
Scaling up classification rule induction 
through parallel processing 
Article 

Accepted Version 

Stahl, F. ORCID: https://orcid.org/0000-0002-4860-0203 and 
Bramer, M. (2012) Scaling up classification rule induction 
through parallel processing. Knowledge Engineering Review. 
pp. 243-259. ISSN 1469-8005 doi: 
10.1017/S0269888912000355 Available at 
https://centaur.reading.ac.uk/30159/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http:// journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8760058 
To link to this article DOI: http://dx.doi.org/10.1017/S0269888912000355 

Publisher: Cambridge University Press 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



The Knowledge Engineering Review, Vol. 00:0, 1–24. c© 2004, Cambridge University Press
DOI: 10.1017/S000000000000000 Printed in the United Kingdom

Scaling Up Classification Rule Induction Through Parallel

Processing

FREDERIC STAHL, MAX BRAMER

University of Portsmouth, School of Computing, Buckingham Building, Lion Terrace, PO1 3HE Portsmouth, UK
E-mail: Frederic.Stahl@port.ac.uk, Max.Bramer@port.ac.uk

Abstract

The fast increase in the size and number of databases demands data mining approaches that

are scalable to large amounts of data. This has led to the exploration of parallel computing

technologies in order to perform data mining tasks concurrently using several processors.

Parallelisation seems to be a natural and cost effective way to scale up data mining technologies.

One of the most important of these data mining technologies is the classification of newly recorded

data. This paper surveys advances in parallelisation in the field of classification rule induction.

1 Introduction

There are many areas confronted with the problem of mining massive datasets. For example,

in bioinformatics and chemistry there are large datasets which are generated in different kinds

of experiments and simulations, and there is considerable desire to find ways to manage, store

and find complex relationships in this generated data (Berrar et al., 2005). Examples for such

large scale simulations are Molecular Dynamics simulations that are conducted in order to find

rules to describe the folding, unfolding or malfolding of proteins. Researchers in this area are

just beginning to be able to manage and store these massive amounts of data (Stahl et al.,

2005), which can reach 100s of gigabytes for a single simulation. Another example for massive

datasets is the data that is generated by the NASA System of earth orbiting satellites and other

space-borne probes (Way & Smith, 1991) launched in 1991 and still ongoing. This NASA system

sends back approximately one terrabyte of data a day to receiving stations. In the business area,

major multi-national corporations record customer transactions, and they often have thousands

of establishments around the world that are all collecting data and store it in centralised data

warehouses. In astronomy there exist databases that comprise terrabytes of image data and they

are increasing in size as further data is collected for the GSC-II (McClean et al., 1998) and the

Sloan survey (Szalay, 1998). Furthermore, the data sample size is not only dependent on the

number of instances which could be sampled but also on the number of attributes and therefore,

for example, the size of gene expression data is strongly dependent on the number of genes

observed in the experiment. The number of attributes, for data generated in gene expression

experiments, can reach tens of thousands for human genomes. In the case of ‘market basket

analysis’, the number of attribute lists is strongly dependent on the number of products a store

sells which can easily reach tens of thousands.

Not only the sheer size but also where and how this data is stored is problematic. For example

in the area of molecular dynamics simulations, researchers keep their simulation data in in-

house databases but also want to share their simulation data with other research groups, that

may also store their locally generated data in their own local databases. This geographically

distributed data also needs to be mined. Problems that arise there are the bandwidth consumption



2 f. stahl, m. bramer

of transferring vast amounts of data via the Internet and the fact that the database schemas might

be customised to the individual research group that generated the data.

Loosely speaking, the commercial and the scientific world are confronted with increasingly

large and complex datasets to be mined, and therefore tools and techniques that are scalable are

required.

The problem of geographically distributed data sources that need to be mined is also

known as Distributed Data Mining (DDM). An overview of Distributed Data Mining can be

found in (Park & Kargupta, 2002). Also ensemble learners are naturally suited for learning

from distributed data sources. Park’s survey also briefly outlines the Collective Data Mining

framework for predictive modelling from heterogeneous data sources (Kargupta, Byung-Hoon,

Hershberger, & Johnson, 1999). Another framework that is concerned with learning from

distributed heterogeneous data sources is described by Caragea (Caragea, Silvescu, & Honavar,

2003) and has successfully been demonstrated for classification rule induction in the form of

decision trees. Also the DataMiningGrid.org project is concerned with all sorts of data mining

applications on geographically distributed data sources (Stankovski et al., 2008). One major

concern of the DataMiningGrid.org project is the transfer of individual data mining algorithms

to data sources, rather than transferring the data itself, with the aim to avoid a too intense

bandwidth consumption.

However the scope of this survey is not concerned with geographically distributed or remotely

located data sources but the scalability of the data mining task itself with the focus on

classification, in particular classification rule induction. By scalable we refer to the ability to

train a classifier on large training data and still generate the classification rules in a reasonable

amount of time. Additional computational resources in the form of multiprocessor architectures

can be used to mine increasingly large datasets.

The rest of the survey is organised as follows. Section 2 will discuss some general approaches

to parallel data mining and classification rule induction. Section 3 will discuss data reduction

as an approach to scaling up classification rule induction. Section 4 will introduce some

general distributed data mining models and Section 5 will discuss concrete parallel formulations

of classification rule induction algorithms based on decision trees. Section 6 highlights a

recently developed methodology to parallelise modular classification rule induction algorithms,

an alternative to decision trees. Section 7 will finish this survey with a brief summary and some

concluding remarks.

2 Parallel Data Mining

Multiprocessor architectures can be used to host data mining algorithms. In general the workload

is distributed to several computing nodes by assigning different portions of the data to different

processors. Multiprocessor computer architectures can be divided into tightly-coupled and loosely-

coupled architectures.

• A tightly-coupled architecture is constructed of multiple processors sharing one common

memory, and physical data distribution is not required. Implementations of tightly-coupled

architectures are also often referred to as ‘Shared memory Multiprocessor machines’ (SMP).

• A loosely-coupled architecture is a collection of multiple computers in different locations.

Each computer and thus each processor has its local private memory. Here data distribution

is required along with data communication and accumulation mechanisms. Implementations

of loosely-coupled architectures are also often referred to as shared nothing or ‘Massively

Parallel Processors’ (MPP).

The effectiveness of the data distribution mechanism is dependent on the architecture of the

underlying network, also called the host system. Figure 1 illustrates both types of multiprocessor

computer architectures. In the tightly-coupled architecture data is communicated using a memory

bus system, whereas the loosely-coupled system utilises a communication network. Unfortunately,



Scaling Up Classification Rule Induction Through Parallel Processing 3

as the number of processors increases in a SMP system where the processors share the bus, the

bandwidth available per processor decreases. This can be overcome by using a MPP system.

The advantage of loosely-coupled architectures is that the application components of the system

can be hosted on different hardware. Hosting application components on different computers

across a network makes the application more robust so that computer failure does not bring

down the entire application. The disadvantage of loosely-coupled systems is that the application

requires communication and collaboration between components. The communication requirement

introduces an additional overhead for the application. Compared with loosely-coupled systems

tightly-coupled systems are usually more efficient at processing as they avoid data replication

and transfer of information between application components. However, the main disadvantage

of tightly-coupled systems is often seen in the high cost of hardware to scale tightly-coupled

architectures. An advantage of a loosely-coupled system compared with a tightly-coupled system

is that the processing components can be reused as independent processing units or workstations

once the multiprocessor system is not needed anymore. A further advantage of loosely-coupled

systems is that if they are hosted on a network (that comprises independent workstations), the

hardware used in the system is naturally upgraded as old computers are replaced by new ones.

Upgrading a tightly-coupled system usually requires replacing the entire hardware.

Figure 1 Tightly- and loosely-coupled multiprocessor computer architectures

However, research in the area of classification rule induction has just begun to utilise the

advantages of both loosely-coupled and tightly-coupled multiprocessor architectures. Due to

the fast increase of data repositories and the massive size of single datasets the data mining

community is called on to investigate the advantages of multiprocessor architectures, their

suitability and benefits to scale up data mining systems to large data volumes.

The rest of this Section reviews two principal forms of parallelism often used to parallelise

data mining tasks and algorithms, task and data parallelism. In task parallel algorithms the

actual code is executed concurrently on several computing nodes or processors. In the data

mining literature task parallelism is also often referred to as control parallelism (Freitas, 1998).

In contrast to task parallelism, data parallelism relates to the concurrent execution of the same

task on different subsets of the dataset on several computing nodes or processors (Hillis & Steele,

1986). The latter form of parallelism is very popular as it naturally achieves parallelisation of

the workload of most data mining applications, as the workload of data mining applications is

directly related to the amount of data used to mine. Data parallel data mining algorithms are

sometimes referred to as ‘distributed data mining’ algorithms, because of the fact that the data is

distributed to several computing nodes. This is confusing as ‘distributed data mining’ also refers



4 f. stahl, m. bramer

to the mining of geographically distributed data sources which is in contrast to data parallel

data mining algorithms not necessarily concerned with achieving a shorter execution time due

to parallelisation. However this survey reviews parallel classification rule induction algorithms in

the context of achieving shorter runtime using multiple processors.

3 Scaling up Data Mining: Data Reduction

Data reduction is usually applied before the actual data mining algorithm and is therefore a

preprocessing step of data mining. Data Reduction in the context of this work is aimed at reducing

the overall data size in order to reduce the runtime of data mining algorithms. There are two

major techniques of data reduction applied in this context; feature selection, which is also often

called attribute selection and sampling.

3.1 Feature Selection

Feature selection strategies that can be applied for classification tasks are described in this

Section. A frequently used metric to evaluate attributes for relevance for the classification task

is information gain, based on Shannon’s entropy (Shannon, 1948). The basic procedure is to use

the information gain to calculate how much information can be gained about a classification if

the value of a certain attribute is known. Only the collection of attributes that have the largest

information gains are used to run the classification rule induction algorithm. There are three

main steps in order to filter out the relevant attributes:

1. Calculation of the information gains of all attributes

2. Deleting the attributes with the lowest information gains

3. Use the reduced data set in order to induce classification rules

According to Bramer (Bramer, 2007), there are many strategies that can be used at step 2,

for example:

• Keep the x attributes with the highest information gain.

• Keep the x% of attributes with the highest gain.

• Keep only those attributes that have an information gain of x% or more of the highest

information gain of any attribute in the dataset.

• Keep only those attributes that reduce the initial entropy of the dataset by at least x%.

Han and Kamber (Han & Kamber, 2001) describe similar approaches that can be used to select

the best x attributes. They do not suggest a specific metric, but the information gain could be

used with it:

• Stepwise forward selection: Firstly a working dataset is built which is initially empty. The

best attribute from the original dataset is determined, added to the empty dataset and

deleted from the original one. In every subsequent iteration again the best of the remaining

attributes are transferred from the original to the working dataset. This method implies that

a threshold is defined of how many attributes the working dataset should hold.

• Stepwise backward elimination: This procedure iteratively calculates the goodness of all

attributes and deletes the worst attributes in each step from the dataset. Again, this method

implies that a threshold is defined of how many attributes should be removed.

• Combination of forward and backward elimination: A combination of the two latter methods

may select the best attribute in each step and delete the worst one. This method implies that

a threshold is defined of how many attributes should be removed and kept.

• Decision tree induction: A decision tree is induced on the original dataset using an algorithm

such as ID3 (Quinlan, 1979a) or C4.5 (Quinlan, 1993). Here it is assumed that attributes

that do not appear in the decision tree are irrelevant and so are not used for the data mining



Scaling Up Classification Rule Induction Through Parallel Processing 5

algorithm. For the purpose of scaling up classification rule induction, this method would not

be suitable due to the processing time needed to induce a decision tree just for the feature

selection process.

A different approach to reduce the number of features is the Principal Component Analysis

(PCA). Each instance can be described as a vector of m features of dimensions. PCA searches for

k m-dimensional orthogonal vectors (k ≤m) that can be used to present the training data. The

difference compared with feature selection described above is that PCA creates a new smaller set

of features on which the initial data can be projected, whereas feature selection selects a subset

of the original features. Implementations of PCA can be found in many statistical software kits

such as (Minitab, 2010; SAS/STAT , 2010).

3.2 Sampling

Sampling is the representation of a large dataset by a smaller random sample; a subset of the

data. Assuming that dataset D contains N examples, then there are some general strategies for

building the sample. For example:

• Simple random sample without replacement (SRSWOR) of size s : Here s examples are

randomly drawn from D.

• Simple random sample with replacement (SRSWR) of size s : Similar to SRSWOR, except

that drawn examples are not deleted from D, so may be drawn again.

The difficulty in sampling is to determine the right sample size. There are several algorithms

that attempt to converge the sample size towards a size that achieves a good classification

accuracy. For example Quinlan’sWindowing algorithm attempts to achieve a good sample size for

the ID3 decision tree induction algorithm (Quinlan, 1983). Windowing initially takes a random

sample, the window, from the dataset. The initial size of the window is specified by the user.

The window is used to induce a classifier. The induced classifier is then applied to the remaining

instances. Instances that are misclassified are added to the window. The user can also specify

the maximum number of instances to add to the window. Again a classifier is induced using

the new window and tested on the remaining instances. Windowing also applies testing first to

instances that have not been tested yet and then to the already tested ones. This is repeated

until all remaining instances are correctly classified. Windowing has been examined empirically

in (Wirth & Catlett, 1988), where windowing did not perform well on noisy datasets. Noisy

data is when there is irrelevant information in the data. However a further development of

windowing has been developed for the C4.5 algorithm (Quinlan, 1993). The essential difference

from the initial windowing algorithm is that it aims to achieve as uniformly distributed a window

as possible. It also takes at least half of the misclassified instances in the new window and

it may stop, even though not all instances are classified correctly, in cases where no higher

accuracy is achievable. According to (Catlett, 1991) the fact that windowing in C4.5 aims for

a uniformly distributed window can improve accuracy gains in the case of skewed distributed

datasets. In general windowing imposes an additional computational overhead as many runs of

the classification rule induction algorithm have to be learned in order to determine the optimal

window or sample to train the classifier on.

Integrative Windowing (Fuernkranz, 1998) addresses this problem. Integrative windowing

builds the initial window as in Quinlan’s windowing algorithm, but does not only add misclassified

instances to the window but also deletes instances that are covered by consistent rules. Consistent

rules in IntegrativeWindowing are rules that did not misclassify negative examples during testing.

Consistent rules are remembered but have to be tested again in the next iteration, as they may

not have been tested on all remaining instances due to the possibility that the maximum number

of instances that can be added to the window was reached in the previous iteration. (Fuernkranz,

1998) implemented Integrative Windowing for ‘separate and conquer’ algorithms only.



6 f. stahl, m. bramer

A further technique developed for finding a good sample size is progressive sampling (Provost,

Jensen, & Oates, 1999). Progressive sampling makes use of the relationship between the sample

size and the accuracy of the data mining model, for example, the predictive accuracy of a classifier.

This relationship can be depicted using a learning curve as shown in Figure 2.

Figure 2 Learning Curve.

Figure 2 shows the typical behaviour of a learning curve, which usually starts off steeply sloping

(I). In the middle it is more gently sloping (II) and there is a plateau late in the curve (III). On the

horizontal axis N represents the total number of data instances and n is the number of instances

in the sample. The smallest sufficient sample size is denoted by nmin, a smaller sample causes a

lower accuracy and a larger sample would not achieve a higher accuracy.

The slope of the learning curve indicates the rate of increase of accuracy of a data mining

algorithm applied to two samples from a given dataset. Typically the slope of the learning curve

decreases and almost levels off in the plateau portion. The rate of increase is then used as an

indicator to find nmin. In order to obtain the slope, several runs of the data mining algorithm

on different sizes of the sample are necessary. For a sample size the accuracy of the induced data

mining model is measured. Progressive sampling assumes a relationship between the accuracy

that the data mining model achieves and the sample size as depicted in Figure 2. However this

learning curve is dependent on the ability of the used data mining algorithm to represent the

regularities hidden in the data. So for some algorithms the plateau might be reached with small

sample sizes and for others with very large data sizes.

4 Scaling Up Data Mining: Distributed Data Mining for Parallel
Processing

Distributed Data Mining (DDM) is concerned with decomposing data mining tasks into many

subtasks. There are two major approaches to doing so. Finer-grained parallelisation is used

for tightly-coupled architectures or massively parallel processors as described in Section 2 and

coarser-grained parallelisation is used for loosely-coupled architectures, for example, collections

of standalone computers. This Section will review coarser grained distributed data mining

approaches, and will initially introduce several distributed data mining models. The terminology

‘distributed data mining approaches’ in this Section comes from the terminology used in the

literature reviewed here, however distributed data mining can be substituted by data parallel data

mining in the context of this work. Given the constraint of utilising a loosely-coupled architecture,

data parallelisation can be achieved by partitioning the data into subsets and assigning the subsets



Scaling Up Classification Rule Induction Through Parallel Processing 7

to n machines in a network of separate computers. This partitioning can happen with respect to

selecting subsets of instances or subsets of features. This partitioning is done with the aim of also

distributing the computational cost over n machines in the network. (Provost, 2000) categorises

distributed data mining approaches into several distributed data mining models of which two

will be discussed here. All models have in common that they can be divided into three basic

steps; a sample selection procedure, learning local concepts and combining local concepts using a

combining procedure into a final concept description.

• sample selection procedure: In the sample selection procedure samples S1,..., Sn of the training

data are taken and distributed over n machines, how the training data is partitioned is

not further specified. For example, the samples may contain a collection of instances or a

collection of attributes and it is up to the actual algorithms to define the size of each sample.

The subsamples might be of the same size, or the size might reflect the individual speed of

the CPUs, or the size of the individual memory of each of the n machines.

• learning local concepts : On each of the n machines there is a learning algorithm L installed

that learns a local concept out of the data samples locally stored on each machine. Whether

these n learning algorithms L1,...,Ln do or do not communicate depends on the model. In

general each L has a local view of the search space reflected by the data it holds in the

memory. By communication between several Ls a global view of the search space can be

obtained. This can be done by exchanging parts for the training data or information about

the training data. Exchanging parts of the training data might be too expensive, concerning

the bandwidth consumption when the training data is very large, whereas information about

data usually involves statistics about the local data and the data itself, and these statistics

are usually very small in size. Subsequently each L will derive a concept description C derived

from the locally stored data and information that has been exchanged with other Ls.

• combining procedure: Eventually all Cs from all local Ls are combined into a final concept

description Cf . How this is done depends on the underlying learning algorithm and its

implementation. For example, in the case of classification rule induction each L might derive

a set of rules that is locally the best set of rules and then use the combining procedure to

evaluate all rules (if they are good rules) on the whole training and test data.

Figure 3 Independent Multi Sample Mining.

Provost’s DDM models do not make any assumptions about the underlying kind of learning

algorithm. They should be seen more like a general way to describe parallel data mining algorithms



8 f. stahl, m. bramer

in a loosely-coupled environment. Figure 3 depicts the most basic DDM model; the independent

multi sample mining model. The word ‘independent’ in the model name expresses that there is no

communication or interaction between the different learning algorithms going on. Each algorithm

forms its concept description independently. For example Meta Learning (Chan & Stolfo, 1993a)

and the random forest approach (Breiman, 2001) follow the independent multi sample mining

approach in a sequential fashion, but they could easily be run in parallel.

Figure 4 Cooperating Data Mining Model.

However SMSM is not suited for running data mining algorithms in parallel, as each stage of

the data mining process requires input from the previous one.

The probably most important model discussed here for parallelising data mining algorithms,

is the cooperating data mining model (CDM), which is depicted in Figure 4. CDM is based on a

useful observation about certain evaluation metrics, in that every rule that is acceptable globally

(according to a metric) must also be acceptable on at least one data partition on one of the n

machines (Provost & Hennessy, 1996, 1994). This observation is also known as the invariant-

partitioning property. CDM allows the learning algorithms to cooperate in order to enable them

to generate globally acceptable concept descriptions.

There are two more models discussed in (Provost, 2000), however they are not suitable for

running data mining algorithms in parallel.

5 Parallel Formulations of Classification Rule Induction Algorithms

Several models for classification have been proposed in the past such as genetic algorithms

(Goldberg, 1989), neural networks (Lippmann, 1988) and the induction of classification rules.

Classification rule induction is the least computationally expensive and is also strongly competi-

tive with genetic algorithms and neural networks. Research in classification rule induction can be

traced back to at least the 1960s (Hunt, Stone, & Marin, 1966). The majority of classification rule

induction algorithms can be categorised into ‘divide and conquer’ and ‘covering’ methods also

known as ‘separate and conquer’ (Witten & Eibe, 1999) methods. The main differences between

these methods are that they use different types of knowledge representations; ‘divide and conquer’

represents its classification rules in the form of decision trees and ‘separate and conquer’ in the

form of rule sets.

‘Divide and conquer’ produces a decision tree by splitting an overly general rule into a set

of specialised rules that cover separated subsets of the examples. Rules that cover examples of

only one class are kept, while rules that cover several classes are further specialised in a recursive



Scaling Up Classification Rule Induction Through Parallel Processing 9

manner. The ‘divide and conquer’ approach is also known as Top Down Induction of Decision

Trees (TDIDT) (Quinlan, 1986). The following pseudo code describes the TDIDT algorithm.

IF All instances in the training set belong to the

same class
THEN return value of this class
ELSE (a) Select attribute A to split on

(b) Divide instances in the training set
into subsets, one for each value of A.

(c) Return a tree with a branch for each non
empty subset, each branch having a decendent
subtree or a class value produced by applying

the algorithm recursively

There have been many different proposals for attribute selection measures. However the two

most frequently used ones are information gain, which is based on entropy, an information

theoretic measurement that measures the uncertainty in a dataset associated with a random

variable (Shannon, 1948) and the gini index which measures the impurity of a dataset regarding

the classifications of the training instances (Breiman, Friedman, Olshen, & Stone, 1984).

The main drawback of the ‘divide and conquer’ approach lies in the intermediate representation

of its classification rules in the form of a decision tree. Rules such as:

IF a = 1 AND b = 1 THEN class = 1

IF c = 1 AND d = 1 THEN class = 0

which have no attribute in common, could not be induced directly using the ‘divide and

conquer’ approach. In such cases, TDIDT will first need to introduce additional rule terms

that are logically redundant simply to force the rules into a form suitable for combining into

a tree structure. This will inevitably lead to unnecessarily large and confusing decision trees.

‘Separate and conquer’ algorithms induce directly sets of ’modular’ rules that generally will not

fit conveniently into a tree structure, thus avoiding the redundant terms that result when using

the TDIDT approach.

‘Separate and conquer’ produces a rule set by repeatedly specialising an overly general rule

for the target class. At each iteration a specialised rule is generated that covers a subset of the

positive examples (examples referring to the target class), which is repeated until all positive

examples are covered by the rule set. Thus this approach is often referred to as the ‘covering’

approach. This strategy can be traced back to the AQ learning system (Michalski, 1969). The

basic ‘separate and conquer’ approach can be described as follows:

Rule_Set = [];

While Stopping Criterion not satisfied{
Rule = Learn_Rule;

Remove all data instances covered from Rule;
}

The Learn Rule procedure induces the best Rule for the current subset of the training set,

and the perception of best depends on the heuristic used to measure the goodness of the rule,

for example its coverage or prediction accuracy. After a rule is induced, all examples that are

covered by that rule are deleted and the next rule is induced using the remaining examples until

a Stopping Criterion is fulfilled. The Stopping Criterion differs from algorithm to algorithm, but

a quite common stopping criterion used is simply to stop when there are either no more examples

left or the remaining examples are pure, meaning that all examples or instances are assigned to

the same class. The most important part of the above algorithm is the Learn Rule procedure,

which searches for the best conjunction of attribute value pairs (rule terms). This process can be

computationally very expensive, especially if all possible conjunctions of all possible rule terms

have to be considered. There are two basic approaches to the Learn Rule procedure according

to which modular classification rule induction algorithms can be categorised. The first category

considers all possible rule terms available such as CN2 (Clark & Niblett, 1989), RIPPER (Cohen,



10 f. stahl, m. bramer

1995) or Prism (Cendrowska, 1987) in order to specialise a rule. The other category uses a seed

example, to form rule terms that only consist of attribute value pairs that match those of the

seed example.

As discussed in Section 3 there are several approaches that aim to reduce the data to be mined.

For example attribute selection aims to filter out the relevant attributes for the classification rule

induction. An often used metric to evaluate attributes for relevance for the classification task is

again the information gain. However even after attribute selection the dataset might still be very

large, for example gene expression datasets can easily comprise tens of thousands of attributes,

filtering for relevant attributes might still return thousands of attributes that could be relevant

for the classification task. Sampling is probably the most popular method for data reduction. It

is the representation of a large dataset by a smaller random sample of data instances. However

Catlett’s work (Catlett, 1991) showed that sampling of data results in a loss of accuracy in the

induced classifier. Catlett’s research was conducted almost 19 years ago and the data samples he

used were fairly small compared with those used nowadays. In 1999 Frey and Fisher discovered

that the rate of increase of accuracy slows down with the increase of the sample size (Frey &

Fisher, 1999). Also classification rule induction algorithms often perform faster on categorical

attributes than on continuous ones, thus discretisation of continuous attributes is a further way

of making classification rule induction algorithms faster on large datasets (Kerber, 1992). In

general it should be noted that data reduction techniques exist, however in the presence of very

large datasets they are merely additional to parallelisation.

5.1 Parallel Formulations of Decision Trees

This Section introduces some approaches to parallel TDIDT algorithms and Ensemble Learning.

Parallel approaches to classification rule induction have focused on the TDIDT approach and

very little work has been done on parallelising the ‘separate and conquer’ or covering approach.

Like for most classification rule induction algorithms, the runtime of TDIDT is determined by

the amount of training data used to induce the decision tree, thus data parallelism lends itself to

parallelising TDIDT. (Sirvastava, Han, Kumar, & Singh, 1998) outlined two basic approaches

to parallelising TDIDT, the synchronous tree construction and partitioned tree construction

approaches, which will be discussed in this Section. Furthermore this Section discusses some actual

parallel implementations of TDIDT and the Ensemble Learning approach to parallelisation.

5.1.1 Synchronous Tree Construction
The basic approach of ‘Synchronous Tree Construction’ is a data parallel approach, which

constructs a decision tree synchronously by communicating class distribution information between

the processors. Figure 5 shows the basic approach (Sirvastava et al., 1998), where the training

instances are initially distributed to n processors. When the term processor is used in this paper

each processor also has its own private memory. So the approaches discussed here could be realised

on a loosely-coupled system.

At any time each processor holds the whole decision tree induced so far in its memory. The top

half of Figure 5 shows each processor holding the tree induced so far in the memory, the node that

is going to be expanded next is coloured black. Next each processor gathers information about

the local class distributions for the node to be expanded and communicates this information

to the remaining processors. With this information each processor is able to calculate the best

expansion of the current node. Displayed in the bottom part of Figure 5, is the decision tree

in each processor’s memory after the expansion, and the next node to be expanded is coloured

black. Again, all processors cooperate by communicating class distribution information of the

current node. Which node is expanded next depends on the tree induction algorithm. Some use

a breadth-first and others a depth-first expansion.

The advantage of synchronous tree induction is that it does not require any communication

of the training data, but it does suffer from high communication cost and workload imbalances.



Scaling Up Classification Rule Induction Through Parallel Processing 11

Figure 5 Synchronous tree construction approach.

With respect to communication cost, for each node expansion the processors need to collect class

distribution information and communicate it to the other processors in order to synchronise. At

nodes in shallow depth of the tree the number of data records attached to each node is relatively

large, but as the tree grows deeper, the number of training instances decreases and so does the

time needed to compute class distribution information. On the other hand, the communication

overhead does not decrease as much as the total workload as the tree grows deeper. Thus the

communication overhead dominates the total processing time.

With respect to the workload imbalance, the number of training instances belonging to the

same node of the tree can vary considerably amongst processors. For example, assume there are

2 processors and that processor 1 has all data instances on child node A and there are none on

B and vice versa for processor 2. If A is the current node then processor 2 would have no work

to do and vice versa, processor 2 would have to do calculations for expanding node B.

5.1.2 Partitioned Tree Construction

In the ‘Partitioned Tree Construction’ approach, whenever feasible each processor works on

different subtrees of the decision tree. So if more than one processor is assigned to expand a

node, then these processors are partitioned and assigned evenly (if possible) to the resulting child

nodes. Figure 6 illustrates partitioned tree induction (Sirvastava et al., 1998). This approach can

be seen as a data and task parallel hybrid. Different processors work on different parts of the

tree, which is task parallelism. However as the data instances are attached to different parts of

the tree and thus to different processors, this approach is also data parallel.

The top half of Figure 6 shows the expansion of the root node using three processors. Initially

all processors follow the synchronous tree induction approach to expand the root node. In this

case the expansion of the root node results in two child nodes and, if possible, the processors are

assigned to different subtrees. As there are three processors and two subtrees, one processor is

assigned to one of the subtrees and the remaining two processors are assigned to the remaining

subtree. In this case processor 1 and 2 are assigned to the left child node and processor 3 to the

right child node as illustrated on the bottom of Figure 6. Also the data instances are distributed

according to the child node expansion. Processors 1 and 2 will continue following the synchronous

tree construction approach. This is done until all processors work independently on different

subtrees and once they all work solely on different subtrees, each processor can develop their

subtrees independently without any communication overhead.



12 f. stahl, m. bramer

Figure 6 Partitioned tree construction approach.

One of the disadvantages of this is the data movement in the first phase of the tree

induction, which continues until all processors are solely responsible for an entire subtree. A

further disadvantage is the communication overhead (as with the synchronous tree construction

approach), but as with the data movement, this overhead drops to zero as soon as each processor

works solely on one subtree. A further disadvantage of this approach lies in the workload

balancing; the workload depends on the number of training instances assigned with the individual

subtree of each processor. The workload on a certain processor drops to zero as soon as all child

nodes are labelled as leaf nodes and this might happen at different points in time, especially if

the induced tree is asymmetric, or the subtrees are attached to volumes of the training data that

differ in size.

Figure 7 The left hand side shows the computation frontier at depth 3 and the right hand side shows

the binary partitioning of the tree to reduce communication costs.

(Sirvastava et al., 1998) developed a hybrid approach that attempts to minimise the disadvan-

tages and maximise the advantages of both the synchronous and partitioned tree construction

approaches. Their hybrid approach starts with the synchronous approach and keeps continuing

until the communication becomes too high. Once the cost of communication reaches a defined

threshold the processors and the current frontier of the decision tree are partitioned into two parts

as illustrated in Figure 7. Partitioning may be repeated within a partition once the communication

reaches the defined threshold again.



Scaling Up Classification Rule Induction Through Parallel Processing 13

5.1.3 Synchronous Tree Constructions by Partitioning the Training Instances Vertically

The Super Learning in Quest (SLIQ) (Metha, Agrawal, & Rissanen, 1996) algorithm laid down

a foundation that was used for several subsequent algorithm developments (Shafer, Agrawal, &

Metha, 1996; Joshi, Karypis, & Kumar, 1998). Memory is saved by splitting the data vertically

and by loading only one attribute list and one class list at any time into the memory in order

to calculate the splits of the decision tree. The structure of an attribute list looks like <attribute

value, class index> and the structure of the class list looks like <class label, node> as shown in

Figure 8. The example data in Figure 8 is taken from (Metha et al., 1996).

Figure 8 Representing the data in the form of sorted attribute lists and a class list.

One contribution of SLIQ is that each attribute list is sorted right after the building of the

attribute and class lists. Each attribute value holds a reference to the class value related to it in

the class list, and thus also a reference to the current leaf. Single attribute lists need to be sorted

only once and this saves valuable CPU time during the calculation of splits. The split evaluation

metric used in the SLIQ implementation is the gini index, but it could easily be replaced by

information gain or many other metrics. The split point in a sorted attribute list, for example

the ‘Salary’ attribute list using the gini index can be found by scanning the attribute list for

all possible binary splits, for example between (Salary ≤ 60) and (Salary > 60). The gini index

for each possible split is calculated and the split with the highest gini index is selected as split

point for this particular attribute. After a split point has been found the split is performed by

updating the class list accordingly and this is done by updating the ‘Node’ column, so each

list record is referenced to its new node to which it is attached. SLIQ was initially developed

to overcome memory constraints. In SLIQ only the class list and one attribute list need to be

memory resident at the same time; the remaining attribute lists can be buffered to the hard disc.

The disadvantage of SLIQ is that the usage of memory is directly determined by the size of the

class list and therefore directly to the number of records in a data set; the class list plus one

attribute list needs to be in memory at all times. Two possible approaches to parallelising SLIQ

are discussed in (Shafer et al., 1996). The basic approach is to divide each sorted attribute list into

p sublists (if p is the number of processors available) and distribute all sublists evenly over the

p processors. However the centralised and memory resident class list makes the parallelisation of

SLIQ complicated, and one approach to parallelising SLIQ replicates the class list in the memory

of each processor. This version is called SLIQ/R, where R stands for ‘Replicated Class List’.

Another approach is that the class list is partitioned and each processor holds a portion of it in

its memory; this version is called SLIQ/D, where ‘D’ stands for ‘Distributed Class List’.

The Scalable Parallelisable Induction of Decision Trees (SPRINT) algorithm (Shafer et al.,

1996) represents a further development of the SLIQ algorithm by IBM. The aim of SPRINT is to

remove memory limitations that are given by the class list in SLIQ. As in SLIQ, memory is saved

by splitting the data set into attribute lists, but this time their structure looks like <attribute

value, tuple id, class> and there is no class list.

Figure 9 shows how sorted attribute lists are created from the original data set. The data

set used in Figure 9 is the same as the one used in Figure 8. As with SLIQ these attribute

lists are pre-sorted so sorting in SPRINT is only performed once when the attribute lists are



14 f. stahl, m. bramer

Figure 9 Building sorted attribute lists in SPRINT.

created. SPRINT stores the information about the class within the attribute list. In SPRINT

each processor induces the same decision tree and it attaches each attribute list to a certain node

in the tree. At the beginning, all the attributes lists are attached to the root node N1.

Figure 10 Distribution of the attribute lists at the root node in SPRINT.

The next step is similar to SLIQ. Again the splits for all attribute lists are evaluated. The gini

indices of all attribute lists at the current node are calculated. Again, the lowest gini index of all

attribute lists at the concerning node is used to split all attribute lists, but the split in SPRINT

is performed differently compared with SLIQ (as shown in Figure 10). The lists are logically split

and list entries are not just referenced by different nodes using the class list. In this example the

lowest gini index would be found for a split in the attribute ‘Salary’ for a split between values

40 and 60. Now all the attribute lists at the current node are split logically to form smaller lists

and according to the splitting criteria they are then attached to the corresponding child nodes

N2 and N3.

The first step in the parallelised version of SPRINT is to distribute the data set over several

processors. This is done by first building sorted attribute lists as in SPRINT’s serial version,

where each attribute list is then horizontally split in such a way that each processor gets an equal

sized sorted Section of each attribute list.

Figure 11 shows the data distribution at node N1 using 2 processors based on the example data

set attribute lists shown in Figure 9. However SPRINT’s scalability to large datasets (in terms of

runtime and memory consumption) has been criticised by (Joshi et al., 1998). In the same paper

a further evolution of SPRINT has been proposed, the ScalParC algorithm. The main criticism

of SPRINT is that each processor determines the best split points for all the records it has. All

processors then have to communicate in order to determine the best global split point, and the



Scaling Up Classification Rule Induction Through Parallel Processing 15

Figure 11 Data distribution in parallel SPRINT, using 2 processors.

next step in SPRINT is to split all lists according to the globally best split point. Therefore

SPRINT builds a hash table that reflects a mapping of the attribute list records to nodes in the

decision tree. This is used from all processors in order to split their own attribute lists, therefore

this hash table has to be communicated as well. The size of the hash table is proportional to the

number of instances of the tree at the current node on all processors. ScalParC proposes using a

distributed hash table that does not need to be locally constructed.

5.2 Parallelisation Through Ensemble Learning

Chan and Stolfo (Chan & Stolfo, 1993a, 1993b) considered partitioning the data into subsamples

that fit into the memory of a single machine and developed a classifier in each subset separately.

This can easily be run in parallel using the ‘independent multi sample mining’ approach described

in Section 4. These classifiers are then combined using various algorithms in order to create

a final classifier. There is no communication amongst the learning algorithms involved. This

approach would reduce the runtime considerably. However the classifiers did not achieve the level

of accuracy of a single classifier trained on the entire training data. In ‘Meta Learning’ the base

classifiers that are computed on different portions of the training data are then collected and

combined using a further learning process, a ‘meta-classifier’. Please note that Meta Learning

does not specify the kind of classifier induced on each training subset, in fact it is possible to use

different classifiers. The meta classifier’s purpose is to integrate the separately induced classifiers.

Initially Meta Learning was intended to improve the overall predictive accuracy rather than

parallelisation.

Figure 12 (Chan & Stolfo, 1993b) illustrates the Meta-Learning framework using two data

bases:

1. The base classifiers are trained using the initial training data sets.

2. Predictions are generated from a separate validation set using the learned classifiers from 1.

3. The Meta-Level Training Data set is constructed from the validation data and the predictions

obtained from the validation data using the classifiers.

4. The meta or final classifier is generated using the Meta-Level data

Three main Meta-Learning strategies are used to generate the final classifier, voting, arbitration

and combining:

• Voting: Each classifier gets a vote for a single prediction and the prediction with the majority

is chosen. A variation of voting is the weighted voting where each vote from a certain classifier

gets a weight according to their accuracy on the validation data.



16 f. stahl, m. bramer

• Arbitration: Includes a judge classification algorithm whose prediction is chosen if the

participating classifiers do not reach a consensus prediction.

• Combining: Tries to coalesce the predictions of the initial classifiers based on their behaviour

to each other. For example if classifier A always predicts class 1 correctly then it would make

sense to use the prediction of classifier A whenever A predicts class 1.

Figure 12 Meta-Learning.

A further approach to ensemble learning methods is the Random Forests (RF) classifier from

Breiman (Breiman, 2001). RF are inspired by the Random Decision Forests (RDF) approach

from Ho (Ho, 1995). Ho argues that traditional trees often cannot be grown over a certain level

of complexity without risking a loss of generalisation caused by overfitting on the training data.

Ho proposes to induce multiple trees in randomly selected subsets of the feature space. He claims

that the combined classification will improve, as the individual trees will generalise better on the

classification for their subset of the features space. Ho evaluates his claims empirically. RDF has

a potential to be parallelised using the independent multi sample mining approach discussed in

Section 4.

RF makes use of the basic RDF approach by combining it with Breiman’s bagging (Bootstrap

aggregating) method (Breiman, 1996). Bagging is intended to improve a classifier’s stability and

classification accuracy. A classifier is unstable if a small change in the training set causes major

variations in the classification. Inducing a classifier using bagging involves the following steps:

1. Produce n samples of the training set by using sampling with replacement. Each sample

has the same size as the initial training set. Some examples might appear several times in a

sample; some might not appear at all.

2. Induce a classifier on each of the n samples.

3. On each test example all classifiers are applied. The final classification is achieved using a

voting schema.

Bagging can computationally be very expensive as several classifiers have to be induced in

samples that are of the same size as the initial training set. However bagging has the potential

to be parallelised using the independent multi sample mining approach illustrated in Section 4.

Finally RF combines the two, bagging and RDF. The basic approach is to learn several

classifiers according to Breiman’s bagging method, as outlined above. The RDF approach is

incorporated in the splitting of each node in each tree by randomly choosing a subset of a defined



Scaling Up Classification Rule Induction Through Parallel Processing 17

size of the overall feature space to base the splitting decision on. Again RF is computationally

very expensive for the same reason as Breiman’s bagging approach. Also RF can be parallelised

using the independent multi sample mining approach. However recent work showed that in certain

cases RF’s classification accuracy is not able to compete with the accuracy of a serial classifier

(Segal, 2004).

6 PMCRI and J-PMCRI: An Approach to Efficiently Parallelising Parallel
Formulations of Modular Classification Rule Induction Algorithms

The last Section made the distinction between the ‘separate and conquer’ and ‘divide and conquer’

approach and outlined various approaches to parallelise algorithms that follow the ‘divide and

conquer’ approach. On the other hand there have been virtually no attempts to parallelise

algorithms that induce modular rules rather than decision trees. This Section outlines a recently

developed PMCRI methodology to parallelise a family of algorithms that follow the ‘separate

and conquer’ approach to classification rule induction.

6.1 Inducing Modular Classification Rules
Using Prism

Modular rules are rules that do not generally fit together naturally in a decision tree, although

sometimes they might. Cendrowska’s Prism algorithm induces modular rules.

In her paper Cendrowska (Cendrowska, 1987) describes the ‘replicated subtree problem’ of

‘divide and conquer’ approaches. However the name replicated subtree problem has been given

by (Witten & Eibe, 1999). She argues that many rulesets do not fit naturally into a tree structure

and the tree representation of rules is itself a major cause of overfitting. For example consider

the following rules which have no attribute in common:

IF A = 1 AND B = 1 THEN class = x

IF C = 1 AND D = 1 THEN class = x

In Cendrowska’s example all the attributes have three possible values and the two rules above

cover all instances of class x. All remaining classes are labelled y. Again the root node has to split

on a single attribute and there is no attribute in common in both rules.

Figure 13 Cendrowska’s replicated subtree example.



18 f. stahl, m. bramer

The simplest tree representation that can be found to represent the two rules above is depicted

in Figure 13. The rules that classify for class x extracted from the tree are:

IF A = 1 AND B = 1 THEN Class = x

IF A = 1 AND B = 2 AND C = 1 AND D = 1 THEN Class = x

IF A = 1 AND B = 3 AND C = 1 AND D = 1 THEN Class = x

IF A = 2 AND C = 1 AND D = 1 THEN Class = x

IF A = 3 AND C = 1 AND D = 1 THEN Class = x

The presence of such rules within a data set causes tree induction algorithms to induce

unnecessarily large and confusing trees. Cendrowska also points out that decision trees are not

always suitable for use in expert systems. To explain this she uses the example of a decision table

for an optician for fitting contact lenses. This decision table is displayed in Table 1, where each

data record represents a patient’s attributes. The following is an explanation of Cendrowska’s case

study. The attributes are labelled A, B, C and D where A corresponds to the age of the patient,

B is the patient’s spectacle prescription, C indicates whether the patient has astigmatism or not

and D is the tear production rate. The possible values of the attributes are listed below:

A: 1 = young; 2 = pre-presbyopic; 3 = presbyopic

B: 1 = myope; 2 = hypermetrope

C: 1 = no; 2 = yes

D: 1 = reduced; 2 = normal

The actual classes prescribe that either no, soft or hard contact lenses are suitable for the

particular patient.

Table 1 Opticians’ decision table for fitting contact lenses.

Record id A B C D lenses? Record id A B C D lenses?

1 1 1 1 1 No 13 2 2 1 1 No

2 1 1 1 2 soft 14 2 2 1 2 soft

3 1 1 2 1 No 15 2 2 2 1 No

4 1 1 2 2 hard 16 2 2 2 2 No

5 1 2 1 1 No 17 3 1 1 1 No

6 1 2 1 2 soft 18 3 1 1 2 No

7 1 2 2 1 No 19 3 1 2 1 No

8 1 2 2 2 hard 20 3 1 2 2 hard

9 2 1 1 1 No 21 3 2 1 1 No

10 2 1 1 2 soft 22 3 2 1 2 soft

11 2 1 2 1 No 23 3 2 2 1 No

12 2 1 2 2 hard 24 3 2 2 2 No

Now assuming a new patient needs some contact lenses fitted. The new patient’s age is

presbyopic (A=3), the spectacle prescription is hypermetrope (B=2) and the patient has

astigmatism (C=2). Looking in the decision table it can be seen that there are two data records

that match the patient’s features which are the records with record ids 23 and 24. Both records

are assigned to classification No regardless of the feature D (tear production rate), in fact feature

D has different values for both cases and thus seems not to be relevant at all for this case. Thus

the decision table strongly supports rule:

IF A=3 AND B=2 AND C=2 THEN recommendation = No

The decision tree that would be induced from this example using Quinlan’s ID3 (Quinlan,

1979b, 1979a) decision tree induction algorithm is illustrated in Figure 14. Now assume that the

decision tree in Figure 14 was used as the knowledge base for an expert system.



Scaling Up Classification Rule Induction Through Parallel Processing 19

Figure 14 Decision tree induced using ID3.

We can see that the expert system would not be able to make this decision without information

about feature D, the tear production rate. So the optician would be required to make a tear

production rate test. However tear production rate is restricted to two values D=1 (reduced) and

D=2 (normal). If D=1 then the expert system would make the decision that no contact lenses are

suitable for the patient if D=2 then the expert system would use the data the optician already

knows about the patient which is A=3 & B=2 & C=2 and also come to the conclusion that the

patient is not suitable for contact lenses. So regardless of the value of D the decision made is

that the patient is not suitable for the use of contact lenses. A test of the tear production rate

will take some time and also may result in a fee to be paid by the patient. The patient would be

very annoyed if he or she ever gets to know that the test was unnecessary and thus wasted his

or her time and money.

6.2 The Prism Approach

The general problem outlined above in Section 6.1 is further explained by Cendrowska in

information theoretic terms. The argument is that the replicated subtree problem is caused

by the fact that the attribute that is chosen at an intermediate node is more relevant to one

classification and less for others. For example in Cendrowska’s contact lenses example (Table

1) the initial entropy is 1.3261 bits. ID3 identifies that if the dataset S (Table 1) is split into

subsets according to the values of attribute D then the average entropy of the resulting subtrees

is minimised and thus the average amount of information gained is maximised. The resulting

average entropy after performing the split on D is reduced to 0.7775. The entropy of the subset

of S that covers all instances for which D=1 is 0, however the subset that covers all instances for

which D=2 is 1.555 and so even higher than the initial entropy of S. Cendrowska’s approach is to

try to avoid the use of attribute values that are irrelevant for a certain classification. The Prism

algorithm does that by maximising ‘the actual amount of information contributed by knowing the

value of the attribute to the determination of a specific classification’ (Cendrowska, 1987). Unlike

decision trees, Cendrowska’s algorithm looks at one target class at a time and specialises one rule

at a time for this target class. In contrast, decision trees specialise several rules simultaneously

when splitting on an intermediate node.

Cendrowska views Table 1 as a discrete decision system where attribute values including the

classification are seen as discrete messages. She then gives a formula for the amount of information

about an event in a message:



20 f. stahl, m. bramer

I(i) = log2(
probability of event after receiving the message

probability of event before receiving the message
) bits

Let us say that classification lenses=No is the classification of current interest (target class).

Then the message lenses=No provides the following amount of information in the initial decision

system about lenses=No:

I(lenses=No) = log2(
1

p(lenses=No)
) =−log2(

15

24
) = 0.678 bits

The probability that lenses=No before receiving the message is
15

24
and the probability that

lenses=No when given the information that lenses=No is 1. In other words the maximum amount

of information that can be achieved inducing a rule term on the current decision system for the

concept lenses=No is 0.678 bits.

A concrete rule term (D=1) is considered for further specialisation of a rule for predict-

ing lenses=No. Then the probability of the event lenses=No before the message (D=1) is

p(lenses=No)=
15

24
=0.625 and the probability of event lenses=No after the message (D=1) is the

conditional probability p(lenses=No |D = 1) =
12

12
= 1. So the information about this message

is:

I(lenses=No |D = 1) = log2(
p(lenses=No |D = 1)

p(lenses=No)
)

= log2(
1

0.625
) = 0.678 bits

The meaning of I(lenses=No |D = 1) = 0.678 bits is that the knowledge that D=1 con-

tributes 0.678 bits of information towards the concept that lenses=No. This value could be

negative as well which means that knowing a certain attribute value makes it less certain that

an instance belongs to a certain classification.

The information provided about lenses=No by knowing D=1 is already the maximum amount

of information we can achieve by inducing a rule term about the target class, which in both cases

is 0.678 bits. So a further specialisation by adding more rule terms to the rule IF(D=1) THEN

lenses=No would not increase the information about class lenses=No, also D=1 covers only

instances of the target class.

A further specialisation is justified if the information in the current rule about the target class

is lower than 0.678 or if it covers further classes beside the target class. A further specialisation

can be performed by repeating the process on the subset of Table 1 that contains only instances

for which D=1. However, in this particular case the rule would be finished as the rule already

contributes 0.678 bits of information. The next step now is to find the next rule for lenses=No,

if there is one. This is done by deleting all instances from the initial training set that are covered

by the rules induced so far for lenses=No. If there are still instances left with the classification

lenses=No then the next rule is induced from this subset of the training data. If there are no

instances left that belong to classification lenses=No then the whole process is repeated for one

of the remaining classes using the initial training data from Table 1. A pseudocode description

of Cendrowska’s Prism algorithm can be found in Section 6.3.

6.3 The Prism Algorithms Family

Cendrowska’s basic Prism algorithm can be summarised as follows: where Ax is a possible

attribute value pair and D is the training dataset.

For each class i do {
Step 1: Calculate for each Ax p(class = i| Ax)

Step 2: Select the Ax with the maximum p(class = i| Ax)
and create a subset D’ of D that comprises all instances

that match the selected Ax.
Step 3: Repeat 1 to 2 for D’ until D’ only contains instances



Scaling Up Classification Rule Induction Through Parallel Processing 21

of classification i. The induced rule is then a
conjunction of all the selected Ax and i.

Step 4: Create a new D’ that comprises all instances of D except
those that are covered by the rules induced for

class i so far.

Step 5: Repeat steps 1 to 4 until D’ does not contain any
instances of classification i.

}

Note that instances are frequently deleted and again restored which causes a considerable

overhead. An efficient implementation of dealing with frequent resetting and restoring data

instances is essential but this is not outlined by Cendrowska.

6.3.1 Dealing with Clashes and Continuous Attributes
Clashes occur whenever there are instances in a subset of the training set that are assigned to

different classes but cannot be separated further. Such a subset is also called a clash set. This is

inevitable whenever there are inconsistencies in the data, which is for example when there are two

or more instances that have exactly the same attribute value pairs but are assigned to different

classes. Cendrowska’s original Prism does not take the existence of clashes into consideration.

However the Inducer implementation of Prism addresses the problem of clashes (Bramer, 2000,

2005). When encountering a clash Inducer, by default, treats all instances in the clash set as if

they belong to the target class of the rule that is currently being induced. However, according to

(Bramer, 2000) the most effective approach whenever a clash set is reached is to check if the clash

set’s majority class is also the target class of the rule currently being generated. If this is the case,

the rule is completed for the classification of the target class. However, if the target class is not

the majority class of the clash set then the rule is discarded. The description in (Bramer, 2000)

does not give any instructions how to deal with the clash set. However, if the current subset of

the training data is not manipulated somehow, the same rule would be induced all over again and

again discarded. Prism would be trapped in an endless loop. (Bramer, 2007) addresses the clash

handling again and outlines a strategy to deal with the clash set. The strategy is to delete all

instances in the clash set that are assigned to the discarded rule’s target class. This keeps Prism

from inducing the same rule all over again.

Cendrowska’s initial version of Prism only works with discrete values. The problem of working

with continuous data can be overcome by prior discretisation of the attribute values using

algorithms such as ChiMerge (Kerber, 1992). However versions of Prism that deal with continuous

data using local discretisation have been developed. For example the Inducer software (Bramer,

2005) provides Prism implementations that are able to deal with continuous data. The approach

can be integrated in the pseudocode in Section 6.3 before the calculation of p(class= i | Ax) (step

2 in the pseudocode in Section 6.3). If Ax is continuous then the training data is sorted for Ax.

For example, if Ax, after sorting, comprises values -3.45, -4.3, 5.3, 5.7 and 9.5 then the data is

scanned for these attribute values in either ascending or descending order. For each attribute

value a test such as Ax <5.3 versus Ax ≥ 5.3 is considered, using p(class= i |Ax < 5.3) and

p(class= i | Ax ≥ 5.3). In this scanning phase the term that has the largest conditional probability

is retained and compared with the ones from the remaining attributes.

6.3.2 Variations of the Prism Algorithm
The original version of Prism restores the training set to its original state before rules for each

successive class are generated. Thus Prism has to process the full training set once for each class.

The PrismTCS (Prism with Target Class, Smallest first) algorithm (Bramer, 2002) removes

the outermost loop and thus can be seen as a first attempt to make Prism scale better. The

difference is that, after the induction of each rule, Prism does not reset the dataset to its original

state. Instead, PrismTCS deletes all instances from the training set that are covered by the rules

induced so far and selects the minority classification as the new Target Class (TC) and induces

the next rule for the minority class. This approach generally produces smaller rule sets whilst



22 f. stahl, m. bramer

maintaining a similar level of predictive accuracy. There is also an implementation of Prism

available (Bramer, 2005) that selects the majority class as target class which is called PrismTC.

Further versions of Prism exist in the Inducer software that induce the same rules as the original

Prism but do so in a different order.

6.4 PMCRI: Parallel Modular Classification Rule Inducer

A methodology for parallelising algorithms of the Prism family has been developed, the ‘Parallel

Modular Classification Rule Inducer’ (PMCRI) which is reviewed here (Stahl, Bramer, & Adda,

2009b). The PMCRI framework is based on the Cooperative Data Mining (CDM) model (see

Figure 4) (Provost, 2000) which is explained here briefly and then used to explain the overall

PMCRI methodology.

The CDM model can be divided into three layers. The first is the sample selection procedure,

where the training data and thus the workload is distributed in subsets S1 ... Sn if n is the

number of CPUs in a network. The second layer is the execution of algorithms L1 ... Ln on

the training data subsets in order to produce local concept descriptions C1 ... Cn. The learning

algorithms have a local view of the local training data, however they may obtain a global view

by communicating information between each other. In the third and last layer the local concepts

are combined to a final concept description Cfinal.

6.4.1 Distributing the Workload
The basic idea of PMCRI is to build attribute lists similar to those in SPRINT (see Figure 9)

of the structure <attribute value, tuple id, class index> and then distribute them evenly over p

processors. The learning algorithms then search for candidate rule terms and build the classifier

in parallel.

However in contrast with SPRINT, attribute lists are not further split into p part attribute

lists if p is the number of CPUs, instead whole attribute lists are distributed evenly over all

CPUs. As pointed out by (Sirvastava et al., 1998), distributing part attribute lists will result

in an initially perfect workload balance however it is likely that it will result later on in the

algorithm in a considerable workload imbalance as part attribute lists may not evenly decrease

in size. The same problem would be present for Prism algorithms as pointed out in (Stahl, 2009).

Instead whole attribute lists are evenly distributed and a slight initial and predictable workload

imbalance is accepted rather than an unpredictable workload imbalance during the algorithms

execution.

The left hand side of Figure 15 shows the building of attribute lists from a training dataset. A

rule term for class B has been found (Salary ≤ 60.4), which covers in the ‘Salary’ attribute list

instances 5, 0, 2, 4. Thus the remaining list instances matching ids 1 and 3 need to be deleted

in order to induce the next rule term. This deletion matches step 2 in the Prism pseudo code in

Section 6.3. The attribute lists after the deletion of list records matching ids 1 and 3 are shown

on the right hand side of Figure 15. What is important to note is that the resulting attribute

lists are still equal in size, hence distributing complete attribute lists evenly over the CPUs will

not cause a workload imbalance during the duration of the algorithm.

6.4.2 Learning Rule Terms in Parallel using a Blackboard System
Blackboard Systems are often described with the metaphor of experts gathered around a school

blackboard confronted with a problem. Each expert can derive knowledge towards a solution of

the problem using its own expertise and write this information on the blackboard. In turn an

expert can read information written on the blackboard from other experts and use it in order

to derive new knowledge. In a software system the blackboard is implemented as server and the

experts as clients. Blackboard systems in AI can be dated back to the Hearsay II system (Erman,

Hayes-Roth, Lesser, & Reddy, 1980) and experts are called Knowledge Sources (KS). The basic

idea in PMCRI is that each CPU represents a particular KS and the expertise is determined by



Scaling Up Classification Rule Induction Through Parallel Processing 23

Figure 15 The left hand side shows how sorted attribute lists are built and the right hand side shows

how list records, in this case records with the ids 1 and 3, are removed in Prism, after a rule term has

been found.

the subset of the attribute lists it holds in memory. Thus each KS is able to induce a rule term

that is locally the best one on the attribute lists it holds in memory. The blackboard is used to

coordinate the Prism algorithm and exchange information about locally induced rule terms. In

this paper the terms KS, KS machine and expert are used interchangeably and denote a single

CPU with its private memory hosting one KS.

Figure 16 PMCRI’s communication pattern using a distributed blackboard architecture.

The communication pattern of PMCRI is depicted in Figure 16. It consists of a blackboard

server that is partitioned into two panels: the ‘Local Rule Term Partition’ and the ‘Global

Information Partition’ and k learner KS machines. The knowledge of the KS machines is

determined by the subset of the attribute lists they hold in memory on which they are able

to induce the locally best rule term. On the blackboard server there is also a moderator program.

It reads information from the ‘local rule term partition’ and writes information on to the

‘global information partition’. Learner KSs monitor the ‘global information partition’ and write

information on the ‘global’ and ‘local information partitions’. When a Learner KS detects that a

pre-specified condition applies, a corresponding action is triggered. Thus the learner KS machines



24 f. stahl, m. bramer

can be seen as entities that contribute local knowledge and the moderator can be seen as a learner

KS activator. The local rule term information exchanged using the blackboard is the probability

with which the locally induced rule terms cover the target class.

All k KS machines induce the locally best rule term and write the probability with which the

rule term covered the target class in the attribute list on the ‘local information partition’. The

moderator program compares the submitted probabilities and advertises the name of the KS that

induced the rule term with the globally highest probability on the global information partition.

The winning KS then communicates the ids of the instances that are uncovered from its induced

rule term to the remaining experts using again the blackboard. Next all KS continue by inducing

the next locally best rule term.

The following steps listed below describe how PMCRI induces one rule (Stahl, Bramer, &

Adda, 2008) based on the Prism algorithm:

Step 1 Moderator writes on Global Information Partition

the command to induce locally best rule terms.
Step 2 All KSs induce the locally best rule term and write the

rule terms plus its covering probability on the
local Rule Term Partition

Step 3 Moderator compares all rule terms written on the

Local Rule Term Partition and writes the name
of the KS that induced the best rule term on the

"Global Information Partition"
Step 4 KS retrieves name of winning expert.

IF KS is winning expert {

keep locally induced rule term and derive by last
induced rule term uncovered ids and write

them on the Global Information Partition and delete
uncovered list records

}
ELSE IF KS is not winning KS {

delete the locally induced rule term and

wait for by best rule term uncovered ids being available
on the Global Information Partition, download them and

delete list records matching the retrieved ids.
}

6.4.3 Combining Procedure
Each learner KS builds rule terms for the same rule simultaneously except that it only appends

the rule terms that were locally induced and are confirmed to be globally the best ones in each

iteration. Thus for each rule each learner KS will have a collection of rule terms, but will not

have all rule terms that belong to the rule. In this sense, a rule is distributed over the network,

thus the concept description induced by each learner is a part of the overall classifier.

Figure 17 Combining Procedure.



Scaling Up Classification Rule Induction Through Parallel Processing 25

In the learner pseudocode all rules are stored in a list or, in general, in a ‘Rule Collection’

which is in the order in which the rules were induced. Also each learner remembers the target class

for which a ‘part-rule’ was induced. This information in the form of a collection of ‘part-rules’

needs to be collected at the terminal where the actual rules shall be printed or stored in some

form. Finally all ‘part-rules’ need to be combined in order to build the ‘globally complete’ rule.

How this information is collected is not specified in the PMCRI framework, also the combining

procedure only appears at the end of the algorithm’s execution and thus imposes only a small

computational and bandwidth overhead. In the current implementation of PMCRI all ‘part-rules’

are written on the local rule term information partition and then picked up by the terminal that

is supposed to store or output the rules to the user. The terminal could theoretically be any

learner KS machine, or the blackboard itself or a separate KS to the blackboard.

The combining procedure of the learner KS that collects all ‘part-rules’ is very simple as

illustrated in an example in Figure 17. The example comprises three learner KS machines that

induced six ‘part-rules’. The part rules are listed in the learner KS’s memory and are associated

with the target class they were induced for. The combining procedure then simply appends each

rule term to its corresponding rule. It is important to note that the PMCRI framework is able to

reproduce exactly the same result as any serial Prism algorithm.

6.4.4 J-PMCRI: PMCRI with Information Theoretic Pre-Pruning

Pruning is a commonly used technology to reduce overfitting of the induced classification rules.

Post-pruning methods are applied to the already trained rules and pre-pruning is applied during

the induction of the classification rules. Parallel versions of TDIDT often do not implement pre-

pruning technologies with the reasoning that post-pruning is computationally inexpensive and

thus easier to realise in parallel TDIDT implementations compared with pre-pruning which would

have to be parallelised as well (Shafer et al., 1996; Sirvastava et al., 1998). This argument is true,

however using post-pruning unnecessarily forces the induction of rule terms that will be removed

by pruning anyway, where pre-pruning avoids inducing these rule terms in the first place. Hence

it is useful to develop parallel pre-pruning technologies. (Bramer, 2002) developed a pre-pruning

method for all algorithms of the Prism family. The pre-pruning method is based on the J-measure

of Smyth and Goodman (Smyth & Goodman, 1992) and works also for TDIDT and shows on

both, Prism and TDIDT, a good performance (Bramer, 2002) regarding the predictive accuracy

and the number of rule terms induced. Hence the PMCRI methodology has been extended by

a parallel J-pruning facility, resulting in the J-PMCRI methodology. For further reading and

evaluation about J-PMCRI refer to (Stahl, Bramer, & Adda, 2010).

6.5 Computational Performance of the PMCRI and J-PMCRI Methodology

The evaluation results summarised here can be found for PMCRI in (Stahl, Bramer, & Adda,

2009a) and for J-PMCRI in (Stahl et al., 2010). In order to investigate the scalability of

PMCRI, with respect to the training data size, runtime of a fixed processor (learner KS machine)

configuration on an increasing workload have been examined. These experiments are called size up

experiments in contrast with speed up experiments that keep the workload constant and increase

the number of processors. It has been observed that for PMCRI and J-PMCRI the workload is

equivalent to the number of data records and attributes that are used to train a Prism classifier.

For both, PMCRI and J-PMCRI a linear size up has been achieved , meaning that the runtime is

a linear function of the data set size. With respect to speed up, for both, PMCRI and J-PMCRI it

has been found that the larger the amount of data used, the more PMCRI and J-PMCRI benefit

from using additional processors. Also it has been observed that the memory consumption of

both, PMCRI and J-PMCRI is linear with respect to the total training data size.



26 f. stahl, m. bramer

7 Summary and Concluding Remarks

This paper starts with highlighting example applications that generate massive amounts of data.

Data mining these massive amounts needs attention from a computational point of view. Often a

single workstation is not enough to hold the training data in memory and would take too long to

process. Hence the area of parallel and distributed data mining is more topical than ever before.

Next this paper distinguishes between the terms ‘parallel’ and ‘distributed’ data mining. The

research literature is often inconsistent with the usage of the term ‘distributed data mining’, they

either mean geographically distributed data sources or distributing data over several workstations

in order to divide the CPU time needed to process the data to several machines. This paper used

the term parallel data mining to refer to the latter usage of the term ‘distributed data mining’.

In Section 2 two basic parallel system architectures are discussed that can be used to parallelise

data mining algorithms, ‘tightly-coupled’ and ‘loosely-coupled’ systems. This paper focuses on

‘loosely-coupled’ systems as they can be realised by a network of workstations and are thus

accessible to even modest sized organisations.

Section 3 discusses the data reduction approaches in order to reduce the data volume the

classifier is being trained on, notably feature selection techniques and sampling. However the

challenge with sampling is to determine the optimal sample size. Section 4 gives some general

data mining models derived by Provost. These models are helpful in order to describe different

approaches to distributed/parallel data mining.

Section 5 highlights two general approaches to classification rule induction, the induction

of decision trees also known as the ‘divide and conquer’ approach and induction using

covering algorithms also known as the ‘separate and conquer’ approach. Then some general

parallel approaches to the ‘divide and conquer’ approach have been discussed, notably the

‘Synchronous Tree Construction’ approach and the ‘Partitioned Tree Construction’ approach.

In the Synchronous Tree Construction approach the training data is split over p CPUs and each

CPU induces the same tree in parallel whilst exchanging statistics about the data located on

different CPUs. The Partitioned Tree Construction approach outsources the induction of whole

subtrees to separate CPUs. Both approaches have serious disadvantages. The Synchronous Tree

Construction approach suffers from a high communication overhead and the Partitioned Tree

Construction approach from workload imbalances. Also a hybrid approach has been discussed.

However the ‘Synchronous Tree Construction by Partitioning the Training Instances Vertically’

approach has seen some concrete systems for parallel decision tree induction. Here the training

data is partitioned attribute wise, each CPU holds a subset of the attribute lists in memory and

all CPUs induce the same tree whilst exchanging statistics about the data located on different

CPUs. Notable systems that have been successful were highlighted more closely, the SLIQ and

the SPRINT systems. SLIQ and SPRINT build so called attribute lists out of each attribute and

split these lists into p equally sized chunks if p is the number of CPUs. Then each chunk of each

list is assigned to a different CPU. Next some ensemble learning strategies have been introduced

and highlighted as a possibility to parallelise decision tree induction with a low communication

overhead.

Section 6 then points out that there are virtually no approaches to speeding up the ‘separate

and conquer’ approach with parallelisation. However the recent development of the PMCRI and

J-PMCRI methodology has been highlighted as a first attempt to parallelise the ‘separate and

conquer’ approach. PMCRI parallelises any algorithm of the Prism family. The research literature

provides evidence that Prism outperforms decision trees in many cases because it does not

represent rules in the form of trees but rather as ‘IF THEN ELSE rules’. Also PMCRI uses

attribute lists similar to SPRINT in order to partition and distribute the features space evenly

over p CPUs. PMCRI’s central component is a blackboard architecture that is used to coordinate

the communication. In contrast with SPRINT, PMCRI induces different rule terms on different

CPUs and not synchronously. The research literature about PMCRI and J-PMCRI provides

evidence that PMCRI scales well on large datasets. PMCRI may represent the only approach to



Scaling Up Classification Rule Induction Through Parallel Processing 27

scale up the ‘separate and conquer’ approach with parallelisation, however it is not only restricted

to Cendrowska’s original Prism algorithm, but all members of the Prism family of algorithms or

in general ‘separate and conquer’ algorithms that can process each attribute independently from

the others can be parallelised. Future developments in PMCRI may comprise the parallelisation of

algorithms that generate generalised rules where the right hand side of each rule is not restricted

to a single classification attribute but any combination of attributes.

Although the technologies outlined here are focused on loosely-coupled architectures, as they

can be realised with commodity hardware, hybrid technologies of loosely-coupled and tightly-

coupled architectures are likely to come into focus in the coming years. This is because of the new

generation of processors that comprise several processor cores that share one memory. Nowadays

dual-core processors are standard technology, but in the near future we will have multi-core

processors in our personal computers. Once APIs become available that allow researchers to

conveniently develop data mining applications that make use of all cores simultaneously, then

data mining researchers will be able to derive hybrid technologies that harvest the computational

power of networks of multi-core processor computers. Or loosely speaking, future parallel data

mining systems will be utilising whole networks of shared memory multi processor machines.

References

Berrar, D., Stahl, F., Silva, C. S. G., Rodrigues, J. R., Brito, R. M. M., & Dubitzky, W. (2005).

Towards data warehousing and mining of protein unfolding simulation data. Journal of

Clinical Monitoring and Computing, 19 , 307–317.

Bramer, M. A. (2000). Automatic induction of classification rules from examples using N-

Prism. In Research and development in intelligent systems XVI (pp. 99–121). Cambridge:

Springer-Verlag.

Bramer, M. A. (2002). An information-theoretic approach to the pre-pruning of classification

rules. In B. N. M Musen & R. Studer (Eds.), Intelligent information processing (p. 201-212).

Kluwer.

Bramer, M. A. (2005). Inducer: a public domain workbench for data mining. International

Journal of Systems Science, 36 (14), 909–919.

Bramer, M. A. (2007). Principles of data mining. Springer.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24 (2), 123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45 (1), 5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression

trees. Belmont, California, U.S.A.: Wadsworth Publishing Company.

Caragea, D., Silvescu, A., & Honavar, V. (2003). Decision tree induction from distributed

heterogeneous autonomous data sources. In In proceedings of the conference on intelligent

systems design and applications (isda 03 (pp. 341–350). Springer Verlag.

Catlett, J. (1991). Megainduction: Machine learning on very large databases. Unpublished

doctoral dissertation, University of Technology Sydney.

Cendrowska, J. (1987). PRISM: an algorithm for inducing modular rules. International Journal

of Man-Machine Studies , 27 (4), 349–370.

Chan, P., & Stolfo, S. J. (1993a). Experiments on multistrategy learning by meta learning. In

Proc. second intl. conference on information and knowledge management (pp. 314–323).

Chan, P., & Stolfo, S. J. (1993b). Meta-Learning for multi strategy and parallel learning. In

Proceedings. second international workshop on multistrategy learning (pp. 150–165).

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3 (4), 261–283.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the twelfth international

conference on machine learning (pp. 115–123). Morgan Kaufmann.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., & Reddy, D. R. (1980). The Hearsay-II Speech-

Understanding system: Integrating knowledge to resolve uncertainty. ACM Computing

Surveys (CSUR), 12 (2), 213–253.



28 f. stahl, m. bramer

Freitas, A. (1998). A survey of parallel data mining. In Proceedings second international

conference on the practical applications of knowledge discovery and data mining (pp. 287–

300). London.

Frey, L. J., & Fisher, D. H. (1999). Modelling decision tree performance with the power law.

In Proceedings of the seventh international workshop on artificial intelligence and statistics

(pp. 59–65).

Fuernkranz, J. (1998). Integrative windowing. Journal of Artificial Intelligence Resarch, 8 ,

129–164.

Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Addison-

Wesley.

Han, J., & Kamber, M. (2001). Data mining: Concepts and techniques. Morgan Kaufmann.

Hillis, W., & Steele, L. (1986). Data parallel algorithms. Communications of the ACM , 29 (12),

1170–1183.

Ho, T. K. (1995). Random decision forests. Document Analysis and Recognition, International

Conference on, 1 , 278.

Hunt, E. B., Stone, P. J., & Marin, J. (1966). Experiments in induction. New York: Academic

Press.

Joshi, M., Karypis, G., & Kumar, V. (1998). Scalparc: a new scalable and efficient parallel

classification algorithm for mining large datasets. In Parallel processing symposium, 1998.

IPPS/SPDP 1998. proceedings of the first merged international ... and symposium on

parallel and distributed processing 1998 (pp. 573–579).

Kargupta, H., Byung-Hoon, Hershberger, D., & Johnson, E. (1999). Collective data mining: A

new perspective toward distributed data analysis. In Advances in distributed and parallel

knowledge discovery (pp. 133–184). AAAI/MIT Press.

Kerber, R. (1992). Chimerge: Discretization of numeric attributes. In AAAI (p. 123-128).

Lippmann, R. P. (1988). An introduction to computing with neural nets. SIGARCH Comput.

Archit. News , 16 (1), 7–25.

McClean, B., Hawkins, C., Spagna, A., Lattanzi, M., Lasker, B., Jenkner, H., et al. (1998). New

horizons from multi-wavelength sky surveys. In Proceedings of the 179th symposium of the

international astronomical union held in baltimore.

Metha, M., Agrawal, R., & Rissanen, J. (1996). SLIQ: a fast scalable classifier for data mining. In

Proceedings of the 5th international conference on extending database technology: Advances

in database technology (Vol. 1057, pp. 18–32). Springer.

Michalski, R. S. (1969). On the Quasi-Minimal solution of the general covering problem. In

Proceedings of the fifth international symposium on information processing (pp. 125–128).

Bled, Yugoslavia.

Minitab. (2010, http://www.minitab.com/).

Park, B., & Kargupta, H. (2002). Distributed data mining: Algorithms, systems and applications.

In Data mining handbook (pp. 341–358). IEA.

Provost, F. (2000). Distributed data mining: Scaling up and beyond. In Advances in distributed

and parallel knowledge discovery (pp. 3–27). MIT Press.

Provost, F., & Hennessy, D. N. (1994). Distributed machine learning: scaling up with coarse-

grained parallelism. In Proceedings of the second international conference on intelligent

systems for molecular biology (pp. 340–347).

Provost, F., & Hennessy, D. N. (1996). Scaling up: Distributed machine learning with cooperation.

In Proceedings of the thirteenth national conference on artificial intelligence (pp. 74–79).

Menlo Park, CA: AAAI Press.

Provost, F., Jensen, D., & Oates, T. (1999). Efficient progressive sampling. In International

conference on knowledge discovery and data mining (pp. 23–32). San Diego: ACM.

Quinlan, R. J. (1979a). Discovering rules by induction from large collections of examples. In

Expert systems in the micro-electronic age. Edinburgh: Edinburgh University Press.



Scaling Up Classification Rule Induction Through Parallel Processing 29

Quinlan, R. J. (1979b). Induction over large databases (Technical No. STAN-CS-739). Stanford

University.

Quinlan, R. J. (1983). Learning efficient classification procedures and their applications to chess

endgames. In Machine learning: An AI approach (pp. 463–482). Morgan Kaufmann.

Quinlan, R. J. (1986). Induction of decision trees. Machine Learning, 1 (1), 81–106.

Quinlan, R. J. (1993). C4.5: programs for machine learning. Morgan Kaufmann.

Sas/stat. (2010, http://www.sas.com/).

Segal, M. R. (2004). Machine learning benchmarks and random forest regression (Tech. Rep.).

San Francisco, CA: Center for Bioinformatics & Molecular Biostatistics, University of

California.

Shafer, J., Agrawal, R., & Metha, M. (1996). SPRINT: a scalable parallel classifier for data

mining. In Proc. of the 22nd int’l conference on very large databases (pp. 544–555). Morgan

Kaufmann.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical

Journal , 27 .

Sirvastava, A., Han, E., Kumar, V., & Singh, V. (1998). Parallel formulations of Decision-Tree

classification algorithms. Data Mining and Knowledge Discovery, 237–261.

Smyth, P., & Goodman, R. M. (1992). An information theoretic approach to rule induction from

databases. Transactions on Knowledge and Data Engineering, 4 (4), 301–316.

Stahl, F. (2009). Parallel rule induction. Unpublished doctoral dissertation, University of

Portsmouth.

Stahl, F., Berrar, D., Silva, C. S. G., Rodrigues, J. R., Brito, R. M. M., & Dubitzky, W. (2005).

Grid warehousing of molecular dynamics protein unfolding data. In Proceedings of the fifth

IEEE/ACM int’l symposium on cluster computing and the grid (pp. 496–503). Cardiff:

IEEE/ACM.

Stahl, F., Bramer, M., & Adda, M. (2008). Parallel induction of modular classification rules. In

Sgai conf. (p. lookup-lookup). Springer.

Stahl, F., Bramer, M., & Adda, M. (2009a). Parallel rule induction with information theoretic

pre-pruning. In Sgai conf. (p. 151-164).

Stahl, F., Bramer, M., & Adda, M. (2010). J-PMCRI: A methodology for inducing pre-pruned

modular classification rules. In Artificial intelligence in theory and practice III (pp. 47–56).

Brisbane: Springer.

Stahl, F., Bramer, M. A., & Adda, M. (2009b). PMCRI: A parallel modular classification rule

induction framework. In MLDM (pp. 148–162). Springer.

Stankovski, V., Swain, M., Kravtsov, V., Niessen, T., Wegener, D., Roehm, M., et al. (2008).

Digging deep into the data mine with datamininggrid. IEEE Internet Computing, 12 ,

69-76.

Szalay, A. (1998). The evolving universe. ASSL 231.

Way, J., & Smith, E. A. (1991). The evolution of synthetic aperture radar systems and their

progression to the EOS sar. IEEE Transactions on Geoscience and Remote Sensing, 29 (6),

962–985.

Wirth, J., & Catlett, J. (1988). Experiments on the costs and benefits of windowing in ID3. In

Proceedings of the fifth international conference on machine learning (ML-88) (pp. 87–95).

Ann Arbor: Morgan Kaufmann.

Witten, I. H., & Eibe, F. (1999). Data mining: Practical machine learning tools and techniques

with java implementations. Morgan Kaufmann.


