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Abstract

Drought characterisation is an intrinsically spatio-temporal problem. A limitation
of previous approaches to characterisation is that they discard much of the spatio-
temporal information by reducing events to a lower order subspace. To address
this, an explicit 3-dimensional (longitude, latitude, time) structure based method
is described in which drought events are defined by a spatially and temporarily
coherent set of points displaying standardized precipitation below a given thresh-
old. Geometric methods can then be used to measure similarity between individual
drought structures. Groupings of these similarities provide an alternative to tradi-
tional methods for extracting recurrent space-time signals from geophysical data.
The explicit consideration of structure encourages the construction of summary
statistics which relate to the event geometry. Example measures considered are the
event volume, centroid, and aspect ratio. The utility of a 3-dimensional approach is
demonstrated by application to the analysis of European droughts (15°W to 35°E
and 35°N to 70°N) for the period 1901-2006. Large scale structure is found to be
abundant with 75 events identified lasting for more than 3 months and spanning
at least 0.5 x 10%m?. Near complete dissimilarity is seen between the individual
drought structures and little or no regularity is found in the time evolution of even
the most spatially similar drought events. The spatial distribution of the event
centroids and the time evolution of the geographic cross-sectional areas strongly
suggest that large area, sustained droughts result from the combination of multiple
small area (~ 10%m?) short duration (~3 months) events. The small events are
not found to occur independently in space. This leads to the hypothesis that local

water feedbacks play an important role in the aggregation process.

Keywords: Drought, climatology, structure, classification, standardized precipita-

tion index, SPI



1 Introduction

Drought has claimed over one million lives and $60 billion in losses globally since
1974 (UN 2008, MunichRe 2008). Modern water supply infrastructure can eliminate
direct mortalities yet the societal impacts of water scarcity remain and cannot be
overstated. A thorough understanding of the peril is essential for mitigating against
the risk as it stands and for preparedness in the face of climate change.

The majority of notable high precipitation events are characterised by highly
localised, short lived, heavy downbursts. The same is not true of the most notable
drought events. These typically last for several months or even years and span thou-
sands of square kilometres. Previous authors have considered the spatial and tempo-
ral nature of drought at regional (Livada & Assimakopoulos 2007, Vicente-Serrano
2006), continental (Briffa et al. 1994, Lloyd-Hughes & Saunders 2002, van der Schrier
et al. 2006) and global scales (Sheffield et al. 2009). A limitation of these studies
is that they reduce the full 3-dimensional space-time drought structure to a lower
order subspace. The analysis is limited to the time evolution of fixed areal quan-
tities, for example, the global area average; and/or the time dependent amplitude
of fixed spatial patterns, such as loadings onto empirical orthogonal functions. The
block neighbourhood used in the severity-area-duration (SAD) approach (Andreadis
et al. 2005) is a true space-time representation; however, the focus on areal extent
obscures much of the time evolution of the drought structure. Consideration of the
space-time structure is fundamental to the understanding of the role of external and
internal forcings on drought development. Improved appreciation of these drivers is
crucial for the development of effective monitoring and early warning systems.

This paper describes a method for characterizing coupled space-time deficits from
gridded precipitation data. The emphasis is placed on the explicit representation of

the intrinsic 3-dimensional space-time deficits that constitute drought.



2 Methodology

2.1 Drought definition

The term ‘drought’ is frequently used to refer to the adverse impacts of the lack
of precipitation rather than the lack of precipitation as a meteorological event
(Smakhtin & Schipper 2008) and this can present difficulties with respect to event
definition. In this paper, drought is defined in a strictly meteorological sense. Specif-
ically, it is defined by negative values of the Standardized Precipitation Index (SPI)
(McKee et al. 1995) at the 3-monthly time scale (SPI3). This definition represents a
good proxy for large scale stream flow drought in Europe (Lloyd-Hughes et al. 2009,
Szalai & Szinell 2000) but since an objective definition of drought remains elusive
it should be remembered that other definitions may be more appropriate for other

applications.

2.2 Feature extraction

Drought data on a regular grid, either observed or modelled, can be represented as
a set of maps of values at fixed geographical locations stacked sequentially in time
order as a 3 dimensional array (henceforth data stack) with dimensions representing
longitude, latitude, and time. A variety of techniques exist for the extraction of
recurrent spatial patterns from such stacks of data e.g. principal component analysis
(PCA), empirical orthogonal teleconnections, cluster analysis, etc. (see Hannachi
et al. (2007) for a review). A common feature of these methods is invariance to
the time ordering of the grids i.e. the results remain the same for any ordering
of the maps within the stack. Similarly, a wide range of time series techniques are
available to extract temporal patterns from the data (see von Storch & Zwiers (1999)
or Wilks (1995)) e.g. t-mode PCA, Fourier decomposition, wavelet analysis, etc..
A common feature of these methods is restriction to a particular spatial domain,
be this a fixed areal quantity or the amplitude of fixed spatial weights such as a
principal component.

The choice of technique for the extraction of common space-time features is



limited. Methods commonly applied in the atmospheric sciences are restricted to
principal oscillation patterns, extended empirical orthogonal functions (eEOF), and
Hilbert space decomposition. Unfortunately, these methods will not reliably detect
irregularly occurring features (Horel 1984) and interpretation of the resultant pat-
terns is often difficult without prior knowledge of the signal to be retrieved. In light
of these difficulties, this paper proposes a simple agglomerative technique to identify
large scale coherent space-time drought events.

Andreadis et al. (2005) describe a spatial identification procedure in which all
pixels that have a soil moisture (or runoff) percentile value below 20% are considered
as being under drought. Those pixels are then classified into drought classes using
a simple clustering algorithm. The first pixel under drought is assigned to the first
class. Then, the 3 x 3 neighborhood of this pixel is searched for pixels under drought
that are classified in the same drought cluster. This procedure is repeated until no
pixels in the 3 x 3 neighborhood of the current pixel are under drought, and a
new cluster is created for the next pixel below the drought threshold. A natural
extension of this method is to extend the clustering from the 3 x 3 spatial domain
to 3 x 3 x 3 space-time domain. Such an extension is described below.

The aim of the new method is to extract coherent space-time structures from
within the data. A starting point is to identify those cells within the stack of grids
that are in drought. This is achieved by defining drought at a cell if the SPI3 value
is < -1 (below one standard deviation below expected for the 3 monthly period at
that time of year at that location). The next step is to locate any neighbouring cells
that are also in drought. The definition of neighbour presents several possibilities.
At a simple level, Figure 1 (a), neighbouring cells in two dimensions are taken to
be those which share a common vertex. However, if the data contain gaps, as is
common with observational data, then it is useful to extend this concept to cells
that share a common vertex at some radius R cells away. The concept is illustrated in
Figure 1 (b) for R = 1 where the two groups of cells on the left hand side (originally
coloured orange and purple) are now considered to form a single unit (coloured
orange). Coherency in three dimensions follows similarly by the consideration of

common vertices within the data stack in the planes of cells above and below the



cell of interest.

It is important to note that this treatment of the data implicitly equates the
length scales ( longitude = latitude = time) of the individual cubes (voxels) of
data that comprise the stack. The general case requires a separate scaling for each
dimension (longitude, latitude, time) with radii (Rjon, Riat, Rime). Here it is suf-
ficient to consider Ry, and R;; to be comparable and equal. The explicit time
averaging applied in the construction of the SPI provides direct control over the
temporal scaling and it is appropriate to set Ryn. = 0 and only consider immediate

neighbours in time.

2.3 Data

The proposed methodology is tested over Europe on SPI3 values computed from
the CRU TS3 0.5° monthly data set 1901-2007 (Mitchell & Jones 2005). A useful
feature of the T'S3 dataset is the provision of auxiliary grids which supply a count
of the stations contributing to each monthly grid cell value. The counts drop off
sharply and their temporal variation becomes larger in the estimates of precipitation
toward the east of Europe. Such changes in the network of contributing stations are
likely to introduce inhomogeneities in the spatio-temporal correlation structure of
the data. This motivates a truncation of the European domain at 35°E. The study
region is thus defined to be the land area 15°W to 35°E and 35°N to 70°N.

The focus of this preliminary analysis is on large scale events and the thus the
raw SPI data are filtered to eliminate spatially coherent events smaller than 500,000
km?. Such an area is of the order typical of the extra-tropical cyclones that dominate
the European climate (Barry & Chorley 2003) and is in agreement with the practice
advocated by Sheffield et al. (2009) for eliminating tenuous spatial connections.
In order to further focus on the most temporally coherent events, the constraint
is extended to the degree of spatial overlap between successive time slices of each
particular event. Event structures in which the overlap falls below 500,000 km? are

considered to be incoherent and are split into separate events.



2.4 Similarity

Once a set of coherent space-time events has been identified it is possible to test
for similarities in their structure. The comparison of 3-dimensional shapes remains
an active topic in computer science (Lmaati et al. 2009). The approach employed
here is to construct a dissimilarity matrix of rank n where n is the n'* largest event
as defined by the n neighbouring voxels of which it is comprised. The geographical
extent of each event (longitude, latitude) is bounded by the study region, namely,
15°W to 35°E and 35°N to 70°N. The temporal extent of the event is bounded by the
first and last voxels in the structure along the time direction. Events occurring at
different times can be centred in a common space by aligning the time components
of the centroids of each structure. Thus it is possible to embed all possible events
within a subspace of the space-time domain dimensioned Range;,,, Range;,;, and
Range; where the first two are defined by the study region and Range; is defined
by the data as the longest duration event.

A simple measure of similarity is the Jaccard coefficient S; (Jaccard 1901, Gower

& Legendre 1986) where
a

S e W

and a is the number of elements shared between the two events, that is the number
of common voxels. b is the number of voxels in event one which do not coincide
with voxels in event two and ¢ is the number of voxels within event two which do
not coincide with voxels in event one. S; has the desirable property of normalising
the event volume but many other choices are possible (see Legendre & Legendre

(1998)). Dissimilarity is then defined as (ibid.)

Dj=4/1-35; (2)

The resulting dissimilarity matrix can be decomposed by a variety of clustering
techniques (Kaufman & Rousseeuw 1990). This analysis uses partitioning about

medoids (PAM) (ibid.) which is a robust alternative to the traditional k-means



clustering method. An inherent problem with clustering analysis is the choice of
the number of clusters k into which the data are partitioned. The silhouette width
(Rousseeuw 1987) provides a comparison of the tightness of the groupings of events
within each cluster to the separation between clusters. Taking the i** object in the
data set and denoting the cluster to which it has been assigned as A, then when the

cluster contains other objects in addition to ¢ it is possible to compute

a(1) = average dissimilarity of i to all other objects of A (3)

Considering any cluster C' which is different from A, then

d(i,C') = average dissimilarity of i to all objects of C (4)

Assuming that k > 1, that is there is more than one cluster, then it is possible to

locate the cluster B which contains the minimum

b(i) = min{d(i, C')} (5)
from any C' # A. The cluster B is the second best choice for the assignment of
object 7. The silhouette width is defined as

b(i) — ali)
max{a(z), b(i)}

s(i) = (6)

The best case is a value close to +1 which implies that the within cluster dissimilarity
a(7) is much smaller than the smallest between cluster dissimilarity b(i), that is the
second best choice of cluster B is not nearly as close as the actual choice A. When
s(7) is close to zero a(i) and b(i) must be nearly equal and it not clear whether 4
should have been assigned to A or B. If s(i) is close to —1 then a(i) is much larger
than b(i) and it would be more natural to classify i as belonging to B, under these

circumstances it is likely that ¢ has been misclassified.



2.5 Summary statistics

The 3-dimensional nature of the proposed event definition means that, in addition
to the structural classification, it is possible to compute summary statistics which
relate to the event geometry. The specific choice of statistic will depend upon
the task in hand e.g. climate model validation, visualization, or trend detection.
Example measures considered here are the volume, centroid, and aspect ratio. The
event volume is important since this represents a measure of the absolute severity
in combined terms of extent and duration. The aspect ratio discriminates between
large volumes arising from short period deficits over a wide area and those accrued
from sustained deficits over limited areas. Finally, the event centroids can be used
to explore the distribution of events in space and time.

A complicating factor is the dependence of the grid cell area (and hence cell
volume) on latitude. Taking the Earth to be spherical with radius R, = 6371km the

grid cell area between longitudes A\; and A\, and latitudes ¢; and ¢, is given by
¢2 A2
Area = / R, / RecosddAdp = R2(ho — \1)(sings — sing) (7)
¢1 A1

which is used to transform from event volumes in grid cell units to deficits measured

in km2months.

3 Results

3.1 Event extraction: 1976

The well known European drought of 1976 (Zaidman et al. 2002, Doornkamp et al.
1980) provides an interesting example to illustrate the output from the extraction
procedure as applied to a single event. Figure 2 (a) is an isometric projection of the
coherent voxels of SPI; < —1 captured by Ry, = Rt = 0 grid cell units of 0.5°
with Ryjme = 1 month. The view is from the southwest looking backward in time
from December to January 1976. Whilst the image serves the pedagogical purpose

of illustrating the 3 dimensional coherency of the data, it does little to reveal the



spatio-temporal characteristics of the drought. To address this panel (b) provides a
Hovmoller type plot of the number of voxels in the drought volume counted north-
south through time. This view is made up of pixels which are shaded according to
the number of cells within the event volume counted along each meridional band.
Data for a particular month form a row which completely spans the study region
from west to east. The coloured elements represent the shadow, or ‘footprint’, of
the event as projected onto the back plane of the bounding box shown in panel (a).
The depth of colour represents the integrated thickness of the event in this direction.
Since the number of missing values is a function of the coastline, this representation
is limited by the fact that the cell count varies along an particular longitude and
hence the maximum possible event depth varies across the domain. Thus, in con-
trast to colour variations along a column which can readily be interpreted as changes
in the scale of the drought with time, variations along a row need to be interpreted
with caution. A further limitation of the 2-dimensional projection is that contribu-
tions are confounded along the direction of the summation. In particular, we lose all
sense of where a drought might break along any longitudinal band. Panel (c) pro-
vides a similar view but counts cells east-west through time. Finally, panel (d) maps
cell counts by location to represent the drought severity and maximum spatial ex-
tent. This view is analogous to the drought severity maps introduced by Andreadis
et al. (2005) except that here the map represents severity aggregated throughout
the lifetime of the event rather than for a snapshot of a particular time. Whilst this
remains an imperfect representation of the full 3-dimensional event structure, the
combined views capture the essence of the event. Importantly, we see the core of
the drought centred over mid-western Europe around the summer of 1976 and the
coherent evolution from earlier deficits in the south and west to later water shortages
over Scandinavia.

Since the choice of coherency radii (R, Rion, Riime) are likely to exert a signif-
icant influence on the form of the event, the extraction was repeated with Ry, =
Rt = 2 and Ryme = 1 grid cell units. The resultant strucutre (not shown) was
found to be very similar to the previous result. The differences are minor extensions

of the event to the south into Spain and Turkey. The sensitivities of smaller drought
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events to changes in coherency radii are considered in Section 3.3 below.

3.2 Spatio-temporal characterisation

Coherent space-time drought events were extracted from the European SPI3 dataset
1901-2006 for coherency radii R;,, = R, = 0,1, 2 grid cell units of 0.5°. Droughts
lasting less than 3 months were discarded to leave a total of 75, 89, and 96 events
respectively. Silhouette widths were computed for clusters of volumes from each of
the event sets defined by R,y = R, = 0,1,2. The number of clusters k£ was taken
from a minimum of 2 to a maximum defined by the number of events within the set.
The results are shown in Figure 3(a). The average silhouette width remains below
0.05 for all R and k considered. The standard interpretation of silhouette widths
Makra & Siimeghy (2007) is that average values below 0.25 indicate the absence
of any substantial structure within the dissimilarity matrix. The conclusion is that
there is no significant commonality of form between the individual drought events.
This result is confirmed by an alternative set of silhouette widths constructed by
aligning each event by start date rather than the temporal component of the centroid.
These are shown in Figure 3(b) where again the average widths are seen to remain
below 0.05.

The origin of the near complete dissimilarity between events is immediately ev-
ident from Figure 4. This is a map of the geographical location of the event cen-
troids of the 75 events captured by R = 1 and SPI3 < —1 and lasting for at least
3 months. With the possible exception of the clusters of events over Bellarus and
southern Finland, the majority of drought events are well separated. There is a
noticeable tendency for the centroids of the largest and longest droughts to cluster
around the central and eastern section of the study region. This is an example of
the ‘mid domain effect’ (Colwell & Lees 2000) whereby geometric constraints, in this
case missing data over the oceans to the north, south and west, lead to an apparent
geographical bias in the analyzed data.

Further dissimilarity is revealed by Figure 5 which maps the time evolution of
the locations of the event centroids. The tail of each arrow indicates the mean loca-

tion of the centroid during the first half of the event. The head of each arrow points
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to the mean location of the centroid during the later half of the event. The rose
diagram and histogram to the left of the map show a clear tendency for drought to
develop preferentially in either direction along the east-west axis. The distribution
mirrors the geographical bias seen in Figure 4 and arises from the greater availability
of grid cells along the east-west axis for any given drought to grow into. Likewise the
increase in land area north-south toward the east of the study region accounts for the
bias in west-east over east-west development. Whilst beyond the scope of this paper,
it would be an interesting exercise to construct a geographically constrained null hy-
pothesis of random orientation and test for any residual directionality in drought
development. The reason that such a test is not developed here is that the construc-
tion of the appropriate null events would require complete data coverage across the
study region. A partial solution might be to apply the present method to reanalysis
data such as ERA40 from the European Centre for Medium-range Weather Fore-
casting. Events could first be extracted from the full precipitation field across the
study region and then again with data over water masked out. Comparison between
the two events sets should provide information on the influence of data availability
on the orientation of the 3-dimensional drought structures. However, in order to
compare results from the reanalysis with observations (such as CRU TS3), great
care would have to be taken to ensure consistency in the autocorrelations (see e.g.

Beale et al. (2008), Legendre (1993)).

3.3 Summary statistics

The previous section considered the spatial characteristics of the centroids of the
events defined by Ry, = R, = 0. Here consideration is given to the distribution of
these events in time. Figure 6 plots each event (coloured by duration) on the time
line 1901-2007 and charts the evolution of the geographic cross-sectional areas. The
events have been coloured according to duration to aid comparison with Figures
4 and 5. There are three main points of interest. Firstly, with the exception of
two small events in the winter 1984-85, the events are well separated in time. The
absence of overlap between events indicates that large scale drought events within the

European sector tend to appear in isolation. Secondly, with the possible exception
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of 1976, all events which last for 9 months or longer exhibit a sharp contraction in
their extent at least once during their lifetimes. Similar contractions are seen in
the majority of events which last for 6 months or longer. This may indicate that
longer period droughts result from the merger of two or more shorter period events.
Thirdly, the rate of occurrence of drought exhibits variability at the decadal scale.
This includes extended periods such as 1934-1938, 1954-1959 and 1964-1969 where
large scale droughts are almost completely absent. It is interesting to note that
each of these periods corresponds with the negative phase of the North Atlantic
Oscillation (NAO). However, this observation is tempered by the strongly negative
NAO period 1939-1944 which is seen to be relatively drought rich.

The time series representation provided by Figure 6 permits a direct comparison
of the approximate timing and severity of the major events identified here with
those reported in previous drought catalogues (Briffa et al. 1994, Lloyd-Hughes &
Saunders 2002, van der Schrier et al. 2006, Sheffield et al. 2009, Lloyd-Hughes et al.
2009). Perhaps unsurprisingly given the general similarities of the drought indices
used, there is close correspondence between the event sets.

Moisture deficits in spring and early summer, in particular over the Mediter-
ranean region, have been shown to contribute to the development of extremely high
summer temperatures in continental Europe (Zampieri et al. 2009). If these results
extend to summer drought then it is reasonable to expect a seasonal bias in the onset
of the events in Figure 6. The histograms (inset Figure 6) show the seasonal distri-
bution of the dates in which the droughts begin and end. The counts are stacked by
event duration and coloured according to the same scale as the main figure. y? tests
against the null hypothesis of a uniform distribution of starts and finishes between
seasons gave p-values of 0.74 and 0.96 respectively and no significant seasonal bias
can be detected. However, it is interesting to note that 7 out the 8 longest droughts
began in either winter or spring.

To further test the sensitivity of the results to the choice of coherency radii, a
subset of the summary statistics described in Section 2.5 were computed for Ry, =
Ri.s = 0 and are displayed in Figure 7. Namely by row, these are the event volumes,

durations, maximum spatial areas, and aspect ratios. Each column represents a
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specific choice of radius. Collectively, these confirm the tentative conclusion drawn
from analysis of the 1976 event in Section 3.1; that the extracted drought structures
are insensitive to small changes in R, and R;;. Note that the absence of events
lasting for less than 3 months or with maximum areas less than 500,000km? which
were excluded prior to the analysis. The distributions of event volume, duration, and
to a lesser extent the maximum extent, exhibit strong positive skew. This supports

the hypothesis that the larger scale droughts are aggregates of smaller ones.

4 Discussion

4.1 Event definition

It has been necessary to impose many subjective choices on the selection of pa-
rameters that define the event structure, all of which have the potential to exert a
significant influence on the geometric form of the event. The parameter space for

event definition within the proposed framework spans:

a) Spatial resolution
b) Temporal resolution
¢) Proportion and distribution of data gaps

e) SPI event threshold

)
f) Spatial coherency radii
g) Minimum event area

(
(
(
(d) SPI averaging period
(
(
()
(h) Minimum event overlap

Typically the spatio-temporal characteristics of the data can be fixed prior to
analysis and intercomparisons will be valid if the data are regridded onto the same
basis and data gaps are homogeneous in time. The SPI averaging period and thresh-
old are features of the drought metric which, in common with the standard appli-
cation of the SPI, can be tuned to the specific scales (time period and probability)
of interest. In fact, drought definition need not be restricted to the SPI for drought

14



definition. It is easy to see how the 3-dimensional techniques described here could be
applied to alternative drought definitions e.g. the Palmer Drought Severity Index.
The only real limitation is that the data are represented on a space-time grid. Thus
parameters (a)-(e) are not specific to the proposed methodology, but relate to the
difficulties in defining drought in general.

The choice of spatial coherency radii, minimum event area and overlap are spe-
cific to the proposed methodology. These control the level of aggregation of the
data and can be used to shift the focus from tightly bounded local events to more
diffuse continental scale phenomena. The preliminary analysis presented here indi-
cates that the results are robust for small changes in Ry, and Rj;. Experiments
with different values of minimum event area and overlap show a similar degree of

insensitivity.

4.2 Dissimilarity of European droughts 1901-2006

The complete lack of similarity between the event volumes is surprising since previ-
ous work on the spatial distribution of European drought (Briffa et al. 1994, Lloyd-
Hughes & Saunders 2002, van der Schrier et al. 2006) indicate several preferred
modes of variability. Spatial similarity between drought events is easily revealed
by searching for maxima in the Jaccard coefficients between the individual monthly
slices of the 3-dimensional events. Figure 8 illustrates the striking similarities be-
tween slices of events during (a) March 1963 and (b) January 1996. Panels (¢) and
(d) show the raw SPI; data from which these slices of the events were extracted. The
pattern correlation is 0.78. Near perfect agreement is seen across the entire study
domain including the excess precipitation to the south. Since the SPI fields were
selected solely on the correspondence between slices of the drought events defined
over the Baltic, the exceptional pan-European agreement is a strong indication that
similar climate dynamics are responsible for driving both events.

Figure 9 compares the events within the 3-dimensional spatio-temporal context.
The severity-extent maps in panels (a) and (b) reveal quite different pictures. The
1963 event is seen to be centred to the east of the Baltic whilst the 1996 event is

centred over Denmark. The corresponding Hovmoller plots in panels (c) to (f), aside
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from March 1963 and January 1996 (shown by horizontal black lines), are also very
different. March 1963 is located in the middle of an event of 8-months duration that
started over northern central Europe and migrated east, whereas January 1996 was
toward the beginning of a 5-month event that remained static over northern central
Europe. It is interesting to note that if the Hévmoller plots for the 1962/3 event are
truncated at April 1963 then there is much greater similarity with the 1995/6 event.
Reference to Figure 6 reveals a contraction in the drought area in April 1963. Thus,
whilst clearly spatio-temporally coherent, the 1962/3 event might be considered to
be composed of two distinct sub-droughts, the first being very similar to the 1995/6
event.

This result has strong implications for analogue forecast methods, that is, those
which aim to predict the future from the past evolution of systems which resem-
ble the present. A spatial snapshot of drought is a very poor guide to its future

development.

4.3 Drought as a spatial process

There is evidence for dynamically driven spatial similarity between droughts at a
monthly timescale. There is also evidence for randomness in the space-time charac-
ter of European droughts (manifest in the complete dissimilarity between their large
scale structures). The spatial distribution of the event centroids and the time evo-
lution of the geographic cross-sectional areas both strongly suggest that large area
sustained droughts result from the combination of smaller shorter lasting events.
However, if this is the case, more spatially isolated but temporally coincident events
are expected than are observed in Figure 6. One possible explanation for this is that
the underlying generating process is one of relatively small events (~ 10°km? lasting
~ 3 months) that can occur anywhere in the domain but that feedbacks exist that
tend to favour co-location in space and time. This is supported by model studies of
the prolonged large scale drought and summer heatwave of 2003 (Fischer et al. 2007)
which found local water feedbacks to be an essential feature required to sustain the
event. Whilst local effects are important, the multiannual variability seen in the rate

of drought occurrence indicates that larger scale forcings such as changes in ocean
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circulation might also play an important role in controlling drought occurrence.

An alternative hypothesis is that the observed results are predetermined by the
use of SPI3. This measure of drought retains considerable short-time scale vari-
ablity, reflecting contributions from individual weather systems to the monthly pre-
cipitation totals, that will (by definition) emerge at the 3-monthly time scale. It is
possible to discriminate between the two hypotheses by applying the new method
to a drought index with greater memory. To this end, the analysis was repeated
using SPI;5. Figure 10 illustrates the time evolution of the cross-sectional areas of
the events defined by SPI;s < —1 and Ry, = Rjs; = 0. The longer memory index,
as might be expected, shifts the emphasis onto longer lasting events. However, the
time series retains a close correpondence to that shown in Figure 6 for SPI3. Of
particular interest to this discussion, is that the longest lasting events, e.g. 1941-
1944 and 1920-1922, are again seen to arise from the aggregation of several shorter
period deficits. It is also worth noting that the SPI12 events are again seen to be
well separated in time. This again suggests the existence of feedbacks that to favour
the co-location of drought developments in space and time. With respect to season-
ality, the SPI,5 events display a bias toward an Autumn start. However, x? tests
against the null hypothesis of a uniform distribution of starts and finishes between
seasons gave p-values of 0.64 and 0.85 respectively which can not be considered to
be significant.

The small-area short duration hypothesis is further supported by the summary
statistics for the SPIlj5 events. These are presented in Figure 11. The majority
of evetns are again seen to be of small area (~ 10°km?) and short duration (~3
months).

For completeness, silhouette widths (not shown) were computed for the SPI,
events. The move to a longer memory index, with the implicit assumption of reduc-
ing high frequnecy varibability, was not found to increase the degree of 3-dimensional

similarity between the events and the average silhouette width remainded below 0.05.
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5 Conclusions

An approach to drought characterisation based on spatio-temporal structure has
been shown to provide valuable additional information not immediately available
from traditional analyses. Firstly, individual time slices of events such as 1962/63
and 1995/96 which can be shown to be remarkably similar (e.g. March 1963 and
January 1996) can be seen to have very different time evolutions. Secondly, explicit
consideration of the time evolution of the spatial structure highlights the role of
external and internal forcings on drought development. The time evolution of the
geographic cross-sectional areas of both short-period (SPI3) and long-period (SPI;s)
strongly suggest that large area, sustained droughts result from the combination of
multiple small area (~ 106km?) short duration (~3 months) events. Consideration
of summary statistics such as the distribution of maximum event cross-sections and
event centroids leads to the hypothesis that drought may beget drought, and thus
that local water feedbacks may play an important role in the aggregation process.
The 3-dimensional view is unamenable to simple summary representation; to the
contrary, it encourages consideration from multiple perspectives. However, since
complexity across dimension and scale is intrinsic to deficits of precipitation, it is
hoped that this broader view will deepen our understanding of the space-time nature

of drought.

Acknowledgements

I thank Jean-Philippe Vidal, Christel Prudhomme and Jamie Hannaford for helpful
comments on the text. I thank Deloitte for supporting the Deloitte-Walker Institute
Research Fellowship at the University of Reading.

18



References

Andreadis KM, Clark EA, Wood AW, Hamlet AF, Lettenmaier DP. 2005.
Twentieth-century drought in the conterminous united states. Journal of Hy-
drometeorology. 6(6):985-1001.

Barry RG, Chorley RJ. 2003. Atmosphere, weather & climate. Routledge, 8th
edition.

Beale CM, Lennon JJ, Gimona A. 2008. Opening the climate envelope reveals
no macroscale associations with climate in european birds. Proceedings of the
National Academy of Sciences of the United States of America. 105(39):14908—
14912.

Briffa KR, Jones PD, Hulme M. 1994. Summer moisture variability across Europe,
1892-1991: An analysis based on the Palmer Drought Severity Index. Interna-
tional Journal of Climatology. 14:475-506.

Colwell RK, Lees DC. 2000. The mid-domain effect: geometric constraints on the
geography of species richness. Trends in Ecology € FEvolution. 15(2):70-76.

Doornkamp JC, Gregory KJ, of British Geographers. 1. 1980. Atlas of drought in
Britain, 1975-76 / edited by J.C. Doornkamp and K.J. Gregory ; cartographic
advisor, A.S. Burn ; forward by Denis Howell. Institute of British Geographers,
London :. ISBN 0901989312.

Fischer EM, Seneviratne SI, Luthi D, Schar C. 2007. Contribution of land-
atmosphere coupling to recent European summer heat waves. Geophysical Re-
search Letters. 34(6):L06707.

Gower JC, Legendre P. 1986. Metric and euclidean properties of dissimilarity coef-
ficients. Journal of classification. 3:5-48.

Hannachi A, Jolliffe IT, Stephenson DB. 2007. Empirical orthogonal functions and
related techniques in atmospheric science: A review. International Journal of
Climatology. 27(9):1119-1152.

Horel JD. 1984. Complex principal component analysis: Theory and examples.
Journal of Applied Meteorology. 12:1660-1673.

Jaccard P. 1901. Etude comparative de la distribution florale dans une portion
des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles.
37:547-579.

Kaufman L, Rousseeuw P. 1990. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley.

Legendre P. 1993. Spatial autocorrelation: Trouble or new paradigm? FEcology.
74(6):1659-1673.

Legendre P, Legendre L. 1998. Numerical Ecology. Developments in Environmental
Modelling, 20. Elsevier.

Livada I, Assimakopoulos VD. 2007. Spatial and temporal analysis of drought in
Greece using the Standardized Precipitation Index (SPI). Theoretical and Applied

19



Climatology. 89(3-4):143-153.

Lloyd-Hughes B, Hannaford J, Parry S, Keef C, Prudhomme C, Rees G. 2009. UK
and European drought catalogue. Technical report, UK Environment Agency.

Lloyd-Hughes B, Saunders MA. 2002. A drought climatology for Europe. Interna-
tional Journal Of Climatology. 22(13):1571-1592.

Lmaati EA, Oirrak AE, Kaddioui MN. 2009. A visual similarity-based 3D search
engine. Data Science Journal. 8:78-87.

Makra L, Stimeghy Z. 2007. Objective analysis and ranking of Hungarian cities,
with different classification techniques, part 1: Methodology. Acta Climatologica
et Chorologica. 40-41:79-89.

McKee TB, Doesken NJ, Kleist J. 1995. Drought monitoring with multiple time
scales. Ninth conf. on Applied Climatology. 233-236.

Mitchell TD, Jones PD. 2005. An improved method of constructing a database of
monthly climate observations and associated high-resolution grids. International
Journal Of Climatology. 25(6):693-712.

MunichRe. 2008. Great weather disasters 1950-2007. Technical report, NatCatSER-
VICE.

Rousseeuw P. 1987. Silhouettes: a graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of Computational and Applied Mathematics.
20(1):53-65.

Sheffield J, Andreadis KM, Wood EF, Lettenmaier DP. 2009. Global and continental
drought in the second half of the twentieth century: Severity-area-duration analy-
sis and temporal variability of large-scale events. Journal of Climate. 22(8):1962—
1981.

Smakhtin VU, Schipper ELF. 2008. Droughts: The impact of semantics and per-
ceptions. Water Policy. 10(2):131-143.

Szalai S, Szinell C. 2000. Comparison of two drought indices for drought monitoring
in Hungary - a case study. In JV Vogt, F Somma, editors, Drought and Drought
Mitigation in Europe, 161-166. Kluwer: Dordrecht. 325pp.

UN. 2008. Trends in sustainable development 2008-2009. United Nations Division
for Sustainable Development.

van der Schrier G, Briffa KR, Jones PD, Osborn TJ. 2006. Summer moisture vari-
ability across europe. Journal Of Climate. 19(12):2818-2834.

Vicente-Serrano S. 2006. Differences in spatial patterns of drought on different
time scales: An analysis of the Iberian Peninsula. Water Resources Management.
20(1):37-60.

von Storch H, Zwiers FW. 1999. Statistical Analysis in Climate Research. Cambridge
University Press: Cambridge.

Wilks DS. 1995. Statistical Methods in the Atmospheric Sciences. Academic Press:
London. 467pp.

20



Zaidman MD, Rees HG, Young AR. 2002. Spatio-temporal development of stream-
flow droughts in north-west Europe. Hydrology and FEarth System Sciences.
6(4):733-751.

Zampieri M, D’Andrea F, Vautard R, Ciais P, de Noblet-Ducoudré N, Yiou P. 2009.

Hot european summers and the role of soil moisture in the propagation of mediter-
ranean drought. Journal of Climate. 22(18):4747-4758.

21



Figure 1: Definition of spatial coherency in 2 dimensions. Groups of coherent cells
are shaded in a single colour. Panel (a) is for R = 0 and shows four groups. Panel

(b) is for R = 1 and shows three groups. The gray shading illustrates the effective
size of each group.
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Figure 2: (a) Isometric view of the 1976 drought event defined by Rj,, = Rt = 0
and SPI3 < —1. (b) Hovmoller type plot of the number of grid cells in drought
counted north-south through time. (c) East-west Hovméller. (d) The view from
above shows the drought severity and maximum spatial extent.
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Figure 3: Average silhouette widths for clusters of droughts defined by Ry, = R =
0,1,2 with the SPI3 threshold < —1 and lasting for at least 3 months. (a) Events
aligned by the time component of the event centroid. (b) Events aligned by start
date.
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Figure 4: Distribution of event centroids for droughts defined by R;,, = R = 0
with the SPI3 threshold < —1 and lasting for at least 3 months.
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Figure 5: Time evolution of the locations of the event centroids for droughts defined
by Rio, = Rt = 0 with the SPI3 threshold < —1 and lasting for at least 3 months.
The tail of each arrow indicates the mean location of the centroid during the first half
of the event. The head of each arrow points to the mean location of the centroid
during the later half of the event. The rose diagram and histogram (stacked by
duration) illustrate the directional distribution of the shifts in the event centroids.
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least 3 months. The histograms (inset) show the seasonal distribution of the dates
in which the droughts begin and end. The counts are stacked by event duration.
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Figure 9: As Figure 2 but comparing the spatio-temporal characteristics of the 1963
and 1996 events.
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Figure 10: As Figure 6 but for SPI;,.
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Figure 11: As Figure 7 but for SPI;,



