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Inverse Problems in Neural Field Theory

Roland Potthast and Peter beim Graben
|

Abstract. We study inverse problems in neural Peld theory, i.e., the construction of synaptic weight ker-
nels yielding a prescribed neural beld dynamics. We address the issues of existence, uniqueness,
and stability of solutions to the inverse problem for the Amari neural Peld equation as a special
case, and prove that these problems are generally ill-posed. In order to construct solutions to the
inverse problem, we brst recast the Amari equation into a linear perceptron equation in an inbnite-
dimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function
systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning
rule. Numerically, this construction is implemented by the MoorebPenrose pseudoinverse method.
We demonstrate the instability of these solutions and use the Tikhonov regularization method for
stabilization and to prevent numerical overbtting. We illustrate the stable construction of kernels
by means of three instructive examples.

Key words. neural beld theory, Amari equation, inverse problem, neural learning, Hebbian learning rule,
Tikhonov regularization, kernel construction
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1. Introduction. In this paper, we address theinverse problemfor neural “eld theories.
Neural “elds are continuum limits of neural networks, which are generally described by integro-
di erential equations [1, 3, 9, 10, 12, 15, 16, 21, 22, 32, 33, 40, 42]. Performing this limit for
a recurrent neural network of n leaky integrator units with activations u;j(t) R [2, 4, 5, 19,
37, 41],

uj A
(1) — (= SuM+ w1
j=1
with positive time constant > 0, synaptic weightsw;; , and the nonlinear squashing function
f :R [0, 1], which is assumed to be smooth and monotonous, one obtains tme-dimensional
Amari equation [1]

(2) %(X,t) = Su(x,t)+  w(x,y)f (u(y,t)) dy, x D, t> 0,
D

with initial condition
) u(x, 0) = uo(x), x D.
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In (2), w(x,y) denotes thesynaptic weight kerneldescribing the connectivity between points
y,Xx R™ situated in a domainD R™ with m N.

In applications of neural networks described by () in the engineering or cognitive sciences,
one prescribes a certain dynamics;(t) of the nodes (or of a subset of nodes de“ning an output
layer) and asks for a suitable weight matrixW = (w;; ) yielding the desired evolution. In other
words, one solves the inverse problem estimatingV given v;(t). This is usually achieved by
means of backpropagation algorithms %, 7, 19, 25, 27, 28, 36, 3§].

Related inverse problems inneural “eld theories comprise the estimation of the synaptic
weight kernelw(x, y) from a prescribed dynamically evolving “eld v(x, t) within a time interval
[0, T], whereT RorT = might be considered. Methods to solve this problem would be
mandatory for modeling transient dynamic “elds in cognitive neurodynamics p, 14, 22, 35, 39].

In this paper, we approach the inverse problem for neural “elds using technigues from
functional analysis and numerical mathematics. Our approach relies upon recasting the Amari
equation (2) into a simple linear perceptron equation in an in“nite-dimensional Banach or
Hilbert space. Such spaces are naturally given by8C (D) or L?(D) for the neural domain D
under consideration, and we need to investigate the in“nite-dimensional operator-analogugV
of the matrix W above.

To our knowledge the “eld theoretical approach for neural inverse problems has not been
widely studied yet. However, we believe that the reliable solution of neural “eld inverse
problems on di erent levels of brain modeling can provide important new mathematical input
into the extremely important “eld of cognitive neurodynamics. This work provides a “rst step
in this direction by bringing together results from di erent communities and suggesting stable
methods for solving important basic inverse problems for the Amari neural “eld equation.

Let us brie”y review the well-known “nite-dimensional case as an excursus.Perceptrons
are one-layered neural networks with feed-forward architecturel9, 26, 34]. A linear perceptron
of n input units with activations ux (1 k n) and m output units with activations v,
(1 i m)is governed by the equation

4) Vi = Wik Uk

or, in matrix notation,
(5) v=W,

withu R",v R™ andW RM™*N,

The inverse problem of determining the synaptic weightswj, for such alinear associator
can be straightforwardly solved if distinguished orthogonal input vectors pt) (1 j )
should be associated with output vectors q{). In this case, the weight matrix is simply given
as

j=1

where =1/ isthe learning rate and  Z denotes the matrix transpose. Equation ) is called
the Hebb rule [18, 19, 20]. If, on the other hand, the input vectors p(U) are not orthogonal
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but still linearly independent, the solution reads

i=1

where M is the overlap matrix of the input vectors,
(8) (M) = p®,p® .

This solution can also be expressed by means of the Moore...Penrose pseudoinverse meilgd |
In general, this problem is ill-posed and nonunique. We will provide a detailed discussion of
the phenomena for particular examples in sectiorb.2.

Here, we will study the kernel construction problem in an in“nite-dimensional spaceX .
We study uniquenessand stability of the problem by investigating di erent types of arguments,
for example via smoothing properties of the operato'WW or by means of orthogonal systems
in Hilbert spaces. In particular, we derive a solvability condition which corresponds to a
generalized Hebbian learningrule. We will derive a continuous version of (7), where we work
with biorthogonal basedn Hilbert spaces. In general, this inversion will be ill-posed and needs
to be regularized, for which we will employ the Tikhonov regularization scheme.

The paper is structured as follows. In section2 we collect basic de“nitions and formulate
the full “eld neural inverse problem as an integro-di erential equation. Then, that equation is
reformulated as a kernel construction problem for a linear integral operator. Sectior8 serves
to derive results on existence, unigueness, and stability for the kernel construction problem.
In particular, here we observe the strong relationship between general results in Hilbert spaces
and the convergence of the Hebbian learning rule for training of neural “elds.

In section 4 we study the case of convolution kernels. We show that this case can be
converted into an integral equation of the “rst kind with a compact operator. As a result the
inverse problem is ill-posed; i.e., in general there is no solution to the problem, and even if
we have a solution for given data, the solution does not depend in a stable way on the data.
Further, we show that the ill-posedness of the particular problem vyields the ill-posedness of
the full “eld neural inverse problem.

Section 5 is dedicated to the explicit construction of approximate solutions by biortho-
normal basis functions When sequences of patterns obtained from sampling the prescribed
solution with respect to the time variable build a Riesz basis in the underlying Hilbert space,
we obtain feasibility of the construction. We use section6 to describe a numerical realiza-
tion of the above methods by means of the Moore...Penrose pseudoinverse or, more generally,
the Tikhonov regularization method. We demonstrate the instability of the Moore...Penrose
solution and how the diculties can be remedied by regularization. Numerical examples
implementing the theoretical results and showing the feasibility of the tools are provided.
We conclude with three instructive examples for kernel construction problems for the Amari
equation (2).

2. The direct and the inverse problems. We study neural “elds u(x,t) depending on the
space variablex D with some bounded domainD R™ and thetimet 0 governed by the
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Amari equation (2) with initial condition (3), with f : R [0, 1] being some given smooth
and monotonous function. We de“ne the synaptic weight operator

9) (W )(x) = DW(X,Y) (y)dy, x D,

which is acting on the space variable of the functions under consideration. Then, the neural
“eld equation (2) is given hy

(20) %(x,t)z Su(x,t)+ WTF (u(-t)) (x), x D,t> 0.

We employ the functions

(11) (1) = %{KU+[KKU, x Dt O
and
(12) (x,t) := f(u(x,t)), x D,t O

With and given by (11) and (12), the neural “eld equation can be equivalently written as
(13) =W onDxR".

This is a generalized inverse operator problefrwhereW is an integral operator with kernel w.
The discretized version of the inverse problem 13) is the construction of a matrix W~ R™"
which satis“es

(14) O=w O

for a family of elements (), ()  RM forall j J with some index setJ. This corresponds
to the perceptron equation (5).

Here, we focus on the study of the continuous problem3) and will employ a numerical
guadrature scheme in the last section for numerical experiments. For basic results on existence
of the solution to the direct problem [31] we use the notation

BC%Y(D) x LY(D)

for the space of the kernel functionw(x, y). The notation means that w(x, -) is in L1(D) for
eachx D and that the element w(x, -) depends Lipschitz continuously on the variablex D
and is uniformly bounded onD x D R™ x R™,

Let X denote either the Banach space of bounded continuous functionrBC (D x D), the
space of square integrable functions.?(D x D), or the spaceBC%}(D) x L1(D) from above.
Then we can formulate the general inverse problem for the neural “eld equation as follows.
Here, we consider either a “nite time interval [0, T] with T 0 or in“nite time intervals [0, ),
which we denote byT = . We will assume that our functions are continuous on the compact
interval [0, T]; i.e., they are bounded for “nite time.
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Debnition 2.1 (full Peld aural inverse problem)Given a function
v BC(D)x BC'([0,T])

for someT R* {} and with v(x, 0) = ug(x), the full “eld neural inverse problem is to
construct a kernelw in X such that the solution of the neural “eld equation(2) is given byv.

By (13) or the upcoming version (19), we obtain a reformulation of the full “eld neural
inverse problem into an special kind of alinear integral equation,

(15) (x,t)= wxy) (y,t)ydy, x D, t [0T],
D

for w X. Here, we will use the “rst formulation (13) and note that the second formula-
tion (19) is an equivalent problem in di erent spaces.

Lemma 2.2.The full “eld neural inverse problem according to De“nition 2.1 is equivalent
to a linear kernel construction (15) given functions (, ) in the set

U= %(x,t)+ v(x,t),f(v(-,-) : v BC(D)x BC0,T])
for T R* {}
Remarks 1. Instead of restricting our attention to the set U, we can study the more
general problems where, BC (D) x BC([O, T]).

2. Note that time-behavior of the neural “elds v under consideration can be highlynon-
linear. We will discuss this further in our numerical examples in section6.

The study of the inverse problem given by De“nition 2.1 or Lemma 2.2 includes an analysis
of uniqueness existence and the stability or ill-posednessof the kernel construction. For
practical applications a thorough understanding, in particular of uniqueness and stability
issues, is of great importance.

3. Existence, uniqueness, and smoothing. As a “rst step in studying the solvability of
the inverse problem we note some basic regularity properties of solutions to the neural “eld
equation.

Lemma 3.1.1f f BCD", then the solution to the neural “eld equation (2) is in C"(R")
with respect to time; i.e.,t  u(-t) is n times continuously di erentiable as a mapping from
R* into BC (D).

Proof. A standard tool for analysis is the reformulation of the neural “eld equation in
integral form. Integration over time from s=0to s =t yields

t t

(16) ux,t)Su(x,00 =S u(x,s)ds+ W f(u(-,s)ds (x)
0 0

with x D,t 0. For later use fort 0 we de“ne

a7 ( x,t):= uxt)+ tu(x,s)ds, x D,
0
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and

(18) ( x,t):= tf(u(-,s))ds, x D.
0

Then, (10) can be rewritten in the form
(19) (t)=W(+t) onD

forall t 0. Now, we carry out an inductive proof. Clearly, u(x,t) is in C! in dependence
on the time variable as a function in BC (D). Now, let u(x,t) be in CK(R*) for some k
{1,2,...,nS 1}. We consider the governing equation in the form {6). If the function u on
the right-hand side is in CK, then the “eld u(x,t) is in CK*1(R*). Inductively we now obtain
that u is a C" function on the real axis, and the proof is complete. H

Corollary 3.2 (conditions on existencelor the solvability of the full “eld neural inverse
problem with f BC"(R") we need that the “eldv is in C"(R*) with respect to the time
variable. If v is not BC"(R"), then the inverse problem giverv cannot have a solution.

The following lemma prepares the subsequent arguments.

Lemma 3.3.The norm of the operator W : BC(D) BC(D) de“ned in (9) is given by

(20) W =sup |w(xy)|dy,
x D D

where BC (D) is equipped with its canonical norm =supy p| (X))
Proof. We estimate

W gcp)=sup  Ww(xy) (y)dy
x D D

(21) sup  |w(x,y)[dy -sup| (Y)l,
x D D y D

which proves

(22) w sup  |w(x,y)|dy.
xy D D

To show equality we “rst consider the case wherev(x,y) =0 on D x D. We choosexg such
that

(23) [w(Xo,y)Idy =sup |w(x,y)|dy.
D x D D
Then, we de“ne o(y) := wW(Xg,Y)/ |w(Xo,Y)|, which is in BC(D) and has norm o =1.
We calculate
w(Xo,Y)

(24) (W 0)(x0) = DW(Xo.Y) dy =sup lw(xo, )| dy,

Iw(xo, )l
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which proves equality in (22) under the assumptions that w has no zeros. In the case where
w has zeros we de“neN = {y D :w(Xg,y) =0}. To construct an appropriate sequence of
continuous functions we de“ne

—_— 0' d(y7 N) ﬂn!
(29) M= 15ndy,N), 0 dy.N) In,

fory D\ N, whered(y,N):=inf, n|yS z|. SinceN is a closed bounded set we obtain

(26) n(y) dy dy O
DAN {y:d(y,N) n}
for n . Then, we de“ne
@7) = @S ) xod) 4+ n(y), d(y,N)> 0,
1, otherwise.

By construction we have ,, BC(D) and we observe , =1. We calculate

(W n)(Xo) = DW(XO’y) n(y) dy

W(Xo,Y)

= N w(Xo,y) (1S n)m n(y) dy
_ = W(Xo,Y)
R (s n)W(XO’Y)ilw(XO,y)l n(Y)W(Xo,y) dy
= (LS n)w(xo,y)|dy+ nW(Xo, ) dy
D\N D\N
(28) |W(Xo,y)|dy =sup  |w(x,y)|dy, n :
D X D D

where we use 26) and w(Xg,y) =0 for y N. The limit ( 28) now proves equality in (22) in
the general case. N

To study the mapping w W of the kernel w onto the operator W we equip the space
BC (D x D) with the norm

(29) W gc(pxp) ‘= Sup  |w(x,y)|dy.
x D D
Theorem 3.4.For a bounded setD in R™ the mapping

(30) K:BC(DxD) BL(BC(D),BC(D), w W,

with W de“ned in (9) is a linear, bounded, and injective mapping but not surjective.
Proof. Clearly, the mapping K is linear, since

K(wy+wp) = . wi(-y)+ wa(hy)  (y)dy

= wi(,y) (Y)dy +  wo(,y) (y)dy
D D

(31) = Kwi + Kwj.
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We estimate

K(w) Bcp)=sup  w(x,y) (y)dy
x D D
(32) W BCc(DxD) -

This shows that K is bounded fromBC (D x D) into BL(BC(D),BC(D)) with K =1,
where we obtain equality by looking at particular kernels w for which the supremum is ob-
tained.
To show injectivity of K assume thatw is a kernel such thatw =0 for all BC(D).
We study a sequence of bounded continuous functions; ,(-) approximating a delta function
2. Then, we have

(33) 0=(W zn)(x)= ) WX, y) zn(y)dy w(x,z), n :

which showsw(x,z) =0 for all x,z D, and thus the operator K is injective.

The operator K is not surjective. This is shown by constructing examplesv of bounded
linear operators which cannot be represented by integral operators with continuous kernels.
We note, for example, thepoint evaluation operator

(34) vVI)x):= ), x D,

which clearly is bounded and linear but cannot be represented as an integral operator with
a continuous kernel. Further examples for bounded linear operators which cannot be written
as integral operators with continuous kernels are operators with singular kernels of various

types. W
In a second step we study bounded linear operators on the spat&(D). By the Cauchy...

Schwarz inequality we obtain the norm estimate

2
W P p, 5 DW(X1Y) (y)dy dx

(35) - lw(x, y)|? dy dx 22(0)»

which proves boundedness of the mapping
(36) K :L%D x D) BL(L?D),L%D)), wo W,

However, here the estimate 85) is only an upper estimate, but the norm of W is given by the
spectral radius (W W); compare P4].

Consider any orthonormal basis{ ,, n N} in X. Then, every element X can be
written as

(37) = - =( 1, 2,...) 2
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The image sequence , := W , satis“es

(38) n n W n n W - 2.

n=1 n=1

BY n= n, L2p)= p n(y) (y)dywe can write W as

(W )(x) = n(X) i n(y) (y)dy

n=1

(39) = n(X) n(y) (y)dy, x D.
D p=1

In general, we cannot expect the terms in round brackets to be a function in the space
L2(D x D). For example, when , = |, forall n we get a representation of the delta function
(x S y) with respect to the variable v,

(2) n(X) n(z) dz= n(X) n(2) (2)dz
D n=1 n=1 D
(40) = n(X) n = (X),
n=1
and therefore
(41) n(X) n(@= (xS 72),
n=1

to be interpreted in L?(D x D) in the sense of ¢0), which is not an element of L2(D x D).
When for x “xed the sequence ( ,(x)) satis“es

(42) 1+ 0% (P <

n=1

we obtain a kernel which is in the Sobolev spacél 5(D) with respect to the variable y. Now,
we formulate the following result, which can be seen as a special case of the theory of Hilbert...
Schmidt integral operators.

Theorem 3.5.A bounded linear operator W is an integral operator on L2(D) if and only
if the sum

(43) w(x,y) = n(X) n(y)
n=1

is convergent inL?(D x D) for any orthonormal basis{ ,:n N} and ,:=W ,,n N.
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Proof. If the sum is convergent inL2(D x D), then we can rewrite (39) as integral operator

(W )(x) n(X) n(y) (y)dy

D p=1

(44)

DW(x,y) (y) dy, x D.

By (35) the operator is a linear bounded operator onL?(D). Now, assume that W is an
integral operator with kernel w  L2(D x D). Then, for any orthonormal basis{ ,:n N}
and ,=W , weobtain , L?D)and

N N
n(X) n(y) = W(x,z) n(z)dz  n(y)
n=1 n=1 D
N
= w(x2) n(y) n(z) dz
D n=1
(45) w(x,y), x,y D, N :

which, according to (40), is satis“ed in L?(D x D). |

Note that the kernel construction (43) corresponds to the Hebb rule ) for a “nite linear
perceptron with orthogonal training vectors extended to in“nite-dimensional function spaces.

One of the implications of the above theorem is that in general we cannot assume that we
can control the neural “eld over an in“nite time.

Theorem 3.6.In general, the full “eld neural inverse problem with in“nite time T = is
not solvable inBC (D x D), BC% (D) x LYD), or L3(D x D).

Proof. We “rst treat the L? case. Consider some orthonormal systerf ,, N N} in
L2(D) constructed out of Haar-type basis functions; i.e., ,, has values either zero or one on
D. For simplicity, here we assume thatf (0) = O; the general case can be treated analogously.
In this casef( n)= c- ,, wherec= f(1). Considert, :=nforn Nandlet{ ,:n N}
be someC"-smooth partition of unity,

(46) 1= n(®, t 0
n=1
such that
_ 1 t B (tn),
(47) "= 0t/ B (tn),

with some ¥4 > > 0. Now, we de“ne

(48) v(x,t) = n(t) n(x), x D,t>0.
n=1

We obtain
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@ (~tn) = f(v(-tn))= c- n(:)forn N,

(b) ¥(,ty)=0for n N, and thus

© (,th)= pforn N.
This means that to solve the full “eld neural inverse problem we need to construct an operator
W mapping ,ontoc®l- , =W ,forn N. However, as shown in 40) and Theorem 3.5,
the kernel w(x,y) de“ned in (43) is not an element of L%(D x D). This proves the statement
of the theorem for L2(D x D).

We construct a function in BC (D) which cannot be a solution to the full “eld neural
inverse problem by

(49) v(x,t) ;= t-vp(x), t O

Then we obtain  (-,t) = vo-( +1t) t, but f(v(-,t)) will remain bounded for large t by
[f(s)] 1fors R. |

Remarks 1. We remark that the function (49) is another counterexample for the case
of square integrable functions above. However, examples of a di erent nature provide fur-
ther insight into the overall nonexistence statement. Also, di erent counterexamples provide
guidance if one seeks su cient conditions to obtain solvability of the problem.

2. If we modify the points t, and the intervals to depend onn, we can make the same
construction for a “nite half-open interval [0, T). Thus, in general full “eld neural inverse
problems on half-open intervals are not solvable either.

Compactness We conclude this section with basic compactness statements which imply
instability of the kernel construction problem if we seek kernels in spaces of di erentiable
functions or in Sobolev spaces. We note that, by the compactness of the embedding

(50) BC"(D x D) BC(D x D),
the mapping K considered in the spaces
(51) K:BC"(Dx D) BL BC(D),BC(D)
for n 1 is compact Also, using HS-smooth kernels inL?, we obtain compactness of the
mapping
(52) K :HS(Dx D) BL L?*D),L%D) .
We summarize the consequences of this compactness in the following theorem.
Theorem 3.7.In the settings (51) and (52) the mappingK : w W is compact. The

mapping cannot have a bounded inverse, and thus the kerngldepends unstably on the right-
hand side.

4. Special cases and consequences.The goal of this section is to study the inversion of
the neural “eld equation for special cases. In particular, we will investigate “elds arising from
the translation of an initial pulse. As a second result we will conclude the ill-posedness of the
general problem from the ill-posedness in special cases.
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Translation of “elds in time . Consider an initial “eld ug(x), and de“ne the traveling wave
“eld

(53) u(x,t) := up(x S vt), x D, t 0
with v R™ [12, 15]. Then, u(x,t) describes a traveling wave in the directionv. We get
(54) (x,t) = f(u(x,t)) = f(ug(x Svt))= o(xSvt)
and

(x.1) = u o(xté vt)
(55) =S v ug(xSvt)+ ug(xS vt)

+ ug(x Svt) = o(x S vt)

forx D,t 0. Weremark thatif o= W ¢ and if the kernel w is a convolution kernel,
i.e., w(x,y) = w(x Sy), then we obtain

(x,t) = o(x S vt)

w(x S vt,y) o(y)dy
D

w(x SvtSy) o(y)dy
D

) W(x S (y+ vt)) ofy)dy

) w(x Sy) o(y S vt)dy
(56) = (W )(x1),

where we usey = y + vt. This means we need to study the equation

o(X) = DW(xéy) o(y) dy
(57) = oxSy)w(y)dy, x D,

where we employed the substitutionx Sy = y. We summarize these transformations in the
following theorem.

Theorem 4.1.Given a “eld u as a traveling wave(53), there is a solution of the full “eld
inverse neural problem with translation invariant kernel w(x,y) = w(x S y) if and only if the
function w satis“es the integral equation (57).

The integral equation (57) is an integral equation of the “rst kind with a continuous or
L2 kernel. In both settings the operator is compact inBC (D) or L2(D), since it can be
approximated in norm by a “nite-dimensional operator via polynomial approximations of the
kernel function w; compare R3]. We now summarize this result and carry it over to the inverse
neural “eld equation.
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Theorem 4.2.In general, (57) does not have a solution. The solutions depend unstably
on the right-hand side in bothBC (D) and L%(D). The full “eld inverse neural problem with
traveling wave-type functions is ill-posed in the sense of Hadamard (compaid.1]).

Proof. We de“ne the operator

(58) (AQ)x) = olx Sy)gy)dy, x D,
Note that the kernel density needs to be de“ned on a larger area,
(59) D:={xSy: x,y D}

If o BC(D), then it is an integral operator with continuous kernel which is a compact
operator on BC(D). If o L2(D), we “rst remark that in this case ¢(x S:) L?(D) for
every “xed x D, and the norm of this function is smaller than o | »5,. Then we estimate

2
Ad {2(p) . o(x S y)g(y)dy dx

(60) =Dl o fupy 9 L2

such that A is bounded inL?(D). A polynomial approximation of the function o on D in
the norm L2(D) will yield a “nite-dimensional operator approximation of the operator A by
some operator sequencé,,. Thus, A is compact in L2(D).

Now, by standard arguments from functional analysis R3] we conclude that A cannot be
surjective and that the inverse of A cannot be bounded; i.e., the solution of §7) depends
unstably on the right-hand side. Thus, the problem is ill-posed in the sense of HadamardL[l].
This completes the proof. N

We “rst formulate a helpful little lemma.

Lemma 4.3.Let X X be Banach spaces and : X Y be a linear operator. We denote
A = A|; the restriction of A to X and equipX with the norm induced by the norm onX.
If A:X Y does not have a bounded inverse oA(X), then the operator A cannot have a
bounded inverse.

Proof. If A has a bounded inverse orY, then

(61) A%z )

is a bounded inverse ofA. Thus A cannot have a bounded inverse. B

The above lemma now has consequences for the full “eld neural inverse problem. We
identify X with the space of kernelsw L2(D x D) and X with the space of convolution
kernelsw(x,y) = w(x S y), which is a linear subspace o .

Lemma 4.4.The embedding

(62) | :L%D) L*D,D), w()  wxy):= wxSy)

is an injective and boundedly invertible linear mapping.



1418 ROLAND POTTHAST AND PETER BEIM GRABEN

Proof. The mapping (62) is clearly injective, sincew(x,y) 0 is obtained only withw 0.
The boundedness of the mapping is obtained from

W 2pxpy = - Iw(x, y)|? dy dx

= w(x S y)[?dy dx
D D

Next, we show that the image spacd (L2(D)) is a closed subspace df >(D x D). To this end
let w, be a sequence of convolution kernels such that

(64) Wn(X,Y) = Wa(xSy)  Wo(X,y), n ,
in L?(D,D). Then by

(65) Wo(y + z,y) = lim wn(y+z,y) = lim wn(2),

wo(x, y) will depend only on the di erence xSy; i.e., | (L2(D)) s closed. Now, the boundedness
of the inverse is a consequence of the closed mapping theorem. W
As a consequence of the above lemma and the isometric embedding BIC (D) into
BC(Dx D)by w w(x,y):= w(x S y), we obtain the instability of the kernel construction
problem and thus of the full “eld neural inverse problem formulated in De“nition 2.1.
Corollary 4.5.The full “eld neural inverse problem is unstable and thus ill-posed iBC (D x
D) as well as inL%(D x D).

5. Construction of solutions. Solutions of operator equations in Banach spaces have been
studied extensively in the literature. It is well known that for ill-posed equations standard
inversion theory (see, for example, §] for a summary of literature about the Moore...Penrose
pseudoinverse) cannot be directly applied, but one needs to use appropriate regularization;
compare, for example, 11, 13, 29, 30.

In this section we collect basic results about biorthogonal sets in Hilbert spaces, and
we study the construction of a biorthogonal set in particular for a Riesz basis of elements.
Biorthogonal sets are usually used for operator construction and are important ingredients
for understanding the unstable behavior of the solutions of our dynamic kernel construction
problem formulated in De“nition 2.1

In a Hilbert space X with scalar product -,- two linearly independent sets of functions
Q={ 1, 2,...} andR={ 1, »,...} are calledbiorthogonal if

(66) iv Kk =0 for all k:i, i, i =G, i N,

wherec; > 0 fori N. The construction of a biorthonormal set R to Q is usually carried out
as follows. We de“ne

(67) Vi i=span{ 1,..., k81, k#lyr---} k N,
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denote its orthogonal space by, , and remark that X = ViV, . We conclude that  / Vi,
since it is linearly independent of the other elements ol thus, its orthogonal projection
onto V, cannot be zero. The biorthogonal elements are now given by

(68) k =

Here theill-posednessof the inverse problem is strongly related to the division by | in (68).
We verify (68) by calculating ¢, i = «i, kK,i N, where the result is clear by de“nition for
i = ksince  V, ,andfori=kweremarkthat (= + ,where Vi, which yields

(69) kb k= ko kT KT kok = Kk

We have constructed the setR := { 1, 2,...}, which satis“es (66) with constants ¢ = 1,

i N. To show that the elements ofR are linearly independent, assume that jn:1 j k=0

with constants | C and k; N for j = 1,...,n. Then, by multiplication with , for
i=1,...,n we derive

n n
(70) 0= ik ki T i ki ki T i=1,...,n,

ji=1 i=1

and thus R is linearly independent. Recall that Q is called a Riesz basis in a Hilbert spacél
if there are constantscy, ¢, > 0 such that

(71) I P @ |l
j=1 j=1 j=1

forall =( j)j n 2. In this case the mapping

(72) A ? X, P

j=1

is a bounded and boundedly invertible mapping from 2 onto A( 2)  X. A dual operator
A X 2 with respect to the scalar products -, 2 and -,- x is given by

. 2
(73) A - X L J ) X J N 1
as can be obtained from
(74) A, X = i i X = ,A 2.
i=1
We remark that ( j, x)j N 2 since we have
(75) T E C 2 X
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for all 2 via (71). We estimate
(76) AA 2= ALA x o 5%

and thus according to the Lax...Milgram theorem the operatoA A is boundedly invertible in
2 with a bound given by 1/c;. Note that if ¢; is small, the inverse can have a large norm and
the equation is highly ill-conditioned. We calculate

77 AA = A = DX ,
(77) k X N _ ke § X j

and thus the operation of A A on 2 can be expressed as a matrix multiplication with M
where we employ the in“nite overlap matrix (compare (8))

which according to (76) is boundedly invertible. Then we de“ne
(79) k= (Msl)k,j i k N,
j=1
and calculate
(80) ko ix = MSH 0 = (MSY i =(MSIM) =
i=1 j=1

for k,i N. Equation (79) provides a constructive method for calculating the biorthonormal
basis functions.
Given two linearly independent sets of element® = { 1, »,...} X andS={ 1, 2,...}
X, we can now construct linear operators

(81) Vh, = iQr V = i

whereR = { 1, »2,...} is a biorthogonal basis forQ.
Lemma 5.1.The operator V, is linear and bounded onH . If both Q and S are Riesz bases
of H, then V is linear and bounded onH as well. Further, we have

o i, 1=1,...,n,
Vo i = 0, i>n.
(82) V i= i, i N.
Proof. We “rstnote that ( j, ); nisin 2 with an argument analogous to (75). Then,

the boundedness ol is a consequence of () for ( j); .



INVERSE PROBLEMS IN NEURAL FIELD THEORY 1421

6. Numerical study of kernel constructions. This “nal section serves to study explicit
constructions of integration kernels. We will “rst brie”y describe our numerical realization of
the solutions. Then, we study three di erent basic tasks: (a) kernel construction to generate
one-dimensional state dynamics in sectior6.2, (b) kernel construction for generating two-
dimensional pulses in sectior6.3, and (c) kernel construction for constructing logical gates in
section 6.4. The function f will be chosen as the logistic function

1
(83) f (S) . m, S R,
with parameters =10, =0.5in all our examples.

6.1. Explicit Euler scheme with numerical quadrature. For the solution of the integro-
di erential equation ( 2) we employ anexplicit Euler method with numerical quadrature given
by the rectangular or trapezoidal rule.

In the two-dimensional case we choosP to be a rectangular regionD =[ag, b]x [a, by]
R? and de“ne a grid by

— by S a1 i b, S o
(84) h]_ = N é 1 h2 = - é T
and
(85) yj,k = (al + J . hl’ a + k . h2) '
forj =0,...,n1S1,k=0,...,n2 S 1. The points yjx are reordered into a vectory RN

with N = ny -n» by

(86) Y =Yk :nz-j+k, j:O,...,nlsl, k=0,...,n,S 1.

Consider the spaceX := L%(D) BC(D) of continuous functions on D equipped with the
maximum or the L2-norm. A continuous function u X on D is discretized and represented
by a vectoru RN de“ned by

(87) u = uy ), =1,...,N,

which de“nes a mappingQy : X RN. Let for =0,...,N; be standard piecewise linear
hat functions on D such that

_ L y=y
(88) M= o y=y for =

Then the vectors u can be mapped back intoX by u:= Pyu with
(89) (Pnul(y) = u (), y D

With this mapping for continuous functions u we have the convergenc®yQnu  uonD for
N pointwise in X, i.e., for every “xed u, both in the maximum and the L2-norms.
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For the operator W we employ acollocation scheme i.e., the application of W to some
vector is realized by a matrix multiplication W , where the matrix W incorporates an
appropriate numerical quadrature [23] and evaluatesW onthe grid Xk := Yjk,j =0,...,ny,
k=0,...,n2, given by (85). In general this leads to

(90) W o=wix,y) |, ., =0,...,NS1,
with quadrature weights , =0,...,N S 1, where in the simple case of the rectangular rule
we have = hy-hs.

The numerical discretization of (11) and (12) for “xed t R according to (87) leads to
vectors (t) and (t) in RN representing (-,t) and (-,t). For time discretization points

(91) tp<to< ---<t

we abbreviate

(92) ©) = (tg), ©:= (t5), s=1,...,.
As the next step we de“ne theRN* -matrices
(93) A=( @ ..., Oyand B:=( D, ..., O).

The discrete version of (L4) or (15) is now given by the equation
(94) B = WA

for W. We can try to calculate a solution by

(95) W =BA",

with the Moore...Penrose pseudoinversa® = (A A)élA as a consequence oA°A =

(A A)SIA A = Iz . However, in generalA" is ill-conditioned and the condition number
quickly increases with , which re”ects the fact that the continuous operator does not have
a bounded inverse wherc; de“ned in (71) tends to zero. For regularization of the numerical
calculation of the operatorsV, de“ned in (81) we use the Tikhonov inverse

(96) R =(1 +A A)SIA

with > 0. For an existence proof for the inverse we refer to23] or [13]. The regularized
kernel is now calculated by

(97) W =B(l +A A)SIA .

Our numerical examples are carried out by the following steps:
1. Given a “eld v according to De“nition 2.1 or Lemma 2.2, we “rst calculate and
according to (11) and (12) at the points y;x de‘ned in (85) at time steps as de“ned
in (92).
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2. This leads to vectors ), & RN fors=1,..., . Then, we de“ne the matricesA
and B according to (93).

3. We calculate W according to (97). Here, we choose the regularization parameter

> 0 by visual inspection. Automatic methods for the determination of can be

found, for example, in [13].

4., Finally, we test the neural “eld by solving the initial problem ( 2) with kernel given
by inverse solution W . This leads to a solutionv (x,t) for a set of discrete points
x Dandt [0T].

It is important to note that in step 4 we need to use a di erent discretization for the time
variable than in the steps1to 3. Using the same time and space discretization for the inversion
and the tests is calledinverse crime; compare [L1]. If we employ the same discretization for
simulation and inversion, we do not study the full inverse dynamical problem but a much
more stable inversion of a “nite-dimensional system. We will explicitly demonstrate this
phenomenon in section6.2. Here, we need to use a regularization parameter which leads to
the desired system behavior for a wide range of time discretizations, not only for the particular
time discretization used in the inversion.

Multiple pulses and more complex processesSteps1..3 can be carried out with the data

for several pulses at the same time. In this case let ®Y . .~ (P.) pe the discretized vectors
for the pulse with index p=1,...,P. We change the de“nition (93) into
(98) A= ( (1,1), o 1, )’ (2,1), o @, )’ (3,1), . (P, ))

and analogously forB. Then we continue as above. Numerical tests for this are carried out
in section 6.4.

6.2. Construction of one-dimensi onal order parameter dynamics. As a “rst example
we study a function v(x,t) de“ned for x [0,2 Jandt [0, T] by the continuous transition
between a “nite number of linearly independent states. Consider a set of linearly indepen-
dent functions vy L?([0,2 ]) for g = 1,...,Q and a set of order parameters (cf. §, 17])

q:[0,T] R, q=1,...,Q. Often, the order parameter function 4(t) is zero outside of
some compactly supported set. Here, we choose a set of poirtts [0, T], q=1,...,Q, such
that 0 = t; <t, < --- <tg = T, and determine 4 to be linear in each of the intervals

ltq.tge1] forg=1,...,Q S 1 with

_ 1, p=q,
(99) a(tp) = 0, otherwise;

i.e., we use tent functions. We de“ne our prescribed “eld by

Q

g=1
which is piecewise continuously di erentiable with respect to time. Clearly, here we need to
choose a one-dimensional version of the setting described i84) to (97). For a numerical test
we have chosen

(101) Vg(x) :=sin( gx), x [0,2 1],
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1 1 1
0 0 0
1 1 1
0 2 4 6 0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

Figure 1. As a numerical example for section 6.2 we test the solutionv (x,t) of the one-dimensional Amari
equation for x  [0,2 ] at 12 time slices t, where the kernelw (x,y), X,y [0,2 ], is reconstructed as described
in steps 188 in section 6.1 with = 100 training patterns. The true dynamics is shown as a dotted line, and
the constructed dynamics is solid, where thex-axis is the space variable and they-axis the size of the neural
“elds under consideration studied without units. Here, we have used =1, and the time discretization for the
simulation used half of the grid size of the time discretization for the training patterns; i.e., for simulation we
employed =200 in (102). As a result, the basic features of the prescribed dynamics are successfully reproduced
by the simulation with the constructed neural kernel, though some smaller features in time slice 8 are not fully
captured.

forg=1,...,Q=4o0or Q=8. We employed N = 320 space points and = 100 time steps
for training, i.e., a time discretization

(102) ts= °T, s=1,...,.

Further parameter choices have been = 0.3, =2,and T = 7. In the “gures we
display the function v(x,t) or v (x,t) on a selection oftime slices given by (102 with
s=1,101928,...,91,100 and = 100.

We will use this example to explain the choice of the parameters in more detail and to
illustrate important features of the dynamical i nverse problem under consideration in Figures
1, 2, 3, and 4.

Choice of the number of discretization pointsN and . We need to discuss the choice of
the space dicretization N and number of time points . Recall that we want to construct a
kernel w such that the dynamics of the system de“ned byw via (2) reproduces a prescribed
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Figure 2. The “gure demonstrates the e ect of an inappropriate choice of the regularization parameter
. We employ the same basic setup as in Figurel. Here, we have used = 0.1 (a) or =30 (b). The
time discretization for the simulation used half of the grid size used in the time discretization for the training
patterns; i.e., for simulation we employed = 200 in (102). Here, the regularization parameters = 0.1, 30
are either too low or too large to reproduce the desired dynamics.

Figure 3. We illustrate an inverse crime as described in section 6.2. We employ the same basic setup
as in Figure 1. Here, we have used = 0.01 for both images. The time discretization for the simulation
uses the same grid for training and simulation (a) which gives very good results. However, if we change the
time discretization in (102) for simulation (b) to a smaller grid constant, we see that the kernel which is
reconstructed no longer provides the correct dynamics.

dynamics. Here we demand that the training patterns (), s=1,..., , for dierent time
steps be linearly independent such that the matrixA de“ned in (93) is invertible. In fact, this
is not a necessary condition, but having linearly dependent training patterns generates several
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Figure 4. We study the behavior of the matricesA, B, R , R A, and W , which are calculated in the
kernel construction process for a special example de“ned in (100). A detailed discussion is given in section 6.2.

further questions which we avoid discussing in this work. The vectors @, ..., () which are
elements ofRN as de“ned in (87), can be linearly independent only if N . But in general
we needN to be much larger than , since (9 is a discretized version of the functionv(x, ts),
x [0,2 ]. If the functions v(-,ts) for s=1,..., are linearly independent over [Q2 ], then
for su ciently large N the vectors (), s=1,..., , wil be linearly independent. Here, for
the particular given functions (100), given , we determinedN su ciently large such that this
is the case. For =100 we needed to choos&  320.

Uniqueness of the kernelW . In general, the reconstructed kernelW is not uniquely
determined. Only if the set of functions @ ..., () spans the spaceRN is W determined
by the given dynamics, since in this caseA is bijective. Since mostly N , this condition
will not be satis“ed. Also, consider training patterns which are zero on some partv D
of the underlying set D. Then any kernel w which has nonzero valueswn(x,y) for x,y V
only will not change the dynamics for these training patterns; i.e., it is in the nullspace of our
inverse problem. We can addw to any solution and obtain an equivalent solution. Further,
functions of the type w cannot be reconstructed from the given data.

Inverse crimes and the time discretization for simulation An inverse crime is a well-
known phenomenon in the theory of inverse problems; comparel]]. It arises if you solve
an inverse problem using a particular choice of discretization parameters and then test it by
solving the forward problem with the same choie of discretization parameters or vice versa.
In this case the match is usually very good, since one basically inverts a “nite-dimensional
linear system. Even if the system is ill-conditoned in this case, the error is small. However,
if one uses a di erent choice of discretization parameters for reconstruction and testing, the
errors in the reconstruction play a much stronger role and the match is usually much worse.

For dynamical inverse problems, inverse crimes arise when the time discretization for
training the kernels and the time discretization for simulation are identical. In this case
one obtains a nearly perfect “t of the prescribed and the simulated curves. We illustrate
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this in Figure 3(a), where we carry out the simulation with = 100. We then change the
time discretization for the simulation (keeping = 100 training patterns) to = 200 for the
simulation time steps. The result as displayed in Figure3(b) shows that there is no match
at all,the instability of the problem fully destroys the dynamics. Here we worked with a
regularization parameter = 0.01, which is too small to produce stable solutions. Stable
solutions are obtained with =1, which is demonstrated in Figure 1.

Choice and in"uence of the regularization parameter . We also illustrate di erent choices
of the regularization parameter in Figures 1, 2, and 3. There are various methods for the
automatic choice of in the theory of inverse problems, but it is also common to start
with manual studies of the behavior of reconstructions when new problems are addressed.
Here, we show the behavior of reconstructions for di erent in Figures 1, 2, and 3. The
reconstructions with Q = 8, N = 320, and = 100 training patterns are stable for values
around = 1. For values smaller than = 0.5 the instabilities of the reconstruction impede
the desired dynamical behavior. For values larger than = 10 the damping is too large, and
we do not get the desired results. Usually, the practicable values of di er strongly depending
on the choice of parameters and the particular problem under consideration.

Insight into the behavior of R and W . Finally, we illustrate the particular behavior
of the matricesR and W for this example in Figure 4. For better visibility here we have
used Q = 4 functions only. The matrices A and B show the time behavior of the functions
under consideration, where the time is given by thex-axis and the y-axis shows the space
dimension. The product R A is shown as a test; it is a damped version of the identity
matrix. The most interesting numerical result here is the particular form of the matrix R ,
shown in the bottom left of Figure 4. We observe that the algorithm generates a kind ofedge
detection. If we multiply arow a of A with R , it will basically generate nonzero contributions
where we have a change of values between neighboring entries afat places where you see
the red-blue lines in the graphical display ofR . This acts as a space-sensitive edge detection
algorithm to distinguish between the di erent input functions at di erent time steps. The
matrix W is shown for the sake of completeness; we observe that it does not show particular
interesting features.

6.3. Two-dimensional pulse reconstruction. Next, we demonstrate inversion by con-
structing kernels for two-dimensional pulses. First, we have chosen a particular kernel

(103) W(X’y) = e§R|X§y|2 X y(le) é x1<Y1(Xay) é x2<Y2(X’y)1 le Da
where we use

1, condition is satis“ed,

(104) condition (%:¥) = 0" i erwise,

andx vyifandonlyif x; y;andx, y,. The kernel times the grid constantshy, h, for
“xed y dependent onx is shown in Figure5. A full plot of the kernel depending on x and y
is shown in Figure 6(right).

We construct v by starting with some initial values given by

1, xSxol ¢,

(105) v(x, 0) = 0, otherwise,
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Figure 5. Synaptic weight kernel reconstruction. Left column: a particular kernel generating a moving
pulse is prescribed. Right column: kernel reconstructed by Tikhonov regularization. Both kernels are plotted for
one “xed y dependent onx.

Original Kernel Reconstructed Kernel

Figure 6. Original and reconstructed full weight kernel w(x,y) as de“ned in (95).

with some constantc > 0 and initial pulse centerxg D. Then, the time dependent pulse is
calculated by solving the forward problem @). As training patterns we use

(106) 1= v(,t),..., =v(,t)

with t; tp, tg --- t . The reconstructed kernelW (-,y) is zero ify is not in the path of
the pulsev, which is expected since we calculate a minimum norm solution to match the given
data. If y is in the path of v(-,t), the reconstruction has been a smoothened version of the
original kernel, as shown in Figure5(b). This e ect is well known from various inverse problems
[13, 11, 29|, where regularization leads to a smoothing such that reconstructed functions are
a smoothened version of the true solutions. Ify is not in the path of the prescribed pulse, we
expect the reconstructed kernelw(-, y) to vanish, since the Tikhonov regularization calculates
a solution with minimal norm. This is con“rmed by our results.
Second, we have chosen @aussian pulseby

(107) v(x, t) ;= eSRIXSxe®F ¢ 10 T],

following a parabolic path xo(t) := (ut, g2t S ggt?) with constants R, i, ¢, and gz. We
have then calculated and from (12) and (11) on the grid (85). As training patterns we
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Figure 7. Original traveling neural pulse for kernel construction problem.

Figure 8. Traveling neural pulse for kernel constructed by Moore...Penrose pseudoinverse (without regular-
ization) as given by (95).

use (106 at the times t4,...,t . Then, we construct the kernel W using (97). The original
pulse at sample timest,,...,t1» is shown in Figure 7. We show a reconstructed pulse without
regularization in Figure 8 and a regularized construction in Figure 9. The corresponding
synaptic weight kernels are shown in FigurelO.

Clearly, even without regularization, if we keep the grid in space and time “xed, we are
able to calculate an exact match for the pulse at the timest,,...,t . This is a particular
form of an inverse crime [11], where we consider original and reconstruction in the same “xed
discretization. Here, we change the time discretization for calculating the pulses after recon-
struction. In general the ill-conditioning of the matrix W leads to the high oscillations in the
reconstructed kernel as shown in Figure8 or 10(a). However, with appropriate regularization
(where we use = 103 in this section), we obtain nice smooth kernels as shown in FiguréQ(b)
and a pulse which follows the prede“ned path as shown in Figure.

6.4. Construction of logical gates. Our “nal example shows the construction of a logical
gate with XOR functionality; i.e., we construct a classical nonlinear input-output relation such
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Figure 9. Traveling neural pulse for kernel constructed by Tikhonov regularization (97) with = 10°.

(@) (b)

Figure 10. Unregularized (a) and regularized (b) synaptic weight kernels for the traveling neural pulse
inverse problem.

that (1,0) is mapped onto 1, (Q1) is mapped onto 1, and both (Q0) and (1, 1) are mapped
onto 0. The input is a pulse into the domain D either around the point (0, 3) or around
(0,S3). Output is collected at the point (10, 0).

For solving the inverse problem we employed the setting as described ir8§) to (97) in
the version for multiple pulses ©8). Here, we have used a discretization of 38 31 points in
the domain D and 80 time discretization points for the inverse problem. The pulse had the
form given in (107). We used regularization with = 1. The tests in Figure 11 have been
carried out with 160 time discretization points to avoid an inverse crime. Here, a trace of the
pulse is shown; i.e., we plotted all the time slices in the same “gure. The result shows that
the construction of a logical gate is possible with the linear techniques described in the above
sections.

7. Conclusion. In this paper, we discussed inverse problems for a broad class of neural
“eld theories described by the Amari equation (2), where synaptic weight kernels are to
be constructed from prescribed solutions of the forward problem. By recasting the Amari
equation into a linear perceptron equation in function space, we were able (a) to analyze
the ill-posedness of the inverse problem, (b) to study generalized Hebbian learning as an
appropriate linear training algorithm, and (c) to employ Tikhonov regularization for stable
numerical implementations. We demonstrated the technique by means of three instructive
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(@) (b)

() (d)

Figure 11. We show a trace of the constructed potential for three dierent neural pulses establishing a
logical gate with the XOR functionality; i.e., either pulse entering at (0, 3) or (0,S3) is transmitted through
the neural tissue layer to the point (10, 0), but both pulses inserted simultaneously lead to extinction; i.e., they
are not transmitted. The kernel w(-,y) for y = (1,3.1) is shown in (d),here an active potential in the point
(1,3.1) inhibits the potential at points around (1,S3).

examples: (i) temporal transitions between static spatial activation patterns governed by
an order parameter dynamics, (ii) kernel reconstruction for a traveling Gaussian pulse, and
(i) solution of the logical XOR problem by linear means.

To our knowledge inverse problems in neural “eld theory have not been widely studied yet.
Most work has been done in studying the forward problem under particular assumptions such
as homogeneous and isotropic convolution kerneld[9, 10, 12, 15, 16, 21, 22, 33, 40, 42]. On
the other hand, highly nonlinear and computationally expensive gradient inversion methods,
such as backpropagation, are used in connectionist applications of neural networks, e.g., in
order to solve the XOR problem [, 7, 19, 25, 27, 28, 36, 38]. In contrast, our study shows
that such persistent problems can be straightforwardly tackled by linear methods within the
domain of neural “eld theory.

Therefore, we think that reliable solutions of neural “eld inverse problems on di erent
levels of brain modeling can provide important new mathematical input into the extremely
important “eld of cognitive neurodynamics. Our work provides a “rst step in this direction
by bringing together results from di erent communities and suggesting stable methods for
solving important basic inverse problems for neural “eld equations.
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