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Abstract. We use a soil carbon (C) model (RothC), driven
by a range of climate models for a range of climate scenar-
ios to examine the impacts of future climate on global soil
organic carbon (SOC) stocks. The results suggest an over-
all global increase in SOC stocks by 2100 under all scenar-
ios, but with a different extent of increase among the cli-
mate model and emissions scenarios. The impacts of pro-
jected land use changes are also simulated, but have rela-
tively minor impacts at the global scale. Whether soils gain
or lose SOC depends upon the balance between C inputs and
decomposition. Changes in net primary production (NPP)
change C inputs to the soil, whilst decomposition usually in-
creases under warmer temperatures, but can also be slowed
by decreased soil moisture. Underlying the global trend of
increasing SOC under future climate is a complex pattern
of regional SOC change. SOC losses are projected to occur
in northern latitudes where higher SOC decomposition rates
due to higher temperatures are not balanced by increased
NPP, whereas in tropical regions, NPP increases override
losses due to higher SOC decomposition. The spatial hetero-
geneity in the response of SOC to changing climate shows
how delicately balanced the competing gain and loss pro-
cesses are, with subtle changes in temperature, moisture, soil

type and land use, interacting to determine whether SOC in-
creases or decreases in the future. Our results suggest that we
should stop looking for a single answer regarding whether
SOC stocks will increase or decrease under future climate,
since there is no single answer. Instead, we should focus on
improving our prediction of the factors that determine the
size and direction of change, and the land management prac-
tices that can be implemented to protect and enhance SOC
stocks.

1 Introduction

Soils contain the largest pool of the terrestrial carbon (C).
However, in the past, human-induced land use change has
caused a significant loss of soil organic carbon (SOC) with
global estimates ranging between 40–537 Pg C (Lal, 2003).
However, due to its large size and long residence time, SOC
can act as a large sink of atmospheric C (Post et al., 1982;
Smith, 2004; Lal, 2004). It has been shown that the tem-
perature sensitivity of the global SOC pool has a signifi-
cant effect on the development of the future climate (Cox
et al., 2000;Dufresne et al., 2002; Friedlingstein et al., 2003).
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However, the magnitude of this effect is still highly uncertain
(Friedlingstein et al., 2006), and the question of whether, and
for how long, soils will act as a source or sink of atmospheric
CO2, remains open (Smith et al., 2008).

Soil organic carbon dynamics are driven by changes in cli-
mate and land cover or land use. In natural ecosystems, the
balance of SOC is determined by the gains through plant and
other organic inputs and losses due to the turnover of or-
ganic matter (Smith et al., 2008). It is predicted that plant
inputs, through increases in net primary production (NPP),
will increase globally in the future due to the longer grow-
ing seasons in cooler regions and the fertilisation effect of
CO2, but at the same time SOC turnover will be enhanced
by increasing temperature. Whether SOC stocks increase or
decrease under climate change depends upon which process
dominates in the future at a given location, and whether in-
creased plant inputs can outweigh increased turnover. Each
process may have a different sensitivity to climate change
(Fang et al., 2005; Knorr et al., 2005; Davidson and Janssens,
2006; Eglin et al., 2010).

Mechanistic models of SOC integrate the different drivers
to calculate their combined impact on SOC dynamics. In the
past decade, a number of modelling studies have investigated
the global response of terrestrial C pools to changes in future
climate and atmospheric CO2 concentrations. In these studies
different terrestrial ecosystem models were applied in con-
junction with climate change projected by different GCMs
and different anthropogenic CO2 emission scenarios (Cramer
et al., 2001; Ito, 2005; Berthelot et al., 2005; Lucht et al.,
2006; Jones et al., 2005). Cramer et al. (2001) and Jones et
al. (2005) used different terrestrial biophysical models driven
by one climate change scenario to study the effect of cli-
mate change on terrestrial C. SOC stocks, simulated under
dynamic potential natural vegetation cover, showed a consis-
tent positive trend across six dynamic global vegetation mod-
els (DGVM) with a mean increase of ca. 110 Pg C in the 21st
century (Cramer et al., 2001) under the IS92a IPCC emis-
sion scenario driving the Hadley Centre atmosphere-ocean
global circulation model (AOGCM) HadCM2-SUL. How-
ever, the study of Jones et al. (2005) projects a steady in-
crease in SOC stocks until about 2050 and thereafter a sharp
decline, ending with an overall decrease of SOC between 84
and 110 Pg C in 2100, compared to 2000 SOC levels. While
Jones et al. (2005) uses only a later version of the Hadley
Centre AOGCM, namely HadCM3LC, the response of the
two different SOC modules is different to the six DGVMs in
the study of Cramer et al. (2001).

Ito (2005) used the terrestrial ecosystem Sim-CYCLE
model to study the impact of seven climate scenarios gen-
erated by different AOGCMs under the SRES A2 emission
scenario and further the impact of seven SRES scenarios in-
terpreted by the AOGCM CCSR/NIES model (Japan) on the
terrestrial C budget. He found variable responses between
the different AOGCM simulations on the global SOC stock.
The total range was 252 Pg C, ranging from an increase of

+102 Pg C to a decrease of –150 Pg C in the 21st century.
The variability between the SRES simulations was only 119
Pg C, ranging from a loss of 68 to 187 Pg C in the 21st cen-
tury. Lucht et al. (2006) reported an increase of global SOC
stocks between+80 and+97 Pg C when using the Lund-
Potsdam-Jena Model (LPJ) driven by the AOGCMs Echam5
and HadCM3, which interprets the SRES B1 and SRES A2
emission scenarios, respectively.

While Cramer et al. (2001), Jones et al. (2005), Lucht et
al. (2006), and Ito (2005) simulate future C pool changes un-
der potential natural vegetation, they focus on physiological
responses and do not consider the effect of actual land use
distribution or changes in anthropogenic land use. Further-
more, Sim-CYCLE implements a single soil C pool mod-
ule to simulate SOC dynamics (Ito, 2005). However, Jones
et al. (2005) have shown that such a simplification leads to
an overall higher sensitivity of SOC to changes in climate
and plant inputs than a multi-pool SOC model, where the
first might overestimate the SOC response to environmental
changes. Jones et al. (2005) used RothC in an off-line study
to compare the decomposition sensitivity of the multi-pool
soil C model to the built-in, one-pool SOC turnover model
of the HadCM3LC model. To compare the simulation re-
sults, RothC was driven by climate fields of the HadCM3LC
model. It showed a slower response in decomposition rate of
SOC to climate change when compared to the single pool soil
C model, although the overall trajectory of the response was
similar. A steady increase in total global SOC stocks (i.e. C
sink) became negative by 2060.

The studies described above were carried out in “off-line”
mode, which means that feedback loops of the terrestrial C
fluxes into the atmosphere, constituting a possible positive
feedback for climate change, were not accounted for. Several
studies have speculated on the “positiveness” of this feed-
back loop using climate models, which are interactively cou-
pled with C-cycle models (Cox et al., 2000; Dufresne et al.,
2002; Friedlingstein et al., 2006). A unanimous conclusion
is that the sensitivity of soil respiration to temperature in the
model implementation dominates the magnitude of the over-
all terrestrial C climate feedback, emphasising the need for
a better quantification of soil C responses to climate change
(Fang et al., 2005; Knorr et al., 2005; Davidson and Janssens,
2006; Smith et al., 2008). The sources of uncertainty in cou-
pled C-cycle and climate models lead to a wide range of
possible futures and in turn different developments of SOC
stocks.

In this study, we use a dedicated, multi-pool SOC model
(RothC) in off-line mode to further examine likely responses
to future climate considering actual current land use and in-
teractions with projected future land use change (LUC). The
RothC model (Coleman and Jenkinson, 1996) is one of the
most widely used SOC models (e.g. Jenkinson et al., 1991;
McGill, 1996). This model has been satisfactorily evaluated
against data from long-term experiments across a compre-
hensive combination of ecosystems and climate conditions
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(Coleman et al., 1997; Diels et al., 2004; Kamoni et al., 2007;
Shirato et al., 2005; Falloon and Smith, 2002), including arid
environments (Jenkinson et al., 1999; Skjemstad et al., 2004)
and land use change (Cerri et al., 2003; Smith et al., 1997). It
has been used to make regional- and global-scale predictions
in a variety of studies (Wang and Polglase, 1995; Falloon et
al., 1998; Tate et al., 2000; Falloon and Smith, 2002; Smith et
al., 2005; Smith et al., 2007). Here we use the RothC model
to investigate how climate change predictions affect the pos-
sible futures of SOC. Due to extensive previous benchmark-
ing (see details of given references), no further model testing
is presented here.

In this study, the model was run at a spatial resolution
of 0.5× 0.5 degree with different sets of climate scenar-
ios. These sets of climate scenarios describe within-AOGCM
variability using the SRES A1b CO2-emission scenario to
drive the AOGCMs as well as within-SRES variability using
one AOGCM – namely HadCM3 interpreting four SRES sce-
narios: A1b, A2, B1 and B2. The different SRES scenarios
also incorporate different LUC trajectories. A further study
was carried out to quantify the contribution of LUC and NPP
change separately on the change in SOC.

The objectives of this paper are (a) to define possible fu-
ture developments of global SOC stocks, (b) to assess the
contribution of LUC to future changes in SOC, (c) to assess
regional developments of SOC, and (d) to evaluate the dif-
ferences in projected SOC arising from (i) the use of several
AOGCMs interpreting one SRES scenario, and (ii) the use of
one AOGCMs interpreting different SRES scenarios.

2 Methods and data

2.1 The RothC model

The RothC model includes five pools of SOM: DPM (decom-
posable plant material), RPM (resistant plant material), BIO
(microbial biomass), HUM (humified OM) and IOM (inert
OM). All pools, apart from IOM, decompose by first-order
kinetics and use a rate constant specific to each pool. Pools
decompose into CO2, BIO and HUM. The proportion of BIO
to HUM is a fixed parameter, whereas the proportion of CO2
to BIO + HUM varies according to the clay content. Less
clay leads to a relatively higher loss of CO2. Further, decom-
position is sensitive to temperature and soil moisture. Hence,
soil texture, monthly climate, land use and cultivation data
are the inputs to the model (Coleman and Jenkinson, 1996;
Smith et al., 1997). Three land use types are parameterized
in RothC by default: arable, grassland and forest. They dif-
fer in terms of plant input quality and the time distribution of
plant inputs over the year. Plant quality determines the pro-
portions of plant input that enter the DPM and RPM pool.
The specific ratios of DPM/RPM are 1.44 for arable, 0.67 for
grassland and 0.25 for forest. A lower ratio signifies greater
decomposability with more plant material entering the DPM

Table 1. Distribution of plant C inputs into the soil expressed as a
proportion of the total.

Month/land use Arable Grassland Forest

January 0.0 0.05 0.025
February 0.0 0.05 0.025
March 0.0 0.05 0.025
April 0.16667 0.05 0.025
May 0.16667 0.1 0.05
June 0.16667 0.15 0.05
July 0.5 0.15 0.05
August 0.0 0.10 0.05
September 0.0 0.10 0.20
October 0.0 0.10 0.20
November 0.0 0.05 0.20
December 0.0 0.05 0.1

pool (fast turnover) and less entering the RPM pool (slow
turnover). A higher ratio signifies the opposite. The distri-
bution of plant inputs throughout the year for the three land
use types mimics the dynamics of typical crop rotations and
of permanent grassland or forest in Europe (Table 1). Over
long time periods, the model is insensitive to the distribution
of plant inputs throughout the year (Smith et al., 2005), so
the distribution of inputs used for Europe was applied glob-
ally. The total yearly input of C from plants, however, is an
essential driver of SOC dynamics.

2.2 Climate data and scenarios (1901–2100)

Observed and predicted climate data are given on a monthly
temporal, and 0.5 degree spatial resolution. From 1901 to
2005, observed climate data from CRU TS 3.0 were used.
Scenario data spanned 2006 to 2100. The climate data
were provided within the QUEST-GSI project and are avail-
able online (http://www.cru.uea.ac.uk/∼timo/climgen/data/
questgsi/).

Two sets of climate data from seven AOGCMs and four
SRES scenarios were used in this study. One set encompasses
the different interpretations of the SRES A1b emission sce-
nario by seven AOGCMs (CCCMA-CGCM3.1(T47),
CSIRO-MK3.0, IPSL-CM4, MPI-ECHAM5, NCAR-
CCSM3.0, UKMO-HadCM3 and UKMO-HadGEM1),
representing a cross-section of possible results for the
climate change scenario (Table 2). The second set of climate
data comprises four different SRES scenarios, interpreted
using a single AOGCM (UK-model HadCM3); outputs are
obtained for the four SRES scenarios A1b, A2, B1 and B2.

www.biogeosciences.net/9/3151/2012/ Biogeosciences, 9, 3151–3171, 2012
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Table 2.Overview of GCMs used in this study.

Models References

CCCMA-CGCM3.1(T47) McFarlane et al. (2005), Scinocca et al. (2008)
CSIRO-MK3.0 Gordon et al. (2002)
IPSL-CM4 Hourdin et al. (2006)
MPI-ECHAM5 Giorgetta et al. (2006)
NCAR-CCSM3.0 Collins et al. (2006)
UKMO-HadCM3 Gordon et al. (2000)
UKMO-HadGEM1 Johns et al. (2006)

2.3 Soil data

Mean SOC stocks in 0 cm to 30 cm depth and the percentage
of clay are derived from the ISRIC-WISE global data set of
derived soil properties (Version 3.0) on a 0.5 by 0.5 degree
grid (Batjes, 2005). This data set interpolates soil characteris-
tics of individual soil profile measurements from around the
globe. These profile measurements were mainly taken in the
decades of 1970 to 1990. Therefore, the SOC values used in
this study represent the soil state roughly at the end of the
last century. In this data set, each grid cell is covered by up
to ten dominant soil types and gives their respective coverage
in %. Each of these soil types was simulated consecutively
in conjunction with the same input data within one scenario
simulation. Results were aggregated over the different soil
types per grid cell on an area-weighted basis. Since RothC is
neither parameterised, nor recommended for use on organic
soils, soils with SOC content higher than 200 cm (Smith et
al., 2005) were omitted from the simulations.

2.4 Land use & land use change data

Gridded land use data as simulated by the Integrated Model
to Assess the Environment (IMAGE) version 2.4 (MNP,
2006) were used in the RothC simulations. LUC in IMAGE
is driven by (agro-)economic and climatic factors, such as
changes in the demand for feed and food and the potential
vegetation (MNP, 2006). IMAGE-data were available from
1970 onwards and we therefore also use 1970 as the start
date for our simulations. Figure 1 shows the regional distri-
bution of LUC between 1970 and 2100 exemplarily for the
A1b scenario as deviations of LUC patterns among emission
scenarios are small.

IMAGE simulates 20 land cover classes. These classes
were classified into the three land use types which are imple-
mented in RothC: arable, grassland and forestry. The classi-
fication is shown in Table 3.

IMAGE simulations have the same spatial resolution of
0.5 degree as the climate data used in this study and each
grid cell is considered to be homogeneous in terms of land

Table 3. Classification of IMAGE land use types into RothC land
cover classes. “−9999” denotes areas which were not simulated.

Land use (IMAGE 2.4) New Corresponding
RothC land use code

Agricultural land 1 – arable
Extensive grassland 2 – grassland
C plantations (not used) No cells
Regrowth forest (Abandoning) 3 – forest
Regrowth forest (Timber) 3 – forest
Biofuel 1 – arable
Ice −9999
Tundra 2 – grassland
Wooded tundra 2 – grassland
Boreal forest 3 – forest
Cool conifer 3 – forest
Temperate mixed forest 3 – forest
Temperate deciduous forest 3 – forest
Warm mixed forest 3 – forest
Grassland/steppe 2 – grassland
Hot desert −9999
Scrubland 2 – grassland
Savannah 2 – grassland
Tropical woodland 3 – forest
Tropical forest 3 – forest

use, LUC and NPP. Land use change patterns are given in
5-year time intervals.

2.5 Changes in soil carbon inputs according to changes
in NPP

Simulating changes in global SOC stocks under different
climate scenarios requires realistic estimates of changes in
plant inputs to the soil under the different climate projec-
tions. However, total plant C inputs to the soil, which in-
clude plant litter, root exudates and fine root turnover, are
rarely known. To overcome this problem, RothC is run in
reverse mode to calculate initial plant inputs to the soil for

Biogeosciences, 9, 3151–3171, 2012 www.biogeosciences.net/9/3151/2012/
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Fig. 1.Areas under the A1b scenario that are continuously covered by arable, grassland and forest from 1971 to 2100. Land use type changes
from 1971 to 2100 are depicted, neglecting intermediate changes. Note that the distributions of land use and land use change under SRES
B1, A2, and B2 are very similar and are not plotted separately. Relevant differences are noted in the text.

the given environmental conditions. Once the plant inputs
have been established in this way, the year-to-year changes
are adjusted according to the year-to-year changes in NPP,
because changes in C inputs to the soil can be associated
with changes in NPP (Smith et al., 2005). Using the same
approach as in Smith et al. (2005), we calculated changes in
soil carbon inputs based on the changes in NPP data simu-
lated by the IMAGE model version 2.4 (MNP, 2006). This
scaling is appropriate as IMAGE-NPP also reflects changes
in land cover change (see Sect. 2.4). Since land use change
(amongst other factors) influences NPP changes in IMAGE,
RothC uses these two drivers in a consistent way. The details
of the simulation setup of this approach are described in the
section “Simulation procedure”.

IMAGE NPP is a function of air temperature, soil mois-
ture status, CO2-fertilisation, land cover and land cover his-
tory, nutrient availability, species characteristics and altitude
(MNP, 2006). The carbon cycle model implemented in IM-
AGE is thoroughly described in Klein Goldewijk et al. (1994)
and has been successfully evaluated (Alcamo et al., 1994)
and applied (Van Minnen et al., 2000, 2009) globally. Fur-
ther, IMAGE NPP compares well with NPP results of the
C4MIP study (Friedlingstein et al., 2006) in which dynamic
global vegetation models coupled with AOGCMs were used
to calculate (among others) NPP for the SRES A2 scenario.
IMAGE NPP values of the SRES A2 scenario represent a
medium scenario among the C4MIP scenarios for all global

zones (Fig. 2). IMAGE NPP data are again given in 5-year
time intervals and are subsequently linearly interpolated for
our study to yearly values between 1971–2100.

NPP surfaces to scale plant input values were only avail-
able for the four SRES scenarios A1b, A2, B1 and B2,
simulated by the IMAGE 2.4 model. To scale NPP values
for the different temperature and precipitation trends of the
seven AOGCM realisations of A1b, we associated the IM-
AGE A1b NPP surface with the temperature and precipita-
tion predictions of HadCM3, and scaled this baseline NPP
surface according to the difference between the temperature
and precipitation predictions from the other six AOGCMs
and HadCM3, using the MIAMI-NPP model (Lieth, 1972).
The MIAMI model links long-term average temperature and
precipitation data with NPP via two simple regression func-
tions (Lieth, 1972, 1975) derived from global NPP data sets,
and has been applied globally to simulate NPP (e.g. Zheng et
al., 2003).

The equations of the MIAMI-model are given by

NPP= min(NPPT ,NPPP ) (1)

with

NPPT = 3000· (1+ exp(1.315− 0.119· T )) (2)

NPPP = 3000· (1− exp(−0.000664− 0.119· P)) (3)

where NPP is the climatic net primary production (in g) dry
matter (DM) m−2 yr−1, NPPT is the temperature dependency

www.biogeosciences.net/9/3151/2012/ Biogeosciences, 9, 3151–3171, 2012
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Fig. 2. Comparison of zonal NPP of IMAGE and C4MIP-
simulations (Friedlingstein et al., 2006) for the SRES A2 emission
scenario. Please refer to respective study for details on model ab-
breviations.

term of NPP withT̄ being annual mean temperature (◦C) and
NPPP is the moisture dependency term of NPP withP̄ being
the mean annual sum of precipitation (mm). NPP is either
limited by temperature or precipitation, but this model does
not account for the limiting effects when temperature or pre-
cipitation is too high. The maximum NPP that can be reached
is limited to 3000 g DM m−2 yr−1. Absolute NPP values de-
rived from MIAMI were not used directly, but were only used
to scale IMAGE baseline NPP estimates.

IMAGE baseline NPP values were adjusted by the per-
centage change, calculated by the MIAMI-NPP model, be-
tween the baseline temperature/precipitation of HadCM3 and
temperature/precipitation simulated by the other AOGCMs –
within each 0.5 degree global grid cell and each year.

The following equation was used to scale NPP from the
baseline IMAGE associated with HadCM3, to the NPP of
the other six AOGCMs:

NPPAOGCMx=NPPIMAGE A1b (4)

+

(
NPPIMAGE A1b·

NPPMIAMI AOGCMx−NPPMIAMI HadCM3

NPPMIAMI HadCM3

)
where NPPAOGCMx is the AOGCM-specific NPP value with
x=1. . . 6, NPPIMAGE A1b is the NPP value of the IMAGE
baseline (here A1b) scenario, NPPMIAMI HadCM3 is the NPP
value calculated by the MIAMI model with the tempera-
ture of the AOGCM reference scenario (here HadCM3) and
NPPMIAMI AOGCMx is the NPP value calculated by the MI-
AMI model with the temperature of the particular AOGCM
scenario. A graphic example of the scaling approach for an
arbitrary grid cell is given in Fig. 3.

2.6 Simulation procedure

The RothC model has previously been adapted to run with
large spatial data sets and to use potential evapotranspiration
(PET) in place of open pan evaporation (Smith et al., 2005).
Since the modelling procedure is similar to that of Smith et
al. (2005, 2006), only a brief description is given here. In
the first initialisation step, RothC is run iteratively to equi-
librium to calculate the sizes of the SOC pools and annual
plant inputs using long-term average climate data (Coleman
and Jenkinson, 1996) from 1901 to 1970. The model calcu-
lates the soil pools and required C inputs according to the
climate, land use, clay and SOC for 1970. In the forward run,
from 1971 to 2100, climate, land use and C input changes
determine SOC changes. C inputs are adjusted following the
approach described in Smith et al. (2005):

PIt = PIt−1 ·
NPPt

NPPt−1
(5)

where PIt is the plant C input in the given year (t C ha−1

yr−1), PIt−1 is the plant C input in the previous year (t C ha−1

yr−1), NPPt is the NPP value for the given year (t C ha−1

yr−1) and NPPt−1 is the NPP value of the previous year
(t C ha−1 yr−1). Smith et al. (2005) note that it is uncer-
tain whether C input to the soil changes proportionally with
changes in NPP, and that the influence of NPP established
here should be regarded as the maximum possible.

Changes in land use are simulated stepwise in 5-yr inter-
vals. The change from one land use type to the next is mainly
reflected by the change in the DPM/RPM ratio of the model,
accompanied by a change in the amount of plant inputs ac-
cording to the NPP change. A total of 10 global simulations

Biogeosciences, 9, 3151–3171, 2012 www.biogeosciences.net/9/3151/2012/
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Fig. 3. Example of the NPP-scaling approach for an arbitrary grid cell. The panel on the left depicts NPP values calculated based on mean
yearly temperature and precipitation for the seven AOGCMs. The panel on the right shows the correspondingly scaled IMAGE-NPP values
with HadCM3 being associated with the IMAGE-A1b-NPP surface.

(a) (b)

(c) (d)

Fig. 4. (a)Total global changes in mineral SOC for ten climate scenarios,(b) changes in global plant inputs for ten climate scenarios,(c)
changes in the global climatic water balance (i.e. precipitation minus evapotranspiration),(d) global mean surface temperature. All panels
show results only from simulated land cells for which consistent data were available and which have a SOC concentration lower than
200 t ha−1.

www.biogeosciences.net/9/3151/2012/ Biogeosciences, 9, 3151–3171, 2012
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were carried out including the effect of climate, land use and
NPP change (default simulations).

2.7 Contribution of land use change to SOC stock
changes

To examine the different influence of land use and NPP
change on SOC, the HadCM3 model, in conjunction with
SRES A1b, was run under three additional different set-ups:
(a) simulation including the effect of LUC but keeping NPP
constant over time, (b) simulation including the effect of
NPP change but keeping the land use constant over time, and
(c) simulation including neither change in NPP nor land use.
The results of these additional simulations were then com-
pared to the HadCM3+ SRES A1b simulation including
both LUC and NPP change, which is the default set-up for
all the other simulations (Sect. 2.6).

As previously stated, NPP and LUC are interlinked. NPP
simulated by IMAGE differs not only according to temper-
ature and precipitation change, but also according to LUC.
Therefore, to simulate the effect of NPP alone without LUC,
the NPP scaling based on IMAGE NPP cannot be used. In-
stead, plant inputs were scaled according to the NPP change
based on the calculation of MIAMI-NPP change. Simulation
b follows this protocol. CO2-fertilisation is accounted for, as
although MIAMI-NPP changes do not account for the CO2-
fertilisation effect, MIAMI-NPP values are only used to scale
IMAGE-NPP outputs, which do include CO2-fertilisation.

3 Results and discussion

3.1 Global mineral soil organic carbon dynamics

The initial sum of mineral SOC simulated in the first 30 cm
of the soil amounts to ca. 502 Pg C in 1971. Global soils store
∼1550 Pg C (Lal, 2004) of which ca. 53 % (global average) is
distributed in the first 30 cm of the soil profile (Jobbagy and
Jackson, 2000), which is 821.5 Pg C. The simulated value ex-
cludes all soils with a SOC density higher than 200 t ha−1 at
the start and end of the simulation, i.e. all organic soils that
contain 412 Pg to 1 m (Joosten, 2009), so the difference be-
tween the soil C accounted for is due to the exclusion of these
soils.

Our simulations, including changes in climate, land use
and NPP, suggest that aggregate global mineral SOC stocks
continuously increase from 1971 up to 2100 with varying in-
tensity in all scenarios except one, i.e. HadCM3-B1 (Fig. 4a).
In the latter, SOC begins to level-out towards the end of this
century. This steady increase over time is driven by increas-
ing plant inputs projected by the IMAGE model (Fig. 4b)
and a negative trend in the global climatic water balance
(Fig. 4c), which reduces soil moisture, and will tend to slow
organic matter decomposition. These two effects override the
increase in decomposition rate arising from increased tem-
perature (Fig. 4d).

Although SOC trends are consistently positive using the
different AOGCMs and SRES scenarios, there is a consider-
able spread between the scenarios. Across all simulations,
SOC increases between 26.4 and 81.2 Pg SOC-C with a
corresponding spread of 54.8 Pg C. While SOC stocks in-
crease between 46.8 to 81.2 Pg C within the seven AOGCMs
(spread = 34.5 Pg C), the HadCM3 simulations driven by four
SRES scenarios show a lower SOC stock gain from 26.4 to
48.6 Pg C (spread = 22.2 Pg C). Figure 4a also shows that the
SOC response to the HadCM3 climate scenario ranges at the
lower end of all other AOGCMs responses, and therefore also
the SRES realisations A2, B1 and B2 with HadCM3.

With a simulated consistent increase of global mineral
SOC during the 21st century, our results are generally in
agreement with the works of Cramer et al. (2001), Friedling-
stein et al. (2006), Ito (2005), Lucht et al. (2006), Müller et
al. (2007) and Sitch et al. (2008), of which Friedlingstein et
al. (2006) and Sitch et al. (2008) are coupled simulation stud-
ies. Our results are, however, in disagreement with Jones et
al. (2005) and Schaphoff et al. (2006) (Table 4).

Absolute SOC stock changes cannot be directly compared
as we are only considering the first 30 cm of the soil profile
and the other studies consider total soil profiles (or to 1m
depth), and include areas covered by organic soils (although
none treated organic soils differently to mineral soils), but
percentage change can be compared. Cramer et al. (2001) use
the IS92a anthropogenic emission scenario, which is com-
parable to the later IPCC A1b scenario in conjunction with
the HadCM2-SUL version of the Hadley Centre AOGCM.
Their simulations show a ca. 10% increase (mean of six
DGVM) between 2000 and 2100, while our simulation of
the A1b simulation driving the HadCM3 AOGCM results in a
mean increase of ca. 8% of SOC stocks. Ito (2005) simulates,
amongst others, SOC stock changes for the 21st century us-
ing seven AOGCMs driven by the IPCC A2 scenario. Most
AOGCMs are the same as those used in this study, but are
earlier versions, and Ito (2005) simulated the A2 emissions
scenario (lower climate forcing), whereas we largely used
the A1b scenario (higher climate forcing). As expected, the
percentage changes from Ito, 2005, are considerably smaller
than the changes suggested in this study (Table 5).

However, in both studies, the AOGCMs rank similarly,
with the climate from the NCAR model giving greatest SOC
increase, and the climate as simulated by the Australian MK
model giving the second highest increase. The simulation re-
sults using the Hadley Centre model climate forcing, both
driven by the IPCC A2 emission scenario, give contradictory
results; our results show a slight increase in SOC, whereas
the study of Ito (2005) shows a decrease.

Lucht et al. (2006) simulated, amongst others, the SOC
stock changes from 2000 to 2100 using the DGVM LPJ-
model driven by climate fields of the ECHAM5 and HadCM3
models simulating the IPCC B1 and A2 emission scenar-
ios, respectively. Changes in SOC amount to approximately
6 % and 4.9% (Sybill Schaphoff, personal communication,
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Table 4. Literature compilation of global SOC trends and variability in 2100 compared to our study. Please refer to respective studies for
details of the simulations and model abbreviations.

Biophysical models Climate scenarios Emission scenarios Mean global SOC trend for
21st century in Pg C [%]

Total SOC spread by
2100 in Pg C [+–%]

Reference

Off-line studies

RothC
CCCMA-CGCM3.1(T47),
CSIRO-MK3.0, IPSL-CM4,
MPI-ECHAM5, NCAR-
CCSM3.0, HadCM3, HadGEM1

A1b 64 [11] 34.5 [3]
This study

HadCM3 A1b, A2, B1, B2 37.5 [6] 22.2 [2]

Sim-CYCLE
CGCM2,CSIRO-Mk2, R30,
HadCM3, Echam4/OPYC3,
PCM, CCSR/NIES

A2 25 [2] 130 [4.3]
Ito (2005)

CCSR/NIES A1b, A1FI, A1T,
A2, B1, B2

–127 [-9] 119 [4.4]

HadCM3LC, RothC HadCM3 – –114 [–] 203[10] Jones et al. (2005)

HYBRID, IBIS, LPJ,
SDGVM, TRIFFID,
VECODE

HadCM2-SUL IS92a ≈ 100 [10] ≈ 380 [4.2] Cramer et al. (2001)

LPJ Echam5, HadCM3 B1, A2 89 [5] 17 [–] Lucht et al. (2006)

LPJmL

HadCM2, Echam4, cgcm1,
CSIRO-MK12

A2 –13 [–1] 33 [1.7]

Müller et al. (2007)*
B1 45 [4] 21 [1]

B2 17 [2] 25 [1.2]

HadCM2

A2, B1, B2

9 [1] 56 [2.8]

Echam4 2 [0.2] 65 [3.3]

Cgcm1 25 [3] 55 [2.7]

CSIRO-MK12 28 [3] 53 [2.6]

LPJ CGCM1/MOM1.1,
Echm4/OPYC3, CCSR/NIES,
CSIRO

IS92a –22 [–1] 111 [3.6] Schaphoff et al. (2006)

Coupled studies

HyLand, LPJ,
ORCHIDEE,
Scheffield-DGVM,
TRIFFID

HadCM3

A1FI 56 [5] 603 [22]

Sitch et al. (2008)**A2 50 [4.5] 603 [22]

B1 65 [5.4] 579 [21]

B2 56 [4.8] 584 [21]

HyLand A1FI, A2, B1, B2 –3.5 [-0.23] 91 [3]

LPJ A1FI, A2, B1, B2 –36 [–2.3] 44 [1.5]

ORCHIDEE A1FI, A2, B1, B2 109 [7.3] 21 [0.7]

Scheffield-DGVM A1FI, A2, B1, B2 140 [12] 80 [3]

TRIFFID A1FI, A2, B1, B2 74 [8] 17 [0.8]

MOSES/TRIFFIF HadCM3

A2 119 [8] 1114 [34] Friedlingstein et al. (2006)

SLAVE LMD5

ORCHIDEE LMDZ-4

LSM,CASA CCM3

JSBACH Echam5

IBIS CCM3

Sim-CYCLE CCSR/NIES/FRCGC

VEGAS QTCM

MOSES/TRIFFIF EMBM

LPJ CLIMBER 2.5 D

LPJ EBM

* Results from simulations which include changes in land use, atmospheric CO2 and climate.
** Data publicly available from:http://dgvm.ceh.ac.uk
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Table 5. Simulated changes of global SOC stocks in the 21st century in % for the ten simulations of our study and the comparable studies
of Ito (2005) and M̈uller et al. (2007). Please note that, except the simulations with the Hadley Centre AOGCM, the simulations differ in the
driving anthropogenic emission scenario: A1b for our study and A2 for the study of Ito (2005) and A2, B1 and B2 for the study of Müller et
al. (2007).

This study Ito (2005) Müller et al. (2007)

Simulation Delta SOC
2000–2100
(%)

Simulation Delta SOC for
decades beginning in
2000 and 2090 (%)

Simulation Delta SOC for decades
beginning in 1970 and
2091(%)

CGCM3.1-A1b 11.11 CGCM2.0-A2 0.81
CGCM1 - A2 –0.3

CGCM1 - B1 5.2

CGCM1 - B2 2.6

MK3.0-A1b 13.06 MK2.0-A2 1.69
MK1.2 - A2 0.2

MK1.2 - A2 5.5

MK1.2 - A2 2.9
CM4-A1b 9.04 – –

ECHAM5-A1b 9.64 ECHAM4-A2 0.34
ECHAM4-A2 -3.1

ECHAM4-B1 3.4

ECHAM4-B2 0.4
CCSM3.0-A1b 14.22 NCAR-PCM-

A2
6.96 – –

HadGEM1-A1b 12.66 – – – –

HadCM3-A1b 7.51 – – – –
HadCM3-A2 3.5 HadCM2-A2 –1.89 HadCM2 - A2 –2

HadCM3-B1 6.51 - - HadCM2 - B1 4

HadCM3-B2 7.86 – – HadCM2 - B2 1

2011), respectively, while our A2 simulations show a 3.5 %
increase. Results of the C4MIP study, in which 11 coupled
climate-carbon-cycle models were forced by the A2 emission
scenario (Friedlingstein et al., 2006), show a mean increase
of global SOC of 8 % compared to 3.5 % in our HadCM3-A2
simulation.

Mean SOC stock trends predicted by six DGVMs driven
by HadCM3 climate and four SRES scenarios – namely
A1FI, A2, B1 and B2 – are +5, 4.5, 5.4 and 4.8 %, respec-
tively (Sitch et al., 2008) (Table 4), while our simulated SOC
increases using HadCM3 are +7.5, 3.5, 6.5 and 7.9 % (Table
5).

Müller et al. (2007) use the LPJmL model, driven by SRES
scenarios A2, B1 and B2 and realisations of the AOGCMs
HadCM2, ECHAM4, CGCM1 and CSIRO-MK1.2, to simu-
late changes of the land carbon balance during the 21st cen-
tury, while also considering land use change patterns derived
from the IMAGE model. Simulations with the HadCM2
model and emission scenarios A2, B1 and B2 show an overall
smaller increase of global SOC and even a decrease under A2
compared to our results (Table 5). This could be explained by
the fact that the impact of land use change on SOC in their

study includes the removal of harvested biomass and residue
on arable land. Removal of harvested biomass and possibly
residue is implicitly included in our simulations if a soil is
under arable land use from the start of the simulation. How-
ever, if a soil undergoes a change from grassland or forest to
arable, we only consider the impacts of changes in NPP and
litter quality (see Sect. 2.6). We therefore might underesti-
mate the loss of SOC when a soil changes from being under
more or less natural land cover to a fully managed arable soil.

A compilation of simulation results of global SOC stock
ranges in 2100 is presented in Table 4. Overall, the predicted
variability of SOC stocks by the end of the 21st century of
our study (±2–3 %) compares well with the results of Cramer
et al. (2001), Ito (2005), M̈uller et al. (2007), Schaphoff et
al. (2006) and Sitch et al. (2008) which range between ±0.7–
4.4 %. Our study suggests that SOC stocks in 2100 show
a slightly higher variability, due to using predictions from
different AOGCMs interpreting one emission scenario (here
A1b), rather than using one AOGCM interpreting a range
of SRES scenarios. Respective results from Ito (2005) and
Müller et al. (2007) suggest the opposite, with higher SOC
stock variations in 2100 due to the variability among SRES
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scenarios interpreted by one AOGCM than due to the differ-
ences among AOGCMs interpreting one emission scenario.
Interestingly, variability of SOC stocks by the end of the 21st
century is much higher, if different biophysical models are
driven by the same climate and emission scenario. The study
of Sitch et al. (2008) predicts a spread in SOC values by 2099
of 21 and 22%. Variability of simulated SOC stocks by 2100
by Friedlingstein et al. (2006) with 11 AOGCMs and each
coupled with a different biophysical carbon-cycle model is
even higher with 34 %. With the exception of the results by
Cramer et al. (2001), this suggests that the variability in pre-
dictions of global SOC is higher due to the difference among
the implementations of carbon-cycle dynamics than due to
uncertainties in climate forcings and emission scenarios.

3.2 Contribution of land use change to SOC stock
changes

Land use change occurs on 19 % of the land area under the
A1b scenario, and on 17 %, 19% and 17 % of the land under
the B1, A2 and B2 scenarios, respectively. Simulations in-
cluding the effects of climate, LUC and NPP together suggest
LUCs from forest to arable constitute the largest SOC losses,
while forest to grassland losses are negligible, in keeping
with previous meta-analyses of LUC impacts on SOC (Guo
and Gifford, 2002). All other types of LUC gain C, even grass
to arable. This might constitute an artefact since our simula-
tions do not include the negative impact of the removal of
harvested biomass and residue. However, continuous arable
soils seem to have the highest gain in organic C compared to
grass and forest soils (Fig. 5), which might override losses
due to biomass removal after land use change from grass
to arable in the long term. Grassland to arable conversion is
known to decrease SOC stocks (Guo and Gifford, 2002), but
over the course of the simulations (130 years), increased NPP
and/or decreased decomposition due to limiting soil mois-
ture counteract these losses in some locations (Table 6), re-
sulting in an overall global increase in mineral SOC despite
the LUC-driven losses. Some grassland to arable conversions
lose SOC and others gain, but due to NPP increases in some
regions, the aggregate global change is a net increase in SOC.
This net result would hold even if SOC losses due to the con-
version of grass to arable were negative to the same extent as
the SOC losses due to the conversion of forest to arable.

Figure 6 shows an assessment of the contribution of land
use and NPP change to the projected SOC stock changes us-
ing HadCM3 with emission scenario A1b. Comparison of
the simulation using fixed NPP in conjunction with changing
land use, and the simulation that includes neither land use
nor NPP change, shows that the impact of LUC on global
SOC stocks is negligible. Figure 1 shows the distribution of
simulated LUCs occurring from 1971 to 2100. The simula-
tion using fixed land use plus changing NPP shows that an
NPP increase forced by climate change only would lead to
a decrease in global SOC. The difference between the sim-

Fig. 5.Contribution of land use and land use change to global SOC
stock changes (from 1971 to 2100).

ulation using fixed land-use plus NPP change and the de-
fault HadCM3 simulation approximately represents the ef-
fect of CO2-fertilisation. The increase in NPP due to CO2-
fertilisation could therefore be a dominant factor in determin-
ing whether SOC stocks continue to act as a sink of C in the
future. This has also been shown for forest soils in Northeast
China by Peng et al. (2009), who conducted a simulation with
and without the CO2-fertilisation effect and showed a contin-
uous loss of SOC from 2000 to 2100 without CO2 fertilisa-
tion, but an increase in forest SOC if CO2-fertilisation is in-
cluded. Carbon losses were reduced by the CO2-fertilisation
effect compared to the simulation without, in the study of
Smith et al. (2009), for Canadian arable soils.

3.3 Regional trends in SOC dynamics

During the following discussion, environmental, SOC and
plant input trends always refer to the average of all simula-
tions, if not otherwise explicitly stated. Regions are as shown
in Fig. 1.

Hotspots of SOC losses of more than 20 t C ha−1 are
central and north-eastern Scandinavia, Northeast China and
North and South Korea, a belt stretching from central China
along its south-west border to northern India, the east coast
of Canada and some small patches at Canada’s south- west
corner. Areas of medium SOC losses of less than 20 t C ha−1

cover the boreal zones of Northern and Eastern Europe, East-
ern Canada and Alaska, mid- and northern India, central
China and patchy regions in South America and southern
Africa and Australia. Prominent SOC stock increases occur
in east Brazil, while all remaining areas largely show a mod-
erate increase from 0–20 t ha−1 up to 20–40 t ha−1 in smaller
regions (Fig. 7).
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Fig. 6. Simulated changes in SOC stocks for four experimental set-ups using the climate scenario data of the HadCM3 AOGCM in con-
junction with A1b. Blue line: simulation including land use and NPP change; the latter is based on IMAGE NPP which includes the CO2-
fertilisation effect. Green line: simulation including no land use change but NPP change; the latter is based on temperature and precipitation
changes only. Purple line: simulation including neither land use nor NPP change. Red line: simulation including land use change but no NPP
change.

Fig. 7.Average trend in SOC concentration of all 10 scenarios from 1971 to 2100.
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3.3.1 Northwest Pacific and East Asia (NW Pacific and
E Asia) region

Figure 8 and Table 6 show the relatively large impact of LUC
on SOC stock for the NW Pacific and E Asia compared to the
whole globe. About 25 % (20 %-B1, 20 %-B2, 21 %-A2) of
the area undergoes LUC, of which about 15 % (15.5 %-B1,
9.7 %-B2, 10.5 %-A2) is the conversion from grass to arable
and about 9 % (9 %-B1, 8.5 %-B2, 9 %-A2) is the conversion
from forest to arable. The area as a whole shows the highest
negative impact of LUC on SOC stocks compared to all other
regions.

SOC losses in Northeast China and North and South Ko-
rea can be mainly attributed to LUC from forest to arable,
while the belt of losses of SOC is due to changes from mainly
grassland to arable conversions. Both changes are driven by
decreasing plant inputs (Fig. 9).

The region as a whole shows a distinct SOC dynamic com-
pared to other regions and the rest of the globe. While SOC
trends of most regions show a continuous increase from 1971
to 2100, NW Pacific and E Asia show first a drop of SOC
until ca. 2060 and thereafter a slight increase (Fig. 8). This
pattern is caused by the C losses due to conversion to arable
in the first part of the 21st century, which stabilises there-
after followed by a steady increase of arable SOC stocks
during the 21st century (data not shown). A very similar pat-
tern has also been simulated for forests soils in Northeast-
ern China by Peng et al. (2009). Peng et al. (2009) used a
dedicated forest model (TRIPLEX 1.0) including the CO2-
fertilisation effect on biomass production and climate sce-
nario inputs from CGCM3.1 in conjunction with (among oth-
ers) SRES A1. They also simulate a decrease in SOC levels
from 2000 to ca. 2040 and thereafter a steady increase, but
this is not due to LUC. No interpretation of these results is
given. However, if we aggregate our results for continuous
forest soils of the CGCM3.1 A1b simulation in NW Pacific
and E Asia, we see a continuous loss of SOC. This difference
to the study of Peng et al. (2009) is due to two factors (a) in
the current study, plant inputs (i.e. NPP) remain fairly con-
stant while Peng et al. (2009) simulate a continuous increase
in biomass, and (b) in the current study, the temperature in-
crease is stronger than in Peng et al. (2009) and hence plant
inputs are driven by a lower temperature increase than in our
CGCM3.1 A1b simulation (data not shown).

3.3.2 Northern high latitudes, boreal forests and
grasslands

Under a warmer climate, soil organic matter decomposition
increases if soil moisture is not limiting. These circumstances
cause widespread SOC losses in Eurasia, Canada and Alaska
as also shown by Schaphoff et al. (2006). These losses dom-
inate the mean total mineral SOC response in the northern
high latitudes (NHL), which is only slightly positive over
the course of the simulation with an average increase over

all simulations of 0.16 %. This is in contrast to Qian et
al. (2010), who show a mean total SOC gain of 13 % for
the NHL of the C4MIP-A2 simulations. In particular, the
simulation with HadCM3LC results in a total SOC gain of
10 %, whereas our HadCM3-A2 simulation predicts a total
loss of mineral SOC of –3.1%. This is however in agreement
with the simulations of Jones et al. (2005) with HadCM3 and
RothC, which predict a total SOC loss for the NHL of –5 %.
This suggests that mineral SOC dynamics as simulated with
RothC is more sensitive to increasing temperatures in the
northern latitudes than the SOC dynamic implementations of
the C4MIP models. Furthermore, Qian et al. (2010) explic-
itly point out that the “apparent “suppression” of warming-
induced increase in SOM decomposition in the C4MIP mod-
els still comes as somewhat of a surprise”. Carbon losses
in the area of Sweden are amplified due to the almost zero
increase in plant inputs. However, central Canada’s forests
increase in SOC, because the temperature increase is more
moderate and, although plant inputs are not higher than in
the previously mentioned forest areas, they are large enough
to counteract the SOC losses induced by higher temperature.
The same applies to northern grasslands which generally gain
SOC through temperature increases between 5 and 8◦C. Soil
organic C also increases under the northward shift of forests
into grasslands. This is in agreement with simulation results
using LPJ by Schaphoff et al. (2006), which predict an in-
crease of SOC in central and Northern Canada.

The expansion of forest in conjunction with increased
plant inputs in the area around Moscow triggers substantial
SOC gains.

3.3.3 Canada

Canada exhibits small patches of high C loss of between
20 and 40 t ha−1 or even higher. These areas on the east
coast are projected to undergo deforestation and conversion
to arable, which is accompanied by decreased plant inputs,
4 to 6◦C higher yearly average temperatures in 2100 than
in 1971, and a lower water balance than in 1971. However,
the arable region of Canada shows SOC gains of ca. 134 Tg
(=4.9 t ha−1) from 1971 to 2100 as the average value of
all AOGCM simulations. The increase is due to slightly
higher plant inputs, increased temperatures of 5 to 7◦C and
a lower water balance by 2100. Our results are very sim-
ilar to the results of the cropland climate-change study of
Smith et al. (2009), which used climate change predictions
from the IS92a emission scenario and SRES B2 driving the
CGCM1 and CGCM2 model, respectively, in conjunction
with the CENTURY model. They report SOC stocks under
arable soils by 2099 of 2956 and 2742 Tg C respectively.
Our equivalent value from using the CGCM3.1 model alone
is 2752 Tg C for 2099. This is equivalent to a SOC gain in
arable soils from 1971 to 2100 of 229 Tg.
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Fig. 8.Dynamic of total SOC changes aggregated over the region of NW Pacific and E Asia of all simulations (see text for further details).

Fig. 9.Average changes in plant inputs of all 10 scenarios.
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Table 6.Average SOC trend of seven GCMs per region and land use and land use change type.

average SOC trend switching arable grass forest arable arable grass grass forest forest
of 7 GCMs A1b [Tg C] back and forth to grass to forest to arable to forest to arable to grass

North Africa 23.50 513.07 422.28 – – – −25.81 98.08 −8.64 –
Western Africa 117.15 710.27 826.22 53.88 4.81 – 37.79 235.76−160.53 –
Central Africa 506.54 548.26 288.74 1426.60 – – 860.04 748.90−739.51 –
Eastern Africa 43.15 1087.19 374.42 −4.24 – – 159.00 27.03 −45.95 –
Western Indian Ocean 0.00 492.44 37.83 −7.03 – – 225.21 – −99.34 –
Southern Africa 88.94 2189.28 1163.00 3.46 82.45 – 2835.80 43.11 73.32 –
South Asia 75.45 32.90 179.55 −85.17 – – −214.92 −13.68 −164.97 −7.81
Southeast Asia 256.42 678.92 560.26 1806.26 – – 301.61 721.08−141.06 0.52
NW Pacific and East Asia 33.76 1483.53−46.25 −151.62 2.04 65.28 −423.58 3.32 −1708.21 −35.36
Central Asia 19.48 187.49 722.09 −3.50 1784.80 73.28 −6.71 21.07 – –
Australia and New Zealand 551.04 344.17 681.08 −0.03 875.26 −11.53 34.30 −16.54 −14.38
South Pacific 0.00 4.00 – 126.71 – 0.67 – 2.70−165.95
Western Europe 240.48 515.07 168.69 −963.97 201.28 1101.84 1.68 90.94 3.03−14.67
Central Europe 90.99 533.36 53.78 31.09 38.74 678.64−263.28 2.36 −6.86 −3.35
Eastern Europe 610.06 1368.61 251.14−2326.09 833.17 3101.82 20.67 1071.02 −91.79 −18.70
Arabian Peninsula −2.69 – 770.69 – – – – – – –
Mashriq −1.70 40.08 70.52 – – – −24.14 – – –
Canada 62.15 134.56 545.65 −849.75 93.04 330.96 9.27 776.40 −171.71 −4.90
US 318.12 837.05 446.88 −546.72 1893.97 1573.90 44.46 310.14 −5.88 −14.99
Caribbean 0.02 169.33 0.01 35.44 – – 6.32 24.15 1.56
Mesoamerica 252.54 1203.11 171.27 501.10 – – 222.98 12.17 −6.68 12.13
Brazil 1867.38 1776.55 3998.25 7172.83 88.37 237.69 645.00 1569.18−83.91 1.97
South America 482.96 1873.73 1075.89 3159.57 36.77 – 532.32 545.51−386.58 15.59

Fig. 10. Regional trends of average (of all scenarios) total SOC stocks, SOC concentrations and % change and respective minimum and
maximum values of all scenarios.

3.3.4 USA

Arable areas in central US and grassland areas in Western
US areas profit from climate change in conjunction with in-
creased plant inputs. However, the large forest areas situated
in wetter parts of the future US lose SOC, despite generally

increased plant inputs. This is in contrast to their Canadian
counterparts, which show an increase in SOC, despite gain-
ing less in plant inputs, due to a decreased rate of decompo-
sition in the drier future soils.
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Fig. 11. Spatial distribution of the difference between the uncertainty in SOC stocks of AOGCM and SRES simulations. Uncertainty is
calculated as the maximum spread between SOC results in 2100 among the AOGCM simulations and the SRES simulations respectively.

3.3.5 South America and Brazil

SOC stocks increase in most of South America and Brazil in
the future, despite higher temperature of up to +7–8◦C in the
centre of the continent. The water balance decreases in the
north substantially, while some areas in middle and southern
South America become much wetter than in 1971. Plant in-
puts increase on the whole continent and most prominently in
eastern Brazil, where the highest SOC stock increases glob-
ally are found (Fig. 10). Only the lee side of the southern
Andes shows a moderate decline in SOC, which correlates
with increased plant inputs close to zero.

3.3.6 Europe

The whole of Europe shows moderate SOC gains. Moder-
ately to highly increased plant inputs counteract enhanced
SOM turnover under a warmer climate, where soil moisture
is not a limiting factor. Hence, here these two processes tend
to cancel each other out, as suggested by other studies for
Western Europe (Smith et al., 2005, 2006).

3.3.7 Africa

Africa shows only two distinct areas of SOC losses. In central
Africa, they are due to deforestation and conversion to arable
in conjunction with hence lower plant inputs. In the south,
SOC is lost due to increased soil organic matter decomposi-
tion under grassland, where the slightly increased plant in-
puts cannot counteract the losses. Arable soils and soils un-
der grass to arable conversion profit from the overriding ef-
fect of increasing plant inputs over increased decomposition
in the future. Also the simulations by Schaphoff et al. (2006)
predict slight SOC gains in the Sahel zone due to a shift to
C4 grasses support increasing NPP and dry conditions, and
therefore limiting SOC turnover.

3.3.8 India

The SOC stocks of Indian soils, dominated by arable land
use, will increase in the south but generally decrease in the
centre and towards the north. This reflects the higher in-
creases in plant inputs in the south and lesser increases north-
wards while most of the country becomes wetter and warmer,
so increasing the rate of SOC decomposition. Overall, the
SOC balance is predicted to be slightly positive under arable
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Fig. 12.Spatial distribution of areas where(a) the GCM simulation produces agreement on SOC becoming a source or a sink in 2100 when
implemented in RothC,(b) SRES simulations with HadCM3 produce agreement on soils becoming a C source or a sink in 2100 when
implemented in RothC.

www.biogeosciences.net/9/3151/2012/ Biogeosciences, 9, 3151–3171, 2012



3168 P. Gottschalk et al.: Global SOC projections using RothC

soils, because the local high increases in SOC are not out-
weighed by the widespread small losses.

3.3.9 Australia

Australia tends to lose SOC around its central desert area
where grasslands are predicted to become drier and warmer
in the future. The rate of SOC decomposition is slowed down
under the drier conditions, and SOC stocks could increase
here with a small increase in plant inputs. However, the tem-
perature effect seems to outweigh the potential SOC gains.
By contrast, the arable soils tend to increase in SOC due to
the predicted increases in plant inputs. This is consistent with
most other arable regions in our simulations.

3.4 Consistency among simulations in predicting future
SOC stocks

The consistency among simulations shows considerable re-
gional variation (Fig. 10). Regions such as the Arabian
Peninsula, the Caribbean, central Africa and Mesoamerica
have the highest local uncertainty in terms of how SOC con-
centrations develop in the future, but this uncertainty is not
reflected in a global uncertainty, because these regions have
a relatively small contribution to the total SOC stocks. By
contrast, Brazil shows the third highest uncertainty in fu-
ture changes in SOC concentration, but also the highest to-
tal SOC stock uncertainty, due to very high SOC gains. We
can therefore distinguish between locally important uncer-
tainties in the prediction of SOC stocks, which could impact
people’s livelihoods, and uncertainties which impact more on
the global climate development. SOC predictions where soils
become a source or sink in the future are highly uncertain in
regions where some scenarios predict SOC losses and some
scenarios predict SOC gains, such as in Canada, Eastern Eu-
rope, NW Pacific and E Asia, South Asia, South Pacific and
Western Africa (Fig. 10).

Figure 11 shows the spatial distribution of the difference
between the uncertainty of the AOGCM A1b simulations,and
the HadCM3 SRES scenario simulations. The uncertainty
is defined as the spread of SOC stock values of one set of
simulations in 2100. A greater uncertainty in SOC between
AOGCM runs than for the SRES predictions, for example
in the Amazon region, reflects an inconsistency between the
AOGCM climate projections. In these cases, the uncertainty
in SOC introduced by different climate models is greater than
the uncertainty introduced by GHG emission pathway sce-
narios.

Many of the simulations show agreement (Fig. 12) as
to whether soils are predicted to act as a source or sink
across climate models (a) and across SRES scenarios (b).
The stronger the agreement between simulations, the higher
is the probability that these results are robust with respect to
the climate variable used to drive RothC. The maps do not,
however, show the magnitude of SOC changes.

4 Conclusions

Globally, under a warming climate, increases are seen both
in C inputs to the soil due to higher NPP, and in SOC losses
due to increased decomposition (where soil moisture is not
limiting). The balance between these processes defines the
change in SOC stock. In some regions the processes balance,
but in others, one process is affected by climate more than
the other. This study suggests, with high probability, that in
most parts of the world SOC stocks will change, with SOC
losses projected to occur in northern latitudes where a higher
SOC decomposition due to higher temperatures is not bal-
anced by increased NPP, whereas in tropical regions, NPP
increases override losses due to higher SOC decomposition.
Pronounced regional trends are visible within this global pic-
ture. The spatial heterogeneity in the response of SOC to
changing climate shows how delicately balanced the com-
peting gain and loss processes are, with subtle changes in
temperature, moisture, soil type and land use interacting to
determine whether SOC increases or decreases in the future.
Given this delicate balance, we should stop asking the gen-
eral question of whether soils will increase or decrease in
SOC under future climate, as there appears to be no single
answer. Instead, we should focus our efforts on improving
our prediction of factors that determine the size and direc-
tion of change, and the land management practices that can
be implemented to protect and enhance SOC stocks as dis-
cussed in Smith (2008).
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