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The surface drag force produced by trapped lee waves and upward propagating
waves in non-hydrostatic stratified flow over a mountain ridge is explicitly
calculated using linear theory for a two-layer atmosphere with piecewise-
constant static stability and wind speed profiles. The behaviour of the drag
normalized by its hydrostatic single-layer reference value is investigated as a
function of the ratio of the Scorer parameters in the two layers l2/l1 and of
the corresponding dimensionless interface height l1H , for selected values of
the dimensionless ridge width l1a and ratio of wind speeds in the two layers.
When l2/l1 → 1, the propagating wave drag approaches 1 in approximately
hydrostatic conditions, and the trapped lee wave drag vanishes. As l2/l1
decreases, the propagating wave drag progressively displays an oscillatory
behaviour with l1H , with maxima of increasing magnitude due to constructive
interference of reflected waves in the lower layer. The trapped lee wave
drag shows localized maxima associated with each resonant trapped lee wave
mode, occurring for small l2/l1 and slightly higher values of l1H than the
propagating wave drag maxima. As l1a decreases, i.e. the flow becomes more
non-hydrostatic, the propagating wave drag decreases and the regions of non-
zero trapped lee wave drag extend to higher l2/l1. These results are confirmed
by numerical simulations for l2/l1 = 0.2. In parameter ranges of meteorological
relevance, the trapped lee wave drag may have a magnitude comparable to that
of propagating wave drag, and be larger than the reference single-layer drag.
This may have implications for drag parametrization in global climate and
weather-prediction models. Copyright c© 2011 Royal Meteorological Society
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1. Introduction

Much attention has been devoted in recent years to the
problem of gravity wave drag produced by stratified
flow over orography, a sub-grid scale force that must
be parametrized in global weather-prediction and climate
models. Following pioneering contributions, where leading-
order effects of the incoming flow and orography on
the drag were evaluated analytically using linear theory
for an atmosphere with constant wind and static stability

(Smith, 1980; Phillips, 1984), various refinements to these
conditions have been considered. For example, Smith
(1986) and Grubišić and Smolarkiewicz (1997) addressed
the effect of a linearly varying wind profile on the drag,
and Grisogono (1994) assessed boundary layer effects, in
conjunction with a more general variation of the wind with
height. Teixeira et al. (2004) and Teixeira and Miranda,
(2004, 2006) applied a WKB approximation to compute
corrections to the drag due to a generic, but relatively
slow, variation of the wind with height. Shutts and Gadian
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2 M. A. C. Teixeira et al.

(1999) and, more recently, Teixeira and Miranda (2009)
considered effects of directional shear on the momentum
flux associated with mountain waves, which is a quantity
that has a direct impact on the deceleration of the large-scale
atmospheric circulation. Discontinuities in the atmospheric
profiles of the wind shear and static stability, and their
impacts on the drag, have been examined by Wang and Lin
(1999), Leutbecher (2001) and Teixeira et al. (2005, 2008),
among others. These authors have shown that the drag can
be substantially modulated by resonance associated with
partial reflections of the gravity waves at sharp variations
of the atmospheric parameters, or their derivatives.

Most of these investigations treated the flow as purely
hydrostatic, because non-hydrostatic effects are typically
relatively weak in the atmosphere at the mesoscale, it is
generally believed that the main contributions to the drag
arise in nearly hydrostatic conditions, and also because
the hydrostatic approximation facilitates the calculation of
closed-form analytical expressions for the drag. However,
when the atmospheric parameters vary in a realistic way,
in particular when the wind speed increases sufficiently, or
the static stability decreases sufficiently, the flow becomes
significantly non-hydrostatic at some levels. The hydrostatic
approximation implies that all gravity waves in the spectrum
of disturbances forced by a given orography propagate
vertically. In non-hydrostatic conditions, on the other hand,
there are parts of the wave spectrum (high wavenumbers)
which are evanescent, and thus do not contribute to
the drag, while others (low wavenumbers) propagate
vertically, contributing to the drag. If an evanescent layer
lies above a wave-propagating layer, wave trapping can
occur, with total vertical wave reflection of some wave
components at particular heights, and consequent resonant
drag amplification. This phenomenon co-exists with the
partial wave reflections that may occur even in hydrostatic
conditions (Leutbecher, 2001; Teixeira et al., 2005).

It is known that vertically-trapped internal gravity waves,
generally known as trapped lee waves, produce a drag
force (Bretherton, 1969; Smith, 1976; Lott, 1998; Broad,
2002), but, unlike drag in a hydrostatic atmosphere, its
behaviour has not been explored in detail (Wurtele et al.,
1996). Extending the calculations of Bretherton (1969) for
flow confined vertically by a rigid lid (see also Tutiś, 1992),
Smith (1976) presented a formula for trapped lee wave
drag in an unbounded atmosphere, based on linear theory,
where this quantity is expressed as the ratio of two terms,
one involving an integral of the Fourier transform of the
vertical velocity perturbation and the other the vertical
derivative of this Fourier transform. However, Smith (1976)
did not provide any explicit rigorous calculation based
on this expression, and limited himself to give a rough
estimate of the trapped lee wave drag based on measured
atmospheric parameters. More recently, Vosper (1996),
Grubišić and Stiperski (2009) and Stiperski and Grubišić
(2011) studied the trapped lee wave resonance that occurs
in flow over two successive mountains. Using numerical
simulations, they showed, among many other results,
the variation of the drag with the horizontal separation
of the mountains. For sufficiently large separations, and
smooth atmospheric profiles, which preclude partial wave
reflections, this variation can only be attributed to trapped
lee waves. The amplitude that may thus be inferred
for the trapped lee wave drag from the results of
Stiperski and Grubišić (2011) is comparable to that of the
remaining drag, which must be associated with vertically

propagating waves. This is surprising, given that trapped
lee waves, being highly non-hydrostatic, would be expected
to produce relatively little drag. This result motivates the
present study, where the behaviour of the drag associated
with trapped lee waves and with vertically propagating
waves will be investigated as a function of input parameters
for much simpler atmospheric profiles than considered
by Grubišić and Stiperski (2009) or Stiperski and Grubišić
(2011).

Scorer (1949) was the first to provide a satisfactory
theoretical explanation for the existence of trapped lee
waves, assuming an atmosphere with two layers, where
wave propagation is permitted in the lower layer, but not
allowed in the upper layer for an important fraction of the
wavenumbers. This author used analytical techniques to
obtain the flow configuration associated with these waves
relatively far from the orography that generates them, but
did not calculate the drag. In the present study, a two-
layer atmosphere with piecewise-constant parameters, such
as adopted by Scorer (1949), will be assumed to evaluate
the trapped lee wave drag and the drag associated with
vertically propagating waves, and compare the magnitude
of these two drag components. It will be seen that, in
some circumstances, the trapped lee wave drag may be
comparable, or even larger, than the drag associated with
vertically propagating waves, and substantially larger than
the drag for a hydrostatic atmosphere with a constant
Scorer parameter equal to that existing in the lower layer.
These results have implications for gravity wave drag
parametrization (Lott, 1998).

This paper is organized as follows. In section 2, the linear
model that will be used to calculate the trapped lee wave
drag and propagating wave drag is described. Section 3
presents illustrative calculations of the drag as a function
of input parameters, for three different atmospheric profiles,
and a brief comparison with numerical simulations. Finally,
in section 4, some concluding remarks are presented.

2. Theoretical model

Since a systematic exploration of trapped lee wave drag
has not been carried out previously, this problem will be
reduced here to a form as simple as possible. Inviscid flow
over orography will be considered, and calculations will be
carried out essentially using linear theory, although a few
results from numerical simulations will also be presented.

Consider inviscid, stationary, non-rotating, stratified,
flow over a 2D mountain ridge aligned in the y direction. If
the equations of motion with the Boussinesq approximation
are linearized with respect to a reference mean state,
differentiated and combined, and the dependent variables
are expressed as Fourier integrals along x, it can be
shown that the Fourier transform of the vertical velocity
perturbation, ŵ, satisfies (Lin, 2007)

∂2ŵ

∂z2
+ (l2 − k2)ŵ = 0, (1)

where

l =
(

N2

U2
− 1

U

d2U

dz2

)1/2

(2)

is the Scorer parameter of the atmosphere. k is the
horizontal wavenumber of the waves in the x direction,
N2(z) > 0 is the static stability of the reference state,
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Drag produced by trapped lee waves 3

and U(z) is the incoming wind velocity (aligned in the x
direction and thus perpendicular to the orography).

A two-layer atmosphere similar to that prescribed by
Scorer (1949) will be assumed henceforth, with the lower
layer existing between z = 0 and z = H and the upper layer
extending indefinitely above. In each of the layers, both
the static stability and the wind velocity are assumed to be
constant, so that the corresponding Scorer parameters are
also constant. However, the Scorer parameter is assumed
to be discontinuous at z = H . The incoming wind velocity,
static stability and Scorer parameter in the lower layer are
denoted by U1, N2

1 and l1, respectively, while in the upper
layer the same quantities are U2, N2

2 and l2. Although the
situation where U1 6= U2 would produce Kelvin-Helmholtz
instability, and that aspect is not taken into account in the
model, this situation will nevertheless be contemplated here,
as a crude representation of the effect of the wind variation
with height. Since trapped lee waves are the main focus
of the present study, l2 < l1 will always be considered, as
in Scorer (1949), which is a necessary condition for the
occurrence of these waves.

In such a model setup, three possibilities exist for
waves of a given horizontal wavenumber: these waves may
propagate vertically in both layers, they may propagate
only in the lower layer, or they may be evanescent in both
layers. The wave solutions in the lower layer, when there is
propagation or when the waves are evanescent, are

ŵ1 = a1 eim1z + b1 e−im1z if k2 < l21, (3)

ŵ1 = c1 e−n1z + d1 en1z if k2 > l21, (4)

respectively. The wave solutions in the upper layer, in the
same circumstances, are

ŵ2 = a2 eim2z if k2 < l22, (5)

ŵ2 = c2 e−n2z if k2 > l22, (6)

where m1 = (l21 − k2)1/2sgn(U1k), n1 = (k2 − l21)
1/2,

m2 = (l22 − k2)1/2sgn(U2k), n2 = (k2 − l22)
1/2 and

i =
√−1. In (3) the two terms correspond, respectively, to

waves whose energy propagates upward and downward,
while in (4) they correspond to evanescent waves that
decay or amplify exponentially with height, respectively.
In (5) and (6), only the upward-propagating and decaying
terms are considered, since the upper layer is vertically
unbounded. The coefficients a1, b1, c1, d1, a2 and c2 are
functions of k.

The boundary conditions to which these solutions are
subjected result from the requirement that the flow follows
the terrain elevation at the surface, and continuity of
the vertical streamline displacement and pressure at the
interface separating the two layers. The Fourier transform of
the vertical streamline displacement η̂ is defined by (Smith,
1979)

ŵq = iUqkη̂, (7)

where the index q = 1, 2 denotes values in the lower or in
the upper layer, respectively. The Fourier transform of the
pressure perturbation, on the other hand, is given by

p̂q = i
ρ0

k

(
dUq

dz
ŵq − Uq

∂ŵq

∂z

)
(8)

(cf. Teixeira et al. 2012), where ρ0 is a reference density
(assumed to be constant). In the present case, the first term

on the right-hand side of (8) vanishes because dU1/dz =
dU2/dz = 0.

Therefore, from (7) and (8), in the linear approximation,
the boundary conditions are expressed as

ŵ1(z = 0) = iU1kĥ, (9)
ŵ1(z = H)/U1 = ŵ2(z = H)/U2, (10)

U1
∂ŵ1

∂z
(z = H) = U2

∂ŵ2

∂z
(z = H), (11)

where ĥ is the Fourier transform of the surface elevation.
If these boundary conditions are applied to (3)-(4) and (5)-
(6), the coefficients in these expressions may be determined.
For calculating the drag, it is sufficient to know a1, b1, c1

and d1. These coefficients, which determine the flow in the
lower layer, are provided in Appendix A.

Following Wang and Lin (1999) and Teixeira et al.
(2005), a wave reflection coefficient at z = H may be
defined as the modulus of the ratio between the downward
propagating and the upward propagating wave components
in the lower layer, R = |b1/a1|. For trapped lee waves
(l22 < k2 < l21), it may be checked from the definitions of
a1 and b1 in Appendix A that R = 1, as would be expected.
For vertically propagating waves (k2 < l22), the reflection is
only partial and

R =
∣∣∣∣
U2

1 (l21 − k2)1/2 − U2
2 (l22 − k2)1/2

U2
1 (l21 − k2)1/2 + U2

2 (l22 − k2)1/2

∣∣∣∣ , (12)

which satisfies R ≤ 1. Unfortunately, R depends in general
on k, so its relation to the behaviour of propagating waves
is not trivial, as will be seen.

The gravity wave drag exerted on the mountain ridge
per unit spanwise length is given by (Teixeira and Miranda,
2004)

D = 2πi

∫ +∞

−∞
kp̂∗1(z = 0)ĥ dk

= 4πIm
{∫ +∞

0

kp̂1(z = 0)ĥ∗ dk

}
, (13)

where the asterisk denotes complex conjugate. The second
equality used the fact that both p1 (the pressure perturbation
in the lower layer) and h (the surface elevation) are real,
and the properties of Fourier transforms. If (8) is evaluated
at z = 0 and (3)-(4) are taken into account, it follows that

p̂1(z = 0) =
ρ0

k
U1m1(a1 − b1), (14)

when the waves are propagating in the lower layer, whereas
when the waves are evanescent in this layer, then

p̂1(z = 0) = i
ρ0

k
U1n1(c1 − d1). (15)

From these two equations and (A1)-(A6) in Appendix A,
it is possible to obtain explicit expressions for p̂(z = 0).
These expressions may then be used in (13) to obtain the
internal gravity wave drag.

From the partition of the wave solutions in wavenumber
ranges, according to (3)-(6), it turns out that the drag
comprises three terms:

D = D1 + D2 + D3. (16)

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–16 (2011)
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4 M. A. C. Teixeira et al.

The first term, D1, receives contributions from wavenum-
bers |k| < l2, corresponding to waves that propagate in both
atmospheric layers. This will be called ‘propagating wave
drag’. The second term, D2, receives contributions from
wavenumbers satisfying l2 < |k| < l1, and corresponds to
trapped lee wave drag. The third term, D3, receives con-
tributions from wavenumbers |k| > l1, corresponding to
evanescent waves. Using all the previously derived results,
the first term may be written

D1 = 4πρ0U
2
1

∫ l2

0

k|ĥ|2

× U2
1 U2

2 m2
1m2

U4
1 m2

1 cos2(m1H) + U4
2 m2

2 sin2(m1H)
dk, (17)

which was obtained by taking the imaginary part of the
corresponding integral in (13). In general, the integral in
(17) must be evaluated numerically. This drag term is the
only one that exists in hydrostatic flow, and its behaviour for
a variation of l only due to N2 was studied, for example, by
Leutbecher (2001).

The third drag term can be shown to have the form:

D3 = 4πρ0U
2
1 Im

{∫ +∞

l1

k|ĥ|2n1

×U2
2 n2 cosh(n1H) + U2

1 n1 sinh(n1H)
U2

1 n1 cosh(n1H) + U2
2 n2 sinh(n1H)

dk

}
. (18)

Since the only contributions to this term come from the
imaginary part of the integral, but the integrand is real, and
without singularities on the real axis, it follows that

D3 = 0. (19)

The second drag term is the main focus of the present
analysis. Following the same procedure as for the previous
terms, it may be expressed as

D2 = 4πρ0U
2
1 Im

{∫ l1

l2

k|ĥ|2m1

×U2
2 n2 cos(m1H)− U2

1 m1 sin(m1H)
U2

1 m1 cos(m1H) + U2
2 n2 sin(m1H)

dk

}
. (20)

While, as in the previous case, the contributions to the drag
only come from the imaginary part of the integral, now these
contributions actually exist in some circumstances, due to
the singularities of the integrand along the real axis. These
singularities are given by

tan(m1H) = −U2
1 m1

U2
2 n2

, (21)

which results from equating the denominator of the fraction
in (20) to zero. Because of the periodicity and range of
variation of the tan function, and taking into account the
definition of m1, it may be shown that the number of
singularities, i.e. the number of lee wave modes NL is
related to other flow parameters by

− π

2
+ πNL < (l21 − l22)

1/2H <
π

2
+ πNL. (22)

This implies, in particular, that there will only be at least
one singularity when

(l21 − l22)
1/2H >

π

2
, (23)

as originally stated by Scorer (1949). Note that none of
these conditions explicitly depends on U1 or U2.

Provided (23) is satisfied, (20) is best evaluated through a
change of variable, as described in Appendix B. Going back
to the original variable k, (B5) obtained in Appendix B can
be expressed as

D2 = 4π2ρ0U
2
1

∑

j

|ĥ(kj)|2

× m2
1(kj)n2(kj){U4

1 m2
1(kj) + U4

2 n2
2(kj)}

U2
1 U2

2 (l21 − l22) + {U4
1 m2

1(kj) + U4
2 n2

2(kj)}n2(kj)H
,

(24)

where the sum is carried out over all trapped lee wave modes
and kj are the corresponding resonant wavenumbers, given
by (B1) with φ = φj , or alternatively directly from (21).
Equation (24) constitutes perhaps the most important result
of the present study and, in conjunction with (17), will be
used next to compare the propagating wave drag and the
trapped lee wave drag. When U1 = U2 = U , (24) simplifies
considerably, reducing to

D2 = 4π2ρ0U
2
∑

j

|ĥ(kj)|2 m2
1(kj)n2(kj)

1 + n2(kj)H
. (25)

Equation (25) could be confirmed by an alternative method,
as a particular case of the formula derived by Smith (1976)
for trapped lee wave drag,

D2 = 2π2ρ0U
2
∑

j

|ĥ(kj)|2
∣∣∂ŵ

∂z (kj , z = 0)
∣∣2

∫ +∞
0

|ŵ(kj , z)|2dz
, (26)

when the corresponding wave solutions are substituted in
the integral and derivative contained in this formula, and
the integral is calculated analytically. This provides a good
consistency check for the present calculations.

3. Results

The behaviour of propagating wave drag and trapped lee
wave drag will now be investigated for a bell-shaped ridge
given by

h =
h0

1 + (x/a)2
⇒ ĥ =

h0a

2
e−a|k|, (27)

where a is the half-width of the ridge and h0 is its maximum
height. This kind of orography is only used for illustrative
purposes, and the results to be presented should remain
essentially valid for a different type of orography. D1

and D2 will be normalized by the drag for a hydrostatic
atmosphere with a constant Scorer parameter equal to that
existing in the lower layer and the same type of orography.
This reference drag is given by (Smith, 1979)

D0 =
π

4
ρ0U

2
1 l1h

2
0. (28)

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–16 (2011)
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From (17), (24) and (28), the normalized propagating
wave drag and trapped lee wave drag may be expressed,
respectively, as

D1

D0
= 16

( a

H

)2
∫ l′2

0

k′|ĥ′|2

× m
′2
1 m′

2 dk′

l′1

{(
U1
U2

)2

m
′2
1 cos2(m′

1) +
(

U2
U1

)2

m
′2
2 sin2(m′

1)
} ,

(29)

and

D2

D0
= 16π

( a

H

)2 ∑

j

|ĥ′(k′j)|2
m
′2
1 (k′j)n

′
2(k

′
j)

l′1
×

(
U1
U2

)2

m
′2
1 (k′j) +

(
U2
U1

)2

n
′2
2 (k′j)

l
′2
1 − l

′2
2 +

{(
U1
U2

)2

m
′2
1 (k′j) +

(
U2
U1

)2

n
′2
2 (k′j)

}
n′2(k

′
j)

,

(30)

where k′ = kH , k′j = kjH , l′1 = l1H , l′2 = l2H , m′
1 =

m1H , n′2 = n2H and ĥ′ = ĥ/(h0a), and where, in (30), the
summation is carried out over all trapped lee wave modes.

D1/D0 and D2/D0 are clearly functions of l1H , l2H ,
a/H and U1/U2 (kjH itself is a function of U1/U2,
l1H and l2H – see (21)). Any alternative combination of
these parameters that yields 4 independent input parameters
can be considered. Here the key parameters will be taken
as: l1H , l1a, l2/l1 and U1/U2, since they allow an
easier exploration of parameter space. l1a quantifies non-
hydrostatic effects in the lower layer, and is adequate to
distinguish the present results from previous ones calculated
using the hydrostatic approximation (e.g., Teixeira et al.,
2005). Three values of this parameter will be considered
next, similar to those employed by Teixeira et al. (2012).
l1H is a dimensionless height of the interface separating
the two atmospheric layers, essentially similar to that
defined by Miranda and Valente (1997) and Teixeira et al.
(2005). l2/l1 quantifies the jump in Scorer parameter at
the interface, and in the present context may be varied
between 0 and 1. Finally, for the jump of the wind velocity
at the interface, U1/U2, three cases will be considered, to be
described next in turn.

In the hydrostatic approximation, i.e., when l1a, l2a →
∞, (29) reduces to

D1

D0
=

1(
U1
U2

)2
l1
l2

cos2(l1H) +
(

U2
U1

)2
l2
l1

sin2(l1H)
, (31)

and obviously D2/D0 = 0, because wave trapping becomes
impossible. Unlike the previous non-hydrostatic results,
(31) is independent of the form of the orography (27), in the
same way as the hydrostatic results of Teixeira and Miranda
(2004), or Teixeira et al. (2005, 2008). According to (31),
D1/D0 has an oscillating behaviour with l1H , with a period
of π in terms of this parameter. This is clearly caused
by resonant reinforcement or weakening of the waves in
the lower layer, depending on the phase of the downward
propagating waves reflected at the interface z = H . D1/D0

can only be 1 if either l1 = l2 and U1 = U2 (which is fairly

0 0.5 1 1.5 2 2.5 3

l1H/π 

0

0.2

0.4

0.6

0.8

1

l 2/
l 1

Figure 1. Number of trapped lee wave modes NL as a function of l2/l1
and l1H/π. This quantity is independent both of l1a and of U1/U2.
Contour spacing: 1.

intuitive), or when U1/U2 = (l2/l1)1/2, which is a non-
trivial result.

In hydrostatic conditions, the reflection coefficient (12)
reduces to

R =
∣∣∣∣
(U1/U2)2 − l2/l1
(U1/U2)2 + l2/l1

∣∣∣∣ , (32)

which helps to explain the drag behaviour described above,
because if U1/U2 = (l2/l1)1/2, then R = 0, i.e. there is no
reflection of vertically propagating waves at z = H .

3.1. Discontinuity in N

If U1/U2 = 1, U is continuous at the interface separating
the two atmospheric layers, z = H , and the discontinuity
of l is purely due to the variation of N , namely l2/l1 =
N2/N1. This was the case originally considered by Scorer
(1949). The normalized drag will be presented first as a
function of l1H and l2/l1 for l1a = 10, l1a = 5 and l1a =
2. These three cases correspond to weak, moderate and
strong non-hydrostatic effects. As in Leutbecher (2001) and
Teixeira et al. (2005), l1H will be varied between 0 and 3π.

Figure 1 presents the number of trapped lee wave modes,
NL, as a function of l1H and l2/l1, calculated from (22).
The behaviour of this quantity is independent both of U1/U2

and of l1a. It can be seen that there are no trapped lee wave
modes when l2/l1 = 1, because wave trapping requires a
decrease of l with height. So the number of trapped lee wave
modes decreases as l2/l1 varies between 0 and 1. On the
other hand, the number of trapped lee wave modes increases
with l1H , reaching a value of 3 at the highest values of
l1H considered. There are no trapped lee wave modes for
l1H/π < 1/2 because of condition (23).

Figure 2 shows the (horizontal) wavelengths of the first
three trapped lee wave modes (Figure 2(a), 2(b) and 2(c)),
defined as λj = 2π/kj (with j = 1, 2, 3), normalized by
the vertical wavelength of hydrostatic waves in the upper
layer, 2π/l2, as a function of l1H and l2/l1. The normalized
wavelengths depend on U1/U2, as can be inferred from (21),
but not on l1a. Since trapped lee waves receive contributions
from wavenumbers between l2 and l1, λj l2/(2π) vary
between l2/l1 and 1, being increasing functions of l2/l1 and
decreasing functions of l1H .

Figures 3, 4 and 5 present the drag associated with
mountain waves (for l1a = 10, l1a = 5 and l1a = 2,
respectively) normalized by the drag D0 for hydrostatic
flow in a single-layer atmosphere with Scorer parameter l1,
given by (28). Figures 3(a), 4(a) and 5(a) show the drag
associated with propagating mountain waves, Figures 3(b),
4(b) and 5(b) the drag associated with trapped lee waves,
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Figure 2. Normalized trapped lee wave wavelengths λj l2/(2π) as a
function of l2/l1 and l1H/π for U1/U2 = 1. These quantities are
independent of l1a. (a) j = 1, (b) j = 2, (c) j = 3. No trapped lee waves
exist to the left of the thick line, which corresponds to λj l2/(2π) = 1.
Contour spacing: 0.1.

and Figures 3(c), 4(c) and 5(c) the total drag, which is a
sum of the two. Unlike the quantities presented in Figures
1 and 2, the normalized drag depends on l1a in addition to
U1/U2.

In Figures 3(a), and 4(a) it can be seen that the
propagating wave drag D1/D0 approaches values ≈ 1
when l2/l1 → 1, as would be expected for reasonably
hydrostatic flow, but in Figure 5(a), these values become
noticeably lower because of non-hydrostatic effects. As
l2/l1 decreases towards zero, D1/D0 increasingly shows
a periodic oscillatory behaviour with l1H , with maxima
at l1H/π = 0.5 + n, where n is an integer, and minima at
l1H/π = n. The location of the maxima and minima may
be explained by (31) with U1/U2 = 1. This behaviour also
resembles that shown in Figure 2 of Leutbecher (2001),
which assumes the hydrostatic approximation, with the
difference that the maxima and minima are exchanged,
because Leutbecher considered a case where l1 < l2. These
maxima and minima are obviously produced by resonance
associated with partial wave reflections at z = H , and
make the normalized drag at low l2/l1 take values between
D1/D0 ≈ 0 and D/D0 ≈ 9.3 in Figure 3(a), and D/D0 ≈
4.6 in Figure 4(a) (occurring for slightly higher l2/l1). In
Figure 5(a), the drag maxima are considerably weakened
(not exceeding ≈ 1.8), and become distinctly smaller as
l1H increases. This behaviour, which is also visible in
Figure 4(a), but to a lesser extent, is due to decrease of
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Figure 3. Normalized drag a a function of l2/l1 and l1H/π for l1a = 10
and U1/U2 = 1. (a) Propagating wave drag, (b) Trapped lee wave drag,
(c) Total drag. Contours at 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, and so on.

the wave energy density in the lower atmospheric layer
(when this energy propagates downstream, as happens in
non-hydrostatic conditions) as the top of this layer is lifted.
In Figures 4(a) and 5(a) there are gaps in the D1/D0 field
near the right edges of its maxima.

In Figures 3(b), 4(b) and 5(b), it can be seen that
the behaviour of the trapped lee wave drag D2/D0 is
substantially different. The drag is zero except in localized
regions of parameter space, which, of course, are contained
in the wider regions where at least one trapped lee wave
mode is allowed to exist. In Figure 3(b), there is only
appreciable drag for l2/l1 < 0.5 and inside intervals of l1H
with their lower limits coinciding with the locations of the
D1/D0 maxima in Figure 3(a). The width of these intervals
increases with l1H . These intervals are much less localized
in parameter space in Figure 4(b) (for example, the non-
zero drag regions surrounding the second and third maxima
overlap), and occupy a yet much larger fraction of parameter
space in Figure 5(b), with the three displayed maxima
having merged together. In Figure 3(b), the magnitude
of the first maximum is larger than those of D1/D0

(D2/D0 ≈ 20.6), but the maxima are attained at l2/l1 = 0,
requiring an extreme contrast in Scorer parameter between
the two layers. In Figure 4(b) the maximum of the trapped
lee wave drag is D2/D0 ≈ 9.9, but values of O(1) are
attained at higher l2/l1 than in Figure 3(b), which is more
meteorologically relevant. In Figure 5(b), D2/D0 reaches a
value of ≈ 3.2, which is now larger than the maximum of
the propagating wave drag. The trapped lee wave drag takes
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Figure 4. The same as Figure 3, but for l1a = 5.

values of O(1) for l2/l1 as high as 0.4, which is not hard to
satisfy in approximations to a realistic atmosphere.

In Figures 3(c) and 4(c), the total drag D/D0

considerably resembles the propagating wave drag D1/D0,
for l2/l1 ≈ 1 but is dominated by the trapped lee wave
drag for l2/l1 ≈ 0. In Figure 5(c), D/D0 has a different
distribution from either the propagating wave drag D1/D0

or the trapped lee wave drag D2/D0, owing to the
comparable contributions given by each one of them. It
is visible, particularly in Figures 4(c) and 5(c), that some
of the gaps in the drag distribution that existed in the
D1/D0 field in Figures 4(a) and 5(a) have been filled by
the contributions of D2/D0. The smooth appearance of
D/D0 in Figure 5(c) as a sum of two quantities with such
a different structure in parameter space, in particular, is a
strong indication of the internal consistency of the present
calculations. Because of the contributions from D2/D0,
the maxima of D/D0 for relatively low l2/l1 are shifted
towards higher values of l1H/π than 0.5 + n (particularly
in Figures 4(c) and 5(c)). However, the absolute maxima
of D/D0 are ≈ 20.6 in Figure 3(c), D/D0 ≈ 9.9 in Figure
4(c) and D/D0 ≈ 3.2 in Figure 5(c) (i.e. similar to those of
D2/D0). This is a consequence of the fact that the maxima
of D1/D0 and D2/D0 do not exactly overlap in parameter
space.

The results shown in Figures 3–5 clearly stress the
importance of trapped lee wave drag, showing that it may
become an important fraction of the total drag, and be
comparable to the hydrostatic one-layer drag, especially
in considerably non-hydrostatic conditions. These aspects
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Figure 5. The same as Figure 3, but for l1a = 2.

are examined in more detail in Figure 6 for l2/l1 =
0.2, a value chosen for purely illustrative purposes. This
may seem a low value, but a large decrease of the
Scorer parameter with height (although not necessarily
discontinuous, and not necessarily due to the variation of
N ) is possible in real atmospheres (Grubišić and Stiperski,
2009; Stiperski and Grubišić, 2011).

Figure 6(a) shows the number of trapped lee wave modes,
NL, as a function of l1H/π. There is one trapped lee wave
mode between l1H/π ≈ 0.5 and l1H/π ≈ 1.5, two trapped
lee wave modes between l1H/π ≈ 1.5 and l1H/π ≈ 2.5,
and three trapped lee wave modes above l1H/π ≈ 2.5. As
pointed out for Figure 1, this result is independent both of
U1/U2 and of l1a. In Figure 6(b), the normalized trapped
lee wave wavelengths, λj l2/(2π), are shown as a function
of l1H/π. It can be seen that these quantities always depart
from a value of 1 when a new trapped lee wave mode
is established, but as l1H/π increases they asymptotically
tend to l2/l1, which in the present case is 0.2.

Figure 6(c) shows the propagating wave drag as a
function of l1H/π for the three values of l1a considered
previously, namely l1a = 2, 5, 10. As noted in Figures 3–
5, D1/D0 displays maxima at about l1H/π = 0.5 + n,
separated by minima at about l1H/π = n, where n is an
integer. It can be shown from (31) that, in hydrostatic
conditions, all maxima and minima have magnitudes of
l1/l2 and l2/l1, respectively (see also Leutbecher, 2001).
However, non-hydrostatic effects decrease these maxima
and make them become smaller as l1H/π increases, for
reasons pointed out before, related with downstream wave
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Figure 6. Normalized quantities as a function of l1H/π for l2/l1 = 0.2, U1/U2 = 1 and different values of l1a. (a) Number of trapped lee wave
modes (independent both of l1a and of U1/U2), (b) Normalized wavelengths of the trapped lee waves (independent of l1a), (c) Propagating wave drag,
(d) Trapped lee wave drag, (e) Total drag. In (c)-(e), solid lines: l1a = 10, dashed lines: l1a = 5, dotted lines: l1a = 2.

propagation. It can also be shown that non-hydrostatic
effects, when relatively weak (as in the case with l1a = 10),
can make the drag in the first, and even in the second
maximum, exceed the hydrostatic limit, as is observed in
Figure 6(c). Maxima of D1/D0 in Figure 6(c) reach a value
of ≈ 5.7 for l1a = 10, of ≈ 4.5 for l1a = 5 and of ≈ 1.7
for l1a = 2. The drag maxima for l1a = 5 and especially
l1a = 2 are sharply peaked.

Figure 6(d) shows the trapped lee wave drag as a function
of l1H/π. As noted in Figures 3–5, the maxima of D2/D0

are more localized than those of D1/D0 and are displaced
to higher values of l1H/π. The drag also increases suddenly
to its maximum as l1H/π increases (as a new lee wave
mode is established), decreasing then much more gradually.
The first maximum of D2/D0 reaches ≈ 1.2 for l1a = 10,
≈ 2.9 for l1a = 5 and ≈ 2.2 for l1a = 2. The increase of
these maxima from l1a = 10 to l1a = 5 may be attributed
to the spread in parameter space of the region where
the trapped lee wave drag is non-zero (see comments on
Figures 3–5). The decrease from l1a = 5 to l1a = 2 may
be attributed to weakening of the trapped lee waves by
downstream propagation, as explained before, an effect that
also explains why the second trapped lee wave maximum is
lower than the first, and the third is lower than the second.
Physically, the decrease of trapped lee wave drag at high
l1a probably occurs because the wavelength of the trapped
lee waves becomes too short compared to the width of the
mountain, so the contributions of the corresponding positive
and negative pressure anomalies to the drag tend to cancel
out.

The total drag D/D0 is shown as a function of l1H/π
in Figure 6(e). The behaviour of D/D0 resembles that
of D1/D0, especially for l1a = 10, but departs from it
progressively as l1a decreases. Maxima of D/D0 reach ≈
5.7 for l1a = 10, ≈ 5.0 for l1a = 5 and ≈ 2.5 for l1a = 2.
More importantly, gaps on the right slopes of the maxima of
D1/D0 are filled in D/D0, making the corresponding peaks

become wider and smoother, and extend to higher values
of l1H/π. The trapped lee wave drag and the propagating
wave drag are thus confirmed to have a complementary role,
owing to their imperfect overlap in parameter space.

A comparison of some of these results with numerical
simulations will be carried out in section 3.4.

3.2. Discontinuity in U

A situation where the discontinuity of l is purely due to
the variation of U is now considered. N is assumed to
be continuous at z = H (i.e. N1 = N2), so that l2/l1 =
U1/U2. This situation serves to illustrate leading-order
effects of the wind variation with height on the drag using
the same theoretical framework.

Because the number of trapped lee wave modes does not
depend on U1/U2, it is unnecessary to repeat a graph of this
quantity here, and Figure 1 remains valid.

Figure 7 presents the wavelengths of the first three
trapped lee wave modes, λj l2/(2π) (j = 1, 2, 3), normal-
ized in the same way as previously. The behaviour of
these quantities bears some resemblance to that shown in
Figure 2, however, one important difference is that instead
of decreasing steadily with l1H/π, the normalized wave-
lengths take an approximately constant value of ≈ 1 from
the l1H/π where the lee wave mode is established up to
a l1H/π higher by about 0.5 (for relatively low l2/l1 this
corresponds to l1H/π ≈ 1, 2, 3, respectively, for the first,
second and third trapped lee wave modes). Because this
effect is most pronounced at l2/l1 = 0, the wavelength is
no longer a uniformly increasing function of l2/l1.

In Figures 8 and 9, the two components of the drag
and their sum are presented for l1a = 10 and l1a = 2,
respectively (the case l1a = 5 is omitted for brevity). In
Figures 8(a) and 9(a), the main differences relative to
Figures 3(a) and 5(a) are that the propagating wave drag
D1/D0 has maxima at l1H/π = n (where n is an integer)
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Figure 7. Normalized trapped lee wave wavelengths λj l2/(2π) as a
function of l2/l1 and l1H/π for U1/U2 = l2/l1. These quantities are
independent of l1a. (a) j = 1, (b) j = 2, (c) j = 3. No trapped lee waves
exist to the left of the thick line, which corresponds to λj l2/(2π) = 1.
Contour spacing: 0.1.

instead of at l1H/π = 0.5 + n, and these maxima are lower,
never exceeding≈ 4.6 and≈ 0.9, respectively. The location
of these maxima is easily explained using (31), by assuming
that U1/U2 = l2/l1. The trapped lee wave drag, shown in
Figures 8(b) and 9(b), on the other hand, has non-zero
values in approximately the same regions as in Figures
3(b) and 4(b), but the maxima occur at values of l1H/π
slightly higher than l1H/π = n, rather than higher than
l1H/π = 0.5 + n. Additionally, the maxima of D2/D0 are
much larger, attaining a value≈ 179 for l2/l1 = 0 in Figure
8(b) and ≈ 9.8 in Figure 9(b). The total drag, displayed
in Figures 8(c) and 9(c), is dominated by these maxima,
reaching values of ≈ 180 and ≈ 9.8, respectively (which
are of limited meteorological relevance), but at higher l2/l1
is dominated by the propagating wave drag contribution
(particularly in Figure 8(c)). As in Figure 5, D/D0 in Figure
9(c) has a considerably smoother appearance than D1/D0

in Figure 9(a), due to filling of some gaps in the D1/D0

field by the trapped lee wave drag.
Figure 10 presents results for l2/l1 = 0.2, as in Figure

6, but where the discontinuity in l is purely due to U ,
namely U1/U2 = 0.2. Figure 10(a) shows the normalized
wavelengths of trapped lee waves λj l2/(2π) as a function
of l1H/π. The wavelengths are decreasing functions of
l1H/π, with the same asymptotic values as in Figure 6(a),
but show a plateau after l1H/π = 0.5 + n, as noted in
Figure 7. As pointed out in Figure 8, the maxima of the
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Figure 8. Normalized drag a a function of l2/l1 and l1H/π for l1a = 10
and U1/U2 = l2/l1. (a) Propagating wave drag, (b) Trapped lee wave
drag, (c) Total drag. Contours at 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5,
and so on.

propagating wave drag D1/D0, shown in Figure 10(b), are
now centred at l1H/π = n, where n is an integer. The
magnitude of these maxima is≈ 3.9 for l1a = 10,≈ 2.3 for
l1a = 5 and ≈ 0.7 for l1a = 2. Curiously, the drag maxima
decrease very little as l1H/π increases, which means that
the effect of downstream propagation on the decrease of the
energy density in the lower layer seems relatively modest
here. However, it probably only makes sense to analyze
this effect for the total drag. The trapped lee wave drag,
displayed in Figure 10(c), has a different configuration from
the corresponding quantity displayed in Figure 6(d). Instead
of extending primarily to the right of the maxima, as in
Figure 6(d), the non-zero drag regions can now extend to
both sides, since the condition for the existence of trapped
lee waves remains the same as in section 3.1. The maxima
of D2/D0 take a modest value of≈ 0.6 for l1a = 10,≈ 2.2
for l1a = 5 and≈ 2.3 for l1a = 2. The total drag, displayed
in Figure 10(d), attains maxima of ≈ 4.3 for l1a = 10, of
≈ 4.4 for l1a = 5 and of ≈ 2.9 for l1a = 2.

Differences between the results presented in the current
section and those presented in section 3.1 may be attributed
primarily to the effect of the boundary conditions at z = H ,
(10) and (11), since these depend on the ratio U1/U2, unlike
the Taylor-Goldstein equation (1), which only depends on
the Scorer parameter and not on N and U individually.
Clearly, the phase of the wave reflection at z = H is altered
by the jump in U , so that locations of the drag maxima
are shifted, in agreement with (31). Concerning the drag,
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Figure 10. Normalized quantities as a function of l1H/π for l2/l1 = 0.2, U1/U2 = 0.2 and different values of l1a. (a) Normalized wavelengths of the
trapped lee waves (independent of l1a), (b) Propagating wave drag, (c) Trapped lee wave drag, (d) Total drag. In (b)-(d), solid lines: l1a = 10, dashed
lines: l1a = 5, dotted lines: l1a = 2.
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Figure 9. The same as Figure 8, but for l1a = 2.

a unifying feature between Figure 6 and Figure 10 is that
drag maxima occur in regions of parameter space where the
trapped lee wave wavenumber varies rapidly with l1H/π.

This rapid variation results directly from the resonance
condition (21), but the fact it coincides with drag maxima is
a consequence of D2 being proportional to m2

1 and n2 (see
(24)), both of which become zero for the extreme values of
λj l2/(2π). Hence the drag is maximized for intermediate
values of this quantity.

From a theoretical point of view, it is instructive to
consider an intermediate situation, where both N and U are
discontinuous at z = H . This is done next.

3.3. Discontinuities both in N and U

When the discontinuity in l at z = H is due simultaneously
to discontinuities in N and U , many possible combinations
exist. Since the situations treated in the previous two
sections led to a different location of the drag maxima,
a transition between these two cases is aimed at.
Equations (31) and (32) suggest that this transition occurs
for U1/U2 = (l2/l1)1/2, where, as pointed out before,
D1/D0 = 1 in the hydrostatic approximation. However,
non-hydrostatic effects slightly modify this situation.
For that reason, U1/U2 = (l2/l1)0.6, implying N2/N1 =
(l2/l1)0.4, is assumed here instead, which better focuses on
the transition (the value of 0.6 for the exponent was found
by trial and error).

Concerning the number of existing trapped lee wave
modes, Figure 1 remains, again, valid, because this quantity
does not depend on U1/U2.

Figure 11 presents the normalized wavelengths of the
trapped lee wave modes, λj l2/(2π) (j = 1, 2, 3). The
behaviour of these quantities is qualitatively similar and
intermediate relative to those displayed in Figures 2 and
7. The region of parameter space near the establishment
of each trapped lee wave mode, where λj l2/(2π) take an
approximately constant value of 1 is smaller than in Figure
7, extending for l2/l1 = 0 mostly up to l1H/π ≈ 0.75, 1.75
and 2.75 for the first, second and third trapped lee wave
modes, respectively.

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–16 (2011)
Prepared using qjrms4.cls



Drag produced by trapped lee waves 11

0 0.5 1 1.5 2 2.5 3

l1H/π

(a)

0

0.2

0.4

0.6

0.8

1

l 2/
l 1

0 0.5 1 1.5 2 2.5 3

l1H/π

(b)

0

0.2

0.4

0.6

0.8

1

l 2/
l 1

0 0.5 1 1.5 2 2.5 3

l1H/π

(c)

0

0.2

0.4

0.6

0.8

1

l 2/
l 1

Figure 11. Normalized trapped lee wave wavelengths λj l2/(2π) as a
function of l2/l1 and l1H/π for U1/U2 = (l2/l1)0.6. These quantities
are independent of l1a. (a) j = 1, (b) j = 2, (c) j = 3. No trapped lee
waves exist to the left of the thick line, which corresponds to λj l2/(2π) =
1. Contour spacing: 0.1.

In Figures 12 and 13, the drag behaviour is displayed for
l1a = 10 and l1a = 2, respectively. Figure 12(a) shows the
propagating wave drag. For l2/l1 ≈ 1, D1/D0 approaches
1 in Figure 12(a) as expected, but for low l2/l1, and unlike
in Figures 3–5 and 8–9, there are not very well-defined drag
maxima and minima, despite the large contrast in l between
the two atmospheric layers. On the contrary, D1/D0 tends
to decrease towards zero as l2/l1 → 0, and does not exceed
≈ 1.1. This behaviour, excepting the decrease of the drag to
zero at l2/l1 = 0, is consistent with (31), where D1/D0 = 1
for U1/U2 = (l2/l1)1/2. Clearly, for fairly similar values
of U1/U2, a relative suppression of the drag extrema is
preserved, even in non-hydrostatic conditions. In Figure
13(a) D1/D0 is always lower than 1 and has a maximum
of ≈ 0.8, generally decreasing as l2/l1 decreases, without
any clearly defined peaks.

In Figures 12(b) and 13(b), where the trapped lee wave
drag is shown for l1a = 10 and l1a = 2, respectively, it
can be seen that the D2/D0 pattern, on the other hand,
resembles somewhat that shown in Figures 8(b) and 9(b),
with absolute maxima of D2/D0 (reaching≈ 45.7 in Figure
12(b) and ≈ 7.6 in Figure 13(b)) centred at l2/l1 = 0 and
near l1H/π = n, where n is an integer. However, the non-
zero drag zones extend to lower values of l1H/π than in
Figures 8 and 9. More importantly, the structure of the drag
maxima in (l2/l1,l1H/π) parameter space is slanted, with

0 0.5 1 1.5 2 2.5 3

l1H/π

(a)

0

0.2

0.4

0.6

0.8

1

l 2/
l 1

0 0.5 1 1.5 2 2.5 3

l1H/π

(b)

0

0.2

0.4

0.6

0.8

1

l 2/
l 1

0 0.5 1 1.5 2 2.5 3

l1H/π

(c)

0

0.2

0.4

0.6

0.8

1

l 2/
l 1

Figure 12. Normalized drag a a function of l2/l1 and l1H/π for l1a = 10

and U1/U2 = (l2/l1)0.6. (a) Propagating wave drag, (b) Trapped lee
wave drag, (c) Total drag. Contours at 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1,
2, 5, and so on.

the maxima as a function of l1H/π shifting to lower values
of this parameter as l2/l1 increases.

Figures 12(c) and 13(c) present the total drag D/D0.
The corresponding field has maxima of ≈ 45.7 in Figure
12(c) and of ≈ 7.6 in Figure 13(c), like D2/D0 and, again,
displays a smoother structure resulting from the merging of
complementary contributions given by D1/D0 and D2/D0.

The main conclusion from Figures 12-13 is that the
propagating wave drag and the trapped lee wave drag are
affected differently by the profiles of N and U prescribed
here. Specifically, no cancellation of the drag maxima like
the one predicted by (31) for D1/D0 is observed for
D2/D0.

In Figure 14, results are presented as a function of
l1H/π for l2/l1 = 0.2, as in the two previous sections,
but keeping the same proportions for the discontinuities of
N and U as in Figures 12–13. Hence U1/U2 = 0.20.6 ≈
0.38 and N2/N1 = 0.20.4 ≈ 0.53. Figure 14(a) confirms
the comment made about Figure 11, that the decrease of the
normalized wavelengths of the trapped lee waves λj l2/(2π)
from their maximum of 1 to their asymptotic value of
0.2 occurs initially at a rate intermediate between that of
Figures 6 and 10.

The propagating wave drag D1/D0, shown in Figure
14(b), has a very different behaviour from that shown in
Figures 6(c) or 10(b), since the maxima are much lower and
the minima higher, which is consistent with Figures 12–13.
For l1a = 10, drag maxima (of ≈ 1.1) occur at l1H/π =
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Figure 14. Normalized quantities as a function of l1H/π for l2/l1 = 0.2, U1/U2 = 0.38 and different values of l1a. (a) Normalized wavelength of
the trapped lee waves (independent of l1a), (b) Propagating wave drag, (c) Trapped lee wave drag, (d) Total drag. In (b)-(d), solid lines: l1a = 10,
dashed lines: l1a = 5, dotted lines: l1a = 2.
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Figure 13. The same as Figure 12, but for l1a = 2.

n, where n is an integer, with, however, small secondary
maxima at l1H/π = 0.5 + n. For l1a = 5, the magnitude
of D1/D0 generally decreases, but the maxima (of≈ 0.7) at

l1H/π = 0.5 + n and those at l1H/π = n have almost the
same magnitude, although the former have sharper peaks.
For l1a = 2, the magnitude of D1/D0 decreases further,
but the maxima (of ≈ 0.2) at l1H/π = 0.5 + n become
dominant. The trapped lee wave drag D2/D0, presented in
Figure 14(c), has maxima which decrease in magnitude as
l1H/π increases and become larger as l1a decreases, taking
values of up to ≈ 0.3 for l1a = 10, ≈ 1.2 for l1a = 5 and
≈ 1.4 for l1a = 2. Unlike those in Figures 6(d) and 10(c),
however, the values of l1H/π at which these maxima are
centred shift from≈ 0.75 + n for l1a = 10 to slightly lower
than l1H/π = n for l1a = 2. This behaviour shows that
the location of the trapped lee wave drag maxima in this
transitional case is not only a function of l2/l1 (as shown in
Figures 12–13), but also of l1a.

The total drag D/D0, presented in Figure 14(d),
shows non-zero values everywhere like D1/D0, and well
defined maxima like D2/D0, but a smooth variation,
without any sharp peaks. The maxima, which are centred
between slightly above l1H/π ≈ 0.75 + n (for l1a = 10)
and slightly below l1H/π = n (for l1a = 2), take values
reaching ≈ 1.2 for l1a = 10, ≈ 1.8 for l1a = 5 and ≈ 1.6
for l1a = 2.

The behaviour of the drag in the three preceding sections
can be better understood using the reflection coefficient
R. Figure 15 shows R as a function of l2/l1 and the
wavenumber normalized by l2, k/l2, the two dimensionless
parameters on which this quantity depends. Note that k/l2
takes values between 0 and 1 for the vertically propagating
waves. When U1/U2 = 1 (Figure 15(a)) or U1/U2 = l2/l1
(Figure 15(b)), the cases treated in sections 3.1 and 3.2,
respectively, it can be seen that R varies from 0 to 1 as
l2/l1 varies from 1 to 0 in hydrostatic conditions (k/l2 ≈ 0).
The same qualitative tendency is also roughly followed
for higher k/l2 (i.e. non-hydrostatic conditions), but the
behaviour of R becomes asymmetric, increasing with k/l2
for U1/U2 = 1 and decreasing for U1/U2 = l2/l1. This
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Figure 15. Reflection coefficient (12) for the vertically propagating waves
as a function of k/l2 and l2/l1. (a) U1/U2 = 1, (b) U1/U2 = l2/l1, (c)
U1/U2 = (l2/l1)1/2, (d) U1/U2 = (l2/l1)0.6. Contour spacing: 0.1

may account for the relatively smaller maxima of D1/D0

seen in Section 3.2 for the second case, compared with those
seen in Section 3.1 for the first case. Figure 15(c) presents
R for the case U1/U2 = (l2/L1)1/2. As noted previously,
R = 0 in hydrostatic conditions (k/l2 ≈ 0), but becomes
R > 0 when k/l2 > 0. In Figure 15(d), R is presented
for U1/U2 = (l2/l1)0.6, as assumed in the present section.
Although in Figure 15(d) R is non-zero for k/l2 = 0, it
attains smaller values than in Figure 15(c) for higher k/l2.
This may account for the near-absence of D1/D0 maxima
in Figures 12, 13 and 14, since for U1/U2 = (l2/l1)0.6 the
reflection coefficient is presumably minimized for the range
of k contributing to this part of the drag.

3.4. Comparison with numerical simulations

In order to test the preceding theoretical predictions from
linear theory, some numerical simulations were carried out
using the FLEX numerical model (Argaı́n et al., 2009) for
the case treated in section 3.1, namely a discontinuity in l
at z = H due only to the discontinuity of N . It would not
be appropriate to address the cases of sections 3.2 and 3.3,
where U is discontinuous, because, as mentioned before,
this would produce Kelvin-Helmholtz instability at z = H ,
which is incompatible with steady flow.

FLEX is a 2D micro-to-mesoscale model using
orthogonal curvilinear coordinates, employed previously
by the authors to address various problems of resonant
mountain wave flow (Teixeira et al., 2005, 2008, 2012). The
numerical simulations performed here used a horizontal
resolution of ∆x = 200m and a vertical resolution of ∆z =
24m. The wind velocity was assumed to be U = 10 m s−1,
and the static stability in the lower and upper layers
was assumed to be N1 = 0.02 s−1 and N2 = 0.004 s−1,
respectively. This gives N2/N1 = 0.2 and l2/l1 = 0.2.

The mountain was assumed to have a bell-shaped form,
(27), with height h0 = 10 m, which gives l1h0 = 0.02, i.e.,
strongly linear flow. The mountain width was assumed to be
a = 1000 m, 2500 m, or 5000 m. This gives, respectively,
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Figure 16. Normalized trapped lee wave wavelengths as a function of
l1H/π for l2/l1 = 0.2 and U1/U2 = 1 from linear theory (lines) and
from numerical simulations (symbols). Solid line and circles: 1st trapped
lee wave mode, dashed line and squares: 2nd trapped lee wave mode, dotted
line and triangles: 3rd trapped lee wave mode. Numerical simulation results
are for l1a = 2, although the displayed quantities should be independent
of this parameter.

l1a = 2, l1a = 5, or l1a = 10, as considered in Figure 6.
The number of grid points in the vertical was always Nz =
916, which makes the domain extend up to z = 21984 m,
or approximately 7 hydrostatic vertical wavelengths 2π/l1,
while the number of grid points in the horizontal was
Nx = 250 for l1a = 2, Nx = 625 for l1a = 5, and Nx =
1250 for l1a = 10. This gives a horizontal domain extent
of 50 km, 125 km, and 250 km, respectively, which always
corresponds to 50a (10a upstream of the mountain and 40a
downstream of it).

The time step used in the model integration was ∆t =
0.5 s for l1a = 2, ∆t = 1.0 s for l1a = 5, and ∆t = 2.0 s
for l1a = 10. The number of time steps considered was that
necessary to make the drag stabilize to an approximately
constant value. It corresponded to an integration time of
≈ 500a/U , or ≈ 14 hours for l1a = 2, ≈ 35 hours for
l1a = 5, and ≈ 69 hours for l1a = 10. A sponge layer
was applied at the top of the domain over a depth of
≈ 2.5 hydrostatic wavelengths. The radiation boundary
condition of Raymond and Kuo (1984) was imposed at
the downstream boundary, but sponge layers, spanning 15
and 30 grid points, respectively, were also applied at the
upstream and downstream boundaries.

Figure 16 shows the normalized wavelengths of the
trapped lee waves λj l2/(2π) from numerical simulations
with l1a = 2 (symbols), and from linear theory (the lines
reproduce those of Figure 6(b)). Numerical simulations
with l1a = 5 and l1a = 10 (not shown) gave essentially
similar results, which is consistent with the prediction from
linear theory that λj l2/(2π) does not depend on l1a. The
wavelengths were determined in the numerical simulations
by taking the power spectrum of the vertical velocity
field downstream of the mountain at a given height (z =
0.7H) and determining the maximum of this spectrum.
It may be seen that there is excellent agreement between
the numerical and the analytical results, with the trapped
lee wave wavelength in the numerical simulations being
predicted very accurately by linear theory.

Figure 17 shows the normalized total drag D/D0 from
the numerical simulations (symbols) and from linear theory
(solid lines), for l1a = 10 (Figure 17(a)), for l1a = 5
(Figure 17(b)) and for l1a = 2 (Figure 17(c)). Also shown
for reference are the propagating wave drag (dashed lines)
and the trapped lee wave drag (dotted lines) from linear
theory (although possible, it is not easy to separate these
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Figure 17. Normalized drag as a function of l1H/π for l2/l1 = 0.2,
U1/U2 = 1 and different values of l1a from the analytical model (lines)
and from numerical simulations (symbols). Solid line and symbols: total
drag D/D0, dashed line: propagating wave drag, D1/D0, dotted line:
trapped lee wave drag, D2/D0. (a) l1a = 10, (b) l1a = 5, (c) l1a = 2.

two components of the drag in the numerical results). It
can be seen that the total drag given by linear theory in
Figure 17(a) and 17(b) is in very good agreement with that
provided by the numerical simulations. In Figure 17(a) the
total wave drag is not too different from the propagating
wave drag, since the trapped lee wave drag is relatively
small. However, in Figure 17(b), where the magnitude of the
two drag components is more comparable, it becomes clear
that both their contributions are necessary to obtain good
agreement with the numerical results, since none of them
in isolation accurately predicts those results. This can also
be noticed in Figure 17(c), where the trapped lee wave drag
component has become dominant. Although the agreement
is not as good as in Figure 17(a) and 17(b), clearly both
drag components are necessary to correctly predict the drag
given by the numerical simulations.

As a brief illustration of the flow structure associated
with the drag behaviour described above, Figure 18 presents
the normalized vertical velocity perturbation w/(Uh0/a)
obtained from numerical simulations similar to those used
to produce the results of Figures 16 and 17. Figure 18(a)
shows results for l1H/π = 0.5, a case just before the
establishment of the first trapped lee wave mode, and so
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Figure 18. Normalized vertical velocity perturbation w/(Uh0/a) from
the numerical simulations for l1a = 2, l2/l1 = 0.2 and U1/U2 = 1 as
a function of x/a and l1z/π. Contour spacing: 0.1. Solid contours: non-
negative values, dashed contours: negative values, thick dashed line: z =
H . (a) l1H/π = 0.5, (b) l1H/π = 0.7.

where linear theory predicts D2/D1 = 0 and D/D0 = 1.4.
In Figure 18(b), a case with l1H/π = 0.7 is presented,
where linear theory predicts D1/D2 = 0.05 and D/D0 =
1.6. In Figure 18(a) the typical structure of vertically
propagating mountain waves can be seen, with the flow
tilted in the upstream direction and no substantial wave
decay in the upper layer. In 18(b), by contrast, the
structure typical of trapped lee waves is visible, with a
shorter horizontal wavelength, no flow tiling in the vertical,
and wave decay in the upper layer. In each case, the
flow structure is clearly consistent with the drag partition
associated with it.

These comparisons give some confidence in the
theoretical results calculated before, suggesting that the
cases addressed in sections 3.2 and 3.3 are also correct.

4. Concluding Remarks

The surface drag force associated with trapped lee waves
and upward propagating internal gravity waves generated
in non-hydrostatic stratified flow over a 2D ridge was
investigated using linear theory. Following the original
approach of Scorer (1949), a two-layer atmosphere was
considered, with a piecewise-constant Scorer parameter.
This is the simplest possible model setup that is able
to produce trapped lee waves. However, unlike in Scorer
(1949), the possibility of discontinuities in both the static
stability and the wind speed was considered. The main aim
of this study was to compare the magnitude of trapped lee
wave drag to the magnitude of propagating wave drag, and
the magnitude of those two drags to that of the drag for a
single-layer hydrostatic atmosphere with a constant Scorer
parameter. The very idealized conditions adopted here seem
justified, since they preserve essential physical processes,
while allowing the problem to be analytically tractable.
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It was found that:

• As initially suggested by the numerical study of
Stiperski and Grubišić (2011), the trapped lee wave
drag may have a magnitude comparable to that of
the propagating wave drag, and both drags may be
substantially larger than the reference one-layer drag.

• Both drag components are maximized for large
contrasts in Scorer parameter between the two layers
(small l2/l1) and values of l1H corresponding to
resonant wave amplification in the lower layer.
However, while the propagating wave drag is larger in
approximately hydrostatic conditions (i.e. large l1a),
trapped lee wave drag is larger when l1a is of O(1).
This happens because, for the pressure perturbations
associated with trapped lee waves to be optimally
efficient, they must have a scale that matches the
mountain width. This aspect deserves further study.

• When the jump in the Scorer parameter is due
to N only (i.e. U1/U2 = 1), the maxima either
of the propagating drag or of the trapped lee
wave drag occur near l1H/π = 0.5 + n, where n
is an integer. When the jump is only due to
the discontinuity in U (i.e. U1/U2 = l2/l1), the
drag maxima are located instead near l1H/π = n.
In intermediate situations (U1/U2 ≈ (l2/l1)1/2), the
propagating wave drag is not substantially amplified,
since the reflection coefficient at z = H takes values
near zero. However, the modulation and possibility of
amplification of trapped lee waved drag persists, since
the corresponding waves always have a reflection
coefficient of 1 at z = H .

The linear results calculated for the case with U1/U2 =
1 were compared with similar results from numerical
simulations, showing very good agreement.

The rich behaviour revealed by these calculations shows
that there are many situations where the trapped lee
wave drag may exceed the propagating wave drag, and
the hydrostatic drag for a single-layer atmosphere. Since
the latter is the reference value generally used in drag
parametrizations, the present results emphasize the need to
account for trapped lee wave drag in such parametrizations.
As trapped lee waves are essentially non-hydrostatic, and
therefore forced by relatively narrow mountains, their
correct representation will remain a relevant issue even
as the horizontal resolution of large-scale meteorological
models increases.

Obviously, the mean atmospheric profiles considered
here may be viewed as no more than crude approximations
to real profiles with sudden vertical variations. A more
systematic study of trapped lee wave drag would require
considering much more complex vertical variations of
N and U , either continuous or comprising more layers.
Depending on their local rates of variation, continuous
atmospheric profiles should modify or suppress partial
wave reflections, leading to changes in the propagating
wave drag. Since the trapping height for trapped lee waves
then necessarily depends on the wavenumber, the resonant
trapped lee wave drag amplification process is likely to
become weaker. However, its basic mechanism should
remain essentially the same as considered here, relying
on constructive interference of upward and downward
propagating waves.

It would also be useful to take into account flow
over three-dimensional mountains and frictional effects,

the latter of which are actually crucial for representing
dissipative processes mediating the reaction force exerted
by the mountains on the atmosphere. To address
those situations using linear theory, more sophisticated
mathematical techniques would be necessary.

As mountains with realistic heights typically generate
nonlinear trapped lee waves, and the amplitude of these
waves is known to be substantially larger than predicted by
linear theory (Vosper, 2004), the concepts outlined here gain
still higher practical relevance.
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Appendix A. Expressions for a1, b1, c1 and d1

From application of (9)-(11) to (3)-(6), in the case where the
waves are propagating in both atmospheric layers (k2 < l22),
it can be shown that

a1 =
iU1kĥ(U2

1 m1 + U2
2 m2) e−im1H

2U2
1 m1 cos(m1H)− 2iU2

2 m2 sin(m1H)
, (A1)

b1 =
iU1kĥ(U2

1 m1 − U2
2 m2) eim1H

2U2
1 m1 cos(m1H)− 2iU2

2 m2 sin(m1H)
. (A2)

When the waves propagate vertically in the lower layer, but
not in the upper one (l22 < k2 < l21), then

a1 =
U1kĥ(iU2

1 m1 − U2
2 n2) e−im1H

2U2
1 m1 cos(m1H) + 2U2

2 n2 sin(m1H)
, (A3)

b1 =
U1kĥ(iU2

1 m1 + U2
2 n2) eim1H

2U2
1 m1 cos(m1H) + 2U2

2 n2 sin(m1H)
. (A4)

Finally, when the waves are evanescent in both layers (k2 >
l21), it can be shown that

c1 =
iU1kĥ(U2

1 n1 + U2
2 n2) en1H

2U2
1 n1 cosh(n1H) + 2U2

2 n2 sinh(n1H)
, (A5)

d1 =
iU1kĥ(U2

1 n1 − U2
2 n2) e−n1H

2U2
1 n1 cosh(n1H) + 2U2

2 n2 sinh(n1H)
. (A6)

These expressions result from the different forms for the
wave solutions that apply in each case (see (3)-(6)).

Appendix B. Evaluation of trapped lee wave drag

For the purpose of explicitly evaluating (20), it is useful to
perform the following change of variable, k → φ:

k =
(

U4
1 l21 sin2 φ + U4

2 l22 cos2 φ

U4
1 sin2 φ + U4

2 cos2 φ

)1/2

, (B1)

in terms of which (20) may be written

D2 = 4πρ0U
6
1 U6

2 (l21 − l22)
3/2 Im

{∫ π/2

0

|ĥ(φ)|2

× sin φ cos2 φ
(
U4

1 sin2 φ + U4
2 cos2 φ

)5/2
tan(φ−m1H) dφ

}
,

(B2)
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π2 1φ φ0 /2

Figure B1. Schematic diagram of the integration path for the integral in
(B2) along the real axis. The imaginary positive semi-plane is assumed to
exist above this line. Two singularities, corresponding to two trapped lee
wave modes, are denoted by φ1 and φ2. Their order is consistent with
Figures 2, 7 and 11, and (B1), i.e. wave modes of higher order correspond
to a lower wavenumber, and thus to a lower value of φ.

where

m1 = (l21 − k2)1/2 =
U2

2 (l21 − l22)
1/2 cosφ

(U4
1 sin2 φ + U4

2 cos2 φ)1/2
. (B3)

From (B2), the condition for the location of singularities is
just

m1H − φ =
π

2
+ (j − 1)π, (B4)

where j is any positive integer number. At the discrete
points determined by (B4) the tangent function in (B2)
becomes infinite. The roots of (B4), which will be called
φj (j being the corresponding integer index), must be found
numerically. This method of finding the singularities has the
advantage over that of Scorer (1949) that the roots only need
to be sought within the fixed interval [0, π/2].

The next step is to evaluate the integral in (B2) at these
singularities. It may shown that, with the addition of friction
to this problem, the singularities move to the negative
imaginary semi-plane. This means that the integration
path in the inviscid problem under consideration must be
indented above the singularities (see Figure B1). If the
integration is carried out in this way, then

D2 = 4π2ρ0U
6
1 U6

2 (l21 − l22)
3/2

∑

j

|ĥ(φj)|2

× sin φj cos2 φj

(U4
1 sin2 φj + U4

2 cos2 φj)5/2
{

1− ∂m1
∂φ (φj)H

} ,

(B5)

where

∂m1

∂φ
(φ) = − n2(φ)U2

1 U2
2

U4
1 sin2 φ + U4

2 cos2 φ
. (B6)

In (B5), the sum is carried out over all existing singularities,
i.e. trapped lee wave modes. Therefore, the drag only
receives contributions from a discrete set of wavenumbers.
Equation (B5) further simplifies if (B3), (B6) and

n2 = (k2 − l22)
1/2 =

U2
1 (l21 − l22)

1/2 sin φ

(U4
1 sin2 φ + U4

2 cos2 φ)1/2
(B7)

are used.
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