinearity is diagnosed,
followed by an investigation into the coupled versus
AMIP aSW differences (section 6) and an analysis of
the cloud properties over the eastern equatorial PaciÞc
(section 7). Finally, the paper concludes with a summary
and discussion of the results (section 8).

2. Data

a. Models

We use the preindustrial simulations of 12 CMIP3
GCMs, as previously analyzed in Lloyd et al. (2009) and

listed in Table 1. These are long coupled simulations (at
least 100 years) in which radiative forcings are held Þxed
at preindustrial values, allowing the modelsÕ ENSO
properties to be studied in an idealized climate scenario
with no anthropogenic radiative forcing changes since
the Industrial Revolution. The ENSO feedbacks are
expected to change in a future warmer climate (Philip
and van Oldenborgh 2006; Collins et al. 2010; Kim and
Jin 2011), but the purpose of this study is to identify and
explain feedback biases in the modelsÕ intrinsic ENSO
cycles. The 12 models in this CMIP3 subset represent the
full model diversity in ENSO amplitude (Guilyardi et al.
2009b) and supply all the variables required to diagnose
the atmospheric feedbacks. We use the Þrst 150 years for
10 of these simulations (not including the spinup pe-
riod), the full 100 years supplied for MIHR, and years
71Ð200 for HadGEM1, due to a data problem at the
beginning of this simulation.

Nine out of these 12 models also have AMIP simula-
tions [previously analyzed in Lloyd et al. (2011)] in
which the atmosphere models are forced by observed
SSTs. Although the length of the AMIP simulations
varies between models, only the 19 years of data com-
mon to all models are analyzed, that is, 1980Ð98, which
includes the two large El Nin÷os of 1982Ð83 and 1997Ð98.

b. Reanalyses and observations

When performing intermodel comparisons, it is im-
portant to have ÔÔbenchmarkÕÕ datasets against which the
models can be evaluated. To this end, we use the fol-
lowing three atmospheric reanalyses.

d ERA-40: supplied by the ECMWF, covering 1958Ð
2001 (Uppala et al. 2005). The two input SST datasets
are the Met OfÞce Hadley Centre Sea Ice and Sea
Surface Temperature version 1 (HadISST1) (up to
November 1981) and the NOAA/National Centers for
Environmental Prediction (NOAA/NCEP) weekly
SST analysis (Reynolds et al. 2002), which is used
thereafter.

d NCEP2: an update of the NCEPÐNational Center for
Atmospheric Research (NCAR) reanalysis, covering
1979Ð2009 (Kanamitsu et al. 2002). The input SST data-
set is the NOAA/NCEP weekly SST analysis (Reynolds
et al. 2002).

d Objectively Analyzed Air-Sea Fluxes (OAFlux): a
heat ßux dataset supplied by the Woods Hole Ocean-
ographic Institution, covering 1984Ð2004. To calculate
the sensible and latent heat ßuxes, Yu and Weller
(2007) combine SST, near-surface wind speed, near-
surface air temperature, and near-surface speciÞc hu-
midity data from a number of sources, including satellite
retrievals and the ERA-40 and NCEP reanalyses. This
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ÔÔoptimal blendingÕÕ of data leads to improved global
estimates of the turbulent ßuxes (Yu and Weller 2007).
Shortwave and longwave radiative ßuxes are supplied
by the International Satellite Cloud Climatology Pro-
ject (ISCCP), and the input SST dataset is the NOAA
optimum interpolation (OI) 0.25 8 daily SST analysis
(Reynolds et al. 2007).

In addition to the reanalyses, two observational ISCCP
products are used to evaluate the models:

d ISCCP D2: Provides global total, high-, mid-, and low-level
cloud cover amounts for 1984Ð2000 (Rossow et al. 1996).

d ISCCP Flux Data (FD-TOA): provides global full- and
clear-sky top-of-the-atmosphere (TOA) LW and SW
ßuxes (1984Ð2000), constructed using ISCCP cloud data-
sets and the NASA Goddard Institute for Space Studies
(GISS) radiative transfer model (Zhang et al. 2004).

It is important to remember that these ISCCP datasets
have associated uncertainties due to 1) instrumental
biases, 2) errors introduced when converting the raw
measurements into useful data, and 3) algorithms used
to Þll any missing data points. Similarly, atmospheric

reanalyses are far from perfect owing to biases in both
numerical models and assimilated data. Nonetheless,
these are the best references we have with which to
compare the models.

3. Diagnosing the SW ßux feedback

The net heat ßux feedback (a) is deÞned as

hF9i 5 --ahT9i , (1)

where F9is the net heat ßux anomaly into the ocean and
T9is the SST anomaly, both averaged over the Nin÷o-3
region (58NÐ58S, 1508Ð908W) where the SST interannual
variability is largest.

The subject of this study, aSW, is the SW ßux (FSW)
component of this feedback, represented by

hF9SWi 5 --aSWhT9i . (2)

We calculate this feedback by linearly regressing the
FSW anomalies against the SST anomalies at each grid point
in the tropical PaciÞc (a pointwise calculation) and then

TABLE 1. Columns 1 and 2: reanalysis/model dataset. Columns 3 and 4: average annualaSW feedback values (Nin÷o-3) in the coupled and
AMIP simulations, respectively (W m 2 2C2 1) (AMIP feedback values are calculated for 1980Ð98 in ERA-40 and the models, and 1984Ð98
in OAFlux). The average annual correlation values are provided in brackets.

Acronym Model name aSW (coupled) aSW (AMIP)

ERA-40 40-yr European Centre for Medium-Range Weather
Forecasts Re-Analysis

2 12.58 (0.51) 2 15.78 (0.63)

OAFlux Objectively analyzed airÐsea ßuxes 2 6.74 (0.46) 2 7.55 (0.51)
GFDL CM2.0 Geophysical Fluid Dynamics Laboratory Climate

Model version 2.0
2 1.12 (0.27) Ñ

GFDL CM2.1 Geophysical Fluid Dynamics Laboratory Climate
Model version 2.1

2 1.71 (0.37) 2 6.83 (0.56)

HadCM3 Third climate conÞguration of the Met OfÞce
UniÞed Model

0.50 (0.33) Ñ

HadGEM1 Hadley Centre Global Environmental Model
version 1

3.99 (0.39) 2 4.55 (0.55)

MIMR Model for Interdisciplinary Research on
Climate 3.2, medium-resolution version
[MIROC3.2(medres)]

4.53 (0.21) 2 2.12 (0.34)

MIHR Model for Interdisciplinary Research on Climate 3.2,
high-resolution version [MIROC3.2(hires)]

2 1.17 (0.18) 2 4.72 (0.38)

CGCM3.1(T47) Canadian Centre for Climate Modelling and
Analysis (CCCma) Coupled General
Circulation Model, version 3.1(T47)

2 4.36 (0.25) Ñ

CNRM-CM3 Centre National de Recherches Me«te«orologiques
Coupled Global Climate Model, version 3

1.27 (0.46) 2 8.65 (0.53)

FGOALS-g1.0 Flexible Global OceanÐAtmosphereÐLand System
Model gridpoint version 1.0 (Institute of
Atmospheric Physics)

2 0.66 (0.40) 2 1.58 (0.32)

IPSL CM4 LÕInstitut Pierre-Simon Laplace Coupled Model,
version 4

3.51 (0.46) 2 0.61 (0.54)

ECHAM5/MPI-OM ECHAM5/Max Planck Institute (MPI) Ocean Model 2.39 (0.39) 2 6.73 (0.47)
MRI CGCM2.3.2 Meteorological Research Institute Coupled

General Circulation Model, version 2.3.2
6.82 (0.42) 5.94 (0.47)
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averaging the regression values over Nin÷o-3 (Lloyd et al.
2009; Guilyardi et al. 2009a; Lloyd et al. 2011). This method
is represented byaSW 5 regress(F9SW, SST9)

Ni ~no3
, where

regress(� � �) denotes a linear regression and the overbar
denotes a spatial average over the indicated region.

This calculation method is considered more appropriate
than directly regressing box-averaged quantities because it
allows us to plot maps of the linear regression values and
hence visualize theaSW spatial pattern (e.g., Fig. 1). The
choice of calculation method does not alter our conclusions.
To account for any nonlinearities arising from the annual
cycle of the SW ßux feedback, theaSW value is calcu-
lated as the average of the four seasonal components
[DecemberÐFebruary (DJF), MarchÐMay (MAM),
JuneÐAugust (JJA), and SeptemberÐNovember (SON)].

Figure 1 shows the SW ßux feedback maps for ERA-40,
OAFlux, and the 12 CMIP3 coupled simulations. Blanked
out points correspond to correlations of less than 0.1.
ERA-40 and OAFlux are characterized by a negative SW
ßux feedback across the equatorial PaciÞc region, ranging
from over 2 20 W m2 2 C2 1 in the west to weaker values
as low as2 5 W m2 2 C2 1 in the east (Figs. 1a and 1b).

We note that ERA-40 and OAFlux differ in their es-
timates of this feedback in the eastern equatorial PaciÞc:
the OAFlux feedback is around half the strength of the
ERA-40 feedback. Mapping the ERA-40ÐOAFlux cli-
matological SW ßux difference (not shown) reveals that
ERA-40 overestimates the OAFlux values by as much
as 50 W m2 2 in the far eastern tropical PaciÞc, off the
west coast of South America. Cronin et al. (2006) attri-
bute the excessive ERA-40 SW ßux in this stratus cloud
region to an overly strong SW surface cloud forcing
compared to in situ buoy measurements. The OAFlux
(ISCCP) SW ßux Þeld (and aSW value) is henceforth
considered to be more accurate than that of ERA-40.

The spatial maps of the modeled SW ßux feedbacks
(Figs. 1cÐn) reveal large biases in the tropical PaciÞc re-
gion. While most models simulate a negative SW ßux
feedback in the western equatorial PaciÞc, the feedback in
the eastern equatorial PaciÞc is not well reproduced. In
most models this is due to a region of positive feedback
values extending over the eastern PaciÞc cold tongue, with
values of over 10 W m2 2 C2 1 in HadCM3, HadGEM1,
CNRM-CM3, ECHAM5/MPI-OM, and MRI CGCM2.3.2.

Table 1 and Fig. 2 (upper panel) present theaSW values
calculated by averaging these pointwise regressions over
the Nin÷o-3 region. The values for the corresponding AMIP
simulations are also shown. When averaging the regression
values, all points are included regardless of their correla-
tion so as to avoid calculating the feedback value from a
small proportion of points. As a measure of the uncertainty
in the feedback values Table 1 also presents the mean
correlations in Nin÷o-3 (bracketed values).

As revealed by Lloyd et al. (2009) and Fig. 1, no cou-
pled model successfully simulates the strong negative
aSW feedback found in the reanalyses, and 7 out of the 12
models actually have a positiveaSW value (Table 1, col-
umn 3). Figure 2 (lower panel) presents the coupled and
AMIP aSW biases (with respect to OAFlux) for the
CMIP3 models. Every AMIP simulation has an improved
aSW feedback value compared to the corresponding
coupled simulation, as shown by Lloyd et al. (2011). We
investigate these coupled-AMIP aSW differences in sec-
tion 6, but Þrst seek to understand the large coupledaSW

biases (blue bars in Fig. 2, lower panel).

4. The shortwave ßux response during model
El Nin÷os

In Lloyd et al. (2011), the 1997Ð98 El Nin÷o was used as
a case study to help understand the AMIP aSW biases.
However, investigating a single El Nin÷o event in the
coupled models is made difÞcult by the fact that 1) no
model event can be directly compared to an observed
event and 2) the models themselves exhibit diverse events
(both intra- and intermodel differences). This is empha-
sized by Fig. 3, which shows the Nin÷o-3 SST anomalies
during individual El Nin÷os in the reanalyses and coupled
simulations. Each of the faint colored lines is a single
event, deÞned as SSTA$ 1.5 3 SSTSD (SSTSD is the
standard deviation of the Nin÷o-3 SST anomaly time se-
ries). This criterion must be satisÞed for at least three
consecutive months for the anomaly to be classiÞed as an
event. Furthermore, indices that correspond to April or
May anomalies are ignored so as to avoid picking out
events that unrealistically peak in boreal spring. The bold
red line is the event composite.

The corresponding SW ßux anomalies are presented
in Fig. 4. The composite ERA-40 and OAFlux events
exhibit negative SW ßux anomalies during El Nin÷o, in
agreement with the large negativeaSW values in Table 1.
The models tend to exhibit smaller SW ßux anomalies
than the reanalyses: only GFDL CM2.1, CNRM-CM3,
and one event in ECHAM5/MPI-OM have anomalies as
large as the maximum OAFlux anomaly (2 50 W m2 2).
Furthermore, half of the models do not show consistency
between the Nin÷o-3 SW ßux anomalies during modeled
El Nin÷os (Fig. 4) and the overall aSW values (Table 1,
column 3). The SW ßux feedback for these models must
therefore be affected by the SW ßux evolution during La
Nin÷a and neutral conditions. This nonlinearity is studied
further in section 5.

Breaking down the El Niño shortwave �ux response

To shed light on these diverse SW ßux responses and
better separate local and remote effects, we introduce
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FIG . 1. Spatial maps of the linear pointwise SW ßux regression against SST in the tropical PaciÞc Ocean (208NÐ208S, 1108EÐ708W) for
ERA-40, OAFlux, and the 12 CMIP3 coupled simulations. Blanked out points correspond to correlations , 0.1.
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a feedback decomposition method. This method, based
on the SW ßux feedback mechanism, breaks down the
local SW ßux response (dSW/dSST) into the following
three steps.

(i) The dynamical response to SSTs,dv 500/dSST: The
large-scale circulation, represented byv 500 [the ver-
tical velocity relative to pressure levels at 500 hPa
(Bony et al. 1997)] responds to changes in the SST
(via changes in the atmospheric stability). For exam-
ple, positive SSTAs during the 1997/98 El Nin÷o were
associated with anomalous ascent (Figs. 5 and 6b in
Lloyd et al. 2009).

(ii) The cloud response to dynamics,dTCC/dv 500: The
total cloud cover (TCC) responds to changes in the
large-scale circulation. For example, increased ascent

during the 1997/98 El Nin÷o gave rise to positive
TCC anomalies over most of the equatorial PaciÞc
(not shown).

(iii) The SW ßux response to clouds, dSW/dTCC: The
downward SW ßux at the ocean surface responds to
changes in the total cloud cover. For example, in-
creased TCC during the 1997Ð98 El Nin÷o gave rise to
a decreased surface SW ßux (Figs. 5 and 6c in Lloyd
et al. 2009).

Using the chain rule, the product of these three re-
sponses is the SW ßux response to SST anomalies:

dv 500
dSST

dTCC
dv 500

dSW
dTCC

5
dSW
dSST

• aSW. (3)

FIG . 2. (top) Values of aSW and (bottom) biases (with respect to OAFlux) in the coupled (blue
bars) and AMIP (red bars) CMIP3 simulations.
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Because each of these individual responses is assumed
to be completely local, this simple framework is some-
what idealized. In particular, considering dv 500/dSST as
a local response ignores the fact that the eastern equa-
torial PaciÞc dynamics can also be affected by remote
SST changes. Nevertheless, this method is a good
starting point for understanding the source of the com-
plex coupled aSW biases.

Table 2 presents the values of the three responses,
calculated by performing linear anomaly regressions in

Nin÷o-3 for the entire time series. Multiplying together
the three responses givesdSW/dSST values that are well
correlated with the aSW values in Table 1 (linear cor-
relation coefÞcient of 0.72 for ERA-40 and the 12
models, signiÞcant at the 0.01 level).

The response nonlinearity is considered by calculating
the regression values for SSTA. 0 and SSTA, 0 sepa-
rately, henceforth denoted by plus and minus superscripts
respectively. In this section, the El Nin÷o mechanisms are
discussed with respect to the SSTA. 0 regression values

FIG . 3. Nin÷o-3 SST anomalies during El Nin÷os for ERA-40, OAFlux, and the 12 CMIP3 coupled simulations. The
number of events in each dataset is also given.
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(using the overall values does not alter the results: the
correlation coefÞcients between the SSTA . 0 and
overall regression values are 0.89, 0.97 and 0.97 fordv 500/
dSST, dTCC/dv 500 and dSW/dTCC, respectively). The
SSTA , 0 values are discussed in relation to theaSW

nonlinearity in section 5.
The dv 1

500/dSST values in ERA-40 and NCEP2
are 2 15.0 and2 18.4 hPa day2 1 C2 1, respectively, in-
dicating increased ascent in response to warm SST
anomalies. All coupled models successfully simulate
a negative v 500 response to positive SST anomalies but

underestimate the ERA-40 and NCEP2 values. This un-
derestimation of the dynamical response is further dem-
onstrated by plotting the v 500 anomalies during modeled
El Nin÷os (Fig. 5).

The other two responses,dTCC1 /dv 500 and dSW1 /
dTCC, are both negative in ERA-40 and ISCCP (Table 2,
columns 3 and 4), indicating increased total cloud cover
in response to increased ascent, which acts to reduce
the surface SW ßux. Many models exhibit biases in these
responses: only six (two) models havedTTC 1 /dv 500

(dSW1 /dTCC) values that lie between the ÔÔobservedÕÕ

FIG . 4. As in Fig. 3, but for SW ßux anomalies.
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values, and nine models underestimatedSW1 /dTCC
with respect to ISCCP.

In Table 3, explanations are proposed for the modeled
SW ßux behavior during El Nin÷os (Fig. 4), taking into
account the biases in the three responses (Table 2). The
Þnal column indicates whether the model El Nin÷o SW
ßux behavior agrees with itsaSW value (as mentioned
above). When quantifying the model biases,dv 1

500/dSST,
dTTC1 /dv 500, and dSW1 /dTCC (referred to as the ÔÔdy-
namical response,ÕÕ ÔÔcloud response,ÕÕ and ÔÔSW ßux re-
sponse to clouds,ÕÕ respectively) are compared to ERA-40,
ERA-40/ISCCP, and ISCCP, respectively. The model
biases in each of the three responses (with respect to the
observations) are plotted in Fig. 6.

The analysis presented in Table 3 and Fig. 6 suggests that
an overly weak ascent response to positive SST anomalies
plays a role in the SW ßux feedback biases in 10 models.
Furthermore, errors in the cloud cover response to the
increased ascent may contribute to the SW ßux feedback
biases in GFDL CM2.1, HadGEM1, CNRM-CM3, and
MRI CGCM2.3.2. For instance, the positive cloud re-
sponse in MRI CGCM2.3.2 (i.e., reduced cloud cover in
response to increased ascent) explains why this model has
a positive SW ßux feedback, whereas the overly strong
negative cloud response in CNRM-CM3 may compensate
for this modelÕs weak dynamical response.

Attribution of the SW ßux feedback biases is compli-
cated by the model errors in dSW1 /dTCC (green circles
in Fig. 6). An overly weak dSW1 /dTCC value (i.e., un-
derestimated reduction in the surface SW ßux for in-
creased total cloud cover) may contribute to the SW ßux
feedback biases in eight models (Table 3). Physically,
model differences in the SW ßux response to cloud cover

are likely to be related to cloud properties such as optical
depth and cloud height. For example, if the increased
cloud cover during an El Nin÷o is too optically thick, the
dSW1 /dTCC value will be too strong. The impact of
cloud properties on dSW1 /dTCC could be investigated
using sensitivity experiments with different cloud pa-
rameterizations. Although such experiments are outside
the scope of this study, we analyze the eastern equatorial
PaciÞc cloud properties in section 7.

These results indicate that the model SW ßux feed-
back biases (Fig. 4) stem from errors in the dynamical,
cloud, and SW ßux responses during El Nin÷os. To ana-
lyze the relative importance of these response biases,
a quantitative measure of the SW ßux response to pos-
itive SST anomalies is required. This provides motiva-
tion for studying the aSW nonlinearity. Furthermore,
investigating this nonlinearity will help shed light on the
discrepancy between the El Nin÷o SW ßux behaviors and
the overall aSW values (Table 3, column 3).

5. Nonlinearity in aSW

To diagnose the aSW nonlinearity, we introduce two
new variables:a1

SW anda2
SW, deÞned as the Nin÷o-3 linear

anomaly regressions of SW ßux against SST (dSW/
dSST) for SSTA . 0 and SSTA , 0, respectively. The
a1

SW and a2
SW values are plotted in Fig. 7 (red and blue

bars, respectively), and a simple measure of the SW ßux
response nonlinearity is calculated asa2

SW 2 a1
SW (green

bars in Fig. 7). This nonlinearity is strikingly large in the
reanalyses and many models due to differences between
negative a1

SW values and positivea2
SW values.

TABLE 2. Nin÷o-3 linear anomaly regressions ofv 500vs SST (hPa day2 1C2 1), TCC vs v 500(hPa2 1 day), and SW ßux vs TCC (W m2 2) in
the reanalyses/observations and the 12 CMIP3 coupled models. The ERA-40, NCEP2, ISCCP, and ERA-40/ISCCP values are calculated
for 1958Ð2001, 1979Ð2009, 1984Ð2000, and 1984Ð2000. The (1 /2 ) values are the Nin÷o-3 linear anomaly regressions for SSTA. 0/SSTA, 0.

Dataset v 500 vs SST (1 /2 ) TCC vs v 500 (1 /2 ) SW ßux vs TCC (1 /2 )

ERA-40 2 8.99 (2 15.0/2 1.88) 2 0.54 (2 0.51/2 0.52) 2 1.51 (2 1.71/2 0.89)
NCEP2 2 12.4 (2 18.4/2 4.71) Ñ Ñ
ISCCP Ñ Ñ 2 1.38 (2 1.47/2 1.19)
ERA-40/ISCCP Ñ 2 0.39 (2 0.35/2 0.36) Ñ
GFDL CM2.0 2 3.82 (2 4.98/2 2.19) 2 0.52 (2 0.51/2 0.38) 2 0.54 (2 0.57/2 0.62)
GFDL CM2.1 2 7.40 (2 14.1/2 1.88) 2 0.46 (2 0.49/2 0.46) 2 1.03 (2 1.07/2 1.07)
HadCM3 2 4.93 (2 7.05/2 4.40) 2 0.44 (2 0.54/2 0.38) 2 1.03 (2 1.08/2 1.06)
HadGEM1 2 3.47 (2 5.11/2 1.91) 0.17 (2 0.11/2 0.14) 2 1.22 (2 1.16/2 1.21)
MIMR 2 8.28 (2 7.58/2 8.24) 2 0.26 (2 0.41/2 0.32) 2 1.77 (2 1.70/2 1.82)
MIHR 2 11.9 (2 14.3/2 12.4) 2 0.30 (2 0.35/2 0.35) 2 1.61 (2 1.61/2 1.62)
CGCM3.1(T47) 2 1.94 (2 2.32/2 1.62) 2 0.93 (2 0.84/2 0.79) 2 1.01 (2 1.05/2 1.00)
CNRM-CM3 2 3.63 (2 8.55/2 0.14) 2 0.39 (2 0.42/2 0.82) 2 1.87 (2 1.95/2 1.91)
FGOALS-g1.0 2 5.80 (2 10.3/2 1.92) 2 0.45 (2 0.37/2 0.61) 2 0.08 (2 0.49/0.01)
IPSL CM4 2 6.07 (2 10.7/2 2.89) 2 0.21 (2 0.34/2 0.001) 2 0.61 (2 0.67/2 0.66)
ECHAM5/MPI-OM 2 1.52 (2 4.63/2 0.04) 2 0.64 (2 0.66/2 0.65) 2 1.12 (2 1.00/2 1.24)
MRI CGCM2.3.2 2 6.83 (2 12.0/2 2.15) 0.46 (0.24/0.47) 2 0.97 (2 0.97/2 1.04)
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The a1
SW values correspond to the El Nin÷o SW ßux

responses plotted in Fig. 4. Nine out of 12 models
simulate an underestimated negativea1

SW, whereas the
other three models (HadGEM1, MIMR, and MRI
CGCM2.3.2) simulate positive a1

SW feedbacks. The
SW ßux feedback during La Nin÷a situations (a2

SW) is
positive in OAFlux and all models except MIHR and
CCCMA (blue bars in Fig. 7). This indicates a reduced
surface SW ßux in response to negative SST anoma-
lies, enabling the La Nin÷a to grow. OAFlux and nine

models thus havea1
SW and a2

SW feedbacks of opposite
sign.

The models tend to underestimate the OAFlux
a2

SW 2 a1
SW difference of 13.2 W m2 2 C2 1: only GFDL

CM2.1, CNRM-CM3, and ECHAM5/MPI-OM have
nonlinearities within 25% of OAFlux. The strong
nonlinearities in GFDL CM2.1 and CNRM-CM3 ex-
plain why these models have weakaSW values despite their
strong negative SW ßux response during El Nin÷os (Fig. 4):
the positive feedback during cold situations offsets the

FIG . 5. As in Fig. 3, but for v 500 anomalies (NCEP2 replaces OAFlux).
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negative El Nin÷o feedback. Similarly, the positive a2
SW

values in HadCM3 and IPSL CM4 can explain why these
models have an overall positiveaSW feedback (Table 1)
despite their negative El Nin÷o feedbacks (Fig. 4).

To understand the model differences in the SW ßux
feedback nonlinearity, we return to the feedback de-
composition results, presented in Table 2. Plotting the
nonlinearities in dv 500/dSST, dTCC/dv 500, and dSW/
dTCC (calculated as the difference between the SSTA,
0 and SSTA . 0 regression values) against theaSW

nonlinearities (not shown) gives linear correlation co-
efÞcients for the models of 0.65,2 0.33, and2 0.19, re-
spectively, of which only the Þrst is signiÞcant at the 0.05
level. This suggests that the nonlinear response ofv 500to
SST is the dominant contributor to the aSW nonlinearity
in the models. Those models with the largestdv 500/dSST
nonlinearity (e.g., GFDL CM2.1 and CNRM-CM3) also
tend to have a larger aSW nonlinearity, and vice versa.

In the reanalyses and models, thedv 500/dSST non-
linearities are due to a weak subsidence response for
SSTA , 0 in comparison to the stronger ascent response
for SSTA . 0. This dynamical nonlinearity is under-
estimated by all models compared to the reanalyses,
mainly due to the underestimated dynamical response
for SSTA . 0 (as seen in Fig. 5). The relationship be-
tween the dv 500/dSST andaSW nonlinearities suggests
that an improved model representation of the dynamical
nonlinearity would be key to improving the simulated
SW ßux feedback nonlinearity.

Although the dSW/dTCC nonlinearity is small (less
than 0.1 W m2 2) in most models and exhibits no link
with the aSW nonlinearity, there is a large dSW/dTCC
nonlinearity of 0.28 (0.82) W m2 2 in ISCCP (ERA-40)
(Table 2, column 4). More speciÞcally, the ISCCP (ERA-
40) SW ßux is 24% (92%) more sensitive to changes in
cloud cover for SSTA . 0 than for SSTA , 0. This could

TABLE 3. SW ßux behavior during modeled El Nin÷os and proposed explanations. Column 3: does the El Nin÷o SW ßux behavior agree with
the model aSW value?

Model SW ßux behavior during model El Nin÷os and proposed explanation Yes/No

GFDL CM2.0 Weak negative SW ßux response to weak/moderate El Nin÷os: Weak dynamical
response (67% underestimate) and weak SW ßux response to clouds
(61% underestimate).

Y

GFDL CM2.1 Moderate/strong negative SW ßux response to moderate/strong El Nin÷os: Realistic
negative SW ßux response during El Nin÷os, supported by accurate (within 6%)
dynamical response. Possible error compensation between strong cloud response
(40% overestimate) and weak SW ßux response to clouds (27% underestimate).

N

HadCM3 Weak negative SW ßux response to moderate El Nin÷os (one strong event): Weak
dynamical response (53% underestimate). Weak SW ßux response to clouds
(26% underestimate) may also play a role.

N

HadGEM1 Weak positive SW ßux response to weak/moderate El Nin÷os: Weak dynamical response
(66% underestimate) and weak cloud response (69% underestimate). Weak SW ßux
response to clouds (21% underestimate) may also play a role.

Y

MIMR No clear SW ßux response to weak El Nin÷os: Weak SST variability (ENSO
amplitude 5 0.458C) and weak dynamical response (49% underestimate).

N

MIHR No clear SW ßux response to weak El Nin÷os Weak SST variability (ENSO
amplitude 5 0.348C).

Y

CGCM3.1(T47) No clear SW ßux response to weak El Nin÷os: Weak SST variability (ENSO
amplitude 5 0.418C) and weak dynamical response (84% underestimate).
Weak SW ßux response to clouds (29% underestimate) may further weaken
the SW ßux feedback.

N

CNRM-CM3 Moderate/strong negative SW ßux response to moderate/strong El Nin÷os: Weak
dynamical response (43% underestimate) compensated by strong cloud response
(21% overestimate) and strong SW ßux response to clouds (33% overestimate).

N

FGOALS-g1.0 No clear SW ßux response to strong El Nin÷os: Weak dynamical response
(31% underestimate) and weak SW ßux response to clouds (67% underestimate).

Y

IPSL CM4 Weak/moderate negative SW ßux response to moderate El Nin÷os (one strong event):
Weak dynamical response (28% underestimate) and weak SW ßux response to
clouds (55% underestimate).

N

ECHAM5/MPI-OM Weak positive SW ßux response to moderate/strong El Nin÷os: Weak dynamical response
(69% underestimate). Weak SW ßux response to clouds (32% underestimate)
may also play a role.

Y

MRI CGCM2.3.2 Weak positive SW ßux resp to weak/moderate El Nin÷os: Weak dynamical response
(20% underestimate) and incorrect sign cloud response (168% change). Weak
SW ßux response to clouds (34% underestimate) may also play a role.

Y
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be explained by the nonlinearity in the observed high-level
cloud cover response to SST (Fig. 8). For SSTA. 0, the
mean Nin÷o-3 ISCCP high-level cloud cover increases
(maximum positive anomalies of over 20%), efÞciently
reßecting incoming SW ßux [high clouds tend to have
a large optical thickness (Ramanathan and Collins 1991)]
and giving rise to a strong dSW1 /dTCC value. On the
other hand, only small decreases in the high-level cloud
cover are observed for SSTA , 0 (maximum negative
anomalies of around 2 6%). This is because the mean
annual Nin÷o-3 high-level cloud cover in ISCCP is just
4.8%, so only small negative anomalies are possible be-
fore there are no high clouds remaining. This nonlinearity
in dSW/dTCC may partly account for the aSW non-
linearity in the reanalyses.

Having shown that the dynamical response plays an
important role in the modeled aSW nonlinearities, can
biases in the dynamical, cloud, or SW ßux responses ac-
count for the modeled a1

SW and a2
SW errors? Table 4

presents the linear correlations between the feedbacks
and individual responses for the 12 CMIP3 models. For
SSTA . 0, only dTCC1/dv 500 (i.e., the total cloud cover
response to dynamics for positive SSTAs) exhibits a sig-
niÞcant relationship with a1

SW. For instance, the positive
a1

SW feedback in MRI CGCM2.3.2 can be explained by
the positive dTCC1/dv 500 value, and the strongest neg-
ative dTCC1/dv 500 value in CCCMA could explain why
this model has a negativea1

SW value despite its weak SST
variability and dynamical response (Table 2). However,
we note that this intermodel correlation cannot explain
why the models underestimate a1

SW with respect to
OAFlux; earlier analysis suggests that the other two re-
sponses also play a role (see section 4 and Table 3).

On the other hand, there is no signiÞcant relationship
between a2

SW and any of the responses for SSTA,
0 (Table 4). It is therefore likely that biases in all three
responses contribute to the intermodela2

SW differences
(Fig. 7). A full analysis of the model a2

SW errors would
require a detailed investigation of the dynamical and
cloud changes during La Nin÷asÑa possible area of fu-
ture study.

FIG . 6. Percentage overestimate/underestimate in theaSW feed-
back decomposition method terms (SSTA . 0) for the 12 CMIP3
models. When quantifying the model biases,dv 500

1 /dSST,dTCC1/
dv 500, anddSW1/dTCC are compared to ERA-40, ERA-40/ISCCP,
and ISCCP, respectively.

FIG . 7. Linear anomaly regressions of SW ßux against SST (Nin÷o-
3) for SSTA , 0 (blue bars,a2

SW) and SSTA . 0 (red bars,a1
SW).

The green bars show the (a2
SW 2 a1

SW) values, a measure of the SW
ßux response nonlinearity.

FIG . 8. ISCCP high-level cloud cover anomalies against SST
anomalies in Nin÷o-3 (1984Ð2000). Each point represents one
month, colored according to season (JFM, AMJ, JAS, and OND
seasons are colored black, red, green, and blue, respectively).

TABLE 4. Linear Pearson correlation coefÞcients between the
individual responses (Nin÷o-3) and the aSW feedback in the 12
CMIP3 models for SSTA . 0/SSTA , 0. Correlation coefÞcients
signiÞcant at the 0.05 level (. 0.58) are shown in bold.

Ñ
dv 500

dSST

1 /2 d TCC
dv 500

1 /2 dSW
d TCC

1 /2

a1 /2
SW 0.21/0.40 0.60/0.33 2 0.44/2 0.23
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We have therefore found no simple answer to ques-
tion (i) posed at the beginning of this study, ÔÔDo the
atmospheric model biases that account for the AMIP
aSW errors also apply to the coupledaSW errors?ÕÕ In the
AMIP simulations, cloud-related biases were found to
play a dominant role in the SW ßux response differences
(Lloyd et al. 2011). Although the cloud response to dy-
namics does exhibit a relationship with a1

SW in the cou-
pled simulations (Table 4), analysis suggests that an
underestimated dynamical response to SST changes is
key to explaining the underestimated coupled aSW

feedbacks (section 4 and Table 3). Question (ii), ÔÔDoes
the SW ßux feedback exhibit a nonlinearity that is
masked by the linear aSW deÞnition?ÕÕ, can be answered
more conÞdently: large SW ßux nonlinearities have been
revealed, characterized by a negative (positive) SW ßux
feedback during El Nin÷os (La Nin÷as) in OAFlux and
most models. This nonlinearity is governed by a nonlinear
dynamical response to SST anomalies (Table 2).

6. The effect of model coupling on aSW

In this section we investigate the third question posed
at the beginning of the study: ÔÔWhat explains the coupled
versus AMIP differences in the aSW feedback values?ÕÕ
Figure 9 shows the percentage changes in the overall cou-
pled dv 500/dSST, dTCC/dv 500, and dSW/dTCC values
compared to the corresponding AMIP values for the
eight models that have an AMIP simulation and supply
all required Þelds. Percentage changes, rather than
simple differences, are calculated so as to allow a direct
comparison of the three response changes.

In all models except MIHR, dv 500/dSST exhibits
a negative percentage change, that is, the coupled simu-
lations have a weaker dynamical response to SST than
the AMIP simulations. Percentage changes in the cloud

response to dynamics,dTCC/dv 500, range from 69.8%
(MRI CGCM2.3.2: stronger positive coupled cloud re-
sponse) to2 135.3% (HadGEM1: negative AMIP cloud
response changing to a positive coupled response),
whereas percentage changes in the SW ßux response to
cloud cover, dSW/dTCC, are generally smaller but have
values of 42.7%,2 85.1%, and2 25.2% in MIMR, IAP, and
IPSL CM4, respectively.

Figure 9 thus highlights coupledÐAMIP changes in all
three responses. The reason for thedv 500/dSST changes
is discussed below. The changes indTCC/dv 500 and
dSW/dTCC remain to be understood, although they are
likely to be related to shifts in the mean cloud properties
in the coupled simulations, as the atmosphere models
(and hence parameterizations) remain the same. Fur-
thermore, shifts in the location of the response patterns
may also alter the regression values, as the averaging
region (Nin÷o-3) is kept the same for the coupled and
AMIP simulations.

Figure 10 presents the relationship between the re-
sponse percentage changes (Fig. 9) and the coupledÐ
AMIP aSW differences. Linear correlation coefÞcients
are 2 0.70,2 0.65, and 0.57 for thedv 500/dSST,dTCC/
dv 500, and dSW/dTCC changes, respectively, all signiÞ-
cant only at the 0.1 level. The dSW/dTCC relationship
comes mainly from IAP (the correlation ignoring this
model is only 0.33). Similarly, the dTCC/dv 500 relation-
ship is set by the two outliers, HadGEM1 and MRI
CGCM2.3.2 (the correlation ignoring these models is
only 2 0.27). On the other hand, the dv 500/dSST re-
lationship is more robust: there are no clear governing
models. The coupled simulations that exhibit the largest
dynamical response change compared to their AMIP
counterparts also tend to have a larger coupled2 AMIP
aSW difference. An outlier is the (ßux corrected) MRI
CGCM2.3.2, which exhibits a 33% weakening of the
dynamical response in the coupled simulation, but
the smallest change inaSW. The correlation between the

FIG . 9. Percentage changes indv 500/dSST, dTCC/dv 500, and
dSW/dTCC (Nin÷o-3) in the coupled CMIP3 simulations com-
pared to the AMIP simulations.

FIG . 10. Coupled2 AMIP aSW differences against the percentage
changes in the individual responses shown in Fig. 9.
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dv 500/dSST andaSW changes is2 0.85 if MRI CGCM2.3.2
is ignored, signiÞcant at the 0.01 level. This relationship
still holds if the dv 500/dSST coupledÐAMIPdifferencesare
used instead of the percentage changes (correlation of 0.77
ignoring MRI CGCM2.3.2, signiÞcant at the 0.05 level).

It therefore appears that differences in the dynamical
response to SST are the main cause of theaSW differ-
ences between the AMIP and coupled simulations. This
is not a surprising result because the atmospheric dy-
namics are constrained by prescribed SST forcing in the
AMIP simulations but can interact with the ocean in the
coupled simulations.

The dynamical response to SST: Relationship with the
mean state

Having shown that coupledÐAMIP changes in the
dynamical response to SST are related to the coupled2
AMIP aSW differences (Fig. 10), can these dynamical
response changes be linked to the model mean states?
Table 5 presents the mean Nin÷o-3v 500values in ERA-40
and the CMIP3 models (coupled and AMIP simula-
tions). In ERA-40, the Nin÷o-3 region is characterized by
mean subsidence (averagev 500 . 0). All model simu-
lations (except the coupled MIHR simulation) also ex-
hibit mean subsidence, and, as expected, the coupled
simulations have a larger spread in the meanv 500values
than the AMIP simulations [intermodel rms errors (with
respect to ERA-40) of 7.6 and 2.6 hPa day2 1 in the
coupled and AMIP simulations, respectively].

Figure 11 is a scatterplot of the coupledÐAMIP per-
centage changes indv 500/dSST (blue bars in Fig. 9) against
the coupledÐAMIP percentage changes in the mean
Nin÷o-3 v 500. Those models with positive (negative)
v 500 coupledÐAMIP percentage changes have stronger
(weaker) mean subsidence in the coupled simulations.
Therefore, the strong negative relationship in Fig. 11
(correlation coefÞcient of 2 0.82, signiÞcant at the
0.02 level) indicates that models with a larger mean
subsidence increase in the coupled simulations (e.g.,
HadGEM1 and CNRM-CM3) exhibit a larger weaken-
ing in the dynamical response. This relationship still
holds if the differences (rather than percentage changes)
in the dv 500/dSST and meanv 500 values are considered
(correlation coefÞcient of 0.76, signiÞcant at the 0.05
level).

This link between a stronger mean subsidence and a
weaker negative dynamical response is also found among
the 12 CMIP3 coupled simulations: linearly regressing the
mean Nin÷o-3 v 500 coupled values (Table 5) against the
dv 500

1 /dSST and dv 500
- /dSST coupled values (Table 2,

column 2) gives correlation coefÞcients of 0.50 and 0.90,
respectively (signiÞcant at the 0.1 and 0.001 levels). The
fact that the strongest relationship is found for the
dynamical response tonegativeSST anomalies suggests
a ÔÔsaturationÕÕ in the modeled subsidence (i.e., models
with a stronger mean subsidence exhibit a weaker
anomalous subsidence during La Nin÷as). An in-depth
analysis of La Nin÷a in the coupled and AMIP simula-
tions would be needed to Þnd out if a similar mecha-
nism explains the relationship in Fig. 11.

7. Cloud properties over the eastern
equatorial PaciÞc

It was shown by Lloyd et al. (2011) that studying the
modeled cloud radiative forcing (CRF) can highlight
cloud biases over the eastern equatorial PaciÞc that
impact aSW (unfortunately, the CMIP3 database does
not provide high- and low-level cloud cover data for
a direct comparison with ISCCP). Figure 12 shows
scatterplots of shortwave (CRFSW) versus longwave
(CRFLW ) cloud radiative forcing (Nin÷o-3) for the ob-
servations and coupled simulations [cf. Lloyd et al.Õs
(2011) Fig. 8 for the AMIP simulations]. Low clouds in

TABLE 5. Mean Nin÷o-3 v 500 values (hPa day2 1) in ERA-40 and the eight CMIP3 models that have an AMIP simulation and supply the
v 500 Þeld.

Ñ ERA-40 GFDL CM2.1 HadGEM1 MIMR MIHR CNRM-CM3 FGOALS-g1.0 IPSL CM4 MRI CGCM2.3.2

Coupled 16.2 18.5 21.5 7.80 2 1.95 17.6 11.7 16.4 15.9
AMIP 14.3 17.3 15.8 13.1 9.65 13.8 15.9 18.0 13.5

FIG . 11. CoupledÐAMIP percentage changes indv 500/dSST
against coupledÐAMIP percentage changes in the mean Nin÷o-3
v 500.
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these plots are positioned near they axis, that is, where
CRFLW is low (small greenhouse effect due to warm cloud-
top temperatures) and CRFSW is between 2 20 and 2 50
W m2 2 in ISCCP. These points correspond to the months
JulyÐDecember, the time of the year when low-level
marine boundary layer clouds are most prevalentover the
eastern tropical PaciÞc (Klein and Hartmann 1993).

There is a large variety of CRF behavior in the cou-
pled models, though some of the AMIP biases high-
lighted by Lloyd et al. (2011) are carried through to the
coupled simulations. First, the lowest clouds (points
closest to they axis) have an overly negative CRFSW in
all coupled simulations except CCCMA. This bias

suggests that the lowest clouds are too extensive and/or
too optically thick, as also noted in the HadGEM1, IPSL
CM4, and MRI CGCM2.3.2 AMIP simulations (Lloyd
et al. 2011, Fig. 8). Furthermore, most coupled models
also exhibit a shift of these points away from they axis,
suggesting errors in the relative amounts of high and low
clouds. Only HadGEM1, ECHAM5/MPI-OM, and
MRI CGCM2.3.2 underestimate the mean Nin÷o-3
CRFLW (Table 6, column 3), as also indicated by their
shift of points toward CRF LW 5 0 in Fig. 12. This suggests
that these three models simulate too many low clouds (or
not enough high clouds), a bias that could explain the
mean positive cloud response in MRI CGCM2.3.2 and

FIG . 12. Scatterplots of Nin÷o-3 shortwave vs longwave cloud radiative forcing (CRFSW vs CRFLW ) for ISCCP,
ERA-40, and the 12 CMIP3 coupled simulations. Each point represents one month, colored according to season
(JFM, AMJ, JAS, and OND are colored black, red, green, and blue, respectively).
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HadGEM1 but not the strong negative cloud response in
ECHAM5/MPI-OM (Table 2, column 3).

Another AMIP result present in the coupled simula-
tions is the largest overestimation of the average Nin÷o-3
CRFLW in CNRM-CM3, MIMR, and MIHR [Table 6
(column 3), Fig. 12]. These models also overestimate the
mean Nin÷o-3 total cloud cover and have the strongest
average CRFSW (Table 6, columns 2 and 4), indicating
the presence of too many high clouds. However, despite
this, these models underestimate the negative cloud re-
sponse to dynamical changes (Table 2, column 3). Fur-
thermore, CCCMA, the model with the strongest dTCC/
dv 500 value, has one of the better CRF simulations
compared to ISCCP (Table 6; Fig. 12i).

The lack of a clear relationship in the coupled simu-
lations between CRFLW or CRFSW and dTCC/dv 500 is
supported by the weak correlation coefÞcients between
the average Nin÷o-3 values (2 0.16 and2 0.24 for CRFLW

and CRFSW, respectively; not signiÞcant). Scaling CRFLW

and CRFSW by the mean total cloud cover, to correct
for models that simulate too manyÑor not enoughÑ
clouds in this region, does not alter this result (new
correlations of 2 0.30 and2 0.21, respectively; not sig-
niÞcant). The absence of a link between the mean cloud
properties and dTCC/dv 500 in this analysis suggests
that the cloud cover response biases may have their
source in the complex model cloud schemes and/or
convective parameterizations.

8. Summary and discussion

Motivated by previous studies revealing that the
shortwave ßux feedback over the eastern equatorial
PaciÞc (aSW) is the primary contributor to model errors
in the overall ENSO heat ßux feedback, a (Lloyd et al.

2009, 2011), this study presents a detailed analysis of
aSW in 12 coupled CMIP3 simulations.

To understand the source of the aSW errors, a new
feedback decomposition method is introduced, breaking
down the SW ßux feedback into three individual, local
responses: 1) the dynamical response to SSTdv 500/dSST,
2) the total cloud cover response to dynamicsdTCC/
dv 500, and 3) the SW ßux response to cloudsdSW/dTCC.

It is shown that all coupled models underestimate the
dynamical response during El Nin÷os, a behavior that is
likely to contribute to the underestimated aSW values
(Fig. 5, Table 2 (column 2), Table 3). Dynamical biases
play a more important role in the coupled simulations
than the AMIP simulations, in which cloud-related
biases were found to be the main source ofaSW errors
(Lloyd et al. 2011). This is because the large-scale cir-
culation is no longer constrained by a prescribed SST
forcing in the coupled simulations.

Changes in the dynamical response,dv 500/dSST, between
the coupled and AMIP simulations exhibit a robust statis-
tical relationship with the coupledÐAMIP aSW differences
(Fig. 10). Furthermore, it is shown that the coupledÐAMIP
differences in dv 500/dSST can be directly related to the
dynamical mean state coupledÐAMIP changes (Fig. 11).
The coupled versus AMIP differences in the aSW values
are therefore linked to a shift in the dynamical mean
state when the ocean and atmosphere models are cou-
pled, a result which further underlines the important
role of the dynamics in the coupled aSW feedback.

Nevertheless, there are also large coupled model
biases in the meancloud properties over the equatorial
PaciÞc, as supported by previous studies (Bony and
Dufresne 2005; Zhang and Sun 2006; Sun et al. 2006,
2009) and found in the AMIP simulations (Lloyd et al.
2011). Biases in both the cloud response to dynamics,
dTCC/dv 500, and the SW ßux response to clouds,dSW/
dTCC, are likely to contribute to the SW ßux response
biases during model El Nin÷os (Table 3). An improvement
in the coupled aSW feedback will therefore only be pos-
sible with an improved simulation of both dynamical and
cloud responses to SST variability in the eastern equa-
torial PaciÞc. Analysis of the model cloud properties will
be facilitated in the next-generation CMIP5 simulations
by the availability of cloud variables that can be directly
compared to satellite observations such as ISCCP.

The observed and modeled SW ßux feedback is shown
to exhibit a nonlinearity that is hidden when linearly
calculating the overall aSW feedback (section 5). Most
models exhibit a negative (positive) SW ßux feedback
during El Nin÷os (La Nin÷as), as found in OAFlux (Fig. 7).
This nonlinearity explains why the SW ßux behavior dur-
ing model El Nin÷os is not always consistent with theaSW

values (Fig. 4, Table 3). In the reanalyses/observations,

TABLE 6. Average Nin÷o-3 total cloud cover (TCC), longwave ra-
diative forcing (CRF LW ), and shortwave radiative forcing (CRFSW)
in ERA-40, ISCCP, and the 12 CMIP3 coupled simulations.

Dataset
TCC
(%)

CRFLW

(Wm2 2)
CRFSW

(Wm2 2)

ERA-40 56.1 12.2 2 54.8
ISCCP 49.3 11.9 2 38.9
GFDL CM2.0 55.3 14.5 2 45.6
GFDL CM2.1 46.4 13.4 2 39.5
HadCM3 36.1 16.7 2 49.7
HadGEM1 44.7 9.8 2 43.4
MIMR 57.9 26.6 2 82.2
MIHR 57.3 30.9 2 68.4
CGCM3.1(T47) 43.0 14.7 2 33.7
CNRM-CM3 69.1 30.8 2 66.9
FGOALS-g1.0 71.1 21.2 2 58.2
IPSL CM4 53.5 17.7 2 43.0
ECHAM5/MPI-OM 45.4 9.4 2 31.5
MRI CGCM2.3.2 61.0 9.5 2 50.3
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two physical mechanisms are proposed to explain this
nonlinearity: 1) a nonlinear dynamical response to SST
(Table 2), with strong anomalous ascent for positive SST
anomalies and weak anomalous subsidence for negative
SST anomalies, and 2) a nonlinear high-level cloud cover
response to SST (Fig. 8). The SW ßux feedback non-
linearity tends to be underestimated by the models (Fig. 7),
linked to an underestimated nonlinearity in the dynamical
response to SST (Table 2).

In the models, the main source of the SW ßux feedback
nonlinearity is a nonlinear dynamical response (section
5). The strong relationship between the dynamical re-
sponse and the mean dynamics in the CMIP3 models
(Fig. 11) therefore suggests that the model mean state
may play a role in the SW ßux feedback nonlinearity.
Studying the evolution of the dynamics during modeled
La Nin÷as would help to elucidate this hypothesis. An
analysis of the modeled cloud response to negative
SSTAs may also reveal a cloud nonlinearity such as that
in the observed high clouds (Fig. 8).

A further understanding of the nonlinear SW ßux
response to SST thus requires a detailed analysis of the
aSW mechanisms during La Nin÷as. This may enable us to
link the SW ßux feedback nonlinearity to the modeled
ENSO SST skewness, that is, the relative strength of
El Nin÷o and La Nin÷a situations. Preliminary analysis also
suggests the existence of a strong relationship between
the modeled ENSO amplitude and the SW ßux feedback
nonlinearity, the reason for which is not yet known.

These results demonstrate that the lineara parameter-
ization used in simple models and frameworks is highly
idealized, masking not only the individual heat ßux feed-
back components but also a large SW ßux feedback non-
linearity. Although the use of a linear a term in the simplest
ENSO models is somewhat justiÞed, as the observed net
heat ßux response is (fortuitously) close to a linear re-
lationship [e.g., the Kim and Jin (2011) Fig. 6], it should
always be borne in mind that the linear parameterization
hides a number of important processes. Care should also
be taken when analyzinga in ENSO frameworks such as
the BJ index, as an accuratea value may result from
compensating errors in the heat ßux feedback components.

Another caveat associated witha is that it is deÞned as
a local feedback. While this is likely to be a reasonable
assumption for the LH ßux component driven by humidity
processes in the eastern equatorial PaciÞc region (Lloyd
et al. 2011), it may not be true for the SW ßux feedback.
An important aspect of aSW is the dynamical response to
SST anomalies, dv 500/dSST. The dynamics over the
equatorial PaciÞc are associated with two large-scale at-
mospheric circulations: the meridional Hadley circulation
and the zonal Walker circulation. Therefore, considering
dv 500/dSST as a local response is an oversimpliÞcation: the

dynamics over the eastern equatorial PaciÞc will also be
affected by nonlocal SST changes.

The feedback decomposition method introduced in this
study represents a Þrst step to understanding the model
aSW biases. Future work will involve developing a more
complex framework that takes into account the nonlocal
component of dv 500/dSST, as well as any cross-correlations
between the SW ßux, cloud cover, and dynamical Þelds.
This will equip us with an even more effective tool for
analyzing the SW ßux feedback associated with ENSO.

We propose that using the diagnostics developed in
this study in conjunction with the BJ index (Jin et al. 2006;
Kim and Jin 2011) and the previously developed atmo-
spheric feedback diagnostics (Lloyd et al. 2009; Guilyardi
et al. 2009a; Lloyd et al. 2011) will provide a powerful
method for understanding the source of ENSO ampli-
tude biases in the next generation of GCMs. The CMIP5
simulations, the results from which will contribute to the
Intergovernmental Panel on Climate Change Fifth As-
sessment Report, present a Þrst opportunity to combine
these approaches. Ultimately, it is hoped that an im-
provement in the modeled atmospheric feedbacks will in
turn lead to an improved model representation of ENSO
and, hence, an increased ability to predict the evolution
of this complex phenomenon over the coming decades.
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