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ABSTRACT:If acid-sensitive drugs or cells are administered
orally, there is often a reduction in e� cacy associated with
gastric passage. Formulation into a polymer matrix is a
potential method to improve their stability. The visualization
of pH within these materials may help better understand the
action of these polymer systems and allow comparison of
di� erent formulations. We herein describe the development of
a novel confocal laser-scanning microscopy (CLSM) method
for visualizing pH changes within polymer matrices and
demonstrate its applicability to an enteric formulation based
on chitosan-coated alginate gels. The system in question is� rst
shown to protect an acid-sensitive bacterial strain to low pH, before being studied by our technique. Prior to this study, it has
been claimed that protection by these materials is a result of bu� ering, but this has not been demonstrated. The visualization of
pH within these matrices during exposure to a pH 2.0 simulated gastric solution showed an encroachment of acid from the
periphery of the capsule, and a persistence of pHs above 2.0 within the matrix. This implies that the protective e� ect of the
alginate-chitosan matrices is most likely due to a combination of bu� ering of acid as it enters the polymer matrix and the slowing
of acid penetration.

� INTRODUCTION

When delivering acid sensitive bioactives orally there are often
problems associated with the low pH of the stomach adversely
a� ecting the administration. Examples of such bioactives
include acid-labile drugs, such as penicillin G,1 antigens,2 or
microorganisms, such as live bacterial vaccines or probiotic
bacteria.3,4Although the entrapment of these species in enteric
dosage forms has been shown to improve drug stability,5 or
reduce cell death,4,6 the mechanisms of protection are usually
hypothesized and very rarely demonstrated or quanti� ed
dynamically. These mechanisms are likely to be either a result
of the polymer’s insolubility in acid, halting penetration of acid
into the polymer matrix, or the bu� ering capacity of the
polymers in the formulation raising the pH inside the matrices
to a level which is no longer harmful to the encapsulated
material.7,8

When an enterically formulated bioactive is taken orally there
is only a short period of transition through the esophagus
(around 10Š14 s).9 Upon entry to the stomach, a lower pH is
encountered, due to hydrochloric acid secretion by parietal cells
found in the gastric epithelium.10The pH of the gastric juices is

highly variable; it can reach as low as pH 111 in fasted patients
and as high as pH 5 in a fed state.12 These gastric secretions
also include some enzymes which assist in the digestion of
foods, the most abundant of which is the proteolytic enzyme,
pepsin. Transit through the stomach varies due to a range of
factors including age, gender, and meal volume13 but usually
occurs within 1Š2 h after ingestion of the meal.14 The enteric
formulation will then pass from the stomach and into the lower
digestive tract where pH rises to near neutral, at which point it
will deliver the bioactive.

To this date, there are limited studies describing the
visualization of the pH distribution in pharmaceutical
formulations.15 These focus on the measurement of pH within
PLGA microspheres,16Š19PLGA� lms,20,21tablets,22and within
pellets.23 For example, Fu et al.17 have entrapped SNARF
(seminaphthorhoda� uor)/NERF (carboxy-2,7-dimethyl-3-hy-
droxy-6-N-ethylaminospiro [isobenzofuran-1(3H),9-(9H)-
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xanthen]-3-one)-dextran dyes into hollow PLGA microspheres
to measure the pH change within the particles as the polymers
biodegrade. While this method is� t for their purpose, it cannot
be used for a highly porous polymer matrix system, when there
is the possibility of di� usion out of the matrix or where there
would be direct contact between the dye and polymers. Indeed,
more recent studies by Liu et al. and Li et al.16,18 describe
confocal visualization of pH change within PLGA micro-
particles containing acid-sensitive proteins using pH-responsive
dyes. This study encounters a� uorescence quenching e� ect
due to the interaction of the dye with entrapped proteins. To
resolve this issue, an estimation of quenching was required and
additional experimentation was needed to validate this. A study
by Pygall et al.22 measured the pH in HPMC tablets during
exposure to 0.1 M HCl containing 0.5% (v/v) universal pH
indicator. This allowed for the visualization of the hydration of
the pellet and gave an indication of the pH in those regions.
While providing useful information in that study, this method is
limited in that the dye must di� use in from the periphery of the
formulation, meaning that pH visualization is not possible in
regions were no indicator is present.

In this study we have developed a method that is, to our
knowledge, the only currently available reliable technique for
accurately visualizing the pH in hydrated polymer matrices
dynamically and which can be applied to a variety of porous
systems. This method has been developed in order to better
understand the behavior of hydrogel systems containing
bioactives during exposure to low pH. In brief, a Gram-positive
Bi� dobacteriumstrain was labeled with two pH-sensitive
� uorophores, which could be independently excited. The
pixel intensity ratio of images taken by confocal laser-scanning
microscopy (CLSM) can be color coded, which allows the
visualization of pH within formulations during exposure to
acidic solutions. This method could be applied to any system in
which the bacteria may be suspended within a matrix. The use
of these microorganisms as a carrier for the dyes means that
issues, such as� uorescence quenching, surrounding excipientŠ
dye interactions are removed, thus, widening the application
over other methods16Š18,23 that require the entrapment, or
uptake, of a dye into the formulation. Another advantage of
using bacterial cells as a model bioactive is that bacteria are of a
large enough size (>1� m) that they will not di� use or“reptate”
out of all but the most porous formulations. This improves on
previous methods that rely on small dye molecules being
retained by the polymer matrix, which is not often the case in
systems which are submerged in liquid. The method presented
in this study serves as a means of investigating the protective
e� ect of enteric formulations under these conditions. Addi-
tionally, both of the dyes used are nonselective, so can be used
for various microbes.

The strain of bacteria used,B. breve, is a rod-shaped,
nonmotile anaerobe that naturally inhabits the human intestine.
Like allBi� dobacteriumstrains, it is gram-positive as a result of
the thick layer of peptidoglycan constituting its cell wall. In
addition to this,B. breveproduces polysaccharides upon its
surface that form a bacterial capsule.24 The acid sensitivity of
these cells arises mainly from the denaturing of proteins within
the cell at lowered cytoplasmic pH. These proteins constitute
part of the cell’s structure and give it some enzymatic activity.25

Thus, damaging these proteins contributes to the death of the
cell.

One formulation which has been shown to protect acid-
sensitive bacteria, such asBi� dobacteriumstrains, is the ionic

alginate microencapsulation system.7,8,26Š33 This method has
been shown to greatly reduce cell death during exposure to
gastric pHs,7,8 and that the subsequent coating of the alginate
matrix with the cationic polysaccharide chitosan has improved
the bacteria’s survival even further.8,34Though a bu� ering e� ect
has been attributed as the cause of protection,7,8 this claim has
not been substantiated by experimentation. Herein a technique
is developed in order to understand the change in pH within
this alginate-chitosan system better.

� MATERIALS
Bif idobacterium breve. NCIMB 8807 (B. breve) was

purchased from the National Collections of Industrial Food and
Marine Bacteria (Aberdeen, U.K.). Alginate (19Š40 kDa),
� uorescein isothiocyanate (FITC), and low molecular-weight
chitosan (103 kDa, degree of deacetylation: 85.6%) were
purchased from Sigma-Aldrich (Gillingham, U.K.). pHrodo
succinimidyl ester was purchased from Invitrogen (California,
U.S.A.). Wilkins-Chalgren (WC) anaerobe agar and phosphate-
bu� ered saline (PBS) were purchased from Oxoid (U.K.).
Alginate was puri� ed by micro� ltration (0.45� m sartorius
� lter) before use; all other reagents were used without further
puri� cation. Materials other than alginate and chitosan were
sterilized by autoclaving; alginate and chitosan were sterilized
by micro� ltration.

� METHODS
Viability of B. breveat pH 2Š7. B. brevewas streaked onto WC

agar plates from a previously prepared cell bank and allowed to grow
anaerobically (48 h, 37°C). After growth, an aliquot of the bacteria
was used to inoculate tryptoneŠphytoneŠyeast (TPY) broth (10 mL)
and the culture incubated (22 h, 37°C) with shaking to late log phase;
during this time, the cells grew to� 9 log(CFU)/mL. The cell
suspension was then divided into aliquots (1 mL) and centrifuged
(11000 rpm, 5 min) before resuspending the cells into TPY (1 mL)
that was adjusted to a variety of pHs (1.0, 2.0, 2.3, 2.6, 3.0, 4.0, 5.0, 6.0,
and 7.0) using 1 M HCl. These samples were incubated for 1 h at 37
°C and enumerated by serial dilution in PBS and spreading onto WC
agar plates before anareobic incubation (48 h, 37°C). During
incubation, each viable cell present on the plate produced one colony.
From this, the total number of viable cells could then be calculated by
the multiplication of colony numbers by the dilution factor used.
Colonies produced were white and circular with a region of
translucency around the edges. Those colonies that did not appear
as such were not counted.

Survival of Alginate and Alginate-Chitosan EncapsulatedB.
breve During Simulated Gastrointestinal Passage.B. brevewas
grown as before and centrifuged (3200 rpm, 10 min, 4°C). The
supernatant was removed and the cells resuspended in 2% (w/v)
alginate solution. This polymer/cell solution (1 mL) was extruded
through a 21G needle into 0.05 M CaCl2 (50 mL) and allowed to
harden (30 min). After this period, the capsules were removed by
� ltration. For chitosan-coated capsules, the alginate encapsulated cells
were then placed in a 0.4% (w/v) chitosan (in 0.1 M acetic acid
adjusted to pH 6 with 1 M NaOH) for 10 min. From a previous study,
this should result in a chitosan coat of approximately 7� m thickness.8

After coating, the capsules were removed by� ltration. The produced
capsules were then incubated at 37°C in simulated gastric solution
(pH 2 with 1 M HCl, 0.2% (w/v) NaCl, 10 mL) with shaking for 1 h.
This was followed by exposure to simulated intestinal solution (6.8%
(w/v) KH2PO4, pH 7.2 with 1 M NaOH, 50 mL) with shaking at 37
°C for 3 h. Samples were taken at 0, 60, 120, 180, and 240 min and the
cells in solution were enumerated by the previously described method.
By the 240 min mark, the capsules had completely dissolved. To
determine the initial cell concentration, for each experiment a separate
1 mL batch of capsules was taken directly after production and placed
into PBS (100 mL) and incubated (1 h, 37°C). After incubation, the
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capsules were placed into a stomacher (Seward stomacher 400
circulator, 250 rpm, 20 min) to ensure their complete dissolution. The
initial cell concentration was determined by enumerating the cells in
this suspension. Simulated gastric solutions were made to pH 2.0 to
represent the low pH found in the nonfasted stomach.35Š37

Preparation of pHrodo/FITC LabeledB. breve. B. brevewas
streaked onto WC agar plates from a previously prepared cell bank and
was grown anaerobically (48 h, 37°C). After growth, the bacteria were
inoculated into TPY broth (10 mL) and incubated (37°C, 22 h) with
shaking, during which time the cells grew to� 9 log(CFU)/mL. After
incubation, the cells were centrifuged (3200 rpm, 10 min, 4°C) and
the supernatant was removed before resuspension in phosphate-
bu� ered saline (PBS, pH 9, 10 mL). To this cell suspension, pHrodo
succinimidyl ester (1� L of a 10 mg/mL stock solution in DMSO) was
added and conjugation was allowed to proceed in darkness (37°C, 30
min) with shaking. The cells were then centrifuged (3200 rpm, 10 min,
4 °C) and the supernatant removed before washing with, and
resuspending in, PBS (pH 8, 10 mL). This suspension was then
centrifuged once more (3200 rpm, 10 min, 4°C), the supernatant
discarded, and the cells resuspended in PBS (pH 7.2, 10 mL), and
FITC solution (1� L of a 10 mg/mL solution in water) was added.
The reaction was allowed to proceed in darkness (37°C, 30 min) with
shaking before centrifugation (3200 rpm, 10 min, 4°C), washing with
PBS (pH 7.2, 1 mL), and resuspending in PBS (pH 7.2, 10 mL) to
ensure the removal of excess dye. The tube containing the cells was
then placed into boiling water (5 min) before switching to iceŠwater
(5 min) to kill the cells and remove any potential for cell division. This
was performed in order to reduce the motility of the bacteria when
being visualized by microscopy. As the bacteria used are gram-positive
and have an extracellular capsule, it is unlikely this treatment led to a
large lysis of cells. Additionally, microscopic observation of the post-
treated cells gave no indication of this. The suspension was then
divided into 1 mL aliquots before centrifugation (13000 rpm, 5 min)
and subsequent removal of the supernatant.

Preparation of Alginate-Chitosan Microcapsules Containing
pHrodo/FITC LabeledB. breve. Alginate solution (2% w/v in water,
1 mL,� ltered using Minisart Sterile-R 0.45� m micro� lters) was added
to pHrodo/FITC-labeledB. brevepellets produced as above and
vortexed to ensure complete mixing. This solution was then extruded
using a syringe and a pump (2.0 mL/min) into 0.05 M calcium
chloride solution (50 mL) and was left to harden for 30 min before
� ltration. In the case of chitosan-coated alginate microcapsules these
were then placed into chitosan solution (0.4% w/v in 0.1 M acetic acid
adjusted to pH 6, 10 mL) and left to stand (10 min). These chitosan-
coated alginate microcapsules were then removed from the mixture by
� ltration.

Calibration of Microscope. To extract the pH values from the
CLSM images a calibration curve was� rst constructed. pHrodo/
FITC-labeledB. breveproduced previously was resuspended into PBS
(1 mL) that was adjusted accurately to pH 2, 2.5, 3, 4, 5, and 7.2.
These new suspensions were placed onto a coverslip and imaged using
a Leica SP2 CLSM. Samples were excited with 488 and 546 nm lasers
sequentially, corresponding to the excitation wavelengths of FITC and
pHrodo, respectively. From these 8-bit images, the pixel intensity of
the cells was determined using the onboard software (Leica Confocal
Software).

Measurement of pH within Alginate-Chitosan Microcap-
sules. A single alginate or alginate-chitosan microcapsule containing
pHrodo/FITC labeledB. brevewas placed onto a purpose designed
coverslip (consisting of a 50 mm Petri dish with a central section
removed which was then replaced with a thin glass coverslip),
submerged in simulated gastric solution (pH 2 adjusted with 1 M HCl,
0.2% (w/v) NaCl, 100� L, 37°C), and imaged using a CLSM at 488
and 543 nm excitation wavelengths sequentially at 0, 1, 5, 10, 15, 30,
45, and 60 min intervals during incubation at 37°C. The images were
then manipulated using MATLAB (7.11.0) so that the individual pixel
intensity could be related to a pH, which was then color coded
according to its value to produce“pH maps” of the microcapsules. To
do this, � rst the two images taken at the di� erent excitation
wavelengths of the dyes were divided by one another using the

Boolean Logic function on the onboard software. This gave each pixel
an intensity equivalent to the� uorescence of pHrodo/FITC; these
images were then converted to an equivalent matrix of pixel intensities
(Figure 1). These intensities were then put into“bins” de� ned by the

range of intensity values equivalent to a known pH, which were then
color coded. For example, values in the matrix between 3.3 and 5.8
(equivalent to� uorescence of pHrodo/FITC for pH 6 and 5,
respectively) were binned together and assigned the value 20, which
was then colored light blue to code for pH 5Š6. The values that
de� ned the bins were taken from a previously established calibration
curve (Supporting Information).

� RESULTS AND DISCUSSION
B. brevewas exposed to a range of pHs between 2 and 7 and the
viability of the cells measured after 1 h incubation at 37°C
(Figure 2). Gastric emptying time is highly variable, but 1 h was

chosen as reasonable residence time of a particulate
formulation.38 There was a steady decrease from 9.3± 0.4
log(CFU)/mL to 8.7± 0.2 log(CFU)/mL between pH 7 and
pH 3, after which the number of culturable cells dropped to
� 4.7 log(CFU)/mL as the pH reached 2.3. At pHs less than or
equal to 2, there was no detection of any viable cells (detection
limit is 3 log(CFU)/mL). Based on previous research, it is
likely that cell death has a kinetic dependency on time in acid.39

This data shows that this particular probiotic strain is acid-
sensitive, showing very low numbers of viable cells at pHs less
than 3. The human stomach pH is often lower than this
threshold, so these bacteria are unlikely to survive gastric
transit.

Alginate microcapsules have been shown previously to o� er a
good level of protection to acid sensitive bacteria when exposed

Figure 1. Conversion of pixel intensity to pH. Image on left is
produced by the division of the pixel intensities of a picture showing
pHrodo � uorescence by the corresponding FITC image. Image on
right is the result of coloration of the left image based on the intensity
of each pixel.

Figure 2.Viability ofB. breveagainst TPY medium adjusted to various
pH after 1 h incubation at 37°C; N = 3 ± standard deviation; limit of
detection, 3 log(CFU)/mL; line intended as guide to eye.
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to simulated gastric solutions and coating these matrices with
chitosan improves survival further.7,8,28,30,34,40,41Our data,
shown as release of viable cells to estimate the number of
cells that may be deposited in the intestine in vivo, is consistent

with these� ndings (Figure 3). During the� rst 60 min, no
viable cells were detected in the simulated gastric solution of
either pH 2.0 or 3.0. The enumeration ofB. brevein simulated
intestinal solution after exposure to pH 3.0 gastric solutions

Figure 3.Release of viable cells from alginate and chitosan-coated alginate matrices during exposure to simulated gastric solution (pH 2.0/3.0, 60
min) followed by simulated intestinal solution (180 min) at 37°C. By the 240 min mark, matrix dissolution was complete. Starting cell
concentration included indicating maximum possible survival;N = 3 ± standard deviation; limit of detection, 3 log(CFU)/mL.

Figure 4.Schematic diagram of dye conjugation to amine moieties within bacteria, producing thiourea and amide moieties when reacting with
pHrodo succinimidyl ester and FITC, respectively (A). Fluorescence of pHrodo (B) and FITC (C) when conjugated toB. breveshowing variation of
intensity with pH. For this experiment, a solution of� uorescently labeledB. breveconjugate (100� L) at � 9 log(cells)/mL was diluted into PBS (900
� L) adjusted to pH 2.0, 5.0, and 7.0. The� uorescence of conjugated pHrodo and FITC was then quanti� ed by UV spectro� uorometry (� ex: 546 and
488, respectively) over the ranges shown. Fluorescence changes with pH are most commonly the result of protonation or deprotonation around a
� uorophore’s pKa.

43.
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gave a release of viable cells amounting to 8.7 and 8.9
log(CFU)/mL for alginate and chitosan-coated alginate
capsules, respectively (Figure 3). At pH 2, the viable cells
released after 240 min amounted to 5.1 and 6.9 log(CFU)/mL
for alginate and chitosan-coated alginate capsules, respectively.
These values are high, relative to <3 log(CFU)/mL predicted
in the control experiment (at pH 2 in Figure 2). The increased
survival of cells in the chitosan coated system is believed to be
due to an increase in bu� ering as the acid penetrates the
capsule7 and is also possibly due to reduced porosity at the
capsule surface.42 This provides a demonstration of the e� cacy
of this encapsulation system in protecting acid-sensitive
bacteria. It should also be noted that the release of cells
appears slower after exposure to pH 2 solution; this is most
likely caused by the death of cells at the periphery� rst, which
leads to a lag associated with the disintegration of the capsule
from the extremities� rst. This would result in the release of the
viable cells only once the region containing killed cells had
disintegrated.

The pHrodo succinimidyl ester and FITC were conjugated
to bacteria via amine residues that were present within the cell
(Figure 4A). These dyes were shown to be present by UVŠvis
spectro� uorometry (� exc: 488 and 546, for FITC and pHrodo,
respectively) and the images showed a change in pixel intensity
of the cells when exposed to pH between pH 2 and 7
(Supporting Information). Conjugated pHrodo increased in
intensity when the pH was decreased from 7 to 2 (Figure 4B),
whereas the� uorescence intensity of FITC decreased (Figure
4C). These cells were then encapsulated within alginate and
alginate-chitosan matrices before exposure to simulated gastric
solution and visualization by confocal microscopy.

This method allows for the production of“pH maps” of
matrices (Figure 5). These maps allow the visualization of the
pH as the acid penetrates into the polymer network. This lets
the viewer not only see the rate of di� usion of the acid, but also
the color-coding, which allows for the identi� cation of speci� c
pH environments within the matrix. It should be noted that
cells were killed after labeling to reduce movement during
imaging. In the case of alginate capsules, a thick band of red,
associated with pHs between 2.5 and 2 appears after only 1
min, accompanied by a clear bright blue region of pH 7Š6 in
the center of the matrix. As time passes, this central circle can
be seen to darken, and the encroachment of the external red
band thickens, showing the penetration of acid into the capsule.
In the case of chitosan-coated alginate capsules, the appearance
of the thick band of red on the perimeter of the capsule is
considerably slower and the persistence of higher pH in the

center is observably longer than in the uncoated matrices.
These images imply a combination of bu� ering e� ects, signi� ed
by the presence of pH above that of the simulated gastric
solution (pH 2), even at the periphery, and a slowing of acid
penetration into the polymer network, most likely a result of
the formation of an acid-gel. This example demonstrated the
ability of our method to produce pH maps and elucidate pH
changes occurring within matrices.

To obtain a better view of the pH distribution within the
microcapsules, a close comparison of the pH within the matrix
after 60 min (from a repeat of the experiment) is shown in
Figure 6. In the case of alginate only matrices, there is a thick

dark red color, associated with pHs nearing 2.0 around the
perimeter of the capsules, in which it would be expected all cells
to be dead. In the most part, there is an orange-red color,
pertaining to pHs between 2.5 and 3 throughout the rest of the
matrix. pHs between 2.3 and 3 correlate to an approximately
4.5 log(CFU)/mL survival of bacteria (based in Figure 2). In
the case of alginate encapsulated cells, 60 min exposure to
gastric solution resulted in a 5 log(CFU)/mL survival of cells,
showing some consistency with our� ndings (Figure 3), though
direct comparison is complicated due to the kinetic dependency
of the viability studies. In the alginate-chitosan matrix, a
thinner, lighter colored ring of red is seen around the perimeter,
most likely due to increased bu� ering or reduced porosity.
Toward the center of the capsules, there is the emergence of
yellow and some blue regions associated with pHs up to 5, at
which very high cell survival would be seen. This increased pH
results in an increase in cell survival, which is seen in the
simulated gastric viability assay (Figure 3).

Figure 5.pH maps of an alginate and a chitosan-coated alginate microcapsule during exposure to simulated gastric solution at pH 2.0. Scale: 1 mm.

Figure 6.Comparison of pH within alginate and alginate-chitosan
matrices after 60 min exposure to simulated gastric juice at pH 2.0
(scale bar: 1 mm). Images taken from a separate experiment to those
shown in Figure 5.
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From the images captured on the confocal microscope it is
possible to measure the thickness of the aforementioned ring of
red, associated with pHs in the region 2Š3, using image analysis
software (ImageJ). These pHs should be associated with a
relatively rapid cell death according to the viability testing
already conducted (Figure 2). The thickness of the red band
could then be used to give a representation of encroachment of
low pH into the matrix (Figure 7). In both the alginate and

chitosan-coated alginate there is a sudden penetration of acid
into the periphery of the matrix, which slows over time. This
nonlinear behavior is most likely a result of acid-gel formation
at the periphery of the capsules during penetration, reducing
the rate of di� usion into the matrix. The chitosan-coated
alginate matrices seem to slow encroachment of the low pH
into the gel, relative to the uncoated samples. The depth of
penetration of low pH into the samples measures 367.6± 13.4
and 290.4± 17.0� m for the uncoated and chitosan-coated
alginate matrices, respectively. This rea� rms the qualitative
� ndings discussed as there is a reduced area of pHs associated
with a particularly rapid cell death in the chitosan-coated
samples.

Experimentally, this method is very quick and straightfor-
ward. The dyes used may be tailored to provide information at
di� erent pH ranges assuming that cell staining dyes with pH
dependent� uorescence in this region may be found. There are
currently numerous amine-active dyes available at a range of
pHs which will allow for higher accuracy at particular pH
ranges. Co-staining and pH determination by ratiometric means
should make this method resistant to changes in bacterial
concentration if it were to be applied with other systems or
microbes.

� CONCLUDING REMARKS
A method for the reliable visualization of pH within polymer
matrices has been developed. This method allows for the
production of“pH maps” showing the distribution of pH within
a cross-section of a hydrated polymer matrix. This method was
then applied to alginate and alginate-chitosan matrices, which

are commonly used for the protection of acid-sensitive bacteria.
After demonstration of this protective e� ect in vitro, the pH
environment within the matrices was visualized using pH maps.
These maps revealed what we suggest to be a combination of
bu� ering, which was seen to increase after coating with the
basic chitosan and an encroaching of low pH from the
periphery into the matrix rather than a bulk pH change, which
slowed with chitosan coating. The use of microbes as carriers of
� uorophores for this purpose o� ers an alternative to free dyes
that may otherwise not be retained by the polymer network or
the conjugation of dyes to the polymers, which may a� ect their
� uorescence. It is also possible that microparticles could be
used as an alternative, such as the polystyrene microparticles
with surface-bound dyes used by Sa�nchez-Martin et al.44 to
measure intracellular pH. There are various studies that use pH-
sensitive� uorophores conjugated to polymer particles,45Š47

which could be adapted and evaluated for the observation of
pH within porous polymer matrices.
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