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On the distortion of turbulene by a progressive

surfae wave

By M. A. C. TEIXEIRA y

AND S. E. BELCHER

Department of Meteorology, University of Reading,

Earley Gate, PO Box 243, Reading RG6 6BB, UK

(Reeived ?? and in revised form ??)

A rapid-distortion model is developed to investigate the interation of weak turbulene with a

monohromati irrotational surfae water wave. The model is appliable when the orbital veloity

of the wave is larger than the turbulene intensity, and when the slope of the wave is suÆiently

high that the straining of the turbulene by the wave dominates over the straining of the turbulene

by itself. The turbulene su�ers two distortions. Firstly, vortiity in the turbulene is modulated

by the wave orbital motions, whih leads to the streamwise Reynolds stress attaining maxima at

the wave rests and minima at the wave troughs; the Reynolds stress normal to the free surfae

develops minima at the wave rests and maxima at the troughs. Seondly, over several wave

yles the Stokes drift assoiated with the wave tilts vertial vortiity into the horizontal diretion,

subsequently strething it into elongated streamwise vorties, whih ome to dominate the ow.

These results are shown to be strikingly di�erent from turbulene distorted by a mean shear ow,

when `streaky strutures' of high and low streamwise veloity utuations develop. It is shown

that, in the ase of distortion by a mean shear ow, the tendeny for the mean shear to produe

streamwise vorties by distortion of the turbulent vortiity is largely anelled by a distortion of

the mean vortiity by the turbulent utuations. This latter proess is absent in distortion by

Stokes drift, sine there is then no mean vortiity.

The omponents of the Reynolds stress and the integral length sales omputed from turbulene

y Present address: Centro de Geof��sia da Universidade de Lisboa, Rua da Esola Polit�enia, 58,

1269-102 Lisbon, Portugal.
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distorted by Stokes drift show the same behaviour as in the simulations of Langmuir turbulene

reported by MWilliams, Sullivan & Moeng (1997). Hene we suggest that turbulent vortiity in

the upper oean, suh as produed by breaking waves, may help to provide the initial seeds for

Langmuir irulations, thereby omplementing the shear-ow instability mehanism developed by

Craik & Leibovih (1976).

The tilting of the vertial vortiity into the horizontal by the Stokes drift tends also to produe

a shear stress that does work against the mean straining assoiated with the wave orbital motions.

The turbulent kineti energy then inreases at the expense of energy in the wave. Hene the wave

deays. An expression for the wave attenuation rate is obtained by saling the equation for the

wave energy, and is found to be broadly onsistent with available laboratory data.

1. Introdution

The uppermost layer of the oean has three interating dynamial omponents, namely a wind-

driven mean shear urrent, surfae waves and turbulene. This potent mixture produes a variety

of intriguing phenomena that do not our in the atmospheri boundary layer. Observations in the

oean mixed layer by Faller & Auer (1988) have revealed elongated streamwise vorties, identi�ed

as Langmuir irulations, with a wide range of sales, whih an therefore be seen as a type of

turbulene, named Langmuir turbulene by MWilliams, Sullivan & Moeng (1997). Furthermore,

reent observations show that breaking waves are a surprisingly potent soure of turbulene in

the upper few metres of the mixed layer (Agrawal et al. 1992; Terray et al. 1996). Given the

omplexity of this system it is helpful to onsider interations between pairs of these omponents.

Suh idealised alulations are presented in this paper.

Turbulene and surfae waves an interat in a variety of ways. Turbulent pressure utuations

and turbulent shear stresses are responsible for both the initiation of surfae waves (Phillips 1957;

Teixeira 2000) and their subsequent ampli�ation by a sheltering mehanism (Belher & Hunt 1993,

1998). Turbulene in the water an satter surfae waves (Phillips 1959), distort surfae waves

(Longuet-Higgins 1996) and dissipate surfae waves (Kitaigorodskii & Lumley 1983). Conversely,
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breaking waves, often visible as whiteaps (Melville 1996), shear urrents indued by the wind,

and thermal onvetion all generate turbulene in the oean surfae layer, whih is subsequently

distorted by orbital motions assoiated with the surfae waves (Thais & Magnaudet 1996). More

idealised interations between waves and turbulene have been investigated experimentally by

Green, Medwin & Paquin (1972),

�

Olmez & Milgram (1992), Nepf et al. (1995) and Thais &

Magnaudet (1996). But a systemati theoretial treatment of this situation is laking.

Distortion of turbulene by surfae waves is of two types: on the one hand, there is the di-

ret e�et of the orbital motions, of �rst order in the wave slope, whih has a straining rate of

O(a

w

k

w

�

w

), where a

w

, k

w

and �

w

are, respetively, the amplitude, wavenumber and angular fre-

queny of the waves. This e�et is relatively weak, beause the wave motions are periodi and

the total strain never exeeds O(a

w

k

w

), whih is small. On the other hand, there is the e�et

of the Stokes drift, of seond order in the wave slope, whose straining rate an be estimated as

O(a

2

w

k

2

w

�

w

). Although this straining rate is even smaller, its e�et is umulative, and the total

strain is of O(a

2

w

k

2

w

�

w

t), where t is time. So, this seond order e�et is bound to a�et turbulene

appreiably after a suÆient number of wave yles.

Interation between the wind-driven mean shear urrent and the Stokes drift is at the heart

of urrent explanations of the generation of Langmuir irulations in the oean (Leibovih 1983).

Langmuir irulations are intense, elongated vorties, with their axes of rotation roughly aligned

with the wind and the dominant surfae waves. Craik & Leibovih (1976) propose two mehanisms

for the prodution of Langmuir irulations based on instability of the mean shear urrent under

the ation of the wave motions. The �rst, known as CL1 or the diret drive mehanism, involves

interation between the mean shear urrent in the water and the Stokes drift assoiated with waves

propagating at an angle to this mean urrent. The seond mehanism for prodution of Langmuir

irulations analysed by Craik & Leibovih (1976), known as the CL2 mehanism, involves tilting

and strething of vertial vortiity into the horizontal by the Stokes drift assoiated with surfae

waves propagating in the same diretion as the mean shear urrent. In the Craik-Leibovih formu-

lation the vertial vortiity is assumed to arise from in�nitesimal spanwise variations in the mean

shear urrent.
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The mehanisms for generation of Langmuir irulations developed by Craik & Leibovih (1976)

treat expliitly interations between the mean shear ow and the Stokes drift. The role of tur-

bulene is represented by an eddy visosity, thereby relegating turbulene to a mehanism for

dissipating the Langmuir irulations. But there is evidene that turbulene may ontribute to the

generation of Langmuir irulations (Nepf et al. 1995). Hene one aim of the present study is to

quantify the e�ets of Stokes drift on turbulene in the water ow.

We fous here on two idealised model problems that aim at larifying the interations in the upper

oean. Firstly, the bulk of the paper is onerned with the distortion of turbulene by the passage

of a surfae wave; the mean shear ow is negleted. This distortion is traed from the periodi

straining of the wave, through to the umulative distortion of the turbulene by the Stokes drift, to

deay of waves as energy is transferred to the turbulene. Seondly, we present results of distortion

of turbulene by a mean shear ow; the e�ets of the surfae waves are negleted. Comparison

of the results of these two analyses graphially shows the important role played by Stokes drift in

shaping the turbulene and o�ers lues to an additional soure of Langmuir irulations.

The remainder of this paper is organised as follows: in x2, the theoretial model of wave-

turbulene interation is presented. Setion 3 presents the resulting time evolution of the Reynolds

stresses and the integral length sales of the turbulene, �rstly over a single wave yle and se-

ondly over several wave yles, when the Stokes drift beomes important. These latter results are

ompared with turbulene distortion by a mean shear. The overall budgets of kineti energy in

the turbulene and the wave motions are then analysed to show how the waves deay. The paper

ends with the main onlusions, in x4.

2. Theoretial model

Consider a semi-in�nite water mass bounded above by a free surfae on whih a progressive,

monohromati, surfae wave is propagating. The wave is irrotational and has relatively low

slope. Here we analyse how turbulene beneath the free surfae is distorted by the orbital motions

assoiated with the wave. To takle this idealised problem, the rapid-distortion theory (RDT) of

Bathelor & Proudman (1954) and Hunt (1973) will be used.
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The total veloity �eld U

i

is split into a mean part, U

i

, and a turbulent part, u

i

, namely

U

i

= U

i

(x) + u

i

(x; t); i = 1; 2; 3: (2.1)

The mean veloity orresponds to the wave orbital motion expressed in a oordinate system trav-

elling with the wave rests: hene U

i

is stationary. The wave is taken to propagate in the positive

x

1

diretion and, sine the wave is also monohromati, U

i

is slab-symmetri and does not depend

on x

2

. The turbulene is assumed to be statistially stationary, homogeneous and isotropi far

from the surfae. At the initial time, the turbulene is assumed to be homogeneous and isotropi

throughout the depth of the water olumn at a partiular point of the wave phase. The turbulene

is also assumed to be of a muh smaller sale than the wave, so that the initial integral length sale

of the turbulene l satis�es l � �

w

, where �

w

is the wavelength of the wave. The idea is then to

analyse the evolution of the turbulene statistis following a water parel as the wave propagates

over the turbulene.

This idealised model approximates two physial situations: the �rst is a laboratory arrangement

where mehanially generated surfae waves propagate over a region of turbulene reated by an

osillating grid, as in the experiments of

�

Olmez and Milgram (1992) and Milgram (1998). The

seond situation is where turbulene is injeted into the water by breaking surfae waves at a

partiular time and loation, being then distorted by subsequent waves. Of ourse, in the seond

ase, the initial turbulene is not perfetly homogeneous and isotropi, but it is reasonably isotropi

(Rapp & Melville 1990) and its integral length sale is generally onsiderably smaller than the

wavelength of the dominant waves, sine wave breaking is a highly loalised proess. Hene the

ondition l � �

w

is probably satis�ed.

In the formulation adopted by Hunt (1973), RDT is based on the invisid equations of motion,

linearised with respet to the turbulene. For example, the linearised vortiity equation an be

written

�!

i

�t

+ U

j

�!

i

�x

j

+ u

j

�


i

�x

j

= 


j

�u

i

�x

j

+ !

j

�U

i

�x

j

; (2.2)

where 
 = r�U is the vortiity of the mean ow and ! = r�u is the vortiity of the turbulene.

In the present ase, U

i

is the veloity assoiated with an irrotational surfae wave, so 


i

= 0. If

u is de�ned as the initial root-mean-square (RMS) veloity of the turbulene, U as the typial
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veloity sale of the mean ow and L as the typial length sale over whih the mean ow varies,

the onditions for the validity of (2.2) are that the turbulent veloity is suÆiently weak ompared

with the mean veloity, u � U , and that the strain rate of the mean ow is higher than that

assoiated with the interation of the turbulene with itself, u=l � U=L. The �rst ondition is

immediately satis�ed if, additionally to the seond, l� L is also satis�ed. It will be seen later that

this last ondition on the length sales is onvenient if the equations of motion are to be simpli�ed

by being expressed in a urvilinear oordinate system aligned with the mean ow (Durbin & Hunt

1980). In that ase, the urvature terms in the equations are of O(l=L) and an be negleted, i.e.

the equations take at leading order the same form as in a Cartesian oordinate system.

For the partiular ow under onsideration, the length sale of the mean ow is the wavelength

of the wave, �

w

, and the strain rate assoiated with the wave is of O(a

w

k

w

�

w

), so the onditions

for whih the linear RDT model is valid are

l� �

w

; a

w

k

w

�

u

l�

w

: (2.3)

Hene, the turbulene has to be of relatively small sale and the steepness of the wave annot be

too small.

Turbulene generated by a grid in laboratory experiments (Brumley and Jirka 1987; Kit, Strang

& Fernando 1997) or assoiated with a wind-indued shear urrent (Melville, Shear & Veron 1998)

generally has an integral length sale of O(1m) or larger. Turbulene generated by breaking

waves is likely to be even larger (see table V of Kitaigorodskii et al. 1983). Sine the transition

between the gravity and apillary regimes of surfae waves ours at a wavelength � 1:7m, the

�rst ondition of (2.3) is typially satis�ed if the wave that distorts the turbulene is a gravity

wave. Then, if it is noted that, in the deep-water gravity wave regime, the dispersion relation

gives �

w

= (2�g=�

w

)

1

2

, the seond equation of (2.3) may also be expressed as a ondition on the

wavelength, and (2.3) takes the more ompat form

l � �

w

� 2�g

�

l

u

a

w

k

w

�

2

: (2.4)

Taking the reasonable values l = 5m, u = 1m s

�1

, a

w

k

w

= 0:1, and g = 9:8m s

�1

, the following
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estimate for the range of appliability of the model is obtained:

5m� �

w

� 15:4m: (2.5)

This ondition is easily satis�ed for laboratory waves, and for an important fration of the gravity

waves existing in the oean. The salings of Belher et al. (1994) on�rm that the RDT assumption

is valid in the water ow in most situations, exept very near the interfae.

2.1. Mathematial formulation

In applying RDT to mean ows as omplex as a progressive surfae wave, it is onvenient to

express the vortiity equation (2.2) in the intrinsially Lagrangian form due to Cauhy (Bathelor

& Proudman 1954),

!

i

(x; t) =

�x

i

�a

j

!

j

(a; 0); (2.6)

where

x

i

(a; t) = a

i

+

Z

t

0

U

i

(x; t

0

)dt

0

(2.7)

is the position at time t of a uid parel with initial position a

i

. �x

i

=�a

j

is the strain tensor, whih

gives the ratio of the separations, along the 3 oordinate diretions, of two in�nitesimally distant

material partiles at a given time, following the uid motion, and at the initial time. In (2.6), the

Cauhy equation is already linearised, like (2.2), beause that is the form relevant for the present

RDT problem, and 


i

= 0 has been assumed, beause the wave is irrotational. If the mean ow

was not irrotational, (2.6) would have to inlude 


i

as well, and the strain tensor would inlude the

distortion of the mean vortiity by the turbulent veloity, as pointed out reently by Nazarenko,

Kevlahan & Dubrulle (1999). This would make the alulations muh more ompliated.

Given the initial turbulent veloity �eld u

i

(a; 0), the initial turbulent vortiity ! = r � u is

obtained by taking the url and, one the strain tensor is known, the �nal veloity �eld may be

reovered from the �nal vortiity obtained from (2.6) by solving the equation

r

2

u = �r� !; (2.8)

whih results from taking the url of the de�nition of turbulent vortiity. The remaining problem,

therefore, is determining �x

i

=�a

j

as a funtion of the mean veloity �eld.

Durbin (1978) noted that the form taken by the strain tensor is onsiderably simpli�ed if the
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RDT problem is formulated in a streamline oordinate system. In fat, suh formulation is not only

advantageous for simplifying the form taken by the equations of motion but also for simplifying

the boundary onditions, whih would otherwise be awkward to impose. Therefore, in the present

model, a urvilinear oordinate system is adopted, where x

1

(the diretion along whih the wave

propagates) is replaed by �, the veloity potential of the wave motion, x

2

remains as the ross-

stream horizontal oordinate and x

3

(the vertial oordinate) is replaed by  , the streamfuntion.

The new urvilinear oordinates are de�ned by the relations

U

1

=

��

�x

1

=

� 

�x

3

; U

3

=

��

�x

3

= �

� 

�x

1

: (2.9)

The spatial oordinates and omponents of vetors in the new urvilinear system retain the sub-

sripts 1, 2 and 3, respetively, for the diretion along the streamlines, horizontally aross the

streamlines and along lines of onstant potential, but are distinguished from their Cartesian oun-

terparts by a tilde. The in�nitesimal length element in the diretion along the streamlines is

~

U

�1

1

d�, where

~

U

1

= (U

2

1

+ U

2

3

)

1

2

and the length element along the lines of onstant potential is

~

U

�1

1

d . The spatial derivatives along the 3 new oordinate diretions are then de�ned as

�

�~x

1

=

~

U

1

�

��

;

�

�~x

2

=

�

�x

2

;

�

�~x

3

=

~

U

1

�

� 

: (2.10)

The ow on�guration and oordinate systems for a surfae wave propagating in the positive x

1

diretion are presented shematially in �gure 1. Note that the orientation of the urvilinear

oordinates is approximately in the opposite diretion to the Cartesian oordinates (exept for

~x

2

), with ~x

1

pointing to the left and ~x

3

pointing downwards.

In the urvilinear oordinate system, the linearised Cauhy equation takes a form analogous to

(2.6), but the strain tensor is onsiderably simpler than when expressed in a Cartesian oordinate

system, namely

�
~
x

�
~
a

=

0

B

B

B

B

B

B

�

~

U

1

=

~

U

10

0

~

U

1

��

0

=�~a

3

�

~

U

10

��=�~x

3

0 1 0

0 0

~

U

10

=

~

U

1

1

C

C

C

C

C

C

A

; (2.11)

where the subsript 0 denotes variables evaluated at the initial time, before any turbulene distor-
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x3

x1

2aw

=const.ψ

φ=const.

x1

x3

~

~

wλ

Figure 1. Shemati diagram of the model problem in a frame of referene travelling with the wave,

showing the streamlines (solid) and lines of onstant potential (dotted), and the Cartesian and urvilinear

oordinate systems.

tion has taken plae, and � is the travel time of a uid parel, de�ned as

� =

Z

�

d�

0

~

U

2

1

: (2.12)

For turbulene owing around a blu� body the `initial position', where the turbulene is undis-

torted, is in�nitely upstream of the body, so U

10

is the free-stream veloity, whih is assumed

onstant (Hunt 1973; Durbin 1981). As a onsequene, ��

0

=�~a

3

= 0 and (2.11) simpli�es further.

If the mean ow is a periodi wave, however, there is no obvious hoie for the initial position,

whih has to be imposed more arbitrarily.

~

U

10

and ��

0

=�~a

3

then depend on the loation of the

initial position relative to the phase of the wave and must be retained in (2.11). This dependene

of the model on the initial position will be explored in x3. In the ase of turbulene generated by

a breaking wave, it is perhaps to be expeted that the turbulene is injeted at the forward slope

of the wave (Rapp & Melville 1990), and as a result, most of the alulations presented in x3 use

this as the initial position.

2.2. The mean veloity �eld

The mean veloity �eld onsidered in the present model is that assoiated with a relatively small-

amplitude, monohromati surfae wave, expressed in a frame of referene travelling with the

phase veloity of the wave 

w

= �

w

=k

w

. Following Longuet-Higgins (1984), the wave motion is

expressed here as a funtion of the urvilinear oordinates � and  , but only the �rst term in the

orresponding series expansion (his equation (4.4)) is onsidered. This is a good approximation
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for low wave slopes. The horizontal and vertial veloity omponents are

U

1

= 

w

�

a

w

k

w

e

�k

w

 =

w

os(k

w

�=

w

)� 1

�

U

3

= �

w

a

w

k

w

e

�k

w

 =

w

sin(k

w

�=

w

); (2.13)

whih satisfy ontinuity and irrotationality, and lead to

~

U

1

= 

w

�

1 + a

2

w

k

2

w

e

�2k

w

 =

w

� 2a

w

k

w

e

�k

w

 =

w

os(k

w

�=

w

)

�

1

2

: (2.14)

The advantage of this peuliar formulation of the wave motion is that it enables an analytial

evaluation of the travel time funtion � . On performing the integration over �

0

in (2.12), the result

is

�(�;  ) =

2



w

k

w

1

1� a

2

w

k

2

w

e

�2k

w

 =

w

�

artan

�

1 + a

w

k

w

e

�k

w

 =

w

1� a

w

k

w

e

�k

w

 =

w

tan

�

k

w

�

2

w

��

+�Int

�

k

w

�=

w

+ �

2�

��

+ f( ); (2.15)

where f is an arbitrary funtion and Int denotes `integer part'. The seond term between square

brakets has to be introdued in order for � to be a monotonially inreasing funtion of the

veloity potential, beause the artan funtion is limited to take values in the interval (��=2; �=2).

It an be shown from (2.15) that the travel time funtion is approximately equal to �=

2

w

+ f( )

for very low wave slopes, but deviates systematially towards higher values for larger a

w

k

w

. This

is a manifestation of the Stokes drift of the wave. The onnetion between the Stokes drift of a

surfae wave and the so-alled `Darwin drift' (whih is losely related to the travel time funtion)

has been noted reently by Eames & MIntyre (1999), although they did not alulate � expliitly.

From (2.11), (2.14) and (2.15), it follows that the strain tensor is spei�ed ompletely as a

funtion of � and  , �

0

and  

0

. Therefore, to obtain the evolution of the turbulene along the

wave pro�le, values for �

0

and  

0

must be hosen to speify the initial position, and then the

relevant turbulent quantities may be alulated along a streamline ( =  

0

), for di�erent values of

� (this is done below). However, it would be onvenient to express the results as a funtion of more

physially signi�ant variables like time or spae. A rigorous relation between the Cartesian and

the urvilinear oordinates requires the numerial resolution of impliit equations, but a simple

approximation, valid for low wave slopes, is readily available. Equations (2.9) and (2.13) show

that, to zeroth order in the wave slope, � � �

w

x

1

and �

0

� �

w

a

1

. Now, to the same order of
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approximation, it follows from (2.7) that x

1

� a

1

� 

w

t. Then, subtrating the initial from the

�nal potential, �� �

0

= �

w

(x

1

� a

1

) = 

2

w

t, so that �nally

t � (�� �

0

)=

2

w

: (2.16)

This shows that the Eulerian time an be approximately related to the potential funtion. When

the turbulene statistis are plotted as a funtion of time, in x3, t will always be de�ned aording

to (2.16), so it must be realled, when interpreting the results, that (2.16) is only an approximate

equality.

2.3. Solution in terms of Fourier modes

Far from the free surfae, the turbulene is not a�eted by the wave nor diretly by the boundary,

and remains homogeneous, isotropi and stationary. Now, by assumption the sale over whih the

motion assoiated with the wave varies, �

w

, is muh larger than the initial integral length sale

of the turbulene (see the �rst equation of (2.3)), and so at distanes from the free surfae in

the range l < ~x

3

< �

w

, the turbulene is distorted by the wave motion but not diretly by the

boundary. In this region the turbulene is loally homogeneous, in the sense that it varies over

a length sale that is muh larger than its integral sale l. So, for depths greater than l, it is

justi�ed to represent the turbulent veloity as a three-dimensional Fourier integral, with spae and

time dependent wavenumbers that vary over the length sale �

w

, in order to aount for the slight

inhomogeneity of the mean ow. This is the slow-variation approximation, also used by Durbin

(1981). In the urvilinear oordinate system, the turbulent veloity is thus

~u

(H)

i

(
~
x; t) =

ZZZ

^

~u

(H)

i

(

~

k;
~
x; t)e

i

~

k �
~
x

d

~

k

1

d

~

k

2

d

~

k

3

; (2.17)

where

~

k(
~
x; t) = (

~

k

1

;

~

k

2

;

~

k

3

) is the wavenumber vetor, and the spatial oordinates in the plane of

the wave motion an be approximated loally as ~x

1

= �=

~

U

1

, ~x

3

=  =

~

U

1

. The vortiity of the

turbulene may be expressed in a formally similar way:

~!

(H)

i

(
~
x; t) =

ZZZ

^

~!

(H)

i

(

~

k;
~
x; t)e

i

~

k �
~
x

d

~

k

1

d

~

k

2

d

~

k

3

: (2.18)

Invoking the slow-variation approximation, it is now possible to relate the Fourier amplitudes of

the turbulent veloity and of the turbulent vortiity through an algebrai relation, in exatly the
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same way as in a Cartesian oordinate system, namely

^

~!

(H)

i

= "

ijk

i

~

k

j

^

~u

(H)

k

; (2.19)

where terms of higher order in the parameter (l=�

w

) have been ignored. Taking the external

produt of the wavenumber vetor with this expression, an equation equivalent to (2.8) in the

spetral domain is obtained,

^

~u

(H)

i

= "

ijk

i

~

k

j

k

2

^

~!

(H)

k

; (2.20)

where k = (

~

k

2

1

+

~

k

2

2

+

~

k

2

3

)

1

2

is the wavenumber magnitude.

The Cauhy equation an be expressed in terms of Fourier amplitudes by using (2.6) (with tildes

in the urvilinear oordinate system) and (2.18), yielding

^

~!

(H)

i

(

~

k;
~
x; t) =

�~x

i

�~a

j

e

i(

~

k

0

�
~
a�

~

k �
~
x)

^

~!

(H)

j

(

~

k

0

;
~
a; 0);

~

k

i

(
~
x; t) =

�~a

j

�~x

i

~

k

0j

; (2.21)

where

~

k

0

= (

~

k

01

;

~

k

02

;

~

k

03

) =

~

k(
~
a; 0) is the wavenumber vetor at the initial time. These two

equations give the Lagrangian temporal evolution of, respetively, the Fourier amplitude of the

turbulent vortiity and the wavenumber vetor. Applying (2.19) to obtain the initial vortiity am-

plitude in (2.21) as a funtion of the veloity amplitude and inserting the �nal vortiity amplitude

given by (2.21) into (2.20) yields

^

~u

(H)

i

(

~

k;
~
x; t) = �"

ijk

"

lmn

~

k

j

~

k

0m

k

2

�~x

k

�~a

l

e

i(

~

k

0

�
~
a�

~

k �
~
x)

^

~u

(H)

n

(

~

k

0

;
~
a; 0); (2.22)

whih, together with (2.11), the seond equation of (2.21) and (2.17), ompletely de�nes the �nal

distorted turbulent veloity �eld as a funtion of the initial undistorted turbulent veloity �eld.

2.4. Bloking e�et of the boundary

At distanes from the free surfae of O(l) or shorter, the turbulene is no longer loally homoge-

neous, sine it is fored to adjust to the boundary. For the turbulene with low Froude and Weber

numbers onsidered here, the e�et of the boundary is primarily bloking (Brohini & Peregrine

2000), so that the normal veloity omponent redues to zero at the boundary. This e�et is

inluded in the model by adding an irrotational orretion to the turbulent veloity �eld (Hunt &

Graham 1978). Equation (2.2) ensures that, for an irrotational mean ow, an initially irrotational
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veloity remains irrotational at all subsequent times. The total veloity �eld thus beomes

~u

i

= ~u

(H)

i

+

��

(S)

�~x

i

; i = 1; 2; 3; (2.23)

where �

(S)

(
~
x; t) is a veloity potential satisfying

r

2

�

(S)

= 0; (2.24)

subjet to boundary onditions that ensure that the turbulent veloity is zero at the boundary and

vanishes far from it:

��

(S)

�~x

3

(~x

3

= 0) = �~u

(H)

3

(~x

3

= 0) and �

(S)

(~x

3

!1) = 0: (2.25)

Although the veloity potential �

(S)

deays rapidly to zero for ~x

3

> l, it remains loally ho-

mogeneous along the other two oordinate diretions, so it an be expressed as a two-dimensional

Fourier integral as follows:

�

(S)

(
~
x; t) =

ZZ

^

�

(S)

(

~

k

1

;

~

k

2

;
~
x; t)e

i(

~

k

1

~x

1

+

~

k

2

~x

2

)

d

~

k

1

d

~

k

2

: (2.26)

Invoking again the slow-variation approximation, the solution of (2.24) whih an be expressed in

the form (2.26) and satis�es the boundary onditions (2.25), is formally idential to that found by

Hunt & Graham (1978) for turbulene near a at wall, namely

^

�

(S)

(

~

k

1

;

~

k

2

;
~
x; t) =

Z

^

~u

(H)

3

(

~

k;
~
x; t)

~

k

12

e

�

~

k

12

~x

3

d

~

k

3

; (2.27)

where

~

k

12

= (

~

k

2

1

+

~

k

2

2

)

1

2

. This expression di�ers only from the solution obtained by by Hunt

& Graham in that the turbulene is not perfetly homogeneous along the ~x

1

and ~x

2

diretions,

beause the straining by the wave motion varies with ~x

1

and ~x

2

, so that both the wavenumber

~

k

and

^

~u

(H)

3

vary slowly in spae and time.

2.5. Complete solution

From (2.17), (2.23) and (2.26), it follows that the total turbulent veloity �eld must be given by a

two-dimensional Fourier integral in the form

~u

i

(
~
x; t) =

ZZ

^

~u

i

(

~

k

1

;

~

k

2

;
~
x; t)e

i(

~

k

1

~x

1

+

~

k

2

~x

2

)

d

~

k

1

d

~

k

2

; (2.28)

where the Fourier amplitude is de�ned by

^

~u

i

=

Z

^

~u

(H)

i

e

i

~

k

3

~x

3

d

~

k

3

+ i

~

k

i

^

�

(S)

; i = 1; 2;



14 M. A. C. Teixeira and S. E. Belher

^

~u

3

=

Z

^

~u

(H)

3

e

i

~

k

3

~x

3

d

~

k

3

+

�

^

�

(S)

�~x

3

: (2.29)

Taking into aount (2.22), (2.27) and (2.29), the Fourier amplitude of the total distorted turbu-

lent veloity (inluding the e�ets of distortion by the wave and by the boundary) may be related

to the initial undistorted amplitude through

^

~u

i

(

~

k

1

;

~

k

2

;
~
x; t) =

Z

~

M

ij

(

~

k;
~
x; t)

^

~u

(H)

j

(

~

k

0

;
~
a; 0)d

~

k

3

; (2.30)

where the elements of the matrix

~

M

ij

an be seen as `transfer funtions' (Hunt 1973). As was just

seen, the bloking e�et of the boundary may be taken into aount by applying the hanges due

to bloking to the wave-distorted turbulene. Hene the funtions

~

M

ij

may be deomposed as

~

M

ij

(

~

k;
~
x; t) =

~

B

ik

(

~

k;
~
x; t)

~

W

kj

(

~

k;
~
x; t); (2.31)

where the matrix

~

B

ik

aounts for bloking and the matrix

~

W

ik

aounts for distortion by the

wave.

The e�et of the wave is dedued from (2.22), and leads to

~

W

in

= �"

ijk

"

lmn

~

k

j

~

k

0m

k

2

�~x

k

�~a

l

e

i(

~

k

0

�
~
a�

~

k �
~
x)

; (2.32)

while the e�et of bloking is dedued from (2.27) and (2.29), yielding

~

B

ii

= e

i

~

k

3

~x

3

;

~

B

i3

= i

~

k

i

~

k

12

e

�

~

k

12

~x

3

; i = 1; 2;

~

B

33

= e

i

~

k

3

~x

3

� e

�

~

k

12

~x

3

; (2.33)

with the remaining elements of

~

B

ij

being equal to zero.

The turbulent veloity distorted by both the wave orbital motion and by the boundary is thus

ompletely de�ned as a funtion of the undistorted turbulent veloity. It remains to presribe the

harateristis of the undistorted turbulene and to alulate statistis of the turbulene at various

stages of distortion.

2.6. Statistis of the turbulent veloity �eld

In order to analyse the struture of the turbulene, statistis of the turbulent veloity �eld are re-

quired. The intensity and orrelation of the veloity utuations are haraterised by the Reynolds
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stresses. These may be alulated from the Fourier amplitudes of the turbulent veloity using

~u

i

~u

j

=

ZZZZ

^

~u

�

i

(

~

k

1

;

~

k

2

)

^

~u

j

(

~

k

0

1

;

~

k

0

2

)d

~

k

1

d

~

k

2

d

~

k

0

1

d

~

k

0

2

; (2.34)

where the asterisk denotes omplex onjugation and the overbar denotes ensemble averaging. Equa-

tion (2.30) implies that

^

~u

�

i

(

~

k

1

;

~

k

2

)

^

~u

j

(

~

k

0

1

;

~

k

0

2

) =

ZZ

~

M

�

ik

(

~

k)

~

M

jl

(

~

k

0

)

^

~u

(H)�

k

(

~

k

0

)

^

~u

(H)

l

(

~

k

0

0

)d

~

k

3

d

~

k

0

3

: (2.35)

Now, the three-dimensional spetrum of the initial undistorted turbulent veloity,

~

�

(H)

ij

, is de�ned

as

^

~u

(H)�

i

(

~

k

0

)

^

~u

(H)

j

(

~

k

0

0

) =

~

�

(H)

ij

(

~

k

0

)Æ(

~

k

0

�

~

k

0

0

); (2.36)

hene (2.34) and (2.35) an be used to obtain a simpli�ed expression for the Reynolds stresses:

~u

i

~u

j

=

ZZZ

~

M

�

ik

~

M

jl

~

�

(H)

kl

d

~

k

1

d

~

k

2

d

~

k

3

: (2.37)

The spatial struture of the turbulent veloity utuations is haraterised by the integral length

sales of the turbulene. For the veloity utuations ~u

i

and ~u

j

and along the diretion ~x

l

these

are de�ned by

~

L

(l)

ij

= �

~

�

(l)

ij

(

~

k

l

= 0)

~u

i

~u

j

; (2.38)

where

~

�

(l)

ij

is the one-dimensional wavenumber spetrum, along the ~x

l

diretion, of the veloity

utuations ~u

i

and ~u

j

. Hene

~

L

(l)

ij

is interpreted as the length over whih the ~u

i

and the ~u

j

veloity

utuations are orrelated in the diretion ~x

l

. The one-dimensional spetrum along ~x

1

is de�ned

in terms of

~

�

(H)

kl

as

~

�

(1)

ij

(

~

k

1

; ~x

3

; t) =

ZZ

~

M

�

ik

~

M

jl

~

�

(H)

kl

d

~

k

2

d

~

k

3

; (2.39)

and an analogous de�nition is valid for the spetrum along ~x

2

.

The undistorted turbulene is assumed to be isotropi, so its three-dimensional spetrum is

related to the energy spetrum in the following way:

~

�

(H)

ij

(

~

k

0

) =

 

Æ

ij

�

~

k

0i

~

k

0j

k

2

0

!

E(k

0

)

4�k

2

0

; (2.40)

whereE(k

0

) is the energy spetrum and k

0

= (

~

k

2

01

+

~

k

2

02

+

~

k

2

03

)

1

2

is the initial wavenumber magnitude.

Following Hunt & Graham (1978), the well-known von K�arm�an energy spetrum, whih mimis
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an inertial subrange at high wavenumbers, is adopted here,

E(k

0

) = u

2

l

g

2

(k

0

l)

4

(g

1

+ (k

0

l)

2

)

17

6

; (2.41)

where g

1

= 0:558 and g

2

= 1:196 are dimensionless onstants. In this equation and hereafter, the

length sale of the turbulene l is de�ned as the initial longitudinal integral length sale of any

veloity omponent, i.e. l =

~

L

(i)

ii

(t = 0), for i = 1; 2; 3.

All the statistis derived in this subsetion are expressed in the urvilinear oordinate system

aligned with the streamlines. However, these an readily be ompared with statistis measured in

a Cartesian oordinate system, beause the two oordinate systems are approximately equivalent

for waves of low slope, and in fat oinide exatly at the wave rests and at the wave troughs.

2.7. Important parameters

There are seven basi variables ontrolling the behaviour of the present model: three of them are

determined by the mean ow, in this ase a surfae wave. They are the amplitude a

w

, wavenumber

k

w

and phase veloity 

w

of the wave. Two further variables haraterise the turbulene: the initial

RMS turbulent veloity u and the initial integral length sale l. The remaining two variables are

introdued by the initial onditions and the duration of the interation between the turbulene

and the wave: they are, respetively, the initial position relative to the wave phase, ~a

1

, whih may

be approximated as ~a

1

� �

0

=

w

, and time t, whih as was seen in x2.2 is t � (� � �

0

)=

2

w

. From

these variables, it is possible to onstrut �ve independent dimensionless parameters:

a

w

k

w

; k

w

~a

1

; k

w



w

t = �

w

t; u=

w

; k

w

l: (2.42)

It turns out that the statistis of the veloity �eld do not depend on parameter u=

w

. This ratio

only inuenes the speed of the distortion of the turbulene by the wave, whih determines, for

example, the pressure. So, in the following setion, the sensitivity of the model results to the

4 remaining parameters will be tested. Graphs of the normalised Reynolds stresses ~u

i

~u

j

=u

2

and

integral length sales

~

L

(k)

ij

=l will be plotted as funtions of t=T , where T = 2�=�

w

is the wave

period, for di�erent values of a

w

k

w

, k

w

~a

1

and k

w

l. A few pro�les of the Reynolds stresses as a

funtion of ~x

3

=l will also be presented, for hosen values of a

w

k

w

, k

w

~a

1

, k

w

l and t=T .
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3. Results

Results for the distortion of turbulene during a single wave yle will be shown in x3.1 and x3.2.

In x3.3, the distortion of the turbulene by the Stokes drift of the wave will be addressed, with

the presentation of results for the Reynolds stresses, turbulent kineti energy and integral length

sales of the turbulene. In both subsetions, the bloking e�et of the boundary is ignored. This

would orrespond in pratie to taking measurements at a depth ~x

3

� l. In x3.4, the bloking

e�et of the boundary is briey examined, and found to lead to hanges to the results similar to

those predited by Hunt & Graham (1978). In x3.5, some results for turbulene distorted by a

uniform shear are reprodued, and ompared with the results obtained for turbulene distorted by

a wave. Finally, in x3.6 and x3.7, saling analyses of the energy equations are performed, in order

to estimate the energy transfer taking plae between the wave and the turbulene, and its e�et

on eah omponent of the ow. This allows quanti�ation of the wave attenuation proess due to

turbulene �rst identi�ed by Phillips (1959).

3.1. Turbulene modulation in a wave yle

Figures 2{5 show graphs of the diagonal omponents of the Reynolds stress tensor (veloity vari-

anes), as a funtion of time normalised by the wave period, for di�erent initial positions and

di�erent wave slopes. In �gure 2, the initial position is at the forward slope of the wave, in �gure

3, it is at the wave rest. In �gure 4, the initial position is at the bakward slope of the wave and

in �gure 5 it is at the wave trough.

Figures 2{5 show that the modulation of the Reynolds stresses by the wave intensi�es as the

wave steepness inreases, as would be expeted. This modulation is approximately sinusoidal at

the lowest slopes, but beomes more asymmetri as a

w

k

w

inreases. This is partly due to the

urvilinear oordinate system used beause � varies faster at the wave troughs than at the wave

rests and the de�nition of t is based on � (see (2.16)). For the highest slopes onsidered, the value

of the Reynolds stresses does not repeat itself after one omplete yle. This is a manifestation of

the irreversible part of the distortion, whih is aused by the Stokes drift, and will be treated in

x3.3.

The Reynolds stress tangential to the free surfae in the streamwise diretion, ~u

2

1

, attains a



18 M. A. C. Teixeira and S. E. Belher
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u  ~ 22 /u
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u  ~ 32 /u
2

(c)

Figure 2. Modulation of the Reynolds stresses during a wave yle, for turbulene initially at the forward

slope of the wave, for ~x

3

= 0, k

w

l = 0:6. Solid line: a

w

k

w

= 0:05, dotted line: a

w

k

w

= 0:1, dashed line:

a

w

k

w

= 0:15, dash-dotted line: a

w

k

w

= 0:2, hathed pro�le: shape of the distorting wave (arbitrary sale).

(a) streamwise omponent, (b) spanwise omponent, () normal omponent.

maximum approximately at the wave rest and a minimum at the wave trough. The Reynolds

stress normal to the free surfae, ~u

2

3

, attains a maximum at the wave trough and a minimum at

the wave rest. The tangential Reynolds stress in the ross-stream or spanwise diretion, ~u

2

2

, �rst

inreases and then dereases, attaining a maximum approximately in the middle of the wave yle,

independent of the initial position.

Experimental and theoretial support for an inrease in the intensity of the vertial veloity

utuations and a derease in the intensity of the streamwise veloity utuations at a hill rest

(here equivalent to a wave trough) is provided by the work of Britter, Hunt & Rihards (1981)

(their equation (3.3) and their �gure 4b). Further experimental support for the predited Reynolds
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Figure 3. Same as �gure 2, but for turbulene initially at the wave rest.

stress modulation an be found in �gure 10 of Thais & Magnaudet (1996), where the streamwise

Reynolds stress is greater than the vertial stress at the wave rest, while the reverse happens at

the wave trough.

The modulation of the streamwise and normal Reynolds stresses has a peak-to-peak amplitude

of � 0:2 for a wave slope of a

w

k

w

= 0:1 and � 0:4 for a

w

k

w

= 0:2, whereas the modulation of

the spanwise Reynolds stress has smaller amplitude, perhaps � 0:1 for a

w

k

w

= 0:1 and � 0:2 for

a

w

k

w

= 0:2. Although the data of Thais & Magnaudet (1996) are a�eted by a stronger turbulene

intensity at the wave trough, where the �xed probe almost touhes the free-surfae, it is possible to

estimate the peak to peak modulations of the streamwise and vertial Reynolds stresses from their

�gure 10 by determining the value by whih the streamwise stress exeeds the vertial stress at the

wave rest and the vertial stress exeeds the streamwise stress at the wave trough. From visual
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Figure 4. Same as �gure 2, but for turbulene initially at the bakward slope of the wave.

inspetion, this is estimated as � 0:2� 0:3, for a wave slope of � 0:1, and is therefore onsistent

with the present results. These results will now be explained using a simpli�ed model.

3.2. Simpli�ed model for distortion over a wave yle

To �rst order in the wave slope, the distorting e�et of a progressive surfae wave on turbulene

an be understood if the wave is desribed in a �xed Cartesian oordinate system, where the orbital

motion an be written

U

1

(x

1

; x

3

) = 

w

a

w

k

w

e

k

w

x

3

os(k

w

x

1

� �

w

t);

U

3

(x

1

; x

3

) = 

w

a

w

k

w

e

k

w

x

3

sin(k

w

x

1

� �

w

t) (3.1)

for a surfae elevation

� = a

w

os(k

w

x

1

� �

w

t): (3.2)
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Figure 5. Same as �gure 2, but for turbulene initially at the wave trough.

If (2.7) is di�erentiated with respet to the initial position, it is found that

�x

i

�a

j

= Æ

ij

+

Z

t

0

�U

i

�x

k

�x

k

�a

j

dt

0

: (3.3)

When the wave slope is suÆiently low, the distortion is relatively weak and the strain tensor

inside the integral may be approximated as �x

k

=�a

j

� Æ

kj

. On the other hand, the integration in

time may be hanged from an integration following the uid parels to a time integration at a �xed

point. Then, di�erentiating the expressions (3.1) and inserting them into the integrals of (3.3), it

is found after integration that, for small a

w

k

w

, the following expressions are approximately valid:

�x
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�x

1

�a

2

=

�x

2

�a

1

=

�x

2

�a

3

=

�x

3

�a

2

= 0;

�x

2

�a

2

= 1: (3.4)

These expressions show that �x

1

=�a

1

is in phase opposition to the surfae elevation and thus attains

a maximum at the wave troughs and a minimum at the wave rests. This is best understood in

the oordinate system travelling with the wave as being the result of the aeleration that the uid

su�ers as it moves from rest to trough. �x

3

=�a

3

, on the other hand, is in phase with the surfae

elevation and attains a maximum at the rests and a minimum at the troughs. This result follows

from the previous one by ontinuity: a uid parel that is strethed in one diretion, must ontrat

in the other.

The e�et of this distortion on the vortiity is shown shematially in �gure 6. At the wave rests,

the uid parels are strethed vertially and ompressed in the streamwise diretion, leading to

an intensi�ation of the vertial vortiity and a weakening of the streamwise vortiity. Conversely,

at the wave troughs the uid parels are strethed in the streamwise diretion and ompressed in

the vertial, leading to an ampli�ation of the streamwise vortiity and a weakening of the vertial

vortiity.

The streamwise vortiity has ontributions from the spanwise and vertial veloity omponents

and the vertial vortiity has ontributions from the streamwise and spanwise veloity. Therefore,

at the wave rests, the streamwise turbulene intensity should inrease and the vertial turbu-

lene intensity should derease, while at the troughs, the streamwise turbulene intensity should

derease and the vertial turbulene intensity should inrease. This reasoning seems to explain the

qualitative behaviour of ~u

2

1

and ~u

2

3

over one wave yle.

It an also be seen from (3.4) that �x

1

=�a

3

and �x

3

=�a

1

are both out of phase by �=2 relative

to the surfae elevation, attaining maxima at the bakward slope of the wave and minima at the

forward slope. These omponents of the strain tensor lead to additional irrotational tilting and

strething of vortiity, whose e�ets on the Reynolds stresses are not as obvious as those assoiated

with the diagonal omponents.

The diagonal omponents of the strain tensor are the extensions su�ered by the uid in the 3

oordinate diretions, de�ned as e

i

= �x

i

=�a

i

. For a slab-symmetri straining ow in the x

1

� x

3

plane with the prinipal axes aligned with the Cartesian oordinate system (Townsend 1976), these
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extensions have to satisfy

e

1

= �; e

2

= 1; e

3

= �

�1

(3.5)

due to ontinuity. In the present ase, it follows from (3.4) that
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It is then possible to use equation (3.11.9) of Townsend (1976) to estimate the magnitude of the

Reynolds stress modulation attributable to the extensions in the wave veloity �eld. Townsend's

expressions state that, for � suÆiently lose to 1,
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Substituting � using (3.6) and trunating to the lowest order with respet to the perturbation (in

this ase a

w

k

w

), (3.7) beomes
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[os(k

w

x

1

� �

w

t)� os(k

w
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This on�rms that the existene of a maximum in the streamwise Reynolds stress at the rest

and a maximum in the normal Reynolds stress at the trough are due primarily to the extension and

ompression of the uid parels. Equation (3.8) also explains why the spanwise Reynolds stress

always takes values above one independent of the initial position relative to the wave phase.

It is lear from (3.8) that both u

2

1

=u

2

and u

2

3

=u

2

are predited to undergo osillations of peak-

to-peak amplitude 8=5(a

w

k

w

). For a wave slope of a

w

k

w

= 0:2, this orresponds to � 0:32. On the

other hand, u

2

2

=u

2

is predited to undergo osillations of peak-to-peak amplitude 32=35(a

w

k

w

)

2

or

128=35(a

w

k

w

)

2

depending on the initial position relative to the wave phase. For a wave slope of

0.2, this orresponds to � 0:04 and 0:15 respetively. These results are roughly onsistent with

what is observed in �gures 2{5.

The di�erenes between the preditions of this simpli�ed model and those from the full model
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Figure 6. Shemati diagram showing the vortiity strething and ompression indued by the orbital

motion at the rest and at the trough of a surfae wave, in a frame of referene travelling with the wave.

are due to two fators: the neglet of the non-diagonal omponents of the strain tensor at all wave

slopes, and the neglet of the Stokes drift, partiularly at the higher slopes.

Equation (3.8) also helps to understand how the behaviour of the Reynolds stresses depends

on the initial onditions. Due to the way in whih the streamwise and normal Reynolds stresses

are modulated, when the initial position is, for example, at a rest (�gure 3a), the streamwise

Reynolds stress departs from a maximum value, whih an not be exeeded during its osillation,

whereas the normal Reynolds stress departs from a minimum (�gure 3). This orresponds to

setting k

w

x

1

= 0 in (3.8), whih implies indeed that u

2

1

=u

2

is never larger than 1 and u

2

3

=u

2

is

never smaller than 1. When the initial position is at a trough (k

w

x

1

= �), exatly the reverse

ours, as an be on�rmed in �gures 5(a,).

Given the assumption of initial isotropy of the RDT model, it would seem that the most `natural'

initial positions are those in between rests and troughs, beause at those positions both the

streamwise and normal Reynolds stresses are in the middle of their osillations, and the ow

appears as little distorted as possible. However, the same is still not true for the spanwise Reynolds

stress, u

2

2

, sine this stress always departs from a minimum. The problem, whih is lear inspeting

(3.4), is that there is no region in a monohromati surfae wave where the ow an be onsidered

naturally undistorted. Any possible hoie of initial position k

w

x

1

in (3.4) leads either the diagonal

or the o�-diagonal omponents of the strain tensor to osillate asymmetrially with respet to the

initial state.
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3.3. E�et of the Stokes drift

The distortion of the turbulene by the Stokes drift beomes lear after a onsiderable number of

wave yles.

Figure 7 shows the evolution of the diagonal omponents of the Reynolds stress tensor during

10 wave yles, for a wave slope of 0.2 and di�erent initial positions. The streamwise Reynolds

stress, ~u

2

1

, attains maxima at the wave rests; the normal Reynolds stress, ~u

2

3

, attains maxima at

the wave troughs. The spanwise Reynolds stress, ~u

2

2

, always inreases initially irrespetive of the

phase relation to the wave, as observed in �gures 2(b), 3(b), 4(b) and 5(b). After a few periods it

beomes phase-loked to the normal stress, attaining maxima at the wave troughs.

More importantly, the magnitude of the streamwise Reynolds stress progressively dereases,

while the magnitudes of both the spanwise and the normal Reynolds stress progressively inrease

at a ommon rate. For the slope onsidered (a

w

k

w

= 0:2), ~u

2

1

beomes approximately half of its

initial value after 10 wave yles, while ~u

2

2

and ~u

2

3

inrease by a fator of about 4. This means

that the turbulene beomes muh more intense in the diretions perpendiular to the diretion of

wave propagation. In other words: the turbulene beomes dominated by vorties with their axes

of rotation aligned with the streamwise diretion, as is the ase in Langmuir irulations.

These results should be ompared with those presented in �gure 6 of MWilliams et al. (1997),

from large-eddy simulations (LES) of turbulent ow in the oean surfae layer. Their �gure shows

pro�les of the Reynolds stresses for turbulene in a shear urrent (without the e�et of a Stokes

drift) and when both shear and a Stokes drift are present, with the Stokes drift presumably having

the dominant role (Langmuir turbulene). In the ase of Langmuir turbulene, the spanwise and

normal omponents of the Reynolds stress are distintly larger than the streamwise omponent.

This is onsistent with the results of �gure 7.

The physial mehanism for the intensi�ation of the streamwise vorties in the present model

is the same as mehanism CL2 of Craik & Leibovih (1976) for the generation of Langmuir iru-

lations. It involves the tilting of vertial vortiity by the Stokes drift of the wave and its ampli-

�ation as streamwise vortiity (�gure 8). The di�erene is that the Craik-Leibovih formulation

departs from an in�nitesimal vertial vortiity perturbation arising from transverse variations of
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Figure 7. Evolution of the Reynolds stresses over 10 wave yles, for ~x

3

= 0, k

w

l = 0:6, a

w

k

w

= 0:2. Solid

line: streamwise omponent, dotted line: spanwise omponent, dashed line: normal omponent, hathed

pro�le: shape of the distorting wave (arbitrary sale). Turbulene initially at: (a) forward slope of wave,

(b) wave rest, () bakward slope of wave, (d) wave trough.

the wind-indued shear urrent, whereas in the present model, there is initially a �nite and isotropi

distribution of vortiity, assoiated with the turbulene. In both ases, the Stokes drift seletively

ampli�es the vertial vortiity omponent as streamwise vortiity.

Figure 9 shows the time evolution of the Reynolds shear stress, ~u

1

~u

3

, during 10 wave yles,

for the same onditions as �gure 7. Sine the turbulene is initially isotropi, the shear stress

is initially zero. However, as the turbulene evolves, the shear stress grows to a negative value,

stabilising at � �0:7u

2

. Like the veloity varianes, the shear stress also osillates during a wave

yle. At initial stages in the turbulene evolution, shear stress maxima (in absolute value) oinide



On the distortion of turbulene by a progressive surfae wave 27

ω ωStokes drift

cw

Figure 8. Shemati diagram showing the tilting and strething of the vertial vortiity arried out by

the Stokes drift of a surfae wave over a number of wave yles, in a �xed frame of referene.

with the bakward slopes of the waves, and shear stress minima with the forward slopes. After 10

wave yles, as the shear stress appears to attain a stable mean value, the maxima our instead

at the wave rests and the minima our at the wave troughs.

Physially, the existene of a non-zero shear stress in the turbulene is due to the skewing of the

veloity utuations arried out by the Stokes drift. As the vortiity is tilted from the vertial to

an orientation sloping along the diretion of wave propagation, it is at the same time ampli�ed.

Then, positive streamwise veloity utuations tend to be assoiated with negative normal veloity

utuations, thereby making ~u

1

~u

3

negative (see �gure 8). The existene of a non-zero shear stress

has important onsequenes for the energy balane of the turbulene, as will be seen in x3.6.

Figure 10 shows the time evolution of the turbulent kineti energy (TKE), de�ned as E

K

=

1=2(~u

2

1

+ ~u

2

2

+ ~u

2

3

), during 10 wave yles, for the same onditions as �gure 7. It an be seen

that the TKE is also modulated by the waves, displaying an osillatory behaviour, and tends to

beome dominated by the spanwise and normal Reynolds stresses as time advanes. The TKE

progressively inreases and attains a value approximately 3 times higher than initially after 10

wave yles, again f. MWilliams et al. (1997).

Figures 2{5 have shown that the modulation of the turbulene in a wave yle is sensitive to

the initial onditions. Figures 7, 9 and 10 now show that not only the osillatory behaviour but

also the overall growth rate of the Reynolds stresses due to the Stokes drift depends on the initial

onditions. For example, it is lear in �gure 9 that the shear stress is largest when the initial
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Figure 9. Evolution of the Reynolds stresses over 10 wave yles, for ~x

3

= 0, k

w

l = 0:6, a

w

k

w

= 0:2.

Solid line: shear stress, hathed pro�le: shape of the distorting wave (arbitrary sale). Turbulene initially

at: (a) forward slope of wave, (b) wave rest, () bakward slope of wave, (d) wave trough.

position is at the wave trough (�gure 9d) and smallest when it is at the wave rest (�gure 9b).

Correspondingly, the TKE growth rate is fastest when the initial position is at the wave trough

(�gure 10d) and slowest when it is at the wave rest (�gure 10b). The remaining plots of �gures

9 and 10 show the same trend, suggesting a link between TKE growth and the shear stress. This

link will be on�rmed and further explored in x3.6.

The behaviour of the Reynolds stresses over several wave yles is di�erent for di�erent initial

onditions beause the average values of the Reynolds stresses, over the �rst wave yle, are also

di�erent. On a time sale longer than a wave yle, varying the initial position of the turbulene

relative to the wave phase is thus approximately equivalent to varying the initial turbulene inten-

sity slightly. However, the importane of the initial onditions is limited, beause, as was seen in

x3.2, the frational variation of the Reynolds stresses due to varying the initial position is, at most,
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Figure 10. Evolution of the TKE over 10 wave yles, for ~x

3

= 0, k

w

l = 0:6, a

w

k

w

= 0:2. Solid

line: turbulent kineti energy, hathed pro�le: shape of the distorting wave (arbitrary sale). Turbulene

initially at: (a) forward slope of wave, (b) wave rest, () bakward slope of wave, (d) wave trough.

of O(a

w

k

w

), whih is small. That explains why the four graphs of �gures 7, 9 and 10 resemble

eah other very muh. For de�niteness, all future results will onsider an initial position at the

forward slope of the wave.

The intensity of the turbulent veloity utuations has been haraterised in detail for turbulene

distorted by a surfae wave. The spatial struture of the turbulent veloity utuations an now

be haraterised by the integral length sales of the turbulene. These length sales are modulated

over a wave yle, like the Reynolds stresses, but their evolution over several wave yles is of

greater interest.

Figure 11 presents the time evolution of the streamwise and spanwise integral length sales
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Figure 11. Evolution of the integral length sales over 10 wave yles, for ~x

3

= 0, k

w

l = 0:6, a

w

k

w

= 0:2.

Hathed pro�le: shape of the distorting wave (arbitrary sale). (a) streamwise length sales. Solid line:

~

L

(1)

11

, dotted line:

~

L

(1)

22

, dashed line:

~

L

(1)

33

. (b) spanwise length sales. Solid line:

~

L

(2)

11

, dotted line:

~

L

(2)

22

,

dashed line:

~

L

(2)

33

.

during 10 wave yles, for a wave slope a

w

k

w

= 0:2. First of all, it should be noted that, at

t = 0 the turbulene is isotropi, so the longitudinal integral length sales, L

(1)

11

and L

(2)

22

, are 2

times larger than the transverse integral length sales, L

(2)

11

, L

(1)

22

, L

(1)

33

and L

(2)

33

. This is typial of

isotropi turbulene. Therefore the anisotropy of the turbulent ow struture an be evaluated by

how muh and in what way the integral length sales depart from these relative magnitudes.

In �gure 11(a), it an be seen that all the streamwise length sales inrease in time. The

streamwise length sale of the ~u

1

veloity utuations,

~

L

(1)

11

, beomes � 2:5 times larger than

initially after 10 wave yles, while the orresponding ampli�ation fators for the integral length

sales of ~u

2

and ~u

3

,

~

L

(1)

22

and

~

L

(1)

33

, are � 2 and � 6, respetively. Figure 11(b) shows the time

evolution of the spanwise integral length sales. It an be seen that only the integral length sale

for the ~u

1

veloity omponent,

~

L

(2)

11

, inreases in time, while the length sales for both ~u

2

and ~u

3

,

~

L

(2)

22

and

~

L

(2)

33

, derease in time. After 10 wave yles,

~

L

(2)

11

,

~

L

(2)

22

and

~

L

(2)

33

beome respetively

� 2:5, � 0:25 and � 0:25 times their initial values.

These results imply that the anisotropy of the streamwise veloity utuations remains small,

whereas the spanwise and normal veloity utuations beome elongated in the streamwise dire-

tion, with this elongation being espeially pronouned for the normal veloity utuations. Hene,
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the streamwise vorties indued by the Stokes drift in the present model not only have their axes

of rotation aligned with the streamwise diretion (as shown by the Reynolds stresses), but they are

also elongated in that diretion, a feature whih is ommonly observed in Langmuir irulations

(Faller & Auer 1988).

These results should be ompared with �gures 12(b{d) of MWilliams et al. (1997), where

horizontal ross-setions of the instantaneous veloity �eld near the surfae are displayed. While,

in these �gures, the streamwise veloity utuations display no appreiable elongation in their

struture, the spanwise and normal veloity omponents (shown in �gures 12b,) have ontours

that are learly elongated in the streamwise diretion, with this elongation being more pronouned

for the normal veloity. This is onsistent with the results of �gure 11, and provides evidene that

Langmuir turbulene in the simulations of MWilliams et al. (1997) resembles turbulene rapidly

distorted by a surfae wave in the present model.

The results presented until now have been alulated without taking into aount the e�et of

bloking by the boundary on the turbulene. That e�et will be onsidered briey next.

3.4. Bloking e�et of the boundary

As noted in x2.4, if at the initial time when the turbulene is undistorted by the wave, the bloking

e�et of the free surfae is desribed by the theory of Hunt & Graham (1978), this bloking e�et

remains purely kinemati at all subsequent times, and does not substantially alter the results

obtained in the preeding subsetions (whih are essentially linked with vortiity distortion).

Sine Hunt & Graham's theory an be applied diretly to the turbulene distorted by the wave,

with the ompletely undistorted turbulene that formerly served as input being simply replaed by

slowly varying turbulene, many of their onlusions remain valid, albeit with slight alterations.

For example, the result whih states that the TKE at the boundary has the same value as the

TKE far from the boundary is now reformulated as

(~u

2

1

+ ~u

2

2

)(~x

3

= 0) = (~u

2

1

+ ~u

2

2

+ ~u

2

3

)(~x

3

!1); when l! 0; �

w

!1: (3.9)

This means that the TKE value at the boundary taking bloking into aount is equal to the TKE

value that would exist at the boundary if there was no bloking or, alternatively, approximately

equal to the TKE immediately outside the layer diretly inuened by bloking.
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Figure 12. Evolution of the tangential Reynolds stresses over 10 wave yles, with and without bloking,

for ~x

3

= 0, k

w

l = 0:6, a

w

k

w

= 0:2. Thik solid line: ~u

2

1

with bloking, thin solid line: ~u

2

1

without bloking,

thik dashed line: ~u

2

2

with bloking, thin dashed line: ~u

2

2

without bloking, hathed pro�le: shape of the

distorting wave (arbitrary sale).

Figure 12 shows the time evolution of the streamwise and spanwise Reynolds stresses, ~u

2

1

and

~u

2

2

, during 10 wave yles, with and without bloking. The urves relative to the bloked and

non-bloked ases only di�er in magnitude, and there are no appreiable di�erenes in shape. The

fator by whih the urves with bloking exeed those without bloking inreases from 1.5 at the

initial time (as predited by Hunt & Graham 1978) to a higher value later. This is due to the fat

that, in the bloked ase, both ~u

2

2

(l� ~x

3

� �

w

) and ~u

2

3

(l � ~x

3

� �

w

) inrease due to the Stokes

drift, but only ~u

2

1

(~x

3

= 0) and ~u

2

2

(~x

3

= 0) are not zero at the boundary (of whih ~u

2

1

(~x

3

= 0)

dereases in time).

Figure 13 presents pro�les of the Reynolds stresses with and without bloking, at t=T = 5, for

di�erent values of the dimensionless wavenumber k

w

l. It is found that k

w

l only inuenes the

shape of the Reynolds stresses in between the surfae and the region far from the surfae, leading

to a faster or slower deay of the pro�les due to the distorting e�et of the wave. Obviously,

the longer the wavelength (i.e., the smaller k

w

l), the deeper the distorting e�et of the wave an

penetrate. However, the value of the Reynolds stresses exatly at the boundary does not depend

on k

w

l, either when bloking is onsidered or when it is not. This justi�es a posteriori why the

parameter k

w

l has not been varied in previous tests.

Figures 13(a,b) show that, in the bloked ase, ~u

2

1

and ~u

2

2

are ampli�ed at the boundary by a
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Figure 13. Pro�les of the Reynolds stresses, with and without bloking, for a

w

k

w

= 0:2. Thik lines:

with bloking, thin lines: without bloking. Solid lines: at t=T = 0, long-dashed lines: at t=T = 5, with

k

w

l = 0:6, dashed lines: at t=T = 5 with k

w

l = 0:3, dash-dotted lines: at t=T = 5 with k

w

l = 0:15. (a)

streamwise omponent, (b) spanwise omponent, () normal omponent, (d) shear stress.

fator greater than 1.5 relative to the unbloked ase, onsistent with �gure 12. The distortion

aused by the wave ounterats this ampli�ation in �gure 13(a), so that ~u

2

1

at the boundary is

only slightly larger than far from the boundary, whereas in �gure 13(b), the distortion aused by

the wave reinfores the ampli�ation of ~u

2

2

due to bloking. In �gure 13(), it an be seen that

~u

2

3

is fored to deay to zero towards the boundary over a length sale l, as expeted, retaining

nevertheless a value greater than 1 in the region l � ~x

3

� �

w

. When bloking is onsidered, the

shear stress, ~u

1

~u

3

, also has to deay to zero towards the boundary as ~u

3

deays to zero (�gure

13d).
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3.5. Comparison with turbulene distortion by a mean shear ow

From a Lagrangian perspetive, the shear urrent indued by the wind in the oean surfae layer

and the Stokes drift of a wave appear at �rst to be rather similar, sine both ows are haraterised

by a transport that has a maximum at the surfae and deays with depth. These two types of ow

might be expeted to a�et the turbulene in a similar way. However, their fundamental dynamis

are quite di�erent, as the numerial simulations of MWilliams et al. (1997) have made lear. One

aim of the present setion is to examine the extent to whih linear proesses that are aounted

for in RDT explain these di�erenes.

To a �rst approximation, the interation between turbulene and a shear urrent an be un-

derstood by using a model similar to that formulated by Durbin (1978) as an extension of the

original RDT model of Townsend (1970). This model inorporates the e�ets of a mean shear with

a onstant shear rate and of a rigid boundary, and assumes initially homogeneous and isotropi

turbulene far from the boundary. Lee & Hunt (1989) and Mann (1994) have shown that this type

of model is able to desribe qualitatively the turbulene struture in turbulent boundary layers.

Detailed tehnial desriptions of the model an be found in Durbin (1978) and Mann (1994).

Durbin's model is used in this subsetion to explain the di�erenes between turbulene distortion

by a shear urrent and turbulene distortion by a Stokes drift. Only the behaviour of the turbulene

far from a boundary, whih is assumed to exist at x

3

= 0, is examined, for a shear ow aligned

with the x

1

diretion, having a shear rate �.

Figure 14 shows the time evolution of the diagonal omponents of the Reynolds stress tensor

indued by mean shear far from the boundary. This �gure should be ompared with �gure 7, whih

shows similar quantities (albeit in the urvilinear oordinate system) for turbulene distorted by

a surfae wave. The behaviour of the stresses di�ers markedly between the two ases. While

in turbulene distorted by a wave, the streamwise stress dereases and the spanwise and normal

stresses inrease over a number of wave periods, in turbulene distorted by a shear the streamwise

and spanwise stresses, u

2

1

and u

2

2

, inrease and the normal stress, u

2

3

, dereases. And while in

turbulene distorted by a wave the spanwise and normal stresses beome muh larger than the

streamwise stress, in turbulene distorted by a shear u

2

1

beomes larger than u

2

2

, whih in turn
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Figure 14. Evolution of the Reynolds stresses in a uniform shear ow, far from the boundary, as a

funtion of dimensionless time �t. Solid line: streamwise omponent u
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, dotted line: spanwise omponent

u
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2

, dashed line: normal omponent u
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Figure 15. Shemati diagram showing the interation between the mean and the turbulent vortiity in

turbulene distorted by a shear ow. The indued irulations lead to a tilting of the mean vortiity and

of the vertial turbulent vortiity that favour a partial anellation of the spanwise and normal veloity

utuations (on the right).

beomes larger than u

2

3

. Physially, this behaviour is due to the existene of vortiity in the shear

ow, that does not exist in the Stokes drift. The irulations indued by the tilting of vortiity

of the mean ow by the turbulene, in the ase of the shear ow, ounterat the irulations

indued by the tilting of turbulent vortiity by the mean ow, so that u

2

2

and u

2

3

are prevented

from beoming dominant (see �gure 15).

Figure 14 should also be ompared with �gure 6 of MWilliams et al. (1997), where pro�les of the

Reynolds stresses in turbulene embedded in a shear urrent (without a Stokes drift) are denoted



36 M. A. C. Teixeira and S. E. Belher

by the solid urves. These urves show that the streamwise stress is larger than the spanwise stress,

whih in turn is larger than the normal stress, near the surfae. Hene, the present onstant-shear

model is able to explain the anisotropy of the turbulent veloity utuations in a shear urrent.

Figure 16 displays the time evolution of the integral length sales of turbulene distorted by a

mean shear. Both the streamwise and the spanwise integral length sales of u

2

, L

(1)

22

and L

(2)

22

,

derease in time, and both the streamwise and the spanwise integral length sales of u

3

, L

(1)

33

and

L

(2)

33

, inrease in time. Hene the struture of these two veloity omponents remains approximately

isotropi. However, the streamwise integral length sale of u

1

, L

(1)

11

, inreases in time, while the

spanwise length sale of the same veloity omponent, L

(2)

11

, dereases in time. This means that

the streamwise veloity utuations beome elongated in the streamwise diretion. Elongated

strutures in the streamwise turbulent veloity �eld are a well known feature of turbulent shear

ows, where suh strutures are often alled streaky strutures (Kline et al. 1967). Good examples

of streaky strutures produed in a turbulent boundary layer by DNS an be found, for example, in

�gures 5, 7 and 9 of Lee et al. (1990), where horizontal ross-setions of the streamwise turbulent

veloity are shown.

These results are in striking ontrast with those presented for turbulene distorted by a surfae

wave: ompare �gure 16 with �gure 11. In �gure 11 the struture of the ~u

2

and ~u

3

veloity

utuations, as desribed by the integral length sales, beomes elongated, whereas in �gure 16, it

is the struture of u

1

that beomes elongated. Hene the present alulations explain the 2 basi

ow regimes observed in the LES of MWilliams et al. (1997): shear turbulene and Langmuir

turbulene. Although, in MWilliams et al.'s simulations of Langmuir turbulene, shear is also

present, this shear appears to be suÆiently weak for the wave-turbulene interation to dominate.

3.6. Estimation of the turbulent kineti energy growth

In the preeding subsetions, rigorous RDT alulations have been arried out. The �nal part

of this paper is onerned instead with order-of-magnitude estimates relevant for the problems of

streamwise vortex generation and surfae wave deay. Nevertheless, the rigorous results obtained

before will prove to be useful in guiding these estimates.

In x3.3, it was found that an inrease in the TKE is predited by the present model of turbulene
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Figure 16. Evolution of the integral length sales in a uniform shear ow, as a funtion of dimensionless

time �t. (a) streamwise length sales. Solid line: L
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, dotted line: L
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. (b) spanwise

length sales: Solid line: L
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.

distortion by a wave, whih is related to the straining of the turbulene by the Stokes drift of

the wave. In order to estimate this inrease, it is neessary to derive an equation for the TKE

ompatible with the assumptions of the model. The TKE equation is here derived in a Cartesian

oordinate system, for simpliity. But when the terms in that equation are estimated, the results

of the preeding setions, whih were found in the urvilinear oordinate system, will be used

diretly, sine the behaviour of the statistis, in either oordinate system, is approximately equal.

The linearised momentum equation onsistent with (2.2) is

�u

i

�t

+ U

j

�u

i

�x

j

+ u

j

�U

i

�x

j

= �

1

�

�p

�x

i

; (3.10)

where � is the density and p is the turbulent pressure. The required TKE equation may be obtained

by multiplying (3.10) by u

i

, adding all the expressions for i = 1; 2; 3 and ensemble averaging. This

yields

dE

K

dt

= (u

2

3

� u

2

1

)

�U

1

�x

1

� 2u

1

u

3

�U

1

�x

3

�

1

�

�

�x

j

(pu

j

): (3.11)

The last term between square brakets in (3.11) appears in ux form and is assoiated with the

redistribution of energy between di�erent regions of the turbulent ow through pressure fores.

In turbulene that is slowly varying in spae, as onsidered here, this term has little importane,

and so is negleted in the following. The �rst two terms on the right-hand side are prodution of

turbulene by the mean ow, here the surfae wave. It is the orrelation between the wave strain
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rate and the Reynolds stresses in these terms that generates TKE. This orrelation is alulated

most naturally in a Lagrangian framework, that is, following the uid parels. Hene this e�et

an be estimated by studying the evolution of the TKE along a streamline.

Now, the material time derivative on the left-hand side of (3.11) is equivalent to a derivative

with respet to the travel time � , whih (2.12) shows is de�ned in terms of the veloity potential,

and so in the frame of referene travelling with the wave, (3.11) may be expressed as

~

U

2

1

�E

K

��

� (u

2

3

� u

2

1

)

�U

1

�x

1

� 2u

1

u

3

�U

1

�x

3

: (3.12)

The Eulerian time, t, is related approximately to the wave potential by (2.16), and so the Eulerian

time variation of the TKE in a �xed frame of referene an be written
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; (3.13)

where the de�nition of

~

U

1

= (U

2

1

+ U

2

3

)

1

2

has been used.

Using (2.13) and (2.9), the wave strain rates in (3.13) beome, to leading order in the wave slope,
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Both strain rates osillate, the �rst with zero average and the seond with positive average. Their

time-averaged orrelation with the osillating Reynolds stress yields net TKE generation. The

dominant ontribution omes from 

2

w

=(U

2

1

+ U

2

3

)�U

1

=�x

3

. Its mean value an be estimated from

the seond ontribution in (3.14), namely
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where the Stokes drift veloity, u

s

, is de�ned in an analogous way to the de�nition given in Cartesian

oordinates, see equation (3.3.8) of Phillips (1977).

Now, the shear stress u

1

u
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is negative, and so �2u
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generates TKE.

Having in mind the estimates (3.14) and (3.15), the generation of TKE an be estimated by
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This estimate of TKE prodution has a similar form to the term involving the Stokes drift in the
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TKE equation (5.1) of MWilliams et al. (1997). It is as if there is a Stokes drift `shear' that

generates TKE.

The quantitative auray of this reasoning is tested by omparing the TKE growth rate from

this estimate with the growth rate alulated from the full RDT model. To ompare this estimate

more easily with the dimensionless growth rates available in �gure 10, it should be noted that

�=�t = (�

w

=2�)�=�(t=T ), hene (3.16) beomes
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2

w
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2

w

: (3.17)

Taking a

w

k

w

= 0:2 and �u

1

u

3

=u

2

� 0:7, as suggested by the �nal portions of �gure 9, it follows

that �=�(t=T )(E

K

=u

2

) = 0:35. This is in remarkable agreement with the value that an be

extrated diretly by inspetion from the slopes of the �nal portions of the urves in �gure 10.

It thus appears that the estimates made above and the onnetion established between the TKE

inrease and the Reynolds shear stress are well founded.

To obtain an idea of the time-sales involved in the development of the streamwise vorties

in the present model, a still rougher estimate may be arried out. Noting that u

i

= O(u) and

�u

1

u

3

= O(u

2

), (3.16) may be saled as
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where T

d

is the development time sale. With minor rearranging, (3.18) beomes

T

d

=

1

a

2

w

k

2

w

�

w

: (3.19)

Taking reasonable values for the variables, like a

w

k

w

= 0:1 and �

w

= 10s

�1

, it is found that

T

d

= 10s. Hene the streamwise vorties that ontain most of the TKE grow relatively fast.

3.7. Estimation of turbulene-indued wave deay

The previous results have established how the TKE of turbulene beneath a surfae wave inreases

due to the distortion of the turbulene by the Stokes drift. Although in the RDT model developed

here the turbulent ow has no feedbak on the mean ow, whih is taken as �xed, in real situations

that is not the ase. If a mean ow and a turbulent ow oexist in a uid and the energy of

the turbulent ow inreases, that energy has to ome from the mean ow, whih orrespondingly

weakens. In the present ase, the mean ow is assoiated with a surfae wave, so the energy transfer
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taking plae to the turbulene as the wave distorts the turbulene is neessarily linked with a deay

of the wave. A mehanism of wave deay due to the straining of turbulene by the Stokes drift

was �rst referred in the Introdution of Phillips (1959), who alled it `eddy-visosity interation'.

Although Phillips (1959) did not establish a onnetion between the generation of streamwise

vorties (whih were in fat almost unknown at the time) and wave deay, that onnetion is impliit

in his qualitative arguments involving vortiity strething. It will be shown in this subsetion that

the energy transfer from the waves to the turbulene through this interation an indeed aount

for the turbulene-indued wave deay observed in the experimental studies of

�

Olmez & Milgram

(1992) and Green et al. (1972).

Consider the momentum equation for the mean ow in a Cartesian oordinate system, now

taking into aount the Reynolds stresses:

�U

i

�t

+ U

j

�U

i

�x

j

= �

1

�

�P

�x

i

�

�

�x

j

(u

i

u

j

); (3.20)

where P is the mean pressure. If this equation is multiplied by U

i

and the resulting expressions

for i = 1 and 3 are added (noting that the i = 2 omponent is zero for the monohromati wave

under onsideration), an equation for the kineti energy of the wave is obtained, namely

d

dt
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(3.21)

The last term on the right-hand side appears in ux form and is related to transport proesses,

whih do not hange the total kineti energy. The �rst two terms are idential to those found on

the right-hand side of the TKE budget (3.11), albeit with with the opposite signs. Clearly these

terms are assoiated with the energy transfer from the wave motion to the turbulent motion.

Sine the growth rate of the TKE was estimated aurately assuming it to be solely determined

by the prodution by `Stokes drift shear', it is reasonable to estimate the deay of the kineti

energy of the wave by the same proess, whih yields

d

dt

�

U

2

1

+ U

2

3

2

�

� u

1

u

3

du

s

dx

3

: (3.22)

It remains to apply the same saling ideas leading to (3.18) to the right-hand side of (3.22), and

to note that the kineti energy of the wave is (U

2

1

+ U

2

3

)=2 = O(a

2

w

k

2

w



2

w

). Then, (3.22) may be
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saled as

d

dt
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w

; (3.23)

whih implies that the wave amplitude deays exponentially in time due to the turbulene, with

an attenuation rate

�

t

= a

�

u



w

�

2

�

w

; (3.24)

where a is a dimensionless onstant of O(1).

The attenuation of surfae waves due to turbulene has been investigated, for example, by Skoda

(1972), Green et al. (1972), van Hoften & Karaki (1976) and Kitaigorodskii & Lumley (1983). In

their theoretial study, Kitaigorodskii & Lumley identi�ed a wave deay mehanism involving the

transport of wave energy away from the surfae by the turbulent veloity �eld, and parameterised

that proess in terms of the frition veloity of the turbulene. However, they emphasised that this

proess is only signi�ant in a random wave �eld, and not for a periodi wave, beause it requires

a non-zero orrelation between the turbulent and the wave motions. Note how, in (3.22), what

is neessary for the wave energy to derease is a orrelation between the wave veloity and the

turbulent shear stress. The existene of this orrelation is provided by the modulation of the shear

stress over the wave yle. Hene the present mehanism omplements the mehanism proposed

by Kitaigorodskii & Lumley.

Skoda (1972), Green et al. (1972) and van Hoften & Karaki (1976) performed experiments

where they measured the deay of approximately monohromati, mehanially generated waves,

due to turbulene indued by rotating paddles, an osillating grid and hannel bottom frition,

respetively.

�

Olmez and Milgram (1992) studied the deay of periodi waves due to grid-generated

turbulene, and re-analysed the data of Skoda (1972). They present an extensive list of the

parameters of these experiments, inluding the intensity and length sale of the turbulene. They

suggest an empirial formula for the temporal attenuation rate, whih in the present notation is

�

OM

t

= 0:103

u

l

1

3

�

2

3

w

: (3.25)

They adjusted the onstant 0.103 to �t their experimental data. We note that the integral length

sale of the turbulene, l, whih appears in (3.25) does not appear in the RDT saling (3.24)
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Figure 17. Comparison with experimental data of the temporal wave attenuation rate predited by

theory. Solid line: equation (3.24) with a = 0:6, squares: data from

�

Olmez & Milgram (1992), rosses:

data from Skoda (1972) (taken from

�

Olmez & Milgram 1992).

beause, aording to the RDT model developed here, the integral length sale does not a�et the

distortion by the Stokes drift, only the bloking of the turbulene by the boundary.

Figure 17 shows experimental data from

�

Olmez & Milgram (1992) and Skoda (1972) for the

temporal attenuation rate of surfae waves plotted as a funtion of (u=

w

)

2

�

w

. The straight line

orresponds to the formula (3.24) with a best �t value of a = 0:6. Figure 17 ontains 2 data points

from Skoda, orresponding to the highest deay rates, that do not appear in �gure 11 of

�

Olmez &

Milgram (1992). We know of no reason to rejet these points so they are inluded here, although

they add onsiderably to the satter. The large satter in the data is not surprising sine measured

values of the attenuation rate due to turbulene are alulated as a residue of the wave deay due

to other proesses (e.g. geometri spreading in

�

Olmez & Milgram's axisymmetri experiments, or

hannel wall frition in Skoda's experiments), and is thus subjet to a large measurement error.

Another possible ause for the satter is that the data of

�

Olmez & Milgram and of Skoda

do not satisfy stritly the assumptions of RDT on whih the present saling is based. These

assumptions are that the wavelength is larger than the length sale of the turbulene and that

the strain assoiated with the wave is larger than the strain by the turbulene itself, as expressed

mathematially in (2.3). Exept for one extreme measurement (whih has a

w

k

w

�

w

l=u = 0:399),

the data measured by

�

Olmez & Milgram (1992) have

4:36 <

�

w

l

< 7:10; and 0:583 <

a

w

k

w

�

w

u=l

< 2:663: (3.26)
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Hene the turbulene in the experiments is small sale, but the straining by the wave is not always

muh larger than the straining of the turbulene by itself. The data of Skoda (1972) yield

1:57 <

�

w

l

< 10:296; (3.27)

whih probably satis�es the ondition that the turbulene be small sale. We were unable to obtain

values of wave slope for Skoda's data.

Notwithstanding these unertainties, the great majority of the data points (40 in total) roughly

align with the theoretial line. The satter here is large, but is ertainly no worse than in �gure 11

of

�

Olmez & Milgram (1992). This gives some support for the theoretial RDT saling developed

here and its variation with both properties of the turbulene and the surfae wave, whih both

vary in the data shown in �gure 17.

We now further ompare the theoretial saling (3.24) with the data of Green et al. (1972),

who passed surfae waves of varying wavelengths over grid-generated turbulene and measured the

spatial attenuation of the wave amplitude. This omparison fouses then on the variation of wave

damping rate with the surfae wave properties.

To ompare the RDT saling with this data, the spatial attenuation rate is obtained from the

temporal attenuation rate using the group veloity, 

g

= d�

w

=dk

w

, to give

�

x

= �

t

=

g

: (3.28)

Using (3.28), (3.24) and the dispersion relation of free surfae gravity waves, �

2

w

= gk

w

, the spatial

attenuation rate takes the form

�

x

= 2a

u

2
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3
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w

= 2(2�)

4
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u

2

g

3
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4

w

; (3.29)

where f

w

= 1=T = �

w

=2� is the frequeny of the waves (in Hz). Hene, aording to (3.29), the

spatial deay rate is proportional to the fourth power of the frequeny of gravity waves. We note

that the empirial orrelation suggested by

�

Olmez & Milgram, given in (3.25), yields �

x

/ f

7=3

w

, a

very di�erent dependene on wave frequeny.

We estimate that for the Green et al. experiments the turbulent RMS veloity took the value

u = 1:2ms

�1

. This value was hosen beause it is mentioned at the beginning of Green et al.'s

paper that the grid that generates the turbulene osillates at a frequeny of � 1Hz and produes
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eddies of � 1m size. Figure 3 of Green et al. (1972) would suggest a muh higher value of u,

but that �gure is probably in error, sine Green et al. refer `serious problems assoiated with

variations of the probe sensitivity with ow diretion'. A value u = O(1m s

�1

) is orroborated

by other experiments using similar on�gurations of osillating grids (e.g. Brumley & Jirka 1987;

�

Olmez & Milgram 1992; Kit et al. 1997).

Finally, the numerial values of the damping rates plotted in �gure 4 of Green et al. (1972) are

two orders of magnitude higher than the more reent results of Milgram (1998). This observation

suggests that the axis label in �gure 4 of Green et al. is in error and should be measured in m

�1

instead of the m

�1

written on the �gure. This mistake has been orreted in replotting their data

in �gure 18.

Figure 18 ompares the RDT saling (3.29) and the data of Green et al. (1972). Green et

al. onsidered the deay of three wave types. Firstly, they performed experiments with no wind

and measured the attenuation of paddle-generated waves, onsisting of a fundamental mode and

bound harmonis. Seondly, they measured the spatial attenuation of wind-generated waves. The

data from the fundamental modes of paddle-generated waves, whih are denoted by �lled irles in

�gure 18, are losest to the onditions of the model developed here. Indeed the agreement between

the RDT saling with the same value of a = 0:6 and these data is enouraging. We note that the

empirial orrelation of

�

Olmez and Milgram (1992), (3.25), yields a spatial attenuation that varies

as f

7=3

w

, whih does not agree well with the data in �gure 18. The data obtained by Green et al.

for the bound harmonis and the wind-generated waves are also shown for ompleteness as rosses

and triangles, despite the obvious ompliations assoiated with these data. These data too agree

in order of magnitude with the RDT saling. We onlude that the RDT saling shows a variation

with wave properties that is onsistent with available data.

How does the magnitude of the present wave deay mehanism ompare with the rate of growth

due to wind foring, whih has roughly the same form? These mehanisms have been studied

extensively by Miles (1957), van Duin & Janssen (1992) and Belher & Hunt (1993), among others,

and an be enapsulated in the formula of Plant (1982), whih when written in terms of the growth
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Figure 18. Comparison with experimental data of the spatial wave attenuation rate predited by theory.

Solid line: equation (3.29) with a = 0:6 and u = 1:2m s

�1

, irles: paddle-generated fundamentals, rosses:

seond harmonis, triangles: wind generated waves.

rate of wave amplitude gives

 = 16

�
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�
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w

�

2

�

w

; (3.30)

where �

a

is the density of air, �

w

is the density of water and u

�a

is the frition veloity in the air.

Often it is the growth of wave energy that is quoted, whih has a growth rate twie that given in

(3.30). It should be noted that, sine it was obtained from the rate of hange of wave amplitude

with time, (3.30) not only reets the positive input of energy into the waves due to the wind, but

also any dissipative proesses present.

In order to ompare (3.24) with (3.30), it is neessary to relate the turbulene intensity in the

water, u, to the frition veloity in the air. Experiments by Magnaudet & Masbernat (1990) and

Thais & Magnaudet (1996) suggest that the turbulent RMS veloity in water ontaining turbulene

and surfae waves is u � 3u

�w

near the surfae. On the other hand, Thais & Magnaudet (1996)

and Belher et al. (1994) have noted that the frition veloity in the water is related to the frition

veloity in the air by �

a

u

2

�a

= �

w

u

2

�w

due to ontinuity of the turbulent stress at the interfae.

With these two relations, and using also a = 0:6, (3.24) yields

�

t

� 5:4

�

a

�

w

�

u

�a



w

�

2

�

w

; (3.31)

showing, by omparison with (3.30), that the deay rate due to turbulene in the water is approx-

imately a fator of 3 smaller than the amplitude growth rate due to foring by the wind. In their
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model of oupled turbulent air-water ow, Belher et al. (1994) evaluated the e�et of turbulene

in the water on the growth of surfae waves, onluding that the growth rate ould be redued

by a fator of about 2. They onsidered that only the part of the ow within an `inner region',

where the turbulene is in a loal equilibrium (very near the boundary). The present alulation

shows that the `outer' part of the ow, where the turbulene is rapidly distorted, ontributes to a

non-negligible redution of the wave growth rate.

Finally, the wave deay mehanism estimated in this subsetion is only important at wavenum-

bers for whih visous dissipation does not dominate. Bearing in mind that the wave attenuation

rate due to visous dissipation is 2�k

2

w

(Lamb 1932), where � is the kinemati visosity of the

water, the present mehanism is relevant when

a

u

2



2

w

�

w

� 2�k

2

w

) u� (2��

w

=a)

1

2

: (3.32)

Taking �

w

= 1s

�1

and noting that � = 1� 10

�6

m

2

s

�1

and a = 0:6, it is onluded that u must be

onsiderably larger than 2mms

�1

(not a diÆult ondition to satisfy in the oean). Alternatively,

if u = 2m s

�1

is assumed, gives �

w

� 100s

�1

, orresponding approximately to �

w

� 1:5m.

Wavelengths outside this range would be exluded anyway beause of the ondition requiring the

sale of the wave to be muh larger than the sale of the turbulene (�rst equation of (2.3)). The

mehanism addressed here is therefore primarily a wave attenuation mehanism for gravity waves.

4. Conlusions

Previous saling arguments, developed by Belher et al. (1994), have shown that turbulene below

a thin `inner region' in the oean surfae layer is subjeted to rapid distortion by a surfae wave.

Hene in this paper we have developed a rapid-distortion model to investigate the interations

between initially homogeneous, shear-free turbulene and a progressive, irrotational surfae wave.

The model is appliable when the integral length sale of the turbulene is muh smaller than

the wavelength of the wave and the slope of the wave is suÆiently high that the straining of the

turbulene by the wave is stronger than the straining of the turbulene by itself.

The periodi orbital motion of the wave modulates the turbulene over a wave yle suh that

the streamwise Reynolds stress attains maxima at the wave rests and minima at the wave troughs,
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and the normal Reynolds stress attains maxima at the wave troughs and minima at the rests.

This behaviour is onsistent with the experimental results of Thais & Magnaudet (1996).

Over several wave yles the turbulene is made strongly anisotropi as the Stokes drift assoiated

with the wave tilts the vertial omponent of the turbulent vortiity into the horizontal, and

subsequently ampli�es it as streamwise vortiity. As this proess ours the streamwise Reynolds

stress dereases, while the spanwise and normal Reynolds stresses inrease over time at roughly the

same rate. The integral length sales of the turbulene indiate the strutures that develop under

the progressive ation of the Stokes drift. The streamwise veloity utuations remain isotropi

when viewed in horizontal planes parallel to the surfae, whereas normal veloity utuations

beome elongated in the streamwise diretion and so too do the spanwise veloity utuations,

although to a lesser extent than the normal utuations. These properties are summarised in table

1. We interpret these results as the statistial signature of elongated streamwise vorties in the

ow.

These results for turbulene distorted by Stokes drift are strikingly di�erent to the orresponding

results for turbulene distorted by a mean shear urrent (see table 1). When turbulene is distorted

by a mean shear the streamwise Reynolds stress beomes the largest of the stresses and the struture

of the streamwise veloity utuations beomes elongated in the streamwise diretion. These are

the statistial signatures of `streaky strutures' whih have been identi�ed in, for example, the

DNS of Lee et al. (1990). We attribute the striking di�erenes between the two sets of results to

the absene of mean vortiity in the distortion by Stokes drift. The mean shear ow has spanwise

mean vortiity whih is distorted by turbulent veloity utuations, whih then largely anels the

streamwise vortiity generated by strething turbulent vortiity by the mean shear ow. These

two proesses thus anel any tendeny to produe streamwise vorties in the shear ow (see �gure

15). When the turbulene is distorted by Stokes drift, however, there is no suh anellation and

streamwise vorties emerge. This anellation idea probably explains why, in their LES simulations,

MWilliams et al. (1997) observe a ontinuous progression from shear turbulene to fully developed

Langmuir turbulene: as the Stokes drift is inreased and the mean shear is less and less able to

anel the tendeny to produe streawise vorties.
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Stokes drift Shear ow
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2

2
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2

3

u

2

1

> u

2

2

> u

2

3

streamwise vorties streaky strutures

Table 1. Measures of the anisotropy of the ow struture in turbulene distorted by the Stokes drift of a

wave and turbulene distorted by a mean shear ow.

It is interesting to ompare these results from linear rapid-distortion theory with results ob-

tained from fully nonlinear omputations, suh as the LES of `Langmuir turbulene' performed

by MWilliams et al. (1997). It was perhaps intuitively lear that homogeneous turbulene dis-

torted by Stokes drift yields streamwise vorties (as disussed in the introdution to MWilliams

et al. 1997). The detailed alulations on�rm this expetation, but also give quantitative infor-

mation. In partiular, the RDT model produes the ordering of the omponents of the Reynolds

stress and integral length sales, whih are summarised in table 1. It is noteworthy that the

ordering of both the omponents of the Reynolds stress and the indiators of anisotropy in the

veloity utuations all agree with the orderings inferred from the LES alulations of MWilliams

et al. (1997). This suggests that in Langmuir turbulene, as simulated by MWilliams et al., the

wave-turbulene interation dominates over the shear e�ets.

The generation of streamwise vorties by distortion of the turbulene by the Stokes drift also

generates a negative shear stress in the turbulene. This shear stress does work against the u-

tuating strain assoiated with the wave orbital motions leading to growth of the TKE. The time

sale for this growth, found from saling the TKE budget, is of O(1=(a

2

w

k

2

w

�

w

)). The energy going

into the TKE is lost at preisely the same rate by the wave, whih therefore deays in time. The
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amplitude of the waves deays exponentially with a temporal attenuation rate

�

t

= 0:6

�

u



w

�

2

�

w

: (4.1)

The deay of wave energy would be twie this value for the amplitude deay. This deay rate

was found to be onsistent with the laboratory data of

�

Olmez & Milgram (1992) and Green et al.

(1972). Hene we have established a de�nite onnetion between deay of waves and growth of

turbulene.

This work raises the possibility that subsurfae turbulene in the oean, generated by break-

ing waves or shear instability, provides the vertial vortiity from whih Stokes drift generates

streamwise vorties, i.e. Langmuir irulations. This possibility omplements the CL2 instability

mehanism (Craik & Leibovih 1976), where the initial vertial vortiity is provided by spanwise

variations in the mean shear urrent. LES, whih an resolve all three omponents of the ow,

namely the mean shear ow, turbulene and Stokes drift, o�ers probably the best vehile for

establishing the relative ontributions of these two proesses.
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