
Final warming of the Southern 
Hemisphere polar vortex in high- and low-
top CMIP5 models 
Article 

Accepted Version 

Author final version 

Wilcox, L. ORCID: https://orcid.org/0000-0001-5691-1493 and 
Charlton-Perez, A. J. ORCID: https://orcid.org/0000-0001-
8179-6220 (2013) Final warming of the Southern Hemisphere 
polar vortex in high- and low-top CMIP5 models. Journal of 
Geophysical Research - Atmospheres, 118 (6). pp. 2535-2546.
ISSN 0148-0227 doi: 10.1002/jgrd.50254 Available at 
https://centaur.reading.ac.uk/30939/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50254/abstract 
To link to this article DOI: http://dx.doi.org/10.1002/jgrd.50254 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Final warming of the Southern Hemisphere polar1

vortex in high- and low-top CMIP5 models2
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PO Box 243, Reading, RG6 6BB, UK5

Abstract6

The final warming date of the polar vortex is a key component of7

Southern Hemisphere stratospheric and tropospheric variability in spring8

and summer. We examine the effect of external forcings on Southern9

Hemisphere final warming date, and the sensitivity of any projected changes10

to model representation of the stratosphere. Final warming date is cal-11

culated using a temperature-based diagnostic for ensembles of high- and12

low-top CMIP5 models, under the CMIP5 historical, RCP4.5, and RCP8.513

forcing scenarios. The final warming date in the models is generally too14

late in comparison with those from reanalyses: around two weeks too late15

in the low-top ensemble, and around one week too late in the high-top16

ensemble. Ensemble Empirical Mode Decomposition (EEMD) is used to17

analyse past and future change in final warming date. Both the low- and18

high-top ensemble show characteristic behaviour expected in response to19

changes in greenhouse gas and stratospheric ozone concentrations. In20

both ensembles, under both scenarios, an increase in final warming date21

is seen between 1850 and 2100, with the latest dates occurring in the22

early twenty-first century, associated with the minimum in stratospheric23

ozone concentrations in this period. However, this response is more pro-24

nounced in the high-top ensemble. The high-top models show a delay in25

final warming date in RCP8.5 that is not produced by the low-top mod-26

els, which are shown to be less responsive to greenhouse gas forcing. This27

suggests that it may be necessary to use stratosphere resolving models to28

accurately predict Southern Hemisphere surface climate change.29

1 Introduction30

The Southern Hemisphere (SH) stratosphere and troposphere have been shown31

to be coupled, with wave driving from the upward propagation of tropospheric32

Rossby waves influencing the stratospheric zonal wind, and anomalies in the33

stratospheric polar vortex having an impact down to the surface. This coupling34

predominantly occurs in the late spring, or summer, when the final warming35

of the polar vortex strongly influences both the stratospheric and tropospheric36
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circulation (Black et al., 2006), resulting in the stratospheric and tropospheric37

annular mode having its largest variance in this season (Baldwin et al., 2003).38

Changes in the strength of the polar vortex are associated with persistent circu-39

lation anomalies in the lower stratosphere, with weaker flow resulting in negative40

Southern Annular Mode (SAM) anomalies. Thompson et al. (2005) showed that41

final warming events are also associated with tropospheric circulation anomalies42

of the same sign, which can persist for in excess of two months. They found that43

significant increases in tropospheric geopotential height over the pole and de-44

creases in the midlatitudes, with a similar structure to the negative phase of the45

SAM, followed major weakenings in the SH polar vortex. Coherent changes in46

Antarctic surface temperature, with positive temperature anomalies over much47

of the continent outside the Peninsula region, were also identified in association48

with these changes.49

Climate forcings have been shown to change the final warming date of the SH50

polar vortex. In recent years, changes have been found to be strongly determined51

by decreases in stratospheric ozone concentrations, with final warming dates52

observed to be later in the 1990s compared to the 1980s (Waugh et al. (1999);53

Zhou et al. (2000); Karpetchko et al. (2005); Langematz and Kunze (2006);54

Haigh and Roscoe (2009)). Ozone depletion causes local cooling over the pole,55

resulting in an increased temperature gradient and a stronger vortex, and hence,56

later final warming dates.57

Several studies have suggested that, in SH spring, the effects on surface58

climate of ozone recovery and increasing greenhouse gases will be equal and59

opposite, leading to a near cancellation, or even a reversal, in current trends in60

the early twenty-first century (Arblaster et al. (2011); McLandress et al. (2011);61

Polvani et al. (2011); Thompson et al. (2011); Wilcox et al. (2012)). Ozone62

depletion causes a larger local decrease in temperature compared to greenhouse63

gas increases, and has been shown to be the primary driver of recent changes64

in final warming date (Langematz and Kunze, 2006). It is expected that ozone65

recovery will similarly be the primary driver of near-term changes in final warm-66

ing date, and that the vortex breakdown will become earlier. A return to later67

dates towards the end of the twenty-first century is possible as lower strato-68

spheric temperature trends become dominated by well-mixed greenhouse gas69

forcing, which has been shown to result in an increased temperature gradient70

near 100 hPa (Shindell et al. (1998); Wilcox et al. (2012)). If these changes are71

coupled to the surface then changes in springtime Antarctic surface temperature72

trends would be likely to occur in conjunction with these changes in the vor-73

tex. Therefore, one important facet of the stratospheric impact on tropospheric74

climate is how external forcings may change the final warming date.75

The significant tropospheric circulation anomalies associated with final warm-76

ing events demonstrate that changes in the timing of this phenomenon will play77

a key role in future SH tropospheric circulation change (Black and McDaniel,78

2007). Hence, understanding potential changes in final warming date, and their79

drivers, is an important part of SH climate prediction. Several studies have80

shown that the final warming signature in the SH propagates downwards (e.g.81

Baldwin et al. (2003); Thompson et al. (2005)). Hardiman et al. (2010) recently82
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showed that this propagation begins at 1 hPa. As such, the representation of83

changes in final warming date may be sensitive to the position of the model84

top, which is often located near or below 1 hPa in models. Here, we attempt85

to quantify the effect of external forcings on SH final warming date, and the86

sensitivity of any projected changes to the position of the model top.87

2 Data and Methods88

The aim of this study is to identify robust changes in SH final warming date,89

their drivers, and their potential sensitivity to the position of the model top.90

The fifth Coupled Model Intercomparison Project (CMIP5) provides a unique91

opportunity to analyse the response of a large number of models to the same92

future greenhouse gas scenarios. CMIP5 also includes a substantial number of93

‘high-top’ models, which have an explicit representation of the stratosphere.94

High-top models have been defined here as those with model tops at pressures95

≤1 hPa, or altitudes ≥ 45 km. In addition to having a higher model top, the96

high-top models used in this study typically have higher vertical resolution in97

the stratosphere, and a larger proportion of model levels above 200 hPa (54%98

of high-top model levels are in the stratosphere, compared to 36% for low-99

top models). The models used in this study, their classification, and vertical100

distribution of levels, are shown in Table 1. Only one model from each model101

family is included in each classification to avoid biasing the ensemble mean.102

We examine monthly mean data from the historical (1850-2005), Represen-103

tative Concentration Pathway (RCP) 4.5 (Thomson et al., 2011), and RCP8.5104

(both 2006 to 2100) (Riahi et al., 2011) integrations. The two future pathways105

result in a radiative forcing of 4.5 Wm−2 and 8.5 Wm−2 respectively by 2100,106

with RCP4.5 carbon dioxide emissions peaking around 2040, and RCP8.5 emis-107

sions peaking in 2100. The rate of change of greenhouse gas concentrations108

stabilises by ∼2070 in RCP4.5, and continues to increase throughout RCP8.5109

(Figure 1(a)). The time series analysed in this paper are concatenations of the110

historical and RCP experiments for consistent ensemble members of each model,111

and are referred to throughout by the name of the relevant future pathway.112

Although a recommended ozone time series was compiled for CMIP5 (Cionni113

et al., 2011), only three of the models used in this study are forced with these114

data. Others included modified versions of the Cionni et al. (2011) data, some115

prescribed ozone concentrations from different data sets, and others treat ozone116

interactively. The different representation of ozone in the subset of CMIP5117

models used in this study is shown in Table 1, following the categorisation of118

Eyring et al. (2012). Example time series of the September to November mean119

75◦-90◦S mean concentration at 50 hPa for each prescribed category are shown120

in Figure 1(b), alongside the time series from models with interactive ozone.121

Comparison of the different categories reveals a range of Antarctic stratospheric122

ozone concentrations, with 1900 values between 2.4 ppmv and 4 ppmv. There is123

some spread in the rate of recovery in the twenty-first century. Ozone concen-124

trations tend to recover faster in the time series from models with interactive125

3



ozone. The relative change in ozone concentrations prior to 2000 is similar in the126

interactive and Cionni timeseries, but smaller in the other prescribed categories.127

However, the turning points are comparable across the categories (Figure 1(b)).128

The aim of this study is to identify the drivers of robust projections in SH final129

warming date, which will depend on the forcings, and the response to them, hav-130

ing the same characteristics across the model ensemble. As the turning points131

in the ozone timeseries are comparable, it is anticipated that the qualitative132

response of the final warming date to ozone will have similar characteristics133

across the models. Hence, the quantitative differences in the ozone forcing are134

not anticipated to influence our result.135

To date, different numbers of ensemble members have been provided for each136

of the CMIP5 models. Where multi-model means have been used, they include137

only one ensemble member for each model to avoid biasing the mean towards138

models with a larger number of ensemble members.139

ERA-Interim (Dee et al., 2011) and the NCEP Climate Forecast System140

Reanalysis (CFSR) (Saha et al., 2010) were used to assess biases in the model141

data.142

2.1 Final warming diagnostic143

The definition of vortex breakdown is subjective, and several approaches have144

been used in earlier studies. These include potential vorticity-based spatial145

diagnostics (Waugh and Randel (1999), Waugh et al. (1999), Karpetchko et al.146

(2005), Zhou et al. (2000)), diagnostics based on wind thresholds (Black and147

McDaniel, 2007), and temperature based diagnostics (Haigh and Roscoe, 2009).148

However, regardless of the definition used, there is a consensus that the final149

warming date (FWD) of the SH vortex was later in the 1990s compared to150

the 1980s. Potential vorticity is not a standard CMIP5 output, and the coarse151

vertical resolution of the archived data makes it difficult reliably to calculate152

potential vorticity. Therefore, only temperature (Haigh and Roscoe, 2009) and153

wind (Black and McDaniel, 2007) based diagnostics of the FWD have been154

considered.155

Black and McDaniel (2007) defined the FWD as the final time that the zonal-156

mean zonal-wind at 60◦S and 50 hPa drops below 10 ms−1 until the following157

autumn. They apply the diagnostic to 5-day running averages of daily data.158

Haigh and Roscoe (2009) define the FWD as the minimum in the second159

time derivative of polar cap mean (90-60◦S) temperature at 50 hPa. They use160

3-day averages of daily and bi-daily data, smoothed with a 21-day triangular161

filter. However, they found that interpolation of monthly mean data gave similar162

fields to smoothed daily data. Here, monthly mean data is used as, at this163

early stage in CMIP5, it facilitates the analysis of a larger number of models.164

The sum of the first five Fourier components of the temperature time series165

is used to produce interpolated daily data. Due to the smooth nature of the166

evolution of the seasonal cycle in polar cap mean temperature, only negligible167

differences were identified between FWDs calculated using this method, and168

those calculated using daily data (see Figure 2).169
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The FWD calculated using the Haigh and Roscoe method is typically a week170

earlier than that calculated using the Black and McDaniel diagnostic. However,171

there is little qualitative difference between the diagnostics (Figure 2): the time172

series are strongly correlated, with r=0.95 for 1950-2005 for CNRM-CM5 data.173

The use of the Black and McDaniel (2007) threshold-based diagnostic may be174

problematic if there are significant variations in the background state between175

models, or under strong forcing. In some models, the use of the 10 ms−1 thresh-176

old results in non-identification of a FWD for some years in the historical period.177

As scenarios with large forcing will be considered, the Haigh and Roscoe diag-178

nostic, from monthly mean data, will be used for the remainder of this work, in179

order to avoid excessive non-identification of FWDs.180

2.2 Empirical mode decomposition181

Climate data is often non-linear and non-stationary. Deviations from monotonic182

change are particularly apparent in the Southern Hemisphere where change is183

governed by the competing effects of increased greenhouse gases and strato-184

spheric ozone. Changes in FWD have been established as being strongly ozone185

driven (Zhou et al. (2000), Karpetchko et al. (2005), Haigh and Roscoe (2009)),186

and a better fit is found between FWD and stratospheric ozone concentrations187

than can be achieved with linear trends for example (Haigh and Roscoe, 2009).188

To avoid fitting extrinsic functions, which may not correspond well to the189

non-linearity embedded in the data, or forcing data time series, which may190

only account for changes via one of many mechanisms, Empirical Mode De-191

composition (EMD) has been used to analyse variability in FWD. EMD is an192

intrinsic, adaptive method for deriving the variability of a time series on vari-193

ous timescales. EMD has successfully been applied to climate data in several194

previous studies (e.g. Lee and Ouarda (2011), Franzke (2009), Huang and Wu195

(2008), Wu et al. (2007), McDonald et al. (2007), and Duffy (2004)). While196

EMD is a useful tool for analysing variability and trends in non-linear time se-197

ries, it cannot be used to unambiguously attribute particular characteristics of198

these trends to a given forcing mechanism. Hence, EMD is used here alongside199

multiple linear regression analysis.200

EMD is an algorithm used to decompose a time series into a set of Intrinsic201

Mode Functions (IMFs), with each describing a given oscillatory mode of the202

data. IMFs must satisfy two conditions:203

• Must have a local mean of zero204

• Must have a single zero crossing between two extrema205

IMFs are extracted sequentially from a data series, from the highest frequency206

to the lowest, until no complete oscillation can be identified. The residual from207

this process then describes the long-term trend in the data, where the trend is208

defined as the instantaneous mean of the time series.209

Unlike Fourier filtering, the phase and amplitude of each IMF are time de-210

pendent. The number of IMFs extracted from a time series is typically lnN ,211
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where N is the number of data points (Wu et al., 2007). There is some evi-212

dence of mode mixing (signals of different timescales identified in the same IMF)213

amongst the IMFs of FWD from EMD. To avoid this, Ensemble Empirical Mode214

Decomposition (EEMD) has been used. EEMD gives an ensemble mean of the215

IMFs for the product of FWD and a finite white noise series (Wu and Huang,216

2009). The inclusion of a noise series provides a uniformly distributed reference217

scale, which preserves the dyadic property of EMD that can fail when data is218

intermittent (Wu and Huang, 2009). The noise is cancelled out in the ensemble219

mean, so it can be used to facilitate the separation of different timescales, with-220

out contributing to the final IMFs. EEMD is performed here with 200 iterations221

and white noise with an amplitude of 0.2 times the standard deviation of the222

FWD series (following Wu and Huang (2009)).223

Figure 3(a) shows a time series of FWD from MIROC-ESM-CHEM under224

RCP4.5, calculated using the Haigh and Roscoe (2009) method, alongside the225

IMFs from EEMD (Figure 3(b)). Most of the high-frequency variability in the226

time series, with a period of less than 3 years, is contained in the first two IMFs227

(not shown). The local maximum near 2000 is captured in the sixth IMF, and228

the increasing trend through the period shown is captured in the residual. The229

equivalent result using EMD is shown in Figure 3(d). In this example, it can be230

seen that the different frequencies have not been satisfactorily separated. This231

is particularly clear in the third IMF (top line of Figure 3(d)), where the period232

of the oscillation around the year 2000 is double that in the rest of the IMF.233

IMFs that can be distinguished from the equivalent IMFs of a noise time234

series of the same length are significant, and can be taken to represent physically235

meaningful signals. White (Wu and Huang (2004), Wu et al. (2007)) and red236

(Franzke (2009)) noise have both been used in previous studies to assign signif-237

icance to IMFs from climate data. There is no physical reason why the FWD238

in one year would be dependent on the date in another year (Black et al. (2006)239

also considered each event as an independent sample). Therefore, a comparison240

with a white noise series has been used to determine when an IMF is significant,241

following Wu and Huang (2004).242

A significant difference from a white noise time series is identified through243

analysis of the period (T ) and energy density (E) of each IMF. Wu and Huang244

(2004) show that the probability density function for each IMF of a white noise245

time series is well approximated by a normal distribution, and that the prob-246

ability distribution of the energy of the nth IMF, NEn, is a χ2 distribution,247

with NEn degrees of freedom, where En is the mean of En when the number248

of data points, N, approaches ∞. The spread of different confidence intervals249

as a function of the mean energy of each IMF can then be determined. Wu and250

Huang (2004) define y = lnE and show that for |y− y| � 1, the distribution of251

the energies is Gaussian. The spread lines can then be approximated by252

y = −x± k
√

2
N
ex/2 (1)

where x = lnTn, Tn is the mean period, and k is a constant from the percentiles253

of the normal distribution. Example energies and periods from 1000 white noise254
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time series of 1000 data points, and the spread lines from the 95% confidence255

interval, are shown in Figure 3(c). Energy densities from a data time series that256

lie outside the bounds of the spread lines can be assumed to be significantly257

different from those expected from a white noise time series, and are therefore258

expected to contain some information at that confidence level.259

3 Past and future trends in final warming date260

Mean FWDs in the individual models are shown in Figure 4 for three periods:261

1870-1900, 1979-2005, and 2070-2098. In most cases, the FWD is one to two262

weeks later in 2070-2098 compared to 1870-1900. In the RCP4.5 experiment263

the delay ranges from a change of 1 day in INMCM4 to 9 days in CanESM2,264

CSIRO-Mk3.6.0, GISS-ES-R, and NorESM1-M (Figure 4(a)). In RCP8.5 the265

delay compared to 1870-1900 ranges from 2 days in INMCM4 to 15 days in266

CanESM2 (Figure 4(b)). With the exception of CNRM-CM5 and GISS-E2-R,267

all models have later FWDs in 2070-2098 in the RCP8.5 experiment than in268

RCP4.5. Figure 4(c) compares FWD from 1870-1900 to 2070-2098. There is269

some evidence of a saturation effect here, with models with a very late historical270

FWD appearing to show less of a change in the future.271

Figure 4(d) shows the 1979-2005 mean FWD for each model, compared to272

ERA-Interim and CFSR. In all models except MIROC5, the FWD is too late273

compared to the reanalyses, with most models having an FWD that is signifi-274

cantly later. Such a late bias has been identified in earlier model evaluations,275

e.g. Butchart et al. (2011). It can also be seen in Figure 4(d) that most models276

underestimate the inter-annual variability in FWD compared to reanalyses.277

The late bias in model FWDs is reflected in the high- and low-top ensemble278

means, shown in Table 2, and in Figure 5 alongside those from ERA-Interim279

and CFSR. The mean FWDs in the period 1979-2005 are day 312 and day 313280

in ERA-Interim and CFSR respectively. The low-top mean FWD is around 2281

weeks late, with a 1979-2005 mean of day 327. The high-top ensemble mean is282

in better agreement with the reanalysis values, but is still late on average, with283

a 1979-2005 mean of day 321 (Table 2). For all periods shown in Figure 4, the284

mean FWD from the low-top ensemble is around a week later than that from285

the high-top ensemble (Table 2).286

The FWD from the low- and high-top ensemble is shown in Figure 6 for287

the historical and RCP4.5 and historical and RCP8.5 experiments. There is288

more inter-model spread and inter-annual variability in the low-top ensemble,289

although there is still a considerable amount of inter-annual variability in the290

FWD from the individual high-top models.291

A marked delay in FWD can be seen in the high-top ensemble from the292

late 1970s to the late 1990s (Figure 6). This is associated with the localised,293

seasonal, cooling that results from ozone depletion in this period. Under RCP4.5294

this increase in FWD is followed by a steady decrease to 2100, but in RCP8.5295

a more modest decrease is seen, followed by a small trend towards later FWDs296

by 2100. The large inter-model spread amongst the low-top models makes such297
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features difficult to distinguish in the low-top ensemble. However, there is some298

sense of a shift towards later FWDs in the late twentieth century.299

The large interannual variability and inter-model spread in FWD makes300

it difficult to compare patterns of behaviour across the models, although the301

spread in absolute values is important to bear in mind. The FWD in all models302

is now adjusted to the 1860-1900 mean to assist discussion of the change in303

FWD across the models. In Figure 7, an 11-year running mean has also been304

applied, which removes high frequency inter-annual variability, without obscur-305

ing decadal variability. The ensemble means shown in Figure 7 are calculated306

by first finding the ensemble mean of the adjusted raw data, then calculating307

the 11-year running mean.308

More similarities can be seen in the behaviour of the low- and high-top309

models in Figure 7 compared to Figure 6. A clear increase in FWD can now be310

seen in the low-top ensemble, although the change is not as rapid, large, or as311

consistent across models, as in the high-top ensemble. A return to earlier FWDs312

in the twenty-first century can now be seen in the low-top ensemble mean under313

RCP4.5, although the rate of change is still small compared to that seen in314

the high-top ensemble. Under RCP8.5, the FWD in the low-top ensemble mean315

shows very little change in the twenty-first century. In contrast, a clear decrease316

can be seen in the first half of the twenty-first century in the high-top ensemble,317

followed by an increase towards the end of the century. The large twenty-first318

century inter-model spread in the low-top ensemble, even after adjusting to the319

1860-1900 mean, may obscure some of this behaviour in the low-top ensemble320

mean. However, there is no convincing evidence of such a pattern in the FWDs321

from individual models. Such behaviour can be seen in a number of the high-top322

models.323

4 Drivers of past and future trends in final warm-324

ing date325

The primary drivers of changes in FWD are anticipated to be changes in strato-326

spheric ozone and well-mixed greenhouse gas concentrations. These changes will327

occur on different timescales, and have different functional forms in the time-328

series. As such, their signature can be expected to be seen in different IMFs.329

Increasing greenhouse gases are expected to be linked to a delay in the FWD,330

while the depletion and recovery of stratospheric ozone will produce a delay fol-331

lowed by an advance: a signature with a period in the region of 60 years. These332

responses are likely to be seen in the residual and the last IMF respectively. Fig-333

ure 1(b) shows that the largest changes in stratospheric ozone concentrations at334

southern high latitudes occur in the first half of the twenty-first century. Hence,335

it is anticipated that changing ozone concentrations will be the primary driver336

of FWD changes here, with greenhouse gases becoming increasingly important337

in the second half of the century. Figure 1(a) shows that greenhouse gas con-338

centration changes in RCP4.5 and RCP8.5 are very different in the latter half339
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of the century, with almost no change in concentrations in RCP4.5 and rapid340

increases in RCP8.5. The potential influence of this difference on FWD was341

hinted at in Figure 7. It is particularly clear in the comparison of the high-top342

ensemble means for the two scenarios, where a negative trend from ∼2070 is343

seen in RCP4.5 and a positive trend is seen in RCP8.5.344

The sum of the residual and the last IMF for each model, and the low-345

and high-top ensemble means, are shown in Figure 8. The ensemble mean is346

calculated by finding the ensemble mean of the adjusted data, then performing347

EEMD on this mean. All models and the ensemble means show, with the348

exception of MIROC5, later FWDs around the turn of the century, under both349

RCP4.5 and RCP8.5. Patterns of behaviour seen in the ensemble mean are350

similar to those seen in the running means in Figure 7: an increase then decrease351

in FWD under RCP4.5; and an increase then decrease then increase in the high-352

tops under RCP8.5. There is even a suggestion of this RCP8.5 response in the353

low-top models HadGEM2-ES and CSIRO-Mk3-6-0. However, the amplitude354

of twenty-first century changes are smaller in the the low-top ensemble than355

the high-top case. The larger response of high-top models to greenhouse gas356

forcing towards the end of the twenty-first century is consistent with the larger357

temperature gradient changes at the tropopause level simulated by these models358

(Wilcox et al., 2012).359

Significance testing was carried out to determine which IMFs show patterns360

significantly different to those that may be identified in a white noise time series.361

The Wu and Huang (2004) method was used, including their assumption that362

the energy of the first IMF comes solely from noise and can be used to re-scale363

the energy density of the other IMFs. Figure 9 shows the sum of significant IMFs364

(at the 5% level) with periods greater than 50 years (in order to consider only365

inter-decadal variability) for the low- and high-top ensemble mean (Figure 9 (a)366

and (b) respectively). The signatures of the high- and low-top significant IMFs367

follow the patterns seen in the running means, and sums of the last two IMFs: a368

more pronounced peak at the turn of the century in the high-top ensemble, and369

a trend towards later FWDs at the end of the twenty-first century in RCP8.5370

in the high-top ensemble only.371

The spread function of the 95% and 99% confidence intervals for white noise372

and energies of the individual IMFs are shown in Figure 10. Here, a significant373

IMF is identified when it lies outside the inner pair of dotted lines, which indicate374

the 5th and 95th percentile for white noise. The outer pair of dotted lines indicate375

the 1st and 99th percentile.376

Figure 10 shows that the residual is clearly significant for both ensembles377

and scenarios. For the high-top ensemble, the last IMF is also significant at the378

1% level for both scenarios. In a reflection of the larger inter-model spread, and379

the resulting weaker peak in FWD around the turn of the century, the last IMF380

of the low-top ensemble mean is significant at the 5% level for the historical381

and RCP4.5 scenario, and not at all for the historical and RCP8.5 scenario382

(Figure 10(b)). The higher energy of the last IMF in RCP8.5 in the high-top383

mean compared to the low-top mean is not due only to a differing response to384

ozone forcing. Analysis of the structure of the IMFs shows that in the high-top385
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RCP8.5 case the last IMF includes some response to GHG forcing, in addition386

to the anticipated ozone response. The delay in FWD towards the end of the387

twenty-first century is incorporated in the last IMF as the timing of the trend388

fits with the ∼60 year period of the response to stratospheric ozone changes.389

Multiple linear regression analysis was also performed, regressing FWD against390

a constant, a timeseries of September to November mean Antarctic mean ozone391

at 50 hPa, and ln(GHG), where GHG is represented by the CO2 equivalent392

values shown in Figure 1(a). Following Roscoe and Haigh (2007), these indices393

are normalised to allow direct comparison of the regression coefficients. The re-394

gression slope, Pearson correlation coefficient, and significance from a two-tailed395

student’s t-test are shown in Table 3 for the high- and low-top ensemble mean396

for RCP4.5 and RCP8.5. For ensemble mean calculations, ozone was taken from397

the Cionni et al. (2011) data.398

In both scenarios, FWD has a stronger relationship with both the GHG index399

and the ozone index in the high-top ensemble. This can be seen in the larger400

regression slopes and linear correlations shown in Table 3, and in comparison of401

the multiple linear correlations: 0.63 (0.64) and 0.76 (0.78) for RCP4.5 (RCP8.5)402

for the low- and high-top ensemble mean respectively. This is a reflection of403

the more consistent cross-model behaviour seen in the high-top models (e.g.404

Figure 8).405

There is little difference between RCP4.5 and RCP8.5 in the statistics relat-406

ing to the ozone index (Table 3). The more influential role of GHGs in RCP8.5407

is reflected in the regression slopes as well as the significance. The larger regres-408

sion slope, linear correlation, and significance associated with the GHG index409

in RCP8.5 for the high-top ensemble compared to the low-top is likely to be410

a reflection of the delay in FWD in the high-top ensemble mean near the end411

of the twenty-first century in response to GHG forcing , which is not seen in412

RCP4.5, or the low-top ensemble mean. This echoes the higher energies found413

in the last IMF and residual of the high-top ensemble mean in RCP8.5.414

In the illustrations of FWD in CMIP5 models shown in this study, MIROC5415

has been a clear outlier. The model shows almost no change in FWD from 1860416

to 2100 (Figure 4, Figure 7) and the structure of the timeseries from the sum417

of the last IMF and the residual mirrors those from other low-top models. In418

the high-top ensemble, there are no such striking outliers (Figure 8). However,419

MIROC-ESM-CHEM shows larger inter-decadal variations in FWD than other420

models in the group. While the behaviour of FWD in MIROC-ESM-CHEM is421

not especially unusual in the context of the other models, is it possible that the422

large changes simulated by MIROC-ESM-CHEM and the very small changes423

from MIROC5 have enough influence on their respective ensemble means to424

dominate the differences seen between the high- and low-top ensembles?425

It was found that removing the MIROC models from the ensembles had no426

effect on our conclusions from EEMD analysis at the 5% level. As one would427

expect, there are small changes to the energies of the IMFs as a result of the428

removal, but the IMFs identified as being significantly different to those expected429

from white noise are the same, and their structure is qualitatively unchanged.430

The results of the multiple linear regression analysis without the MIROC431
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models is shown alongside the results for the whole ensemble in Table 3. As432

expected, removing MIROC5, a model that shows little change in FWD, from433

the low top ensemble slightly increases the correlation between the FWD and434

both ozone and ln(GHG) in both the RCP4.5 and RCP8.5 case, but not to such435

an extent that the significance level is altered. The removal of MIROC5 results436

in an increase in the magnitude of the regression slope for the ozone index, and437

for the GHG index in the RCP8.5 scenario. It also brings the regression slope438

for the GHG index closer to the anticipated positive value in the RCP4.5 case.439

MIROC-ESM-CHEM simulates a slightly larger response to stratospheric440

ozone depletion compared to the rest of the high-top ensemble, but doesn’t441

show a delay in FWD towards the end of the twenty-first century. Thus, it is442

anticipated that the removal of the model from the high-top ensemble will result443

in a decrease in the magnitude of the regression slope of the ozone index and444

correlation, and an increase in the regression slope and correlation for the GHG445

index. Such changes can be seen in both the RCP4.5 and RCP8.5 case (Table 3).446

These changes are marked enough to decrease the significance of the relationship447

between stratospheric ozone and RCP8.5 FWD, and of the relationship between448

RCP4.5 FWD and GHG.449

As one would expect, removing the MIROC models from the analysis does450

change the statistics. However, the conclusions drawn from the analysis are un-451

changed. The importance of stratospheric ozone changes as a driver of changes452

in FWD is consistent across both scenarios, with a unit change in ozone concen-453

tration having more influence on the high-top ensemble mean than the low-top454

ensemble mean. GHG changes play more of a role in RCP8.5 than RCP4.5, and,455

as for ozone changes, result in a larger change in FWD in the high-top ensemble456

mean than the low-top mean. The larger values of the regression coefficients in457

the high-top case reflect the higher energies of the residual and last IMF seen458

in Figure 10, and the more consistent behaviour of the models seen in Figure 8.459

5 Conclusions460

Changes in final warming date are known to drive persistent tropospheric anoma-461

lies with a similar structure to the southern annular mode (Thompson et al.462

(2005), Black et al. (2006)). Such changes are sensitive to external forcing463

from greenhouse gases and, in particular, stratospheric ozone. This results in464

pronounced changes in Southern Hemisphere final warming date, with a peak465

around the year 2000, which can be expected to influence spring and summer-466

time trends in high-latitude surface climate.467

The Southern Hemisphere final warming date is around one week too late468

in CMIP5 high-top models, and two weeks too late in low-top models com-469

pared to ERA-Interim and the Climate Forecast System Reanalysis (1979-2005).470

The high-top models show more consistent absolute values and changes in final471

warming date in both the historical and future periods than low-top models472

After adjustment to the 1860-1900 mean, similar behaviour can be seen in473

both the high- and low-top ensembles. A shift to later final warming dates474

11



is seen in the historical period as a response to stratospheric ozone depletion,475

and a return to earlier final warming dates occurs as ozone recovers. In the476

high-top ensemble, there is also a shift towards later final warming dates in the477

latter half of the twenty-first century in RCP8.5, which is consistent with the478

larger meridional temperature gradient identified in high-top models by Wilcox479

et al. (2012). The high-top models show a more consistent pattern of change,480

and larger changes, in response to forcing compared to the low-top models.481

This difference is apparent in both the comparison of significant IMFs, and the482

coefficients from multiple linear regression.483

Further investigations with larger ensembles of high- and low-top models,484

with consistent ozone concentrations, are required. Simpson et al. (2011) showed485

that the late bias in final warming date contributes to too-persistent southern486

annular mode anomalies in summer, and may cause models to respond too487

strongly to anthropogenic forcing in this season. Hence, the difference between488

the high- and low-top ensemble mean results, the large spread in the low-top489

ensemble, and the more pronounced late bias in final warming date in the low-490

top ensemble, suggest that high-top models are likely to be required to produce491

accurate projections of future Southern Hemisphere surface climate.492
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Table 1: CMIP5 models used in this study. High top models are are denoted
by *. C1: Cionni et al. (2011); C2: Modified Cionni et al. (2011), with a solar
cycle added in future; C3: Modified Cionni et al. (2011), with zonal averages
in troposphere, and future concentrations in the stratosphere determined by
combining two terms in a multiple linear regression analysis; P1: Lamarque et
al. [2010, 2011]; P2: Kawase et al. (2011); S1: Ozone concentrations from a
chemistry climate model, used offline.
Model Model top Number Number of levels % of levels Ozone

of levels above 200 hPa above 200 hPa
BCC-CSM1.1 2.917 hPa 26 13 50 C1

CNRM-CM5 10 hPa 31 9 29 Interactive
CSIRO-Mk3.6.0 4.52 hPa 31 9 29 C1

HadGEM2-ES 40 km (∼2.3 hPa) 38 15 39 C2

INMCM4 10 hPa 21 8 38 C1

NorESM1-M 3.54 hPa 26 13 50 P1

MIROC5 3 hPa 56 17 30 P2

CanESM2* 1 hPa 35 10 29 C3

GISS-E2-R* 0.1 hPa 40 19 48 Interactive
HadGEM2-CC* 85 km (∼0.01 hPa) 60 37 62 C2

IPSL-CM5A-LR* 0.04 hPa 39 22 56 S1

MIROC-ESM-CHEM* 0.0036 hPa 80 63 79 Interactive
MPI-ESM-LR* 0.01 hPa 47 25 53 C2

MRI-CGCM3* 0.01 hPa 48 20 42 C2

Table 2: Final warming date in the high- and low-top ensemble mean, and from
reanalyses

1870-1900 1979-2005 2070-2098 (RCP4.5) 2070-2098 (RCP8.5)
High-top 310 322 317 322
Low-top 318 327 323 325
ERA-Interim/CFSR - 312/313 - -
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Table 3: Results from multiple linear regression analysis. Significance is from a
2-tailed t-test. Values in brackets show the equivalent values when the MIROC
models are excluded from the ensemble mean.
RCP 4.5
Low-top Regression slope Pearson correlation coefficient Significance
Ozone -11.00 (-12.89) -0.63 (-0.69) <0.1% (<0.1%)
ln(GHG) -2.68 (-0.38) 0.36 (0.41) >5% (>5%)
High-top
Ozone -14.65 (-12.69) -0.75 (-0.71) <0.1% (<0.1%)
ln(GHG) 9.69 (17.12) 0.50 (0.51) >5% (<5%)

RCP 8.5
Low-top Regression slope Pearson correlation coefficient Significance
Ozone -9.94 (-12.39) -0.63 (-0.69) <0.1% (<0.1%)
ln(GHG) 11.01 (12.64) 0.39 (0.42) <1% (<1%)
High-top
Ozone -14.51 (-12.75) -0.76 (-0.72) <0.1% (<1%)
ln(GHG) 17.27 (22.11) 0.49 (0.51) <0.1% (<0.1%)

(a) (b)

Figure 1: (a): Global-mean annual-mean greenhouse gas concentration (CO2

equivalent) for RCP4.5 (dashed) and RCP8.5 (solid). (b): Antarctic mean
(75-90◦S) ozone concentrations at 50 hPa, relative to 1900 values, from Cionni
et al. (2011) (black), modified versions of Cionni et al. (2011) (dotted), pre-
scribed ozone from other sources (dashed), and from models with interactive
stratospheric chemistry or those using independent chemistry climate models
(grey).
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Figure 2: Historical final warming date calculated from CNRM-CM5 data using
the Black and McDaniel method (red), the Haigh and Roscoe method using
daily data (blue dashed), and the Haigh and Roscoe method from monthly data
using interpolation (black).
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(b)(a)

(d)(c)

Figure 3: (a): Final warming dates from MIROC-ESM-CHEM for the historical
and RCP4.5 experiments, calculated using the Haigh and Roscoe method. (b):
The associated high order IMFs from EEMD. (c): The distribution of the energy
and period of IMFs from 1000 white noise time series, each containing 1000
data points, and the spread function of the 95% confidence interval. (d): The
associated high order IMFs from EMD, showing evidence of mode mixing.
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(c) (d)

(a) (b)

Figure 4: Mean final warming dates for each model for (a):1870-1900 (left bars)
and 2070-2098 (right bars) in RCP4.5, (b): 1870-1900 (left bars) and 2070-2098
(right bars) in RCP8.5, (d): 1979-2005. Whiskers show ±2 standard errors.
High-top models are indicated by hatching. In panel (d), the horizontal solid
lines show the mean final warming date from ERA-Interim (black) and CFSR
(blue), with dashed lines indicating ±2 standard errors in each case. The rela-
tionship between 1870-1900 and 2070-2098 final warming date is shown in panel
(c) for RCP4.5 (squares) RCP8.5 (stars).
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(a) (b)

Figure 5: Final warming date from ERA-Interim (blue) and CFSR (red) with
(a): the low-top ensemble mean final warming date (black), (b): the high-top
ensemble mean final warming date (black).

21



(a)

(c)

(b)

(d) High-top:

Low-top:

Figure 6: Final warming date for low-top (left column) and high-top (right
column) models. (a,b): historical and RCP4.5, (c,d): historical and RCP8.5.
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(a)

(c)

(b)

(d) High-top:

Low-top:

Figure 7: 11-year running mean final warming date for low-top (left column)
and high-top (right column) models, with the ensemble mean (thick black line).
(a,b): historical and RCP4.5, (c,d): historical and RCP8.5. Raw data is ad-
justed to the 1860-1900 mean.
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(a)

(c)

(b)

(d) High-top:

Low-top:

Figure 8: Sum of the residual and last IMF of final warming date for low-top (left
column) and high-top (right column) models, with the ensemble mean (thick
black line). (a,b): historical and RCP4.5, (c,d): historical and RCP8.5. Raw
data is adjusted to the 1860-1900 mean.
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(b)(a)

Figure 9: Sum of the significant IMFs of final warming date for low-top (dotted)
and high-top (solid) ensemble means. (a): historical and RCP4.5, (b): historical
and RCP8.5. Raw data is adjusted to the 1860-1900 mean.

(b)(a)

Figure 10: Spread function (dotted lines) and energies of individual IMFs for
the low-top (triangles) and high-top (crosses) ensemble means. (a): historical
and RCP4.5, (b): historical and RCP8.5. The inner pair of dotted lines show
the 95% confidence interval, the outer pair show the 99% confidence interval.
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