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ABSTRACT: Many different performance measures have been developed to evaluate field predictions in meteorology.
However, a researcher or practitioner encountering a new or unfamiliar measure may have difficulty in interpreting its
results, which may lead to them avoiding new measures and relying on those that are familiar. In the context of evaluating
forecasts of extreme events for hydrological applications, this article aims to promote the use of a range of performance
measures. Some of the types of performance measures that are introduced in order to demonstrate a six-step approach
to tackle a new measure. Using the example of the European Centre for Medium-Range Weather Forecasts (ECMWF)
ensemble precipitation predictions for the Danube floods of July and August 2002, to show how to use new performance
measures with this approach and the way to choose between different performance measures based on their suitability for
the task at hand is shown. Copyright  2008 Royal Meteorological Society
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1. Introduction

There are many different methods with which a meteo-
rological practitioner or researcher can measure the qual-
ity of precipitation forecasts. One of the most familiar
methods is the Brier Skill Score, but for more examples
see references in Gober et al. (2004); Venugopal et al.
(2005); Weisheimer et al. (2005) and Gandin and Mur-
phy (1992). In addition, many more methods have been
developed in other related disciplines such as hydrology
(Pappenberger and Beven, 2004; Hagen-Zanker, 2006;
Hagen-Zanker et al., 2006; Pappenberger et al., 2006b;
Pappenburger et al., 2007b). These performance mea-
sures (also known as scores) are usually used to compare
a forecasted field with an observed field (see definition
by Murphy and Winkler (1987)).

With such a large number of performance measures
available, a researcher or practitioner may find that
newly developed or unfamiliar measures are difficult to
understand and that the meaning of the computed numeric
is not adequately conveyed to them. For example, if a
measure has results that range from 0 to 1, with 1 being
optimal, a value of 0.7 would be meaningless to the
unfamiliar user without further explanation and training.
Only by using this new measure alongside another
familiar measure, or by using it on many different cases,
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can a meaning be established. There is often a reliance
on craft skill and ‘tacit ways of knowing’ (Polanyi,
1967) in meteorological verification. A perception that
a new or unfamiliar measure is ‘too troublesome’ may
lead to reliance on those that are familiar. This could
have important consequences, as the selection of a
performance measure can affect inferences about the
quality and uncertainty of a forecast (Venugopal et al.,
2005). This is doubly important for interdisciplinary
work, as, for example, hydrologists and meteorologists
come from different scientific cultures (Demeritt et al.,
2007) and are familiar with different measures.

In the context of evaluating forecasts of extreme
events for hydrological applications, this article aims to
promote the use of a range of performance measures
so that the quality of a forecast can be assessed as
rigorously as possible. A six-step approach for using
new or unfamiliar measures is established, including
comparing them with familiar measures and selecting
a subset of measures to use based on their suitability
for the task at hand (Section 2). Some of the types of
performance measure that are available are introduced
and a description of those that are used, in particular
in this article, is given (Section 3). An example case
to illustrate the approach and to show how to choose
performance measures according to the evaluation task
at hand is then presented (Section 4). The example
focuses on the precipitation predictions by the Ensemble
Prediction System (EPS) of the European Centre for
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182 H. L. CLOKE AND F. PAPPENBERGER

Medium-Range Weather Forecasts (ECMWF) for the July
and August 2002 Danube floods. This event has been
chosen as it was one of the most extreme events of recent
years in Europe, in which extreme rainfall led to extreme
flooding. The possibility of eliminating measures based
on the properties calculated is illustrated, and a subset of
measures for future use is derived.

Although this article focuses on performance measures
that compare fields of hydrological extreme events (rain-
fall) that are likely to lead to flood runoff, the methodol-
ogy can be extended to other meteorological issues and
also time series comparison. In addition, although this
article concentrates on deterministic comparison, the con-
cepts could be extended to probabilistic measures.

2. A six-step approach to screen performance
measures

A six-step process for screening an unfamiliar measure in
order to develop understanding and so that the measure
can be used effectively. The approach is described in
Table I, and is based on our experience with trying to
understand new measures. When following this approach
it is suggested that the results of each step are clearly
documented, which will increase the possibility that a
high value of a performance measure really means a good
forecast (Mason, 2007). This remains a research paper
and not an instruction manual. Those readers unfamiliar
with the details of various performance measures should
refer to the references given.

Table I. Six-step approach for becoming familiar with a new
performance measure and using it effectively.

Step Name Description

1 Classification Measure is classified
according to some
generic properties

2 Scatterplots Measures are
directly compared

3 Magnitude
analysis

Robustness of the
measure is evaluated
with respect to
scaled forecasts

4 Displacement
analysis

Robustness of the
measure is evaluated
with respect to
shifted forecasts

5 Spatial
dependences

Performance of
fields with known
spatial dependence
is computed

6 Human visual
systems

Measure is
compared to the
results of a
subjective analysis
of a forecaster

The basis of our approach lies in the concept of ‘meta
verification’, which determines whether or not verifica-
tion methods satisfy specific criteria and/or possess par-
ticular properties. The outline of the concept was first
suggested by Murphy (1991, 1996) and has been used
previously in the context of hedging (Jolliffe, 2007).
Here, an approach and application to a hydrometeoro-
logical problem is described. The interested reader is
also referred to the Spatial Forecast Verification Inter-
comparison Project (http://www.ral.ucar.edu/projects/
icp), which promotes a similar approach to the compari-
son and learning of novel performance metrics.

2.1. STEP 1: classification of measures

Each measure used should first be classified according to
the categories described in Table II in order to give the
foundation of the approach. This classification concen-
trates on the characteristics of the measures and not on the
aspects of forecast quality that they measure. Thus, mea-
sures are classified into multiple categories such as deter-
ministic, probabilistic, continuous, categorical, physical,
vulnerability and many others as described in Table II.
The basis for the categories used are from Weisheimer
et al. (2005) and Murphy (1987). The categories are not
clear-cut, and for example, ‘categorical’ measures based
on multiple thresholds could also, at the same time, be
‘continuous’ measures. Also, any spatially ignorant mea-
sure could be easily transformed into a spatially aware
measure by applying a moving-window approach.

2.2. STEP 2: scatterplots

The second step is for the measures to be compared
with scatterplots. A scatterplot is a graphical represen-
tation consisting of ordered pairs possibly showing a
relationship between two variable quantities. It allows
one to investigate whether performance measures behave
similarly, both in general but also in the tails of the distri-
bution. Measures that show exactly the same response as
another measure can be excluded from further analyses,
as they give no additional information.

It is recommended that a substantial amount of time
is spent exploring the relationships between different
methods, e.g by studying scatterplots, in order to gain
the craft skill needed to use measures effectively.

2.3. STEP 3: magnitude

Third, the sensitivity of measures to changes in mag-
nitude should be evaluated and understood. Magnitude
errors control the volume of water routed through a
hydrological system, and thus are one controlling factor
of the shape of a flood hydrograph (Obled et al., 1994).
The influence of magnitude errors can be evaluated by
comparing percentiles of, for example, an EPS. For this,
the percentiles of the distribution given by precipitation
forecasts or observations are computed and the resulting
maps are compared.
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Table II. Categories of performance measures.

Category Description Example

Deterministic/non-
probabilistic

Compare one observation with one forecast. Absolute error

Probabilistic
(1 M/O-Way)

Acknowledge the uncertainty in model/observations only
by comparing one observation with multiple forecasts.
M stands for modelled and O for observed. 1-M Way
means that the model results are treated as probabilistic
and 1-O Way means that the observations are treated as
probabilistic

Brier Score

Probabilistic
(2 M/O-Way)

Acknowledge the uncertainty in forecasts and
observations by comparing a probability distribution of
observations with a probability distribution of forecasts.

Ignorance score (Roulston and
Smith, 2002)

Continuous Use of continuous variables such as precipitation volume Absolute error
Categorical Use of categorical variables such as occurrence of

precipitation above a certain limit
Brier Skill Score

Object oriented Measure can be used to evaluate objects such as
catchments areas

Fractional Storm Coverage (Paulat
et al., 2007)

Grid oriented Measure can be used to evaluate grids Comparison of forecasted field
with observed field

Hazard Evaluation based on direct physical model results Comparison of precipitation
predictions

Risk Evaluation which takes account of additional
components such as vulnerability

Predictions are weighted by
additional properties such as soil
moisture (Pappenberger et al.,
2006a, 2007a)

Spatially ignorant Ignore spatial correlation of fields Absolute error
Spatially aware Incorporate spatial correlation of fields Fuzzy measure (Hagen-Zanker,

2006)

Temporally
ignorant

Ignore temporal correlation of fields Absolute error

Temporally aware Incorporate temporal correlation of fields Fuzzy measures

Scale ignorant Ignore scaling effects Absolute error
Scale aware Incorporate scaling effects Wavelets (Briggs and Levine,

1997); see also references quoted
by Casati (2007)

Formal Based on formal Bayesian Likelihoods Woodhead measure (Woodhead,
2007) for binary fields and
Bayesian Correlation Score
(Krzysztofowicz, 2002) for a
continuous variable. Jewson
(2006) provides an introduction
for meteorology

Strictly proper A forecaster maximizes (or minimizes, depending on the
nature of the score) by forecasting exactly his or her true
beliefs about the situation.

Ignorance Score, Probability
Score, Brier Score

Improper Not strictly proper (see discussion in Wilson and
Gneiting, 2007)

The Linear Score (Broecker and
Smith, 2007)

Sufficient If a performance measure is sufficient then it provides
an unequivocal ordering on the quality of forecast (for
discussion see Murphy, 1996 and Jolliffe and
Stephenson, 2003)

See formal Bayesian

Equitable Has the same no-skill value for random forecasts and for
univarying forecasts of a constant category

Kuiper’s Performance Index
(Murphy and Daan, 1985)

Copyright  2008 Royal Meteorological Society Meteorol. Appl. 15: 181–197 (2008)
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184 H. L. CLOKE AND F. PAPPENBERGER

2.4. STEP 4: displacement

Fourth, the sensitivity of measures to displacement should
be evaluated and understood. Although it may seem obvi-
ous that a good quantitative precipitation forecast system
will predict the correct location of a precipitation system
(Ebert and McBride, 2000), displacement errors occur
regularly. Moreover, spatial patterns of precipitation can
play an important role in the prediction of flow hydro-
graphs (Arnaud et al., 2002). Several techniques such as
the continuous rain area (Ebert and McBride, 2000) or
domain-based methods (Hoffman et al., 1995) have been
developed to quantify the location (displacement) errors.
However, it is argued that the displacement error can-
not be directly quantified for most forecasts because of
the covariance of the errors. Displacement can be eval-
uated by shifting or rotating a field and comparing it to
its original.

2.5. STEP 5: spatial dependency

Fifth, it is important to understand the relationship
between the spatial correlation of the field and the
performance measures. This is because performance
measures, especially spatially aware measures, can be
very sensitive to such correlations. Evaluation based on
spatial dependence is very similar to the displacement
analysis.

2.6. STEP 6: human visual experiment (eyeball
verification)

Sixth, the use of eyeball verification, which is often
used as a standard verification tool (e.g. Mariani et al.,
2005) and tests for consistency between numerical value
and forecasters’ experience and opinions is suggested.
Although time consuming, it is a valuable tool for eval-
uating location, size, shape, magnitude and patterns, and
many measures have tried to mimic it (see, for example,
references quoted in Shnayderman et al., 2006). How-
ever, realistically only a limited amount of information
can be reliably compared in this way, as the way in which
the brain detects and discriminates such information is
not yet fully understood (Olzak and Wickens, 1999).

The values of the performance measures should be
compared to the criteria used in the eyeball verification
directly. If there is no correlation between the perfor-
mance measures and the individual criteria, it is possible
to test for higher-dimensional relationships with the help
of a regression tree. The method uses the computed per-
formance measures as input variables and predicts the
criteria of the eyeball verification. A regression tree is a
sequence of questions that can be answered as ‘yes’ or
‘no’, plus a set of fitted response values. Each question
asks whether a predictor satisfies a given condition. Pre-
dictors can be continuous or discrete. Depending on the
answers to one question, one either proceeds to answer
another question or arrives at a fitted response value.
There are many different types of regression trees (see

references in Pappenberger et al., 2006a), but the method-
ology of Breiman and Cutler (2004), which generates
multiple regression trees, a ‘random forest’, by taking
account of the uncertainty in the model structure, is rec-
ommended. A more detailed explanation of this method-
ology is beyond the scope of this article and the reader
is, therefore, referred to related studies (Breiman et al.,
1984; Grieb et al., 1999; Dietterich, 2000; Bobbin and
Recknagel, 2001; Freund, 2001; Ho, 2002; Breiman and
Cutler, 2004; Pappenberger et al., 2006a). The random
forest is optimized on 80% of the training dataset, and
20% is used for verification.

3. Review of some of the performance measure
available

In any particular investigation, the initial use of as
many performance measures as time and resources allow
is advocated. Table II gives the main categories into
which any measure can be classified. Here, 15 differ-
ent deterministic, continuous, hazard performance mea-
sures, which range from fuzzy-based to more formal
approaches, have been selected. Deterministic-based per-
formance measures play an important role in all appli-
cations in which models can be run multiple times for
calibration purposes (calibration is defined here as adjust-
ing effective parameters or factors of the model to fit the
observations).

As well as traditional measures such as correlation and
root mean square error, seven measures that the reader
may be more unfamiliar with have been selected. Each
measure is only briefly introduced, as further information
can easily be found in the quoted references. A summary
of the measures is given in Table III. The definitions for
the equations are only given the first time the variables are
used, and are summarized in the Appendix. Concentration
is on the overall performance measures of the entire
fields, and thus, the aggregated information content. Most
spatially aware (and spatially unaware) measures are
originally designed to attribute errors towards particular
grid cells and have aggregated information only as a
secondary information content, and so, they only present
an average of the underlying fields.

3.1. Fuzzy numerical space (FNS)

The fuzzy numerical measure was first introduced by
Hagen (2003) and Hagen–Zanker et al. (2006). It com-
pares maps with a moving-window-based approach using
fuzzy logic to compute a measure of similarity.

si(A, B) = maxN
j (f (Ai, Bj ) × w(di,j ))

Si(A, B) = min(si(A, B), si(B,A))

S(A, B) = 1

n

n∑
i=1

Si(A, B) (1)

f (a, b) = 1 − |a − b|
max(|a|, |b|) (2)

Copyright  2008 Royal Meteorological Society Meteorol. Appl. 15: 181–197 (2008)
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Table III. Summary of performance measures used in this study.

Abbreviation Performance measure References

BSA Bivariate Spatial Association Lee (2001)
BSSS Bivariate Spatial Smoothing Scalar Tan et al. (2006)
CoD Cosine distance Tan et al. (2006)
Corr Correlation Tan et al. (2006)
FNS Fuzzy numerical Space Hagen (2003); Hagen-Zanker et al.

(2006)
HaD Hamming distance Tan et al. (2006)
IQA Image quality assessment Wang et al. (2004)
IWC Information weighted comparison Tompa et al. (2000)
JaD Jaccard distance Tan et al. (2006)
LM Local Moran Zang and Gove 2005; Hagen-Zanker

et al. (2006)
MAE Mean absolute error Tan et al. (2006)
MSE Mean squared error Tan et al. (2006)
PSNR Peak signal-to-noise ratio Tan et al. (2006)
RMSE Root mean squared error Tan et al. (2006)
SVD Singular vector decomposition Shnayderman et al. (2006)
WAV Wavelets Briggs and Levine (1997);

Hagen-Zanker (2006)

where: A and B are map A (observed) and B (modelled);
n is the number of cells; s is the one-way similarity; S is
the overall similarity; i,j is the cell index; f (a, b) is the
similarity measure; N is the number of cells in proximity;
w(d) is the distance weight.

The similarity measure can be replaced by different
formulations. The distance weight is here given by the
Euclidian distance. The number of neighbouring cells in
proximity is set to 4.

3.2. Image quality assessment (IQA)

In this article the IQA follows the method of Wang et al.
(2004) who decomposed the images into luminance (l),
contrast (ct) and structure (st) within a moving-window
approach. The method is conceptually similar to the
wavelet decomposition (see Section 3.7) and the FNS
(see Section 3.1).

µAx
=

N∑
i=1

wGi
Axi

σAxBx
= ( N∑

i=1

wGi
(Axi

− µAx

)(
Bxi

− µBx

))0.5

σAx
= ( N∑

i=1

wGi

(
Axi

− µAx

)2)0.5
(3)

where wG is the distance weight based on a normalized
Gaussian function with a standard deviation of 1.5, Ax

is the window used in map A, Bx is the window used in
map B, σ is the standard deviation and µ is the mean.

Equation (4) is then used to compute the image prop-
erties:

l(Ax, Bx) = 2µAx
µBx

+ C1

µAx

2 + µBx

2 + C1

ct (Ax, Bx) = 2σAx
σAx

+ C2

σAx

2 + σAx

2 + C2

st (Ax, Bx) = σAxBx
+ C3

σAx
σAx

+ C3
(4)

where l is the range of pixel values (set to the absolute
maximum) and C is a constant with C1 = (0.01 × l)2,
C2 = (0.03 × l)2, C2 = 0.5.

The properties can be summarized in a similarity index:

SSIM(Ax, Bx) = c(Ax, Bx)s(Ax, Bx)l(Ax, Bx)

IQA = 1

N

N∑
i=1

SSIM(Axi
, Bxi

) (5)

where SSIM is the similarity index of luminance, contrast
and structure.

3.3. Information weighted comparison (IWC)

The IWC by Tompa et al. (2000) is a spatial derivate
of the Ignorance Score. Values which are common in the
map are weighted less than values which lie in uncommon
ranges. It can be used either in a deterministic framework
or in a 1-/2-way probabilistic one.

IA(z) = log(
1

PA(z)
)

IMSEi(A, B) = (AiIA(Ai) − BiIB(Bi))
2

IWC(A, B) = 1

N

n∑
i=1

IMSEi (A, B) (6)

where P(z) is the frequency of value z; I is the ignorance
and IMSE is the mean weighted ignorance.
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3.4. Local Moran (LM)

The LM approach has been primarily designed to cluster
sources of errors in a local indicator (Zang and Gove,
2005). It computes a weighted average of mean errors
based on an evaluation window.

ME = 1

N

N∑
i=1

Ai − Bi

MCi = ((Ai − Bi) − ME)

N∑
j=1

w(di,j )

× ((Aj − Bj) − ME)

LM = 1

N

∑
MCi (7)

where ME is the local mean error and MC is the
weighted ME.

The weighting function has the form of a pyramidal
frustum. Hagen-Zanker et al. (2006) have pointed out that
interpretation of the Local Moran maps is very complex,
as for example, even small location errors will lead to
large negative Moran values.

3.5. Bivariate spatial association (BSA)

Lee (2001) combines the LM measure described above
(Section 3.4) with Pearson correlation to compute the
BSA measure. The method compares two windows with
a bivariate spatial smoothing scalar and multiplies the
result by the Pearson correlation.

SSSA =

√√√√√√√√√√

N∑
i=1

(Âxi
− ME)2

N∑
i=1

(Ai − ME)2

BSSSA,B = SSSA − SSSB

BSAA,B = √
BSSSA,B × rA,B (8)

where r is the Pearson correlation, SSS is the spatial
smoothing scalar and BSSS is the bivariate spatial
smoothing scalar.

3.6. Singular vector decomposition (SVD)

Shnayderman et al. (2006) developed a multidimensional
image quality measure using singular value decomposi-
tion. Every real matrix can be factorized and decomposed
into a product of three matrices of which one is a scalar
by which each corresponding input is multiplied to give
a corresponding output. This can be used in a graphical
distance measure

SVDi =
√√√√ N∑

i=1

(σAX
− σBX

)2 (9)

From this a global measure can be derived through
averaging.

3.7. Wavelets (WAV)

The wavelet method has been pioneered by Briggs and
Levine (1997) who decomposed the observations and
forecasted fields into maps at different scales by a discrete
wavelet transformation. The maps at the different scales
are then compared by any similarity measure such as
root mean squared error (RMSE) or anomaly correlation
coefficient (ACC). Hagen–Zanker (2006) describes the
three steps necessary for this analysis. First, the observed
map is transformed into a series of maps representing
different characteristic scales (wavelets) of the observed
magnitude. The transformation with the lowest Shannon
Entropy is chosen. Second, noise is removed with a soft
threshold function (this is omitted in this research article
due to the ambiguity of the definition of noise). Third, the
maps are compared with RMSE. Hagen–Zanker (2006)
points out that the decomposition is purely based on
the information theory and thus, has limited physical
meaning. Moreover, this method is extremely sensitive
to offsetting of maps.

3.8. Traditional measures

Measures that are commonly used in meteorological
verification include: mean squared error (MSE), mean
absolute error (MAE), RMSE, peak signal-to-noise ratio
(PSNR), Hamming distance (HaD), Jaccard distance
(JaD), Cosine distance (CoD) and correlation (Corr). For
the last, the Pearson correlation has been used. These are
not described in detail as it is assumed that the reader
is familiar with the more common measures. However, a
description can be found in Tan et al. (2006).

4. A methodology for testing the approach

4.1. Description of case study: July and August 2002
flooding in the Danube catchment.

The approach described in Section 2 was tested with the
measures described in Section 3 on precipitation data
from a flood on the River Danube. The Danube has been
chosen as it is part of the PREVIEW research program
(www.preview-risk.com) which analyses the predictabil-
ity of medium-range flood forecasts. PREVIEW is a
project funded by the European Commission as part of
the sixth framework program. This study concentrates on
the flooding of July and August 2002, which affected
over 600 000 people and caused damages in excess of
15 × 106 USD (EM-DAT, 2007). The major cause of this
flooding was heavy rain. A high-altitude low-pressure
system caused heavy precipitation in Germany and in
lower and upper Austria between the 6th and 8th of
August. Additionally, heavy precipitation occurred over
Romania, South Bohemia and the eastern coastal regions
of the Black Sea. On the 10th and 11th of August, a

Copyright  2008 Royal Meteorological Society Meteorol. Appl. 15: 181–197 (2008)
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second depression led to strong precipitation in north-
ern and central Italy and generated torrential rainfall in
upper Bavaria and Lower Saxony (SE and NW Ger-
many). Many small and medium-sized rivers in Austria
and Germany were in flood (SwissRe, 2003).

The precipitation prediction set used here consists of
50 ensemble members, 43 days in length, each with
a forecast of 6 days ahead (258 forecasts in total).
The ECMWF variable resolution ensemble prediction
system (VAREPS) was used, which has a resolution of
TL399L62, with T42L62 singular vectors (Buizza et al.,
2006). The observations have been taken from a high-
resolution network described by Ghelli and Lalaurette
(2000).

4.2. Methodology for the six-step approach

First, the measures described in Section 3 will be clas-
sified according to Table II (step 1). Second, scatterplots
of the results of the performance measures will be com-
pared (step 2). For step 3, the analysis of magnitude, all
forecasts are lumped together. From each of the 258 fore-
cast distributions of 50 ensembles, the 10, 20, 30, 40, 60,
70, 80 and 90% percentiles are computed (2322 experi-
ments). These percentiles are then compared to the 50%
percentile of each forecast. Some displacement error is
necessarily included in this analysis as, e.g. one forecast
can predict the storm centre in one area of the domain
and another elsewhere. However, this will be partially
overcome by using the median of each cell.

For step 4, displacement errors are simulated by
shifting the forecasted precipitation fields. The fields are
shifted on the regular Gaussian grid (one field north,
one field west, one field north/west, four fields north,
four fields west, four fields north/west), in a total of
1548 experimental set ups. Edges of the fields are
excluded from further analysis. It should be noted that
this displacement error experiment will, indirectly, be
dependent on the spatial correlation of the field.

For step 5, the spatial dependence is based on geo-
statistical simulations. A sequential Gaussian simulation
is used to generate multiple maps based on variograms
(Deutsch and Journel, 1998). The full variogram used in
this study is based on the variograms fitted to observa-
tions, and can be described as:

γ (h) = c1

[
1.5

h

a
− 0.5

(
h

a

)3
]

+ c0, for h ≤ a

γ (h) = c, for h > a (10)

where: h is the lag (distance) between two locations; c1

is the spatially correlated variance; c0 is the spatially
uncorrelated variance; a is the range of variogram; and c

is the sum of c1 and c0 with a maximum of 1.
This article does not explain the mathematical details

of variogram analysis and refers the reader to Michaelides
and Wilson (2007) for a relevant summary. Fifty alter-
native realizations (maps) have been created for ranges

of a = 20 and 40 and a fixed c0 of 0.3 (which repre-
sents ranges estimated from observations). The larger the
range, a, the more connected fields appear (in princi-
ple, moving from small-scale to large-scale storms). The
effect of choosing different values for a and c is described
in more detail by Michaelides and Wilson (2007). The
distribution of the precipitation values of each map has
been transformed from a normal distribution to an expo-
nential distribution estimated based on the observations
with inverse normal quantile transformation via prob-
ability matching (van der Waerdens, 1953; Kelly and
Krzysztofowicz, 2000). This ensures that the artificial
stochastic fields have similar properties to the observed
fields. A displacement analysis is performed within these
alternative maps and between the different maps. The
derivates of the displacements with the two different
ranges is computed and the fraction determines how sen-
sitive a measure is towards spatial correlation.

For step 6, an interface has been developed, which
allows a subjective performance classification (Figure 1).
Forecasted images are selected at random and presented
to the human interpreter who, as part of the interface,
had unlimited time in which to respond. This methodol-
ogy type is frequently used in other research fields (see,
for example, Fairhurst and Lettington, 2000). In the top
right corner an image of the observed data is displayed.
In the bottom right corner is the forecasted image. The
bottom left corner shows a difference map. The display of
this difference map may condition the analysis somewhat,
however, it was deemed necessary for better orientation
after a trial run without it. A human interpreter conducted
an evaluation based on four categories, each with mea-
sures ranging from 1 (excellent) to 5 (bad). It was also
possible to give N/O (no opinion) in case of ambigu-
ous forecasts. The four categories are overall impression,
magnitude, pattern and displacement. Every 20 images or
10 min (whichever is reached first) the program encour-
ages the evaluator to take a break. Many secondary fac-
tors such as tiredness, experience or light conditions can
influence the analysis. The analysis can be based on raster
data (as shown in Figure 1) or catchment outlines.

5. Case study results

5.1. STEP 1: results of classification of measures

In Table IV the performance measures used in this study
have been classified according to their properties. In
the Table a closed circle indicates what this particular
measure was primarily designed for, an open circle
suggests that this measure could be used in this context,
and an empty space indicates that this measure is not
suitable for this application. The distinction between
categories is not always clear-cut and measures can fall
into several categories at the same time. For example,
a measure which is integrated over several thresholds
can be seen as an evaluation of a continuous variable.
It is apparent that in this case study only a certain subset
of performance measures has been chosen, e.g. there
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Figure 1. Human visual system interface for the comparison of observed and forecasted data.. This figure is available in colour online at
www.interscience.wiley.com/ma

Table IV. Classification of performance measures used in this study. A closed circle means that this measure is primarily designed
with this property. An open circle means that this measure can be easily adapted to contain this property. No entry means that

this measure is unsuitable for this property. Details of the performance measures can be found in Table III.

Category FNS IQA IWC LM BSA SVD WAV MSE MAE RMSE PSNR HaD JaD CoD Corr

Deterministic • • • • • • • • • • • • • • •
Probabilistic
(1 M/O-Way) ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
Probabilistic (2
MO-Way)
Continuous • • • • • • • • • • • • • • •
Categorical
Object oriented • • • • • • •
Raster oriented • • • • • • •
Hazard • • • • • • • • • • • • • • •
Risk ° ° ° ° ° ° ° ° ° ° ° ° ° ° °Spatially ignorant • • • • • • • • •
Spatially aware • • ° • • • • ° ° ° ° ° ° ° °Temporally
ignorant

• • • • • • • • • • • • • • •

Temporally aware ° ° ° ° ° ° ° ° ° ° ° ° ° ° °Scale ignorant • • • • • • • • • • • • • •
Scale aware ° •
Formal
Strictly proper
Not strictly proper • • • • • • • • • • • • • • •
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are no probabilistic 2-way measures. This is because
we are merely seeking to establish a framework for
performance measures. Probabilistic 2-way measures are
easily incorporated into this approach but were not
included so that testing of the human interface could be
done in a timely fashion.

The classification of the measures in this way has given
an overview of the capabilities of different measures. For
example, IQA is clearly classified as spatially ignorant
and so could not be expected to provide information about
quality of the spatial distribution of the precipitation field.

5.2. STEP 2: results of scatterplot analysis

In Figure 2 a plot matrix of the different performance
measures is shown. In the scatterplots the different
measures are plotted against each other for the same
evaluation dataset. Histograms of the distribution of each
measure are plotted on the diagonal of this plot. The
evaluation measures have been normalized (with the
results of the magnitude and displacement tests). The
construction of this figure helps to get a ‘feeling’ for
the different performance measures.

Some clear linear relationships can be observed (e.g.
between LM and IWC). Such a definite linear relationship
suggests that it is unnecessary to continue analysis with

both measures (as the value of one measure can be
expressed by a simple regression with the value of the
other measure).

It is apparent in Figure 2 that some performance mea-
sures do not cover the entire spectrum of normalized
values. For example, the JaD is only observed between
0.95 and 1, and this is because the values have been
normalized with the results of the displacement and mag-
nitude experiment, and the JaD is relatively insensitive to
magnitude errors (for more discussion, see Section 5.3).
The image resolution would not show any dots if this
adjustment were not made.

The histograms on the plot allow important conclusions
to be drawn regarding the sensitivities to the type of
error. The experiment has been designed so that there
are equal numbers of percentual errors (e.g. there is an
equal number of simulations which have an error of
40 percent points). Therefore, the distributions would
be uniform if all errors were equal, for example, if an
error between the 10th and 50th percentile were equal
to an error between the 20th and 50th percentile. The
FNS measure is the closest in achieving this ideal. The
PSNR has a clear peak and a near-normal distribution,
indicating that it weights towards small errors. In general,
one cannot discriminate against a measure purely on
these grounds as this can be an attractive property in
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Figure 2. Comparison of various continuous measures in scatterplots and histograms. In the scatterplots the different measures are plotted against
each other for the same evaluation dataset. Histograms of the distribution of each measure are plotted on the diagonal of this plot. The evaluation
measures have been normalized between 0 and 1 (with the results of the magnitude and displacement tests). Details of the performance measures

can be found in Table III.
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applications different to the one discussed here. However,
here a flood forecast is considered and thus the response
will not be dominated by small errors. Small errors will
not make much difference in the actual occurrence of the
flood. Therefore, this measure is suitable for the present
application.

In summary, for this case it is seen that the IWC
can be removed from further consideration. A measure
of how the various measures respond to the case study
has also been obtained. For example, the IQA will be to
some extent linearly related to the MAE, but will have
no clear relationship to LM. Again, it is recommended
that a substantial amount of time is spent exploring the
relationships between different methods for any study, e.g
by studying scatterplots, in order to gain the craft skill
needed to use measures effectively.

5.3. STEP 3: results of the magnitude analysis

Figure 3 shows the box-and-whisker plots of the mag-
nitude experiment in which the percentiles of the dis-
tribution of EPS forecast are compared. Each box has
lines at the lower quartile, median and upper quartile.
The whiskers are lines extending from each end of the
box to show the extent of 1.5 quartiles. Outliers are data
with values beyond the end of the whiskers (marked as a
cross). It would be expected that performance measures

show sensitivity to the decreasing quality of the forecasts.
For example, the average value of the FNS performance
measure decreases with increasing error. The whisker
indicates the magnitude of the uncertainty; the longer the
bars the higher the uncertainty created by the individ-
ual measures. Certain measures can now be eliminated
based on this analysis shown in Figure 3, because they
are unsuitable for this case. For example, HaD exhibits
far too large uncertainties to be useful for further anal-
ysis spreading the entire evaluation range from 0 to 1
and showing no distinction between 10, 20, 30 and 40%.
The JaD measure shows nearly no sensitivity towards the
increasing error (besides the outliers), and similar reasons
disqualify LM, MSE and IWC (the latter has already been
disqualified from the previous analysis).

5.4. STEP 4: results of the displacement analysis

In Figure 4, the box-and-whisker plots for the sensitivity
of the measures towards displacement is shown.

Performances should decrease with increasing distance
of displacement if the optimum performance of a mea-
sure is indicated by 1. Moreover, in the same scenario,
the uncertainty bounds should increase with increasing
distance as the correlation between the fields decreases.
According to this analysis, the IWC, LM, MSE, HaD, JaD
are not suitable for further use, as they do not behave as
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Figure 3. Box-and-whisker plots of the magnitude experiment. Each box has lines at the lower quartile, median and upper quartile. The whiskers
are lines extending from each end of the box to show 1.5 times the inter-quartile range. Outliers are data with values beyond the end of the
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expected. In this case, these are the same measures that
could be discarded based on the magnitude analysis, how-
ever, it is stressed that this may not always be the case.

5.5. STEP 5: results of the analysis of spatial
dependency

In this analysis none of the measures are sensitive to a
displacement of any of the maps created by the sequential
Gaussian simulation and so results have not been shown
graphically. This could be because variations in the range
of the variogram are significantly larger than the steps
of the displacement experiment. Smaller ranges cannot
be chosen as this would interfere with the nugget effect
(variance due to noise). This illustrates that for this
case study all the measures chosen are robust towards
large-scale changes of the geostatistical properties in
the underlying fields and thus can be used for further
analysis.

5.6. STEP 6: results of the human visual experiment

The human visual experiment, or eyeball verification,
has been conducted with the same dataset as above.
The interface shown in Figure 1 has been used by a
human interpreter to rate various images. All image
combinations have been analysed at least twice by two
different human interpreters. The displacement category

in the interface was seen as problematic very early in
the test as the interpreters were not able to make a clear
distinction between the test images, and used primarily
the ‘no opinion’ category. This may be partially the fault
of the design of the experiment, which does not allow for
enough spread.

In Figure 5 the results of the magnitude and displace-
ment experiment are shown in a two-dimensional his-
togram. In the magnitude experiment one would expect a
triangular shape in this diagram, with small errors (40 and
60%) getting high performance values and larger errors
getting lower performance values. To improve the visual
comparison, the frequencies have been computed based
along the experimental designs, e.g. all percentages in
the 10% column add up to 100%. The results shown in
Figure 5 indicate that the variations of the frequencies
become larger with larger errors. Small errors are not
predominantly recognized and images with these errors
are predominantly rated as excellent. However, an overall
shape is visible. This is far less the case for the displace-
ment experiment. A decreasing subjective performance
rating would be expected with increasing displacement.
This pattern cannot be seen, which indicates that the
displacements are not large enough to have any visual
impact. The fact that the magnitude shows a stronger
signal than the displacement may also be due to the
scientific training of the evaluators. Magnitude changes
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Figure 5. Comparison of eyeball tests to magnitude and displacement experiment in a two-dimensional frequency histogram (frequency computed
along the experimental, y-axis, designs).

are very important in most flood applications and the dis-
placements may have been seen as too small on the scale
in question for this flood event.

In Figure 6 the pattern and magnitude rating are
compared to the overall impression. All images show a
positive correlation. The correlation of the magnitude to
the overall impression seems to be stronger (less spread)
than the evaluation values based on the pattern criteria.

The latter can be expected from the previous figures
(Figures 3 and 4). The magnitude and pattern also show
a positive correlation, which is probably less expected
as no structure has been introduced into the experiment.
This indicates that there is a visual correlation, which is
not anticipated and cannot yet be fully explained. It is
possible that if the human interpreter has a good opinion
of the magnitude, pattern errors are seen more positively.
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Figure 7. Histograms of the verification attempt to predict eyeball measures (overall impression) with continuous discrete performance measures.
The bold text (figure titles) indicates results of the eyeball verification. The normal text (legend on x-axis) shows the measures predicted with

the random forest.

The values of the performance measures are then com-
pared to the criteria used in the eyeball verification
directly. In this case, no correlation between the per-
formance measures and the individual criteria has been
found, and higher-dimensional relationships are tested for
with the help of a regression tree (as described in Section
2.6). In Figure 7 the results of the regression tree analysis
are displayed. The figure shows histograms of the verifi-
cation of the attempt to predict eyeball measures (overall
impression) with continuous discrete performance mea-
sures. The bold italic text (figure titles) stands for the
results of the eyeball verification. The normal text (x-
axis description) shows the measures predicted with the
random forest. A clear relationship can be seen and there
is a clear peak in each histogram at the location of the
result of the eyeball experiment. Therefore, it is possible
to predict the outcome of the eyeball verification exercise
with the computed performance measures (incorporating
uncertainties). The maximum frequencies are compara-
ble, although there is a clearer peak at the top left plot at
the ‘bad’ eyeball experiment results. It is obviously eas-
ier to make a distinction between clearly underperforming
predictions compared to better predictions.

The performance measures can be ranked (Table V)
according to their importance in predicting the out-
come of the eyeball experiment (see Pappenberger et al.

(2006a) for details). The influence of all measures, which
are not listed in Table V, is negligible. This ranking can
be used to narrow the numbers of performance measures
from those listed in Table V, which should be carried
over for further use for the case in question. An impor-
tant practical property for the evaluation criteria is the
average computation time (Table VI).

At the end of step 6, there are five suitable measures,
of which four are computationally feasible: IQA, PSNR,
CoD and Corr are seen as the most appropriate measures
for a further analysis of precipitation amounts in this
region for this particular event. Table IV shows that our
chosen performance measures cover all possible classes.

Table V. Ranking of performance
measures according to importance
in predicting the overall impres-

sion of the eyeball verification.

Rank Measure

1 Corr
2 PSNR
3 IQA
4 CoD
5 FNS
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Table VI. Average execution time on an Intel Pentium 4,
3.4 Ghz, 2Gb RAM using Matlab of selected deterministic

continuous performance measures.

Measure FNS IQA PSNR/CoD/Corra

Time (s) 36 2 0.4

a Total time for all measures. Computed in one function due to high
similarity.

For example, the IQA is raster oriented and spatially
aware in contrast to the PSNR, which is not raster
oriented and spatially ignorant.

5.7. Further analysis: comparison of magnitude and
displacement experiment

In Figure 8 the results of the magnitude and displacement
experiment are compared in a quantile–quantile plot of
the distributions of all computed performance measures.
From this it can be seen whether the change in magnitude
or the shift of the different distributions has a greater
influence (assuming that the size of the spatial shift and
the size of magnitude shift have equal importance). If the
dark thick line lies on the thin straight line, then a spatial
shift and the magnitude shift have equal weights. This

could be used as a criterion for measure selection, unless
the difference in the reaction to magnitudinal/spatial
shifts is required in the analysis. If the dark thick line is
above the thin straight line then the magnitudinal errors
have a greater influence on the performance measure and
vice versa. No measure will be discarded based on this
particular analysis. It allows quantification that the PSNR
measure is more sensitive to magnitude in the upper end
of the distribution. The final selection of measures used in
any case should have dominant sensitivities towards both
magnitude and displacement experimental setups. This
is more important at the upper end of the performance
distribution as good model that perform well are being
sought.

The relationships depicted in Figure 8 should always
be considered if the performance measures are applied in
evaluating forecast fields.

6. Discussion

It has been shown in the previous Sections that for any
particular analysis, one can easily narrow down the types
of performance measures, which are suitable. Measures
are excluded if they show no sensitivity towards the two
experiments, or exhibit large uncertainty bounds. This
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Figure 8. Comparison of the magnitude and displacement experiment in quantile–quantile plots for the continuous deterministic measures. Details
of the performance measures can be found in Table III.
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Table VII. Skill measures of precipitation for the July and
August 2002 Danube floods. Details of the performance mea-

sures can be found in Table III.

Lead time (h) IQA PSNR CoD Corr

42 0.52 26 0.80 0.92
66 0.50 25 0.79 0.91
90 0.50 25 0.79 0.90
114 0.50 24 0.78 0.90
138 0.49 23 0.77 0.88
162 0.47 22 0.75 0.86

article recommends the use of IQA, PSNR, CoD and
Corr for the deterministic assessment of forecasts for
this particular variable (precipitation), region (Danube)
and event (floods of July and August, 2002). The range
of these four forecast measures for this event allows us
to evaluate different aspects of the forecast quality, and
thus summarize the performance of the forecasts more
adequately (Murphy, 1991).

The average performance of the control forecast for
the July and August 2002 Danube floods to observations
can be seen in Table VII. Corr should be a familiar
measure for most readers, and thus, the response of
IQA, PSNR and CoD (which may be more unfamiliar)
can be referenced against this measure. In addition,
the reader is referred back to the relationships depicted
in Figure 2. Each of the measures focuses on slightly
different properties of the system, for example, a dataset
can have a high correlation, but not necessarily matching
in magnitude. The PSNR would pick up on the latter.
The IQA is more sensitive to pattern displacement.

The combination of measures shown in Table VII
shows that with increasing lead time the performance of
the forecast drops. The values are comparably high and
suggest a successful forecast. However, it is important to
stress that ‘skill’ is always defined relative to another
forecast in any particular application. The measures
computed above do not indicate whether a forecast is
sufficient enough, for example, to issue a flood warning,
as only a coupled modelling approach would allow for
such a conclusion (see, for example, Pappenberger et al.,
2005). Even a comparison with a long-term climatology
does not necessarily lead to successful flood prediction
(see discussion in Pappenberger et al., 2007a).

Damrath et al. (2007) have pointed out that differ-
ent users need different verification results. We rec-
ommend that studies using other events and variables
should follow the process outlined in this article in order
to understand which performance measures adequately
describe the quality of those particular forecasts. The
results presented here should not be taken as general con-
clusions, but may be used as the basis for similar studies.

7. Conclusions

Many different performance measures have been formu-
lated in meteorology, each of which may be valuable in a

different way when analysing forecasts. The use of many
different measures in the same analysis is recommended,
however the researcher needs a method of getting to grips
with a new or unfamiliar method, and to choose between
different performance measures and evaluate their suit-
ability for the task at hand. In this article, an approach
for comparing and evaluating performance measures,
focussing on meteorological forecasts of hydrological
extreme events, is described. A six-step process to nar-
row the number of measures which have to be computed
in order to best evaluate such forecasts is postulated.

For step 1, each measure is categorized according to
an overview of the various methods and sets them in
context to each other. Measures which do not have the
desired properties are excluded at this step. Step 2 is a
scatterplot analysis. If measures show simple (e.g. linear)
relationships between each other when they are plotted
against each other, then one of them can be excluded. In
step 3, the sensitivity of the measures towards changes in
magnitude is evaluated, as this is one important property
to be expected from such a measure. Step 4 is an
experimental set-up, which tests measures regarding their
robustness towards displacement. Step 5 evaluates the
behaviour of each performance measure with respect to
fields with known geostatistical properties. Step 6 is a
comparison with an eyeball verification (where a human
interpreter had to classify a large number of images).

This evaluation process has been demonstrated on
precipitation predictions by the ECMWF precipitation
forecasts for the July and August 2002 floods in the
River Danube. The experiment is initially performed
with 15 different measures, which range from traditional
approaches such as the RMSE to more novel methods
such as fuzzy interference. The analysis cuts this down
to four measures, which are then used to demonstrate that
the forecast performs well on several fronts.

Researchers and practitioners are encouraged to try
new or unfamiliar performance measures in their anal-
yses, and to use the six-step approach to ‘get to grips’
with them.

Acknowledgements

Florian Pappenberger is supported by the PREVIEW
project (www.preview-risk.com). Hannah Cloke has
received funding from the Nuffield Foundation, the
University of London Central Research Fund, and
NERC FREE grant (NE/E002242/1), which is grate-
fully acknowledged. We thank two anonymous reviewers,
whose comments helped to improve this article.

Appendix: Summary of symbols used

Symbol Explanation

a Range of variogram
A Map A (observed)
Ax Window used for map A
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Appendix (Continued )

Symbol Explanation

B Map B (modelled)
Bx Window used for map B
c Sum of c1 and c0 with a maximum of

1
c0 Spatially uncorrelated variance
c1 Spatially correlated variance
C Constant
Ct Contrast
f (a, b) Similarity measure
H Lag (distance) between two locations
i,j Cell index
I Ignorance
IMSE Mean weighted ignorance
l Luminance
L Range of pixel values (set to the

absolute maximum)
MC Weighted ME
ME Local Mean Error
n Number of cells
N Number of cells in proximity
N/O No opinion
P(z) Frequency of value z
R Pearson correlation
S One-way similarity
s Overall similarity
SSIM Similarity index of luminance,

contrast and structure
SSS Spatial smoothing scalar
St Structure
W(d): Distance weight
wG Distance weight based on a

normalized Gaussian function with a
standard deviation of 1.5

σ Standard deviation
µ Mean
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