
Homogeneous and heterogeneous
distributed classification for pocket data
mining
Book or Report Section

Accepted Version

Stahl, F. ORCID: https://orcid.org/0000-0002-4860-0203,
Gaber, M. M., Aldridge, P., May, D., Liu, H., Bramer, M. and
Yu, P. S. (2012) Homogeneous and heterogeneous distributed
classification for pocket data mining. In: Hameurlain, A., Küng,
J. and Wagner, R. (eds.) Transactions on large-scale data and
knowledge-centered systems V. Lecture Notes in Computer
Science (7100). Springer, pp. 183-205. ISBN 9783642281471
Available at https://centaur.reading.ac.uk/30161/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

Publisher: Springer

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

Homogeneous and Heterogeneous Distributed
Classification for Pocket Data Mining

Frederic Stahl1, Mohamed Medhat Gaber1, Paul Aldridge1, David May1 Han
Liu1, Max Bramer1, and Philip S. Yu2

1 School of Computing, University of Portsmouth
Portsmouth, PO1 3HE, UK

2 Department of Computer Science, University of Illinois at Chicago
851 South Morgan Street, Chicago, IL 60607-7053, USA

Abstract. Pocket Data Mining (PDM) describes the full process of
analysing data streams in mobile ad hoc distributed environments. Ad-
vances in mobile devices like smart phones and tablet computers have
made it possible for a wide range of applications to run in such an
environment. In this paper, we propose the adoption of data stream
classification techniques for PDM. Evident by a thorough experimental
study, it has been proved that running heterogeneous/different, or ho-
mogeneous/similar data stream classification techniques over vertically
partitioned data (data partitioned according to the feature space) results
in comparable performance to batch and centralised learning techniques.

1 Introduction

Thanks to continuing advances on mobile computing technology, more and more
data mining applications are running on mobile devices such as ‘Tablet PCs’,
smart phones and Personal Digital Assistants (PDAs). The ability to make phone
calls and send SMS messages nowadays seems to be merely an additional feature
rather than the core functionality of a smart phone. Smart phones offer a wide
variety of sensors such as cameras and gyroscope as well as network technologies
such as Bluetooth, and Wi-Fi with which a variety of different data can be gen-
erated, received and recorded. Furthermore smart phones are computationally
able to perform data analysis tasks on these received, or sensed data such as
data mining. Many data mining technologies for smart phones are tailored for
data streams due to the fact that sensed data is usually received and generated
in real time and due to the fact that limited storage capacity on mobile devices
requires that the data is analysed and mined on the fly while it is being gener-
ated or received. For example the Open Mobile Miner (OMM) tool [25] allows
the implementation of data mining algorithms for data streams that can be run
on smart phones.

Existing data mining systems for smart phones such as MobiMine [19] or
VEDAS [20] and its commercial version MineFleet [21, 23] are some examples
of systems that deploy data stream mining technology to mobile phones. How-
ever to our knowledge all existing data mining systems for mobile devices either

II

facilitate data mining on a single node or follow a centralised approach where
data mining results are communicated back to a server which makes decisions
based on the submitted results. Constraints that require the distribution of data
mining tasks among several smart phones are, large and fast data streams, sub-
scription fees to data streams, and data transmission costs in terms of battery
and bandwidth consumption. The data transmission cost can be lowered by pro-
cessing parts of the same data stream locally on different smart phone devices
that only collaborate only by exchaning local statistics, or locally generated data
mining models rather than raw data. The collaborative data mining on smart
phones and ‘Tablet PCs’ facilitated by building an ad hoc network of mobile
phones will allow to build significantly useful analysis tasks, however this area
remains widely unexplored.

In this paper we describe and evaluate the Pocket Data Mining (PDM) frame-
work, coined and proven to be computationally feasible in [3]. PDM has been
built as a first attempt to explore collaborative and distributed data mining
using stream mining technologies [6], mobile software agents technologies [7,
8] and embedded programming for mobile devices such as smart phones and
‘Tablet PCs’. The main motivation in developing PDM is to facilitate the seam-
less collaboration between users of mobile phones which may have different data,
sensors and data mining technology available. The usage of mobile agent tech-
nology is motivated by the agent’s autonomous decentralised behaviour, which
enables PDM to be applied on highly dynamic problems and environments with
a changing number of mobile nodes. A second motivation for using mobile agent
technology is the communication efficiency of mobile agent based distributed
data mining [9, 10]. A general agent based collaborative scenario could look like
the following. A mobile device that has a data mining task sends out a mobile
agent that roams the network of mobile devices and collects for the data mining
task useful information, such as which mobile devices have which data sources
and/or sensors available and which data mining technologies are embedded on
these devices. Next a further agent is sent out to consult the data mining task
relevant mobile devices (in terms of their data sources, sensors and data mining
technology) and uses the collective information to synthesize the data mining
task.

Possible applications for PDM comprise:

– Stock market analysis tasks for investors and brokers, brokers can retrieve
real time stock market data anytime anywhere they want using smart phones
and can perform data mining on this data in order to support decisions
to sell or buy shares [11]. However brokers may only want to subscribe to
data of companies they are directly interested in, as the data transfer is
expensive in terms of bandwidth consumption, processing power and battery
life. Hence locally installed data mining technology may not pick up and
learn direct/indirect dependencies between the subscribed shares and non
subscribed shares. Collaborative data mining using PDM can overcome these
limitations by sharing local models rather than data.

III

– Recent budget cuts of the British coalition government due to the current
economic crisis could lead to a reduction of about 60000 police officers [26].
Reduction in police staff will have to be compensated. PDM could help
streamlining the process of knowledge acquisition on the crime scene. The
crime scene investigators could form an ad hoc network using their smart
mobile phones. They could capture pictures, video data and finger prints
as well as any other sensory data on the crime scene or from online data
sources. If the task is to know more information about an aspect of the
crime, the distribution of tasks could be that one device is to do an Internet
search, another is to take pictures and a further one may retrieve data from
other sensors close to the crime scene for example CCTV cameras. Without
PDM the information recorded would have to be formatted and entered
into a central data server and a data analyst would have to be employed
to evaluate the gathered information, whereas with PDM the information
could be fused together in real-time to give insights and knowledge about
the crime.

– Sensors of smart phones can collect in situ continuously data about the
healthy condition of a patient, for example some earphones of mobile phones
can read a person’s blood pressure [27], the accelerometer could detect phys-
ical activity, also the body temperature could be recorded and the fact that
the mobile phone is used indicates that the user is conscious and probably
well. Behaviour patterns can be mined from this sensory data. Nurses and
‘mobile medical staff’ could be equipped with mobile devices as well, if the
nurse is idle, then the mobile phone can send out a mobile agent that roams
the network of ‘patients’ and makes a decision where the nurse is needed
most and instructs the nurse to go there. This decision may take the health
status, the location of the patient and the nurse into account as well as the
nurse’s particular area of expertise.

The growing demand for commercial knowledge discovery and data mining
techniques has led to an increasing demand of classification techniques that gen-
erate rules in order to predict the classification of previously unseen data. Hence
classification rule induction is also a strong candidate technology to be integrated
into the PDM framework. For example the classification of data streams about
the stock market could help brokers to make decisions whether they should buy
or sell a certain share. Also in the area of health care, classification of streaming
information may be beneficial, for example the smart phone may record various
health indicators such as the blood pressure and/or the level of physical activ-
ity and derive rules that may indicate if a patient needs medical attention, the
urgency and what kind of medical attention is needed. For this reason a version
of PDM that incorporates two strong data stream classification technologies has
been created and is evaluated in this paper.

The paper is organised as follows. Section 2 highlights some related work in
the area of distributed data mining on mobile devices; Section 3 describes the
PDM framework in the context of classification rule induction on data streams;
Section 4 evaluates several configurations of PDM comprising different classi-

IV

fiers; Section 5 highlights ongoing work on PDM and future developments; some
concluding remarks can be found in Section 6.

2 Related Work

The topic of this research paper lies in the intersection of distributed data mining,
mining data streams and mobile software agents.

Distributed data mining has been surveyed thoroughly by Park and Kar-
gupta in [22]. Mainly, there are two broad categories of distributed data mining,
namely, homogeneous and heterogeneous. It has to be noted that this categori-
sation is made in reference to the attributes. Homogeneous distributed data
mining refers to the process of mining the same set of attributes over all the
participating nodes. On the other hand, heterogeneous distributed data mining
refers to mining different sets of attributes in each participating node. In this
paper, our focus is on the vertically partitioned data, i.e., the heterogeneous
distributed data mining scenario. This choice has been made to provide a more
realistic scenario to the applications discussed in this paper. It is worth noting
that in this paper, we use the terms homogeneous and heterogeneous to refer
to the data mining algorithms used in the process, where homogeneous refers
to the use of only one data mining algorithm across all the participating nodes,
and heterogeneous refers to the use of different data mining algorithms.

Mining data streams, on the other hand, is a more recent topic of research. A
concise review of the area by Gaber et al is given in [6]. A more detailed review
is given in [28]. The area is concerned with analysis of data generated in a high
speed relative to the state-of-the-art computational power, with a constraint of
real-time demand of the results. Hundreds of algorithms have been proposed in
the literature addressing the research challenges of data stream mining. Notable
success of the use of Hoeffding bound to approximate the data mining models
for streaming data has been recognised [13]. The two-stage process of online
summarisation and offline mining of streaming data, proposed by Aggarwal el
al [1, 2], has been also recognised as a feasible approach to tackle the high data
rate problem. Addressing both the resource constraints and high speed aspects
of data stream mining has been addressed by Gaber et al [31, 29, 30] by propos-
ing the algorithm granularity approach. The approach is generic and could be
plugged into any stream mining algorithm to provide resource-awareness and
adaptivity. Mining data stream algorithms is at the heart of our pocket data
mining framework.

Finally, mobile software agents are computer programs that autonomously
and intelligently move from one node to the other to accomplish its task. Po-
tential applications and obstacles of this technology have been detailed in [7,
8]. The use of mobile agent technology for distributed data mining has been
recognised, as an alternative paradigm to the client/server technologies for large
databases. A cost model has been developed by Krishnaswamy et al [12], suggest-
ing a hybrid approach to distributed data mining, combining both client/server
and mobile agent paradigms. Our choice of mobile agent paradigm in this re-

V

search project has been due to the fact that our approach follows a peer-to-peer
computation mode, and also that centralisation of the stream data mining in the
mobile computing environment is infeasible.

3 PDM: Pocket Data Mining

PDM describes the collaborative data mining of data streams using mobile de-
vices and mobile agent technology which is executed on an ad hoc mobile net-
work. Section 3.1 illustrates the basic framework and workflow of PDM whereas
Section 3.2 highlights a particular implementation of PDM using two different
classifiers.

3.1 Architecture

The basic architecture is depicted in Figure 1. The mobile device that has a
data mining task and utilises PDM to solve it is called the task initiator. PDM
consists of three generic software agents that may be mobile and thus able to
move between mobile phones within the ad hoc mobile network [3].:

– (Mobile) Agent Miners (AM) are distributed over the ad hoc network. They
may be static agents used and owned by the user of the mobile devices. Or
they may be mobile agents remotely deployed by the user of a different mo-
bile device. They implement the basic stream mining algorithms; however
they could also implement batch learning algorithms if required by the ap-
plication.

– Mobile Agent Resource Discoverers (MRD) are mobile agents that are used
to roam the network in order to discover for the data mining task relevant
data sources, sensors, AMs and mobile devices that fulfil the computational
requirements. They can be used to derive a schedule for the Mobile Agent
Decision Makers described below.

– Mobile Agent Decision Makers (MADM) can move the mobile devices that
run AMs and consult the AMs in order to retrieve information or partial
results for the data mining task. The MADMs can use the schedule derived
by the MRDs.

Algorithm 1 describes the basic data mining workflow that PDM employs
collaboratively. The task initiator forms an ad hoc network of participating mo-
bile devices within reach. Next the task initiator starts the MRD agent which
will roam the network searching for data sources that are relevant for the data
mining task, and for mobile devices that fulfill the computational requirements
(battery life, memory capacity, processing power, etc.). While the MRD is col-
lecting this information it will decide on the best combination of techniques to
perform the data mining task. On its return to the task initiator the MRD will
decide which AMs can and need to be deployed to remote mobile devices. There
might be restrictions, some mobile phone owners may not allow alien AMs to

VI

Fig. 1. The PDM Architecture.

be deployed, for example they may have limited computational capacity such as
battery life, their data might be confidential etc. Concerning the confidentiality
issues the owner of the mobile device may still allow its own AMs to be consulted
as he will have control over its own AMs and thus about which information they
release to alien MRD and MADM agents. The AMs are executed concurrently
as indicated by the parallel for loop (parFor) in Algorithm 1. Finally the task
initiator starts the MADM agent with the schedule provided by the MRD agent.
The MADM agent visits the in the schedule listed AMs and will use their model
in order to gain information for their decision making process. Finally on the
return to the task initiator the MADM agent will make a collective decision
based in the information gathered from the AMs distributed in the network.

Algorithm 1 PDM’s collaborative data mining workflow

Task Initiator: Form an ad hoc network of mobile phones;
Task Initiator: start MRD agent;
MRD: Discover data sources, computational resources and techniques;
MRD: Decide on the best combination of techniques to perform the task;
MRD: Decide on the choice of stationary AMs and deploy mobile AMs;
Task Initiator: Start MADM agent with schedule provided by the MRD;
parFor i = 1 to i = number of AMs do

AMi: starting mining streaming data until the model is used by the MADM agent.
end parFor

VII

The current implementation of PDM offers AMs that implement classifiers
for data streams, in particular the Hoeffding trees and the Naive Bayes classifiers
which will be described in Section 3.2. It is assumed that the AMs are subscribed
to the same data stream, however potentially to different parts of it. For example
in the context of the stock market application outlined in Section 1, the mobile
device may only have data about shares available in which the user of the mobile
device is interested in, or more general the mobile device may only be subscribed
to specific features of the data stream. A broker may train its own AM classifier
on the data he has subscribed to, this could be for example by updating a model
which is based on classes ‘buy’, ‘sell’, ‘do not sell’ and ‘undecided’ whenever
he makes a new transaction. He may also use the current model to support his
decisions to ‘buy’ or ‘sell’ a share. However, if the broker is now interested in
buying a new share he has not much experience with, thus he may be interested
in what decisions other brokers are likely to make in the same situation. Other
brokers may not want to disclose their actual transactions but may share their
local AM or even allow alien AMs to be deployed and for this the brokers can use
PDM. With the current version of PDM the data mining workflow outlined in
Algorithm 1 may look like the following, where the mobile device of the broker
interested in investing in a new share is the task initiator. In the steps below
and elsewhere in the paper, if we refer to a PDM agent hopping, we mean that
the agent stops is execution, is transferred by PDM to a different mobile device
and resumes its execution on this device. Also in the steps below it is assumed
that the ad hoc network is already established:

1. Task Initiator: Send a MRD agent in order to discover mobile devices of
brokers that have subscribed to relevant stock market data, i.e. data about
the shares the broker is interested in.

2. The MRD agent hops from mobile device to mobile device and if it finds a
device subscribed to relevant data it memorises the device and also if there
are any useful AMs already available. If there are no useful agents it will
memorise if the device allows alien agents to be deployed.

3. The MRD agent returns to the task initiator. From there the MRD agent
will remotely deploy relevant AMs to mobile devices in its list that have
relevant data but no relevant AMs however, allow alien AMs to be deployed
remotely.

4. Once all AMs are deployed the MRD agent composes a schedule of all rel-
evant classifier AMs subscribed to relevant data and passes it on to the
MADM agent.

5. The MADM agent loads the data about the new shares the broker is inter-
ested in and starts hopping to each AM in the schedule.

6. On each AM the MADM agent hands over the ‘shares data’ to the AM and
asks to classify it for example with class ‘buy’, ‘do not buy’, ‘sell’, ‘do not sell’
or ‘undecided. The MADM may also retrieve some estimate how reliable the
AMs thinks its classification is, for example its local classification accuracy.

7. Once the MADM returns to the task initiator it may employ a majority
voting on the collected classifications from each AM or a weighted major-
ity voting incorporating the AMs local accuracy (we will call this the AMs

VIII

weight). The outcome of the (weighted) majority voting is used as recom-
mendation for the broker to the investment in the new share.

3.2 Implementation of PDM Using Distributed Hoeffding Trees
and Distributed Naive Bayes for Mining Data Streams on
Mobile Devices

PDM in its current version offers two AMs for classification tasks on data
streams. One of the AMs implements the Hoeffding Tree classifier [13] and one
that implements the Naive Bayes classifier. The AM that employs the Hoeffd-
ing Tree classifier uses the Hoeffding Tree implementation from the Massive
Online Analysis (MOA) tool [4] as outlined by Bifet and Kirkby [5] and shown
in Algorithm 2. Hoeffding tree classifiers have been designed for high speed data
streams.

The Naive Bayes classifier has been originally developed for batch learning;
however its incremental nature makes it also applicable on data streams. Again
the AM employing the Naive Bayes classifier uses the Naive Bayes implementa-
tion from the MOA tool [4]. Naive Bayes is based on the Bayes Theorem [14]
which states that if C is an event of interest and P (C) is the probability that
event C occurs, and P (C|X) is the conditional probability that event C occurs
under the premise that X occurs then:

IX

P (C|X) = P (X|C)P (C)
P (X)

The Naive Bayes algorithm uses the Bayes Theorem to assign to a data
instance to the class it belongs to with the highest probability.

4 Evaluation of PDM

This paper examines the PDM’s applicability of classification rule induction
to data streams. Three different configurations of PDM have been thoroughly
tested. One PDM configuration solely based on Hoeffding Tree AMs, the second
configuration of PDM is solely based on Naive Bayes AMs and the third config-
uration is a mixtures of both Hoeffding Tree and Naive Bayes AMs. Section 4.1
outlines the general experimental setup, Section 4.2 outlines the experimental
results obtained using only Hoeffding Tree AMs, Section 4.3 outlines the exper-
imental results obtained using only Naive Bayes AMs and Section 4.4 outlines
the experimental results obtained using a mix of Hoeffding tree and Naive Bayes
AMs.

4.1 Experimental Setup

The two classifier AMs use the Hoeffding Tree and Naive Bayes implementations
from the MOA toolkit [4] with the reasoning that MOA is based on the WEKA
[15] data mining workbench and thus supports the usage of the well known .arff
data format. PDM is also built on the well known Java Agent Development
Environment (JADE) [16]. JADE agents are hosted and executed in JADE con-
tainers that can be run on the mobile devices and PCs. JADE agents can move
between different JADE containers and thus between different mobile devices
and PCs. As JADE agents can be developed on PCs and run on both PCs and
mobile phones it is possible to develop and evaluate PDM on a LAN of PCs. The
used LAN consists of 9 workstations with different software and hardware spec-
ifications and is connected with a CISCO Systems switch of the catalyst 2950
series. In the configurations of PDM examined in this paper 8 machines were
either running one Hoeffding Tree or one Naive Bayes AM. The 9th machine was
used as the task initiator, however any of the 8 machines with AMs could have
been used as task initiator as well. The task initiator starts the MADM in order
to collect classification results from the AMs.

The data streams for PDM have been simulated using the datasets described
in Table 1. The datasets have been labelled with test 1 to 6 for simplicity when
referring experiments to a particular data stream. The data for test 1, 2, 3 and 4
have been retrieved from the UCI data repository [17] and datasets 5 and 6 have
been taken from the Infobiotics benchmark data repository [18]. All datasets are
stored in the .arff format and the data stream is simulated by taking a random
data instance from the .arff file and feeding it to the AM. Instances may be
selected more than once for training purposes.

X

Table 1. Evaluation Datasets

Test Number Dataset Number of Attributes Number of Instances

1 kn-vs-kr 36 1988
2 spambase 57 1999
3 waveform-500 40 1998
4 mushroom 22 1978
5 infobiotics 1 20 ≈ 200000
6 infobiotics 2 30 ≈ 200000

As mentioned in Section 3 each AM may be subscribed to only a subset of
the total feature space of a data stream, we call this a vertically partitioned
data stream. For example a stock marked broker may only subscribe to data
about companies he is interested in investing, or a police officer may only access
data he has clearance for. Even if a user of a mobile device may have access
to the full data the owner of the device may not want or be able to subscribe
to ‘for him’ unnecessary features for computational reasons, such as bandwidth
consumption, also the more data is processed by AMs the more power they will
consume, or simply the processing time of the data stream is longer the more
features are streamed in and need to be processed and higher subscription fees
may be imposed. Yet the current subscription may be insufficient for classifying
new data instances. However the task initiator can send a MADM with the
unclassified data instances. This MADM visits and consults all relevant AMs
that belong to different owners that may have subscribed to different features
that are possibly be more relevant for the classification task.

The MADM collects predictions from each AM for each unclassified data
instance and the estimated ‘weight’ (accuracy) of the AM, which it uses to decide
on the final classification. In the PDM framework each AM treats a streamed
labelled instance either as train or as test instance with a certain probability
which is set by the owner of the AM. The default probability used in the current
setup is 20% for the selection as a test and 80% for the selection as a training
instance. Each training instance is put back into the stream and may be selected
again as training instance, this allows to simulate endless data streams with
reoccurring patterns. The test instances are used to calculate the ‘weight’ of the
AM. The AM also takes concept drifts into account when it calculates its ‘weight’
by defining a maximum number of test instances to be used. For example if the
number of test instances it 20 and there are already 20 test instances selected
then the AM replaces the oldest test instance by the newly incoming test instance
and recalculates the ‘weight’ using the 20 test instances.

After the MADM finished consulting all AMs in its schedule it returns to the
task initiator and uses the local predictions from each AM and the AMs weights
in order to derive a final classification using a ‘weighted majority voting’. For
example for the classification of one data instance, if there are three AMs, AM1,
AM2 and AM3. AM1 predicts class A and has a weight of 0.57, AM2 also
predicts class A and has a weight of 0.2 and AM3 predicts class B and has a

XI

weight of 0.85. The MADM’s ‘weighted’ prediction for class A is 0.57A+0.2A =
0.77A and for class B 0.85B = 0.85B. Thus the MADM yielded the highest
weighted vote for classification B and will label the concerning instance with
class B.

The user of PDM can specify which features its AM shall subscribe to, how-
ever in reality we may not know the particular subscription, thus in the exper-
imental set-up each AM subscribes to a random subset of the feature space. In
particular experiments with each AM holding 20%, 30% and 40% of the total
feature space have been conducted.

The terminology that is used in Sections 4.2, 4.3 and 4.4 is explained below:

– The weight refers to the local accuracy of the AM calculated using randomly
drawn test instances from the local data stream.

– MADM’s accuracy or PDM’s accuracy is the accuracy achieved by the
MADM using the test dataset classified by ‘weighted majority voting’ by the
MADM.

– local accuracy is not to be confused with the weight. The local accu-
racy is the actual accuracy that a particular AM achieved on classifying the
MADM’s test data. This accuracy is only calculated for evaluation purposes,
it would not be calculated in the real application as the real classifications
of the MADM’s test set would be unknown.

– the average local accuracy is calculated by averaging the local accuracies
of all AMs. The average accuracy is used to show if the ‘weighted majority
voting’ performs better than simply taking a majority vote.

4.2 Case Study of PDM using Hoeffding Trees

The datasets listed in Table 1 are batch files. Using batch files allows us to
induce classifiers using batch learning algorithms and thus to compare PDM’s
classification accuracy to the ideal case of executing batch learning algorithms
on the whole datasets using all attributes. In particular the C4.5 [24] and Naive
Bayes batch learning algorithms have been used from the WEKA workbench
[15]. The choice of C4.5 is based on its wide acceptance and use; and to the fact
that the Hoeffding tree algorithm is based on C4.5. The choice of Naive Bayes is
based on the fact that it is naturally incremental, computationally efficient and
also widely accepted.

In general it is expected that the more features the AMs have available the
more likely it is that they achieve a high classification accuracy and thus the more
likely it is that the MADM achieves an high classification accuracy as well. Yet
some features may be highly predictive and others may not be predictive and
even introduce noise. Thus in some cases having more features available may
decrease the AMs and thus PDM’s accuracy. 70% of the data instances from
each dataset in Table 1 have been used to simulate the local data stream and
the remaining 30% have been used as test data in order to evaluate PDM’s and
respectively MADM’s accuracy. All experiments outlined in this paper have been

XII

Fig. 2. PDM’s average classification Accuracy based on Hoeffding Trees.

conducted 5 times, the average local accuracy of each AM has been calculated
and recorded as well as PDM’s or respectively MADM’s average accuracy.

Figure 2 shows PDM’s average classification accuracy plotted versus the num-
ber of AMs visited. The experiments have been conducted for configurations
where all AMs either subscribe to 20%, 30% or 40% of the features of the data
stream. The features each AM subscribes to are selected randomly thus some
AMs may have subsets of their features in common and some not. That two
or more AMs have features in common is realistic, for example for the stock
market broker application briefly outlined in Section 1. Two brokers may be
interested in the ‘Compaq’ share but only one of them may be interested in the
‘Hewlett-Packard’ share and one in the ‘Microsoft’ share.

XIII

The largest difference between Naive Bayes’s accuracy and C4.5 is for test 2
where Naive Bayes’s accuracy is 80% and C4.5 91%, otherwise both batch learn-
ing algorithms achieve similar accuracies. Concerning PDM’s accuracy based on
Hoeffding trees it can be seen that PDM generally achieves accuracies above
50% for all datasets. In general PDM configurations with AMs using just 20% of
the feature space generally perform much worse than configurations with 30% or
40% which can be explained by the fact that predictive features are more likely
not to be selected. In some cases, for example for test 2 it seems that config-
urations of PDM with 30% achieve a higher accuracy than configurations with
40% which can be due to the fact that with subscribing to 40% of the features
it is also more likely that non predictive features that also introduce noise are
selected compared with subscribing to 30%. In general it can be observed that if
subscribing to 30% instances achieves better results than subscribing to 40% in-
stances the difference in accuracy between both configurations is not very large.
In general PDM achieves accuracies close to the batch learning algorithms C4.5
and Naive Bayes, notably in tests 3 and 5 but also for the remaining tests PDM
achieves close accuracies to those of Naive Bayes and C4.5. In general PDM based
on Hoeffding trees achieves acceptable classification accuracy in most cases.

Varying the number of AMs generally is dependent on the dataset used.
Highly correlated attributes in one dataset would only need small number of
AMs and vice versa.

Figure 3 compares PDM’s accuracy (achieved by the MADM through ‘weighted
majority voting’) with the average local accuracy of all AMs versus the number
of AMs visited. Each row of graphs corresponds to one of the tests in Table 1
and each column of graphs corresponds to a percentage of features the AMs are
subscribed to. The lighter line in the graphs is the accuracy of PDM and the
darker line is the average local accuracy of all AMs. PDM’s accuracy is in most
cases higher or even better than the average local accuracy, hence the MADM’s
‘weighted majority voting’ achieves a better result compared with simply taking
the average of the predictions from all AMs.

4.3 Case Study of PDM using Naive Bayes

A further configuration of PDM solely based on Naive Bayes AMs has been
evaluated the same way as PDM solely based on Hoeffding trees has been. PDM
solely based on Naive Bayes is expected to produce similar results compared
with PDM solely based on Hoeffding trees evaluated in Section 4.2.

Figure 4 presents the data obtained of PDM solely based on Naive Bayes
the same way as Figure 2 does for PDM solely based on Hoeffding trees. Again
the experiments have been conducted for configurations where all AMs either
subscribe to 20%, 30% or 40% of the features of the data stream. The features
each AM subscribes to are selected randomly thus some AMs may have subsets
of their features in common and some not. Concerning PDM’s accuracy based
on Hoeffding trees it can be seen that PDM generally achieves accuracies above
50% for all datasets. Similar compared with Figure 2 PDM configurations with
AMs using just 20% of the feature space generally perform much worse than

XIV

Fig. 3. PDM’s average classification accuraciy versus the average local accuracy of the
AMs with Hoeffding Trees

configurations with 30% or 40% which can be explained by the fact that predic-
tive features are more likely not to be selected. Yet in some cases, for example
for test 2 it seems that configurations of PDM with 30% achieve a higher ac-
curacy than configurations with 40% which can be due to the fact that with
subscribing to 40% of the features it is also more likely that non predictive fea-
tures that introduce noise are selected compared with subscribing to 30%. In
general PDM achieves accuracies close to the batch learning algorithms C4.5
and Naive Bayes, notably in tests 3, 4, 5 and 6. However also for the remaining
tests PDM achieves close accuracies to those of Naive Bayes and C4.5. In gen-
eral PDM based on Hoeffding trees achieves acceptable classification accuracy
in most cases.

XV

Fig. 4. PDM’s average classification Accuracy based on Naive Bayes.

Similar to the previous set of experiments, varying the number of AMs gener-
ally is dependent on the dataset used. Highly correlated attributes in one dataset
would only need small number of AMs and vice versa.

Figure 5 analogous to Figure 3 opposes PDM’s accuracy (achieved by the
MADM through ‘weighted majority voting’) and the average local accuracy of
all AMs versus the number of AMs visited. Each row of graphs corresponds to one
of the tests in Table 1 and each column of graphs corresponds to a percentage of
features the AMs are subscribed to. The lighter line in the graphs is the accuracy
of PDM and the darker line is the average local accuracy of all AMs. Similar to
the Hoeffding tree results PDM’s accuracy is in most cases higher or even better
than the average local accuracy, hence the MADM’s ‘weighted majority voting’

XVI

Fig. 5. PDM’s average classification accuracy versus the average local accuracy of the
AMs with Naive Bayes.

either achieves a better result than simply taking the average of the predictions
from all AMs.

4.4 Case Study of PDM using a Mix of Hoeffding Trees and Naive
Bayes

Figure 6 highlights the accuracies of the two PDM configurations solely based on
Hoeffding and solely based in Naive Bayes for different numbers of visited AMs.
The bars in the figure are in the following order from left to right: Total accu-
racy of PDM with Hoeffding Trees with 20% attributes; total accuracy of PDM
with Hoeffding Trees with 30% attributes; total accuracy of PDM with Hoeffd-

XVII

ing Trees with 40% attributes; total accuracy of PDM with Naive Bayes with
20% attributes; total accuracy of PDM with Naive Bayes with 30% attributes;
total accuracy of PDM with Naive Bayes with 40% attributes; accuracy for
batch learning of Naive Bayes with all attributes; and finally accuracy for batch
learning of C4.5 with all attributes.

Fig. 6. PDM’s average classification accuracy for both configurations with Hoeffding
Trees and Naive Bayes.

On tests 3 and 5 both configurations of PDM achieve an almost equal clas-
sification accuracy. Also for tests 1, 2, 4 and 6, the classification accuracies of
PDM are very close for both configurations and there does not seem to be a
bias towards one of the classifiers used. Hence a heterogeneous configurations
of PDM with a mixture of both classifiers would be expected to achieve a sim-
ilar performance than a homogeneous configuration solely based on Hoeffding
Trees or Naive Bayes. Such a heterogeneous set-up of AM classifiers would also
be a more realistic set-up as owners of mobile devices may use their individual
classification techniques tailored for the data they subscribed to.

In order to show that a heterogeneous set-up of AM classifiers achieves a
similar accuracy to a homogeneous solely based on Hoeffding Trees or Naive
Bayes we have evaluated configurations of PDM that use both classifiers. Again

XVIII

all experiments have been conducted five times and the average of the achieved
accuracy by the MADM has been calculated.

Fig. 7. Average classification accuracy for a heterogeneous set-up of classifier AMs in
PDM.

Figure 7 highlights experiments conducted with different heterogeneous se-
tups of PDM for all 6 datasets listed in Table 1. The average accuracy of the
MADM is plotted against the combination of algorithms embedded in the de-
ployed AMs. The graph is split showing AMs working with 20%, 30% and 40%
of the features. All possible combinations of Hoeffding Trees and Naive Bayes
AMs have been evaluated. The horizontal labels in Figure 7 are read the fol-
lowing way. HT stands for Hoeffding Tree and NB for Naive Bayes, the number
before HT and NB is the number of Naive Bayes or HT classifiers visited re-
spectively. For example label ‘3HT/5NB’ means that 3 Hoeffding Tree AMs and
5 NB agents have been visited by the MADM. Also plotted in Figure 7 is the

XIX

result the batch learning algorithms C4.5 and Naive Bayes achieve using all the
features. The achieved accuracies are close compared with those achieved by the
batch learning algorithms which have the advantage over PDM of having all the
features available which would again not be the case in a realistic scenario where
subscribers of a data stream limit their subscription only to properties they are
particularly interested in for reasons stated in Sections 1 and 4.

In Figure 7 for test 1 it can be seen that using 20% features or 30% seems
to achieve very similar classification accuracies. However for using 40% features
the classification accuracy improves considerably and gets close to the batch
learning accuracies which use all features, also for using 40% of the features it
can be seen that configurations with more Hoeffding tree AMs perform slightly
better than configurations with more Naive Bayes AMs. For test 2 it can be seen
that using 30% instances already improves the classification accuracy and there
is a tendency for the usage of 30% and 40% instances that configurations with
more Hoeffding tree AMs perform slightly better, in particular configurations
6HT/2NB and 7HT/1NB seem to achieve high accuracies between 80% and 90%.
Regarding test 3 all percentages of features used achieve a very similar and very
good classification accuracies that can well compete with the accuracies achieved
by the batch learning algorithms on all features. Also configuration wise it seems
that using configurations with more Naive Bayes then Hoeffding trees seem to
perform better, however also a configuration solely based on Hoeffding trees
achieves very good classification accuracies close to batch learning algorithms.
In test 4 the tendency seems that using more Naive Bayes classifiers achieve a
higher accuracy than using more Hoeffding tree classifiers. In test 4 Naive Bayes
seems to work better on configurations with less features subscribed to compared
with Hoeffding trees. There is no noticeable tendency for test 5, all configurations
and percentages of features seem to achieve a high accuracy very close to the
one observed for the batch learning algorithms. On test 6 any configuration and
even batch learning algorithms do not achieve a good classification accuracy.
This suggests that the dataset for test 6 is not very well suited for classification
in its current form. Also there is no particular tendency detectable for test 6.

Figure 7 also displays the data from homogeneous configurations of PDM
solely based on Hoeffding trees, which is labelled as configuration 8HT/0NB
and solely based on Naive Bayes, which is labelled 0HT/8NB. The results clearly
show that heterogeneous configurations of PDM achieve very similar accuracies
to homogeneous configurations of PDM. Also earlier in this section we stated
that a heterogeneous set-up of AM classifiers would also be a more realistic setup
as owners of mobile devices may use their individual classification techniques.
Furthermore PDM may well benefit from using individual AMs from different
owners as they are likely to be optimised on the local subscription of the data
stream.

XX

5 Ongoing and Future Work

5.1 Rating System for AMs

The current implementation of the MADM agent assumes that the local AMs
are of good quality and thus in the case of classification of unlabelled data
instances it is assumed that the weights are calculated correctly and truly reflect
the AMs classification accuracy. This assumption may be true for the AMs we
developed in-house, which we used for the evaluation in Section 4, but third party
implementations may not be trusted. For this reason a rating system about AMs
is currently being developed based on historical consultations of AMs by the
MADM. For example if the MADM remembers the classifications and weights
obtained from AMs visited, and the true classification of the previously unknown
instances is revealed, then the MADM could implement its own rating system
and rate how reliable a AM’s weight was in the past. If an AM is rated as
unreliable, then the MADM may even further lower its weight. However it is
essential that this rating system is also able to loosen given ratings, as the AM’s
performance might well change if there is a concept drift in the data stream.
In order to detect such concept drifts it is necessary that AMs that have a bad
rating are still taken into consideration, even if it is with a low impact due to
bad ratings.

5.2 Intelligent Schedule for MADMs

In its current implementation the MADM visits all available AMs, however this
may be impracticable if the number of AMs is very large. Currently a mechanism
is being developed for MADMs according to which the MADM can decide when
to stop consulting further AMs. A possible stopping criteria could be that a
certain time has elapsed or the classification result is reliable enough. Also the
rating system outlined above can be used to determine an order in which AMs
are visited. If there are time constraints the MADM may prioritise more reliable
AMs.

6 Conclusions

The paper presents the Pocket Data Mining (PDM) framework for mining data
streams in a collaborative fashion in a mobile environment consisting of smart
phones. PDM is based on mobile agent technology using three types of agents.
Agent Miners that embed stream mining technologies, Mobile Agent Resource
Discoverers that are used to roam the network and search for relevant data
streams and the Mobile Agent Decision Makers that visit and consults Agent
Miner on whose results they base their final decision on. This paper presents a
implementation of PDM for distributed classification of data streams and exam-
ines its feasibility. Two different configurations of PDM based on either Hoeffding
tree Agent Miners or Naive Bayes Agent Miners have been examined. The exper-
iments have also been conducted with different percentages of features available

XXI

to the Agent Miners. The classifiers used were the Hoeffding tree and the Naive
Bayes classifiers. In general it has been observed that any configuration of PDM
based on any of the two or both classifiers achieved an acceptable classification
accuracy. Also it has been observed that the more features the Agent Miners
have available the closer the accuracies are to the ideal case where batch learn-
ing algorithms C4.5 and Naive Bayes have the advantage of having 100% of the
features available to train the classifier. Furthermore it has been observed that
PDM’s ‘weighted’ majority voting achieves higher classification accuracies than
simply taking the Agent Miners local average accuracies. In general it does not
seem that one of the classifiers is superior in general, this indicates that hetero-
geneous configurations of PDM using different classifiers in the same network
will perform equally well. Also this would be the more realistic scenario as own-
ers of smart phones are likely to employ the classifiers that are likely to perform
well on their data subscription. To examine this further a heterogeneous setup of
PDM using both Naive Bayes and Hoeffding tree classifiers have been evaluated.
Again the classification accuracies were very similar to the ones achieved with
homogeneous setups of PDM.

Ongoing work comprises a rating system to rate the quality of third party
AMs; the development of an optimised schedule for MADM agents in order to
derive data mining results faster if there are many available AMs.

PDM is a new niche of distributed data mining however hardly explored.
The current implementation of PDM focuses on classification techniques, how-
ever, there exist many more data mining technologies tailored for data streams
and mobile devices. For example there are stream mining techniques that clas-
sify unlabelled data streams [30, 32] which could be introduced into PDM. Also
resource aware data mining algorithms as proposed in [29] will boost PDM’s ap-
plicability in resource constraint mobile networks once integrated in PDM. But
not only data streams can be used also the mobile phones sensors such as the
gyroscope, camera, etc. could be used as data sources as well. In general PDM’s
applicability will benefit with the recent advances in smart phone technology
and data stream mining technology and vice versa.

References

1. C. C. Aggarwal, J. Han, J. Wang, P. Yu. A Framework for Clustering Evolving Data
Streams. Proceedings of the VLDB Conference, 2003.

2. C. C. Aggarwal, J. Han, J. Wang, P. Yu. On Demand Classification of Data Streams.
Proceedings of the ACM KDD Conference, 2004.

3. Stahl F., Gaber M. M., Bramer M., and Yu P. S., Pocket Data Mining: Towards
Collaborative Data Mining in Mobile Computing Environments, Proceedings of the
IEEE 22nd International Conference on Tools with Artificial Intelligence (ICTAI
2010), Arras, France, 27-29 October, 2010.

4. Bifet A., Holmes G., Pfahringer B., Kranen P., Kremer H., Jansen T., Seidl T.,
Journal of Machine Learning Research (JMLR) (2010).

5. Bifet A. and Kirkby R., Data Stream Mining: A Practical Approach, Center for
Open Source Innovation, August 2009.

XXII

6. Gaber M, M., Zaslavsky A., and Krishnaswamy S., Mining Data Streams: A Review,
ACM SIGMOD Record, Vol. 34, No. 1, pp. 18-26, 2005, ISSN: 0163-5808.

7. A. Zaslavsky, Mobile Agents: Can They Assist with Context Awareness? IEEE
MDM, Jan. 2004 ,Berkeley, California.

8. J. Page, A. Padovitz, M. Gaber, Mobility in Agents, a Stumbling or a Building
Block? Proceedings of Second International Conference on Intelligent Computing
and Information Systems, Cairo, Egypt, 5-7 March 2005.

9. J. da Silva, C. Giannella, R. Bhargava, H. Kargupta, and M. Klusch, Distributed
Data Mining and Agents, Engineering Applications of Artificial Intelligence Journal,
2005 volume 18, pp. 791–807.

10. H. Kargupta, I. Hamzaoglu and B. Stafford, Scalable, Distributed Data Min-
ing Using an Agent-Based Architecture. Proceedings of Knowledge Discovery and
Data Mining. Eds: D. Heckerman, H. Mannila, D. Pregibon and R. Uthurusamy, pp.
211214, 1997, AAAI Press.

11. S. Pittie, H. Kargupta, and B. Park. (2003). Dependency Detection in MobiMine:
A Systems Perspective. Information Sciences Journal. Volume 155, Issues 3-4, pp.
227-243, Elsevier.

12. S. Krishnaswamy, S. W. Loke, A. B. Zaslavsky: A hybrid model for improving
response time in distributed data mining. IEEE Transactions on Systems, Man, and
Cybernetics, Part B 34(6): 2466-2479 (2004)

13. Domingos P. and Hulten G., Mining high-speed data streams, In International
Conference on Knowledge Discovery and Data Mining, pages 71-80, 2000.

14. Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of bayesian classifiers.
In National Conference on Artificial Intelligence, pages 223–228, 1992.

15. Witten I. and Frank E., Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations, Morgan Kaufmann, Second Edition, 2005.

16. Bellifemine F., Poggi A., and Rimassa G., Developing multi-agent systems with
JADE. 7th International Workshop, ATAL 2000, Boston, MA, USA, July 7-9, 2000,
Proceedings, LNCS 1986, pages 89-103. Springer Verlag, 2000.

17. Blake C. L. and Merz C. J., UCI Repository of Machine Learning Databases (Tech-
nical Report). University of California, Irvine, Department of Information and Com-
puter Sciences, 1998.

18. Bacardit J. and Krasnogor N., The Infobiotics PSP benchmarks repository.,
http://www.infobiotic.net/PSPbenchmarks, 2008.

19. Kargupta H., Park B., Pittie S., Liu L., Kushraj D., and Sarkar K. (2002). Mo-
biMine: Monitoring the Stock Market from a PDA. ACM SIGKDD Explorations.
January 2002. Volume 3, Issue 2. Pp. 37–46. ACM Press.

20. Kargupta H., Bhargava R., Liu K., Powers M., Blair P., Bushra S., Dull J., Sarkar
K., Klein M., Vasa M., and Handy D. (2004). VEDAS: A Mobile and Distributed
Data Stream Mining System for Real-Time Vehicle Monitoring. Proceedings of the
SIAM International Data Mining Conference, Orlando.

21. Kargupta H., Puttagunta V., Klein M., Sarkar K., On-board Vehicle Data Stream
Monitoring using MineFleet and Fast Resource Constrained Monitoring of Correla-
tion Matrices. Next Generation Computing. Invited submission for special issue on
learning from data streams, volume 25, no. 1, pp. 5–32, 2007.

22. B. Park and H. Kargupta, Distributed Data Mining: Algorithms, Systems, and
Applications, Data Mining Handbook, Editor: Nong Ye, 2002.

23. Agnik, MineFleet Description, http://www.agnik.com/minefleet.html
24. Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-

ers, 1993.

XXIII

25. Krishnaswamy S., Gaber M. M., Harbach M., Hugues C., Sinha A., Gillick B.,
Haghighi P. D., and Zaslavsky A., Open Mobile Miner: A Toolkit for Mobile Data
Stream Mining, Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 2009, June 28 - 1 July, Paris, France. (Demo
paper).

26. BBC, Budget Cuts of Police Force, http://www.bbc.co.uk/news/uk-10639938
27. Poh M., Kim K., Goessling A.D., Swenson N.C.,Picard R.W., Heartphones: Sen-

sor Earphones and Mobile Application for Non-obtrusive Health Monitoring, IEEE
InternationalSymposiumonWearableComputers, Austria, pp. 153–154, 2009.

28. M. M. Gaber, A. B. Zaslavsky, S. Krishnaswamy, Data Stream Mining, in Data
Mining and Knowledge Discovery Handbook 2010, pp. 759-787, Springer Verlag.

29. Gaber, M, M., Krishnaswamy, S., and Zaslavsky, A., Resource-Aware Mining of
Data Streams, Journal of Universal Computer Science, Vol. 11, No. 8 (2005), pp.
1440-1453, ISSN 0948-695x, Special Issue on Knowledge Discovery in Data Streams,
Verlag der Technischen Universitt Graz, Know-Center Graz, Austria, August 2005.

30. M. M. Gaber and P. S. Yu. A framework for resource-aware knowledge discovery in
data streams: a holistic approach with its application to clustering. In Proceedings of
the 2006 ACM Symposium on Applied Computing (SAC), April 23-27, Dijon, France,
pages 649656. ACM Press, 2006.

31. M. M. Gaber, Data Stream Mining Using Granularity-Based Approach, Founda-
tions of Computational Intelligence (6) 2009, pp. 47-66, Springer

32. N. D. Phung, M. M. Gaber, and U. Rohm. Resource-aware online data mining in
wireless sensor networks. In Proceedings of the IEEE Symposium on Computational
Intelligence and Data Mining (CIDM 2007), April 1-5, 2007.

