
Hankel operators on Fock spaces 
Article 

Accepted Version 

Perala, A., Schuster, A. and Virtanen, J. A. (2014) Hankel 
operators on Fock spaces. Operator Theory: Advances and 
Applications, 236. pp. 377-390. ISSN 0255-0156 doi: 
10.1007/978-3-0348-0648-0_24 Available at 
https://centaur.reading.ac.uk/29217/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1007/978-3-0348-0648-0_24 

Publisher: Springer Basel 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Hankel operators on Fock spaces

A. Perälä, A. Schuster and J. A. Virtanen

Abstract. We study Hankel operators on the weighted Fock spaces F pγ . The
boundedness and compactness of these operators are characterized in terms of
BMO and VMO, respectively. Along the way, we also study Berezin trans-
form and harmonic conjugates on the plane. Our results are analogous to
Zhu’s characterization of bounded and compact Hankel operators on Bergman
spaces of the unit disk.

Mathematics Subject Classification (2000). Primary 47B35; Secondary 30H20,
30H35.

Keywords. Hankel operators, Fock spaces, boundedness, compactness.

1. Introduction

Hankel operators have been studied for several decades in the setting of various
analytic function spaces. Starting with Hankel matrices, which can be viewed as
Hankel operators on Hardy spaces (see [9]), the field has expanded to Hankel
operators on Bergman spaces, Dirichlet type spaces, Bergman and Hardy spaces
of the unit ball in Cn, of symmetric domains, and Fock spaces. In addition to
being a beautiful and rapidly developing part of analysis, Hankel operators have
a vast number of applications, which in the case of Hardy spaces are well known
and recognized (see, e.g. [9]), while Hankel operators on Bergman and Fock spaces
have found applications mainly in quantum mechanics.

We are interested in the basic properties of Hankel operators on Fock spaces,
and in particular characterize their boundedness and compactness in terms of the
(mean) oscillation of the generating symbols. In the Bergman space setting one is
led to the space of bounded mean oscillation BMOp∂ and the space of vanishing
mean oscillation VMOp∂ with respect to the Bergman metric. Due to K. Zhu [12],
a characterization of bounded and compact Hankel operators has been known for
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two decades. It is natural to ask whether an analogous result carries over to Fock
spaces. Indeed, the question was recently settled in [2] for the Hilbert Fock space
F 2.

For a symbol f (satisfying suitable conditions), we define the Hankel operator
Hf by

Hf = (I − P )Mf ,

where P is a projection defined below in (1) and Mf is the operator of multipli-
cation associated with f . In this paper we study Hankel operators on standard
Fock spaces F pγ with 1 ≤ p <∞ and γ > 0. We will introduce spaces BMOp and
VMOp (in the Euclidean metric) and obtain useful characterizations for these
spaces. We prove decomposition theorems similar to those in [11, 12]; in particu-
lar, we show that these spaces can be characterized in terms of certain Gaussian
integrals, where γ > 0 can be arbitrary.

Note that the John-Nirenberg theorem implies that the classical BMO and
VMO spaces are independent of the parameter p. However, as in the case of the
Bergman metric, the spaces BMOp and VMOp presented here depend on p.

2. The weighted Fock spaces

We will use the definitions from [7]. Let γ > 0 and 1 ≤ p <∞. The weighted Fock
space F pγ consists of entire functions f such that

‖f‖pp,γ =

∫
C
|f(z)|pe−(γp/2)|z|2dA(z) <∞.

Here dA(z) = dxdy is the standard Lebesgue area measure. Similarly, the space
F∞γ consists of those entire f , for which

‖f‖∞,γ = sup
z∈C
|f(z)|e−(γ/2)|z|2

is finite. The respective Lebesgue Lpγ spaces and their norms are defined in an
obvious way.

It is known that F 2
γ is a Hilbert space with inner product

〈f, g〉 =

∫
C
f(z)g(z)e−γ|z|

2

dA(z).

Remark. The point-evaluation functionals f 7→ f(z) are bounded F pγ → C are

bounded and hence F 2
γ is known to possess reproducing kernels Kz := Kγ

z ; f(z) =
〈f,Kz〉.

One immediate corollary is that norm convergence implies locally uniform
convergence. In other words, if fn and f are in F pγ and ‖fn−f‖p,γ → 0 as n→∞,
then fn(z) → f(z) uniformly on each compact subset of C. Another corollary is
that the space F pγ is complete; if {fn} is a Cauchy sequence in norm, then fn → f
in norm for some f ∈ F pγ .
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The reproducing kernels Kz can be explicitly computed; Kz(w) = eγz̄w. The
Bergman projection P := Pγ is given by

Pf(z) =

∫
C
f(w)eγzw̄e−γ|w|

2

dA(w). (1)

It is known that P : Lpγ → F pγ is bounded for every γ > 0 and p ∈ [1,∞].
Proofs can be found in [5]. We will just write Kz and P , instead of Kγ

z and Pγ ;
the parameter γ will be clear from context.

A measurable function f is said to belong to τp = τpγ if and only if fKz ∈ Lpγ
for every z ∈ C. This requirement is natural, since linear combinations of the
kernel functions form a dense subset of F pγ . Henceforth, we will usually assume
f ∈ τp.

3. BMO and related spaces

For 0 < r < ∞, let D(z, r) be the Euclidean disk of radius r and center z. For
f ∈ L1

loc, 0 < r <∞, z ∈ C, let

f̂r(z) =
1

πr2

∫
D(z,r)

f(w)dA(w).

Fix 0 < r <∞ and p ≥ 1. Define BMOpr to be the set of Lploc integrable functions
f such that

‖f‖BMOp
r

= sup
z∈C

{
1

πr2

∫
D(z,r)

|f(w)− f̂r(z)|pdA(w)

} 1
p

<∞.

Let BOr be the set of continuous functions in C such that

‖f‖BOr
= sup

z∈C
ωr(f) <∞,

where

ωr(f)(z) = sup
w∈D(z,r)

|f(z)− f(w)|.

Let BApr be the set of functions f on C such that f̂r is bounded on C.

Lemma 3.1. Let f ∈ Lploc. Then f ∈ BMOpr if and only if there is a constant
C > 0 such that for every z ∈ C there is a constant λz such that

1

πr2

∫
D(z,r)

|f(w)− λz|pdA(w) ≤ C.
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Proof. For the proof of the forward direction, let λz = f̂r(z). For the other direc-
tion, note that {

1

πr2

∫
D(z,r)

|f(w)− f̂r(z)|pdA(w)

} 1
p

≤

{
1

πr2

∫
D(z,r)

|f(w)− λz|pdA(w)

} 1
p

+

{
1

πr2

∫
D(z,r)

|λz − f̂r(z)|pdA(w)

} 1
p

=

{
1

πr2

∫
D(z,r)

|f(w)− λz|pdA(w)

} 1
p

+ |λz − f̂r(z)|.

But

|λz − f̂r(z)| = | 1

πr2

∫
D(z,r)

(f(w)− λz)dA(w)|

≤

{
1

πr2

∫
D(z,r)

|λz − f(w)|pdA(w)

} 1
p

Therefore{
1

πr2

∫
D(z,r)

|f(w)− f̂r(z)|pdA(w)

} 1
p

≤ 2

{
1

πr2

∫
D(z,r)

|λz − f(w)|pdA(w)

} 1
p

.

�

Lemma 3.2. Let s > r > 0. Then BMOps ⊂ BMOpr .

Proof. Suppose f ∈ BMOps so that for every z ∈ C we have λz ∈ C such that

sup
z∈C

1

πs2

∫
D(z,s)

|f(w)− λz|pdA(w) = C <∞.

Now

1

πr2

∫
D(z,r)

|f(w)− λz|pdA(w)

≤s
2

r2

1

πs2

∫
D(z,s)

|f(w)− λz|pdA(w)

≤C s
2

r2

for every z ∈ C. �

Lemma 3.3. BOr is independent of r.
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Proof. Let r < s. Then ‖f‖BOr
≤ ‖f‖BOs

.
Choose N ∈ N such that for any w ∈ D(0, s), there exists a path {0 =

z1, z2, . . . , zN = w} in D(0, s) such that |zi−1 − zi| < r. Let now z ∈ C. Then for
any w ∈ D(z, s), we have a path {z = ζ1, ζ2, . . . , ζN = w}, where ζi = zi + z, and
|ζi−1 − ζi| < r. Therefore

|f(z)− f(w)| ≤
N∑
i=1

|f(ζi−1)− f(ζi)| ≤ N sup{wr(f)(ζi) : i} ≤ N‖f‖BOr
.

We now take the supremum over all w ∈ D(z, r) and then over all z ∈ C to obtain
the desired result. �

By the above lemma, we shall now refer to BO = BO1.

Lemma 3.4. Let f be a continuous function on C. Then f ∈ BO if and only if
there is a constant C > 0 such that

|f(z)− f(w)| ≤ C(|z − w|+ 1)

for all z, w ∈ C.

Proof. The backward direction is obviously true. For the forward direction, let
w, z ∈ C. If f ∈ BO, then

C ≥ sup
α∈C

ω1(f)(α) = sup
α∈C

sup
w∈D(α,β)<1

|f(α)− f(β)|.

In other words, if |z − w| ≤ 1, then |f(z)− f(w)| ≤ C ≤ C(|z − w|+ 1). Suppose
now that |z − w| > 1. Let N = [|z − w|] + 1, where [x] is the greatest integer less
than or equal to x. Let z0 = z, z1 be the point a distance of |z − w|/N along the
line from z to w. Let z2 be the point a distance of |z − w|/N along the line from
z1 to w, and so on, until zN = w. Then

|f(z)− f(w)| ≤
N∑
i=1

|f(zi−1)− f(zi)| ≤ N‖f‖BO ≤ ‖f‖BO(|z − w|+ 1).

�

Let BApr denote the space of all functions f on C such that

‖f‖BAp
r

= sup
z∈C

{
|̂f |pr(z)

} 1
p

<∞.

In other words, f ∈ BApr if

1

πr2

∫
D(z,r)

|f(w)|pdA(w)

is bounded independently of z ∈ C. The notion ofBApr is closely related to Carleson
measures on Fock spaces, see [7], or [10] for more generality.

Lemma 3.5. Let r > 0. Then f ∈ BApr if and only if Mf : F pγ → Lpγ is bounded.
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Proof. Let dµ(w) = |f(w)|pdA(w). Then{
|̂f |pr(z)

}
=

1

πr2

∫
D(z,r)

|f(w)|pdA(w).

Then

µ(D(z, r)) =

∫
D(z,r)

dµ(w) =

∫
D(z,r)

|f(w)|pdA(w).

Of course this implies that µ is a Carleson measure if and only if f ∈ BApr . But
this means ∫

C
|g(w)|pe−(γp/2)|w|2 |f(w)|pdA(w)

=

∫
C
|g(w)|pe−(γp/2)|w|2dµ(w)

≤C
∫
C
|g(w)|pe−(γp/2)|w|2dA(w)

for all g ∈ F pγ . In other words, Mf : F pγ → Lpγ is bounded. �

Lemma 3.6. If f ∈ BMOp2r, then f̂r ∈ BOr.
Proof. Let f ∈ BMOp2r, and suppose |w − z| ≤ r. Then

|f̂r(z)− f̂r(w)| ≤ |f̂r(z)− f̂2r(z)|+ |f̂2r(z)− f̂r(w)|

=

∣∣∣∣∣ 1

πr2

∫
D(z,r)

f(u)dA(u)− 1

πr2

∫
D(z,r)

f̂2r(z)dA(u)

∣∣∣∣∣
+

∣∣∣∣∣ 1

πr2

∫
D(w,r)

f(u)dA(u)− 1

πr2

∫
D(w,r)

f̂2r(z)dA(u)

∣∣∣∣∣
≤ 1

πr2

∫
D(z,r)

|f(u)− f̂2r(z)|dA(u)

+
1

πr2

∫
D(w,r)

|f(u)− f̂2r(z)|dA(u)

≤ 4
1

4πr2

∫
D(z,2r)

|f(u)− f̂2r(z)|dA(u)

+ 4
1

4πr2

∫
D(z,2r)

|f(u)− f̂2r(z)|dA(u)

≤ 4

{
1

π4r2

∫
D(z,2r)

|f(u)− f̂2r(z)|pdA(u)

} 1
p

+ 4

{
1

π4r2

∫
D(z,2r)

|f(u)− f̂2r(z)|pdA(u)

} 1
p

≤ 8‖f‖BMOp
2r
.
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The fourth line follows from the fact that D(z, r) ⊂ D(z, 2r) and D(w, r) ⊂ D(z, r)
and the fifth follows from Hölder’s inequality. �

Let kz = Kz/‖Kz‖2,γ , so that kz(w) = eγz̄w−(γ/2)|z|2 denote the normalized
reproducing kernel of F 2

γ . An easy calculation reveals that kz = kγz is a unit vector
on F pγ for every p ∈ [1,∞).

The Berezin transform (or the heat-transform) of a function f is given by

Bγf(z) =

∫
C
f(w)|kγz (w)|2e−γ|w|

2

dA(w).

We will omit the γ, when it is clear form the context. In this case we just
write Bf .

Lemma 3.7. Let f ∈ τp. Then the following are equivalent.

(1) f ∈ BApr;
(2) supz∈C

∫
C |f(z − w)|pe−γ|w|2dA(w) ≤ C for some γ > 0;

(3) supz∈C
∫
C |f(z − w)|pe−γ|w|2dA(w) ≤ C for all γ > 0.

Proof. By the definition of BApr , f ∈ BApr if and only if
∫
D(z,r)

|f(w)|pdA(w) ≤ C
if and only if |f |pdA is a Carleson measure for F 2

γ for some (and thus for every)
γ > 0 if and only if the Berezin transform Bγ |f |p is bounded. But

Bγ |f |p(z) =

∫
C
|kz(w)|2e−γ|w|

2

|f(w)|pdA(w)

=

∫
C
e−γ|z|

2+2γ<zw−γ|w|2 |f(w)|pdA(w)

=

∫
C
e−γ|z−w|

2

|f(w)|pdA(w)

=

∫
C
e−γ|w|

2

|f(z − w)|pdA(w).

�

Note that by Lemmas 3.3 and 3.5, both BOr and BApr are independent of r.
In fact, if we combine Lemmas 3.5 and 3.7, we obtain the following lemma.

Lemma 3.8. Let f ∈ τp. The following conditions are equivalent:

(1) f ∈ BApr;
(2) supz∈C

∫
C |f(z − w)|pe−γ|w|2dA(w) <∞ for some (and thus all) γ > 0;

(3) Mf : F pγ → Lpγ is bounded.

Lemma 3.9. If f ∈ BMOp2r, then f − f̂r ∈ BAp.
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Proof. By assumption and Lemma 3.2, f ∈ BMOpr . Let g = f − f̂r. Then

{
|̂g|pr(z)

} 1
p

=

{
1

πr2

∫
D(z,r)

|f(u)− f̂r(u)|pdA(u)

} 1
p

≤

{
1

πr2

∫
D(z,r)

|f(u)− f̂r(z)|pdA(u)

} 1
p

+

{
1

πr2

∫
D(z,r)

|f̂r(z)− f̂r(u)|pdA(u)

} 1
p

≤ ‖f‖BMOp
r

+ ωr(f̂r)(z).

�

Lemma 3.10. Let r > 0. Then

BMOpr ⊂ BOr +BApr .

Proof. Let r = 2s and f ∈ BMOpr = BMOp2s. Then Lemmas 3.6 and 3.9 imply

that f̂s ∈ BOs and f − f̂s ∈ BAps . Therefore, f = f̂s + f − f̂s ∈ BOs + BAps =
BOr +BApr . �

Lemma 3.11. If f ∈ BMOpr , then∫
C
|f(z − w)−Bγf(z)|pe−γ|w|

2

dA(w) ≤ C

for all z ∈ C and γ > 0.

Proof. By Lemma 3.10, it is enough to show the inequality holds for f ∈ BAp and
f ∈ BO. Suppose first that f ∈ BAp. By Hölder,

|Bγf(z)| ≤ C
{∫

C
|f(z − w)|pe−γ|w|

2

dA(w)

} 1
p

.

Therefore {∫
C
|f(z − w)−Bγf(z)|pe−γ|w|

2

dA(w)

} 1
p

≤
{∫

C
|f(z − w)|pe−γ|w|

2

dA(w)

} 1
p

+ |Bγf(z)|

≤(1 + C ′)

{∫
C
|f(z − w)|pe−γ|w|

2

dA(w)

} 1
p

≤ C,

where the last inequality follows from Lemma 3.7.
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Suppose next that f ∈ BO. Then∫
C
|f(z − w)−Bγf(z)|pe−γ|w|

2

dA(w)

=

∫
C
|f(z − w)−

∫
C
f(z − u)e−γ|u|

2

dA(u)|pe−γ|w|
2

dA(w)

≤C
∫
C

∫
C
|f(z − w)− f(z − u)|pe−γ|w|

2

dA(w)e−γ|u|
2

dA(u).

Since f ∈ BO, Lemma 3.4 tells us that |f(z − w)− f(z − u)|p ≤ C(|w − u|+ 1)p.
Therefore, the last quantity in the last displayed equation is bounded above by

C2

∫
C

∫
C

(|u− w|+ 1)pe−γ|w|
2

dA(w)e−γ|u|
2

dA(u),

which is a constant. �

Lemma 3.12. Suppose there exists γ > 0 such that∫
C
|f(z − w)−Bγf(z)|pe−γ|w|

2

dA(w) ≤ C

for all z ∈ C. Then f ∈ BMOpr .

Proof. Let z ∈ C and fix γ > 0. Note that e−γ|z−w|
2 ≥ c > 0 for w ∈ D(z, r).

Therefore

c

∫
D(z,r)

|f(w)−Bγf(z)|pdA(w)

≤
∫
D(z,r)

|f(w)−Bγf(z)|pe−γ|z−w|
2

dA(w)

≤
∫
C
|f(w)−Bγf(z)|pe−γ|z−w|

2

dA(w)

=

∫
C
|f(z − w)−Bγf(z)|pe−γ|w|

2

dA(w) ≤ C.

The result then follows from an application of Lemma 3.1. �

We now have proven that BMOpr is independent of r; in what follows, we
will write BMOp = BMOp1 .

Theorem 1. Let p ≥ 1. Then the following are equivalent:
(1) f ∈ BMOp;
(2) f ∈ BO +BAp;
(3)

sup
z∈C

∫
C
|f(z − w)−Bγf(z)|pe−γ|w|

2

dA(w) <∞,

for some γ > 0;
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(3’)

sup
z∈C

∫
C
|f(z − w)−Bγf(z)|pe−γ|w|

2

dA(w) <∞,

for all γ > 0;
(4) There is a constant C and γ > 0 such that for every z ∈ C, there is a

constant λz such that∫
C
|f(z − w)− λz|pe−γ|w|

2

dA(w) ≤ C;

(4’) For every γ > 0 there is a constant C such that for every z ∈ C, there
is a constant λz such that∫

C
|f(z − w)− λz|pe−γ|w|

2

dA(w) ≤ C.

Proof. (1) ⇒ (2) follows from Lemma 3.10. (2) ⇒ (3′) follows from the proof of
Lemma 3.11. Obviously (3′) ⇒ (3) and (4′) ⇒ (4). The proofs of (3) ⇔ (4) and
(3′)⇔ (4′) are similar to the proof of Lemma 3.1. (3)⇒ (1) follows from Lemma
3.12. �

Lemma 3.13. If f ∈ BMOp, then Bγf ∈ BO, and f − Bγf ∈ BAp for every
γ > 0.

Proof. Fix γ > 0. We have

|Bγf(z)− f̂r(z)| =|Bγf(z)− 1

πr2

∫
D(z,r)

f(w)dA(w)|

=

∣∣∣∣∣ 1

πr2

∫
D(z,r)

Bγf(z)dA(w)− 1

πr2

∫
D(z,r)

f(w)dA(w)

∣∣∣∣∣
≤ 1

πr2

∫
D(z,r)

|f(w)−Bγf(z)|dA(w)

≤C
∫
C
|f(z − w)−Bγf(z)|e−γ|w|

2

dA(w).

Here the last inequality follows from the proof of Lemma 3.12. Since f ∈ BMOp,

the last integral is finite. Thus Bf−f̂r is a bounded continuous function and so lies

in BO∩BAp. By Lemma 3.6, f̂r ∈ BO, so Bγf = Bγf−f̂r+f̂r ∈ BO+BO = BO.

By Lemma 3.9, f−f̂r ∈ BAp, so f−Bγf = f−f̂r+f̂r−Bγf ∈ BAp+BAp = BAp.
�

4. Bounded Hankel operators

We begin with a short discussion of harmonic conjugates. If f = u + iv is entire,
then both u and v are harmonic. Conversely, given a harmonic u : C → R, there
exists a unique harmonic v : C→ R such that f = u+ iv is entire and v(0) = 0.
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Lemma 4.1. Let u : C→ R be harmonic. If u ∈ Lpγ for p ∈ (1,∞) and γ > 0, then
v ∈ Lpγ .

Proof. Looking at the proof of Theorem 4.1 of [6], one obtains for r < 1 a C > 0
such that ∫ 2π

0

|v(reiθ)|pdθ ≤ C
∫ 2π

0

|u(reiθ)|pdθ.

But if r > 1, consider the dilations uR(z) = u(Rz) and vR(z) = v(Rz) for large
enough R. Of course, both u and uR always belong to the hardy space hp of the
unit circle. Now,∫ 2π

0

|v(reiθ)|pdθ =

∫ 2π

0

|vR(seiθ)|pdθ ≤ C
∫ 2π

0

|uR(seiθ)|pdθ = C

∫ 2π

0

|u(reiθ)|pdθ,

where R is chosen so that s := r/R < 1. Now, inevitably

∫ 2π

0

|v(reiθ)|pre−(p/2)r2dθ ≤ C
∫ 2π

0

|u(reiθ)|pre−(p/2)r2dθ.

The rest follows from evaluating the norms in polar coordinates.

�

Corollary 4.2. Let p ∈ (1,∞) and γ > 0. Suppose f = u+ iv is entire and that
u ∈ Lpγ . Then f ∈ F pγ . Moreover, there exists C > 0 such that ‖f − f(0)‖p,γ ≤
‖u‖p,γ .

In what follows, if the possible values of p are not indicated, we assume that
p ∈ (1,∞).

Recall that the Bergman projection P is given by

Pg(z) =

∫
C
g(w)eγzw̄e−|w|

2

dA(w).

If f ∈ τp, then the Hankel operator with symbol f is given for g ∈ F pγ by

Hfg(z) = (I − P )(fg)(z).

Note that we can also write

Hfg(z) =

∫
C
(f(z)− f(w))g(w)eγzw̄e−γ|w|

2

dA(w).

Lemma 4.3. If f ∈ BAp, then Hf is bounded on F pγ .

Proof. By Lemma 3.8, Mf is bounded F pγ → Lpγ . Since P is bounded, we obtain
the desired result. �

Lemma 4.4. If f ∈ BO, then Hf is bounded on F pγ for every p ∈ [1,∞].
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Proof. By Lemma 3.4

|Hf (g)(z)| ≤ C
∫
C

(|z − w|+ 1)|eγzw̄g(w)|e−γ|w|
2

dA(w).

There are C > 0 and ε > 0 such that

|eγzw̄| ≤ Ce(γ/2)|z|2+(γ/2)|w|2−ε|z−w|.

Therefore, we arrive at

|Hf (g)(z)|pe−(pγ/2)|z|2

≤Ce−((p−1)γ/2)|z|2
∣∣∣∣∫

C
(|z − w|+ 1)|g(w)|e−(γ/2)|w|2e−ε|z−w|dA(w)

∣∣∣∣p
≤Ce−((p−1)γ/2)|z|2

{∫
C
|g(w)|pe−(γp/2)|w|2dA(w)

}{∫
C
|z − w|qe−qε|z−w|dA(w)

}p/q
≤Ce−((p−1)γ/2)|z|2‖g‖pp,γ .

If 1 < p < ∞ and 1/p + 1/q = 1, we get the desired result by integrating
with respect to z.

If p = 1, we use the above reasoning together with Fubini and proceed as
follows. ∫

C
|Hf (g)(z)|pe−(γ/2)|z|2dA(z)

≤C
∫
C
|g(w)|e−(γ/2)|w|2dA(w)

∫
C

(|z − w|+ 1)e−ε|z−w|dA(z)

≤C‖g‖1,γ .

By similar arguments, one can also show that

|Hf (g)(z)|e−(γ/2)|z|2 ≤
∫
C

(|z − w|+ 1)e−ε|z−w|dA(z)‖g‖∞,γ ≤ C‖g‖∞,γ .

The result is now proven for all p ∈ [1,∞].
�

Theorem 2. Let f ∈ τp. Then f ∈ BMOp if and only if the operators Hf and
Hf̄ are both bounded F pγ → Lpγ .

Proof. If f ∈ BMOp, then so is f̄ and it follows from the previous two lemmas
that Hf and Hf̄ are bounded.

Suppose now that Hf and Hf̄ are both bounded. Without loss of generality,

we may then assume that f is real-valued. Recall that kz(w) = eγz̄w−(γ/2)|z|2 are
unit vectors in F pγ and so we have C > 0 such that

‖fkz − P (fkz)‖p,γ = ‖Hf (kz)‖p,γ ≤ C.
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Note that kz(z − w) = 1/kz(w) and

e−γ(p/2)|z−w|2 = e−γ(p/2)|z|2−γ(p/2)|w|2+γ(p/2)zw̄+γ(p/2)z̄w.

Thus, by a change of variables w 7→ z − w, one obtains

Cp ≥ ‖fkz − P (fkz)‖pp,γ

=

∫
C
|f(z − w)− e−(γ/2)|z|2P (fkz)(z − w)|pe−(pγ/2)|w|2dA(w)

Setting gz(w) = e−(γ/2)|z|2P (fkz)(z − w), one obtains

sup
z∈C

∫
C
|f(z − w)− gz(w)|pe−(pγ/2)|w|2dA(w) ≤ Cp.

Since f is real-valued, then the imaginary part of gz must belong Lpγ and so

‖gz − gz(0)‖p,γ ≤M

for every z ∈ C and some M > 0. Applying triangle inequality and the main
theorem of the previous section with λz = gz(0), one sees that f ∈ BMOp. �

5. VMO and compact Hankel operators

In this section we study VMO and compactness of Hankel operators. The results
and their proofs are completely analogous to the results of the previous two sec-
tions. A great deal of details is therefore omitted and left for the reader to verify.

Define VMOpr to be the set of Lploc integrable functions f such that

lim
z→∞

1

πr2

∫
D(z,r)

|f(w)− f̂r(z)|pdA(w) = 0.

Let V Or ⊂ BOr be the set of continuous functions in C such that

lim
z→∞

ωr(f) = 0.

Let V Apr be the set of functions f on C such that limz→∞ f̂r(z) = 0. The space
V Apr is related to the space of vanishing Carleson measures on Fock spaces, see
[7], [10].

Similarly to the section 3, it can be shown that V Or and V Apr are independent
of r and we will write V O and V Ap, respectively. The following results are also
analogous to the BMO-setting.

Lemma 5.1. Let f ∈ VMOp. Then
(1) Bγf ∈ BO for every γ > 0;

(2) f̂r ∈ BO for every r > 0;
(3) f −Bγf ∈ BAp for every γ > 0;

(4) f − f̂r ∈ BAp for every r > 0.
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Theorem 3. Let p ≥ 1. Then the following are equivalent:
(1) f ∈ VMOp;
(2) f ∈ V O + V Ap;
(3)

lim
z→∞

∫
C
|f(z − w)−Bγf(z)|pe−γ|w|

2

dA(w) = 0,

for some γ > 0;
(3’)

lim
z→∞

∫
C
|f(z − w)−Bγf(z)|pe−γ|w|

2

dA(w) = 0,

for all γ > 0;
(4) There is a γ > 0 such that for every z ∈ C, there is a constant λz such

that

lim
z→∞

∫
C
|f(z − w)− λz|pe−γ|w|

2

dA(w) = 0;

(4’) For every γ > 0 and every z ∈ C, there is a constant λz such that

lim
z→∞

∫
C
|f(z − w)− λz|pe−γ|w|

2

dA(w) = 0.

Theorem 4. Let f ∈ τp. Then the operators Hf and Hf̄ are compact if and only
if f ∈ VMOp.

Proof. Suppose first that f ∈ V Ap. But then |f |pdA is vanishing Carleson, so the
multiplication operatorsMf andMf̄ are compact F pγ → Lpγ . From the boundedness
of the projection P , it follows that Hf and Hf̄ are both compact.

If f ∈ V O, we refer to Lemma 5.1 of [2]. It follows that both Hf and Hf̄ can
be approximated in norm by Hankel operators with symbols having a compact
support. Therefore, both operators are compact. In conclusion, we have shown
that if f ∈ VMOp, then Hf and Hf̄ are compact.

As for the other direction. Note that kz → 0 weakly, as z →∞. But now

‖Hfkz‖p,γ → 0 and ‖Hf̄kz‖p,γ → 0,

as z →∞. By reasoning similar to that in Theorem 2, it follows that∫
C
|f(z − w)− gz(0)|pe−(γp/2)|w|2dA(w)→ 0,

as z →∞, so f ∈ VMOp. �
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