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Abstract

By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an
increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be
computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential
equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions
incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation
PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities
estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such
distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter
data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range
conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the
propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new
formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses,
we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic
conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various
wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated
numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically
constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity
in the future.
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Introduction

Since the introduction of continuum formulations for the

dynamics of neural masses in cortical tissue [1–6], the interest in

this class of neural mean field models (MFMs) has been steadily

growing. MFMs have been used to describe a wide range of

phenomena by acting as a mesoscopic bridge between the results

of neuroimaging and the underlying anatomy, physiology and

pharmacology. The growing list includes: the effects of anaesthet-

ics, tranquillizers, and stimulants [7–10], gamma band oscillations

[11–13], epilepsy [14–18], sleep [19,20], and evoked potentials

[21,22]. A recent review by Deco et al. [23] details both the

theoretical framework and some general principles for the

application of such theories.

However, MFMs face severe technical difficulties when dealing

with non-local neural activity, which is propagated across cortex

by long-range axonal fibres. In order to incorporate the effects of

such distributed activity a number of assumptions are typically

made, the most important being a single value for the activity

propagation delay between distant neural masses. This is the case

even in otherwise sophisticated models, for example in those

combining MFMs with Dynamic Causal Modelling (DCM) [24].

Most modelling approaches (e.g., [25,26]) follow here the lead of

the seminal paper by Jirsa and Haken [27], who employed several

simplifying assumptions to describe long-range activity propaga-

tion with a partial differential equation (PDE). However, their

ansatz still assumes a single value for the cortico-cortical axonal

conduction velocity, and thus conduction delays between neural

masses are exactly proportional to their distance with one

uniform constant. We will show below that approximations made

in deriving the actual propagation PDE result in an implicit

velocity distribution, which nevertheless due to its origin remains

strongly peaked at maximum conduction velocity and is one-

sided, i.e., there is an infinitely sharp cut-off at maximum speed.

MFMs typically describe neural masses consisting of 105 to 107

neurons each. Thus even if the conduction velocity of one axon

can be approximated well with a single conduction velocity, one

should expect a distribution of conduction velocities between

neural masses given the many axons involved. Empirical

measurements of conduction velocities, either directly via

conduction latencies or indirectly via fibre diameters, indeed

suggest that conduction delays are rather broadly distributed.

Initial attempts by Hutt and Atay [28,29] to incorporate broad

axonal velocity distributions in a particular, spatially continuous

MFM have revealed that such broad distributions maximize the

speed of travelling front solutions. This may indicate the influence

of natural selection optimizing information transmission in

cortex.

Hutt and Atay [28,29] made use of a general integro-differential

formula for activity propagation, which allows a straightforward
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introduction of velocity distributions. It is just this integro-

differential formula, which is commonly simplified towards a

PDE [27]. As discussed for example by Liley et al. [26], local PDE

formulations offer a number of significant advantages over their

non-local (integral) counterparts. In particular, they enable the use

of powerful analytical and numerical analysis methods, at least for

specific spatial wavenumbers, and allow the application of

standard numerical techniques for the solution of MFMs. The

latter point is particularly important for large-scale simulations, see

for example [9,13], where computation speed is essential. As

derived in [30] by the present authors, one can always extract the

velocity distribution implied by the PDE formulation of an MFM.

But so far the exact form of these distributions have been largely

an accidental side product of approximations. It is hence no

surprise that the velocity distributions of models in current use are

unsatisfactory. Incorporating a sensible velocity distribution into

an analytically and numerically tractable PDE formulation has not

been achieved before.

Motivated by physiological and anatomical fidelity on one

hand, and by computational necessity on the other, we here

introduce a novel PDE formulation describing the propagation of

cortico-cortical axonal activity that incorporates monotonically

decaying synaptic connectivity with a smooth unimodal distri-

bution of axonal conduction velocities. We obtain good fits with

our new model to experimental data on conduction velocities

derived from myelinated fibre diameter measurements in the

human corpus callosum [31]. This allows for the first time to

simulate long-range conduction in humans based directly on

experimental findings. A straightforward extension of initial

propagator ansatz also allows us to fit data from lower mammals,

which generally feature less small diameter (myelinated) fibres.

Studying activity conduction in animal cortex is important in its

own right, but also significant for the suitability of animal models

for human studies. For example, the CoCoMac database [32,33]

contains precise information on the connectivity of macaque

cortex from extensive tracer studies, which cannot be obtained

similarly from humans since such techniques are lethal. While

CoCoMac connectivity can be mapped to human cortex [34] and

calibrated with human connectivity data from non-invasive

Magnetic Resonance Imaging [35], the question would remain

whether similar anatomical connections actually serve the same

function. Clearly an improved understanding of the dynamics of

activity conduction in animals and humans is of great significance

to this question.

We obtain reasonable fits with our extended ansatz to extensive

unmyelinated and myelinated data from rat subcortical white

matter [36], and discuss briefly the clear differences that exist to

the fit to human callosal data. Finally, we also analyse analytically

and numerically the dynamical impact of using our new

propagator. Following the methods in Coombes et al. [30], we

can show that in contrast to the most commonly used long-

wavelength propagator, our realistic velocity distributions enable

the formation of spatio-temporal patterns for smaller perturbations

in mean neuronal firing rates. This may follow more closely the

biological situation, where a range of energetic constraints need to

be negotiated in order to ensure that pattern formation, and thus

perception, occurs in metabolically optimal circumstances. We

confirm these results with some explorative computational

simulations on large spatial grids using our novel propagator. So

far, conduction parameters in mean field models have been either

chosen largely arbitrarily from a wide range of plausible values, or

adjusted freely to help reproducing the phenomena under

investigation. Our fits to human and rat data, and future fits to

other experimental data using our methods, constrain propagation

parameters empirically and independently. This will reduce

considerably the uncertainties of future predictions using the

mean field framework.

Model

Dispersive propagator
In most neural field models developed to date the activity

variables that are spatially propagated are the local mean neuronal

population firing rates, Sj . Because action potentials propagate

with a finite conduction velocity, the mean rate of arrival of pre-

synaptic impulses wjk to cells of type k from neurons of type j can

be written as a time-retarded integral of the respective distant local

mean excitatory neuronal firing rates:

wjk x,tð Þ~
ð

C

dx0
ð?

0

dvfjk v jx,x0ð Þwjk x,x0ð ÞSj x0,t{
x{x0j j

v

� �
, ð1Þ

~

ð?
{?

dt’
ð

C

dx0 Gjk x,x0,t{t’ð ÞSj x0,t’ð Þ: ð2Þ

where spatial integration occurs over a two-dimensional planar

cortical sheet C (x,x0[R2). The distance-dependent velocity

distribution function fjk v jx,x0ð Þ takes into account that fibre paths

with different conduction velocities can exist between different

domains. This conditional distribution is normalised such thatÐ?
0

dvfjk v jx,x0ð Þ~1. The function wjk x,x0ð Þ is the synaptic

footprint that describes the geometry of network connections.

The distance dependent Green’s function, Gjk, is defined as:

Gjk x0,x,tð Þ~
ð?

0

dvfjk v jx,x0ð Þwjk x,x0ð Þd t{
x{x0j j

v

� �
: ð3Þ

In the absence of detailed anatomical data it is common practice to

consider synaptic connectivity functions to be homogeneous and

Author Summary

Due to the sheer number of neurons and the complexity of
their interactions, the modelling of brain activity is
particularly challenging. How can computationally tracta-
ble models of brain function be developed that are
nevertheless biologically plausible? The ‘‘mean field’’
approach, borrowed from statistical physics, is to model
the average activity of populations of neurons rather than
the behaviour of individual neurons. While a large number
of promising theories have been developed with this
approach, they fall short of biological fidelity in the way
interactions between distant populations have been
modelled. In particular, it is often assumed that all neurons
interact via connections of very similar conduction
velocity, when in fact experiment suggests quite the
opposite: populations of neurons are connected by axonal
fibres with a broad range of velocities. We develop here
activity propagators that provide for the first time the
ability to realistically and efficiently simulate connectivity
in mean field theories, and demonstrate how to use them
to fit successfully experimental data from both human and
rat. With our novel propagators, one can thus study on an
empirical basis the role of activity propagation in both
healthy and diseased mammalian brains.

Axonal Velocity Distributions
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isotropic so that wjk x,x0ð Þ:wjk x{x0j jð Þ. We will also assume that

this restriction applies to the velocity distribution functions, i.e.,

fjk v jx,x0ð Þ:fjk v| x{x0j jð Þ, and therefore Gjk x,x0,t{t’ð Þ:
Gjk x{x0j j,t{t’ð Þ. This assumption of isotropy can be relaxed at

the price of increased computational effort [30,37,38], as will be

discussed below in a separate subsection. The right hand side of (2)

now has a convolution structure, and its Fourier transform,

wjk k,vð Þ~
Ð

R3 dxdt exp {ivt{ik:xð Þ yields

wjk k,vð Þ~Gjk(k,v)Sj(k,v), ð4Þ

where k~ kj j. If Gjk(k,v) has the form Rjk(k2,iv)=Pjk(k2,iv) then

the integro-differential Eq. (2) can be written as the equivalent

PDE Rjk({+2,L=Lt)wjk x,tð Þ~Pjk({+2,L=Lt)Sj x,tð Þ, i.e., the

corresponding partial differential operators are obtained with the

Fourier replacements k2?{+2 and iv?L=Lt.

The most common propagator form used in mean field models of

electroencephalographic activity derives from the following simple

ansatz for the Green’s function: an exponential decay with distance

of propagated firing rates is combined with isotropic conduction

ĜGjk(r,t)~
w0

jk

2pŝs2
jk

exp {
r

ŝsjk

� �
d t{

r

v̂vjk

� �
[

Fourier

ĜGjk(k,v)~

w0
jkv̂v2

jk ivz
v̂vjk

ŝsjk

� �

ŝs2
jk ivz

v̂vjk

ŝsjk

� �2

zv̂v2
jkk2

" #3=2
,

ð5Þ

where r:jxj§0 and axonal velocity v̂vjkw0 together imply the

causal conduction of activity through a Dirac d distribution of delays.

The normalization constant w0
jk counts the total number of synaptic

connections made by the axonal fibres originating from neurons of

type j that terminate on neurons of type k. The exponential decay

with the characteristic distance scale ŝsjk should be understood as

due to diminishing connectivity [39], rather than as decay of the

amplitudes of the action potentials themselves. The Fourier domain

propagator in Eq. (5) is non-polynomial, but can be approximated

for small k, and hence long wavelengths l~2p=k, with a

polynomial form. Setting ~vvjk:
ffiffiffiffiffiffiffiffi
3=2

p
v̂vjk and ~ssjk:

ffiffiffiffiffiffiffiffi
3=2

p
ŝsjk we

obtain

~GGjk(k,v)~
w0

jk~vv2
jk

~ss2
jk ivz

~vvjk

~ssjk

� �2

z~vv2
jkk2

" # [
Fourier

~GGjk(r,t)~
w0

jk

2p~ss2
jk

exp {
~vvjkt

~ssjk

� �H t{
r

~vvjk

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2{

r2

~vv2
jk

s ,

ð6Þ

where H is the Heaviside step function, which now maintains

causality. We will subsequently refer to this as the long-wavelength

approximation. The standard inhomogeneous, 2-dim. telegraph

equation [25–27] results

1

~vvjk

L
Lt

z
1

~ssjk

� �2

{+2

" #
wjk(x,t)~

w0
jk

~ss2
jk

Sj(x,t): ð7Þ

Note that (7) is a special case. If we substitute

wjk(x,t)~ exp {
~vvjkt

~ssjk

� �
jk(x,t) [

1

~vv2
jk

L2

Lt2
{+2

" #
jk(x,t)~ exp

~vvjkt

~ssjk

� �
w0

jk

~ss2
jk

Sj(x,t) ,

ð8Þ

then jk obeys an inhomogeneous wave equation. Note that Eq.

(8) corrects a sign error in Eq. (61) of Ref. [25]. The approximate

impulse response ~GGjk(r,t) in Eq. (6) can hence be recognized as that

of a 2-dim. wave with velocity ~vvjk multiplied by an exponential

decay with velocity-dependent distance ~vvjkt.

The infinitely precise conduction delay d t{r=v̂vjk

� �
of ansatz Eq.

(5) is at odds with the broadly distributed delays measured by

experiment. In the next section we will show that the long-

wavelength approximation largely inherits this problem. An obvious

amelioration would be to use a Gaussian normal distribution of

delays:

Gjk(r,t)~c exp {
r

sjk

� �
exp {

t{r=vjk

� �2

2s2
delay

" #
H(t) , ð9Þ

where c is an appropriate normalization constant and the Heaviside

H enforces causality. However, Eq. (9) leads to the same type of non-

polynomial Fourier structure as Eq. (5), only multiplied with

exp½(ivsdelay)2=2�. Thus again an approximation would be needed

to obtain a polynomial form and hence a PDE. A key observation is

that the problematic fractional power 3=2 arises from the spatial

Fourier transform of exp ({ar) terms, where the a are independent

of distance but can depend on time, and that we can eliminate all

such terms from the ansatz by setting sdelay?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tsjk=vjk

p
:

exp {
r

sjk

� �
exp {

1

2

t{r=vjk

� �2

tsjk=vjk

" #
~ exp {

r2zv2
jkt2

2sjkvjkt

" #
: ð10Þ

We can Fourier transform this expression, first spatially (which is

equivalent to a zeroth order Hankel transform) and then

temporally, even if it is multiplied with powers of t. Hence we

now propose the following Green’s function:

Gjk(r,t)~
w0

jk

2nz1pC(n)

vjk

s3
jk

vjkt

sjk

� �n{2

exp {
r2zv2

jkt2

2sjkvjkt

" #
H(t) , ð11Þ

where nw0 and C(n) is the Gamma function with C(n)~(n{1)!
for integer n. The corresponding Fourier domain propagator is

Gjk(k,v)~
w0

jkvn
jk

2nsn
jk ivz

vjk

2sjk

(1zs2
jkk2)

� �n : ð12Þ

Using this to propagate local mean firing rates according to Eq. (4)

is hence equivalent to the following two-dimensional PDE

L
Lt

z
vjk

2sjk

(1{s2
jk+

2)

� �n

wjk(x,t)~
w0

jkvn
jk

2nsn
jk

Sj(x,t) , ð13Þ
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where only n[N1 will realize any practical benefits for analysis and

computation. Note that for n~1 this corresponds to a two-

dimensional, inhomogeneous cable equation. We will subsequently

refer to this novel ansatz as the dispersive propagator.

It should be emphasized at this point that single propagation

PDEs, like the dispersive Eq. (13) and the long-wavelength Eq. (7),

imply that firing rate activity passes continuously between any two

arbitrarily chosen cortical locations. However, cortico-cortical

fibres are known to also selectively connect separated areas of

cortex in a direct manner, see for example Ref. [40]. Such non-

local propagation cannot be modelled with the PDE descriptions

of activity conduction described so far. To include non-local effects

one must either resort again to the general integral equations, or

map cortex to a mixture of overlapping patches based on a chosen

PDE description. Recently good progress has been achieved for

the latter option [38], in particular also by turning such

descriptions into a kind of DCM [41], which makes possible

robust fits to experimental neuroimaging data. Our efforts here are

complementary to these pioneering works, since we are concerned

with obtaining physiological conduction velocity distributions in

the typical PDE framework. For example, the long-wavelength

approximation Eq. (5) in Ref. [38] could be replaced with our

dispersive Eq. (13) as basis for considering non-local effects,

thereby increasing the realism of the non-local conduction model

even further. We will explain in a separate subsection below in

what way anisotropy and inhomogeneity can also affect the

extraction of velocity distributions from experimental data.

In the original ansatz of Eq. (5), impulses would arrive at

distance r from a source precisely after a time r=v̂vjk had passed.

The extension in Eq. (9) was constructed such that the impulses

would arrive with a Gaussian normal distribution of delays having

mean r=vjk and standard deviation sdelay. We can recover this

from the respective Green’s functions by computing the statistical

characteristics of delays, appropriately normed by the decay of

connectivity to distance r:

StT:

Ð?
0

dt t Gjk(r,t)Ð?
0

dt Gjk(r,t)
, s2

t :

Ð?
0

dt t{StTð Þ2 Gjk(r,t)Ð?
0

dt Gjk(r,t)
: ð14Þ

Thus indeed StT~r=v̂vjk and st~0 for the original ansatz Eq. (5),

but for the long-wavelength approximation Eq. (6) thereof one

finds instead

StT~
r

~vvjk

K1(r=~ssjk)

K0(r=~ssjk)
with lim

r=~ssjk??
StT~

r

~vvjk

, ð15Þ

st~
r

~vvjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

K1(r=~ssjk) ~ssjk=r
� �

K0(r=~ssjk){K1(r=~ssjk)
� 	

K2
0(r=~ssjk)

s

with lim
r=~ssjk??

st~
~ssjkffiffiffi
2
p

~vvjk

,

ð16Þ

where Kn is the nth order modified Bessel function of the second

kind. Similarly for the Gaussian extension Eq. (9) we obtain the

expected results StT~r=vjk and st~sdelay, but for our new

dispersive propagator we find instead

StT~
r

vjk

Kn(r=sjk)

Kn{1(r=sjk)
with lim

r=sjk??
StT~

r

vjk

, ð17Þ

st~
r

vjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kn{1(r=sjk)Knz1(r=sjk){K2

n(r=sjk)

q
Kn{1(r=sjk)

with lim
r=sjk??

st~

ffiffi
r
p ffiffiffiffiffiffi

sjk
p

vjk

:

ð18Þ

From the results for r=StT one can see that the characteristic long-

wavelength (~vvjk) and dispersive (vjk) velocities still indicate the

axonal conduction velocities, but only on average and at large

distances. A ‘‘large’’ distance means here one much greater than

the characteristic decay scales of connectivity, ~ssjk and sjk,

respectively. At large distances the standard deviation of delays

st becomes constant for the long-wavelength approximation, but

st*
ffiffi
r
p

for the dispersive propagator, i.e., it grows with the square

root of distance. We also see that st?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
StTsjk=vjk

p
at large

distances, which recovers the substitution of sdelay leading to Eq.

(10). Note finally that long-wavelength StT is identical to the

dispersive StT at all distances for ~vvjk~vjk and n~1.

Synaptic connectivity and velocity distribution
By integrating the dispersive Green’s function Eq. (11) over time

we obtain the implied dependency of synaptic connectivity with

distance

wjk(r)~

ð?
0

dtGjk(r,t)~
w0

jk

2npC(n)s2
jk

r

sjk

� �n{1

Kn{1
r

sjk

� �
, ð19Þ

w0
jk~

ð?
0

dr2prwjk(r) : ð20Þ

Here w0
jk counts the total number of synapses formed and

wjk(r)=w0
jk is the probability distribution of the synaptic footprint,

i.e., the likelihood that a synapse forms at distance r, whereÐ?
0

dr2prwjk(r)=w0
jk~1. Connectivity wjk(r) remains finite for

r?0 only if nw1, in which case wjk(0)~w0
jk=½4p(n{1)s2

jk�. In

practice the nƒ1 divergence for r?0 is of little concern, as neural

field models are not meaningful below some minimal size ravg over

which mean population activity is defined. The contributions of

synaptic connections within the disc 0ƒrƒravg to the total

number of synaptic connections w0
jk vanishes for ravg%sjk for all

nw0. Eq. (19) should be compared with the connectivity function

for the long-wavelength approximation Eq. (6)

~wwjk(r)~
w0

jk

2p~ss2
jk

K0
r

~ssjk

� �
, ð21Þ

with ~wwjk(r) normed to w0
jk as in Eq. (20). We note again an

equivalence to Eq. (19) with n~1.

Both the dispersive and the long-wavelength propagator

thus have synaptic footprints decaying with distance *rn{1

Kn{1 r=sjk

� �
, where for the latter n~1. However, experimental

counts of synaptic connectivity usually have been fit with the

simpler exponential decay

ŵwjk(r)~
ŵw0

jk

2pŝs2
jk

exp {
r

ŝsjk

� �
: ð22Þ

Axonal Velocity Distributions
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Thus the question arises whether dispersive connectivity is

compatible with data that apparently fit an exponential decay,

and whether one can use such previous fit results to constrain also

the dispersive propagator. An exponential decay is also what the

original ansatz Eq. (5) used. Hence in previous works it has been

assumed that model and fit scale are basically the same quantity. But

it will become clear now that after the long-wavelength approxi-

mation Eq. (6) this is not correct anymore. Let us assume that the

dispersive synaptic footprint Eq. (19) with parameters w0
jk and sjk

represents the true underlying distribution of connectivity, and that

from it parameters ŵw0
jk:dw0

jk and ŝsjk:esjk are estimated with a fit

assuming the exponential distribution Eq. (22). Therefore we wish to

determine which d and e best corrects for the mismatch. In practice,

experimental counts of synaptic connections are usually sorted into

distance bins ½ri,riz1�, where ri~i:Dr with i~0, . . . ,imax. We can

scale r=ŝsjk:x and r=sjk:ex, where ŝsjk is known from the

experimental fit. The counts per bin are then

ctrue
i ~

w0
jk

2npC(n)sjk

ðexiz1

exi

dy yn{1Kn{1(y)

:
w0

jk

2npC(n)sjk

k exi,exiz1ð Þ ,

ð23Þ

c
exp
i ~

dw0
jk

2pesjk

ðxiz1

xi

dy e{y~
dw0

jk

2pesjk

e{xi {e{xiz1ð Þ : ð24Þ

A usual least square fit of c
exp
i to ctrue

i will hence implicitly

minimize

Ximax

i~0

e{xi {e{xiz1ð Þ{ e

2n{1C(n)d
k exi,exiz1ð Þ

� �2

, ð25Þ

and we can minimize this expression explicitly to determine d and

e. To give a numerical example: assume imaxz1~20 bins of width

Dx~xiz1{xi~0:25, i.e., the bin size was a fourth of the fitted ŝsjk

and in the last bin connectivity had decayed to less than one

percent of maximum. For different powers n we can then obtain

numerically scaling factors d and e:

n

d

e

~f
~f
~f

1, 2, 3, 4, 5, 6, 7

0:5978, 1:164, 1:303, 1:364, 1:398, 1:418, 1:433

0:4193, 1:429, 2:067, 2:562, 2:980, 3:344, 3:675

g ,

g ,

g:
ð26Þ

We find that the normalization correction d has an asymptotic

value for large powers n, whereas the decay correction e grows asffiffiffi
n
p

. The resulting synaptic connectivity is shown in Fig. 1A. For

simplicity we have assumed here that ŵw0
jk~2pŝs2

jk, i.e., that

ŵwjk(r)~ exp ({r=ŝsjk). The dispersive curves are hence

wjk(r~esjkx)~e2=½2n{1C(n)d�:(ex)n{1Kn{1(ex) with the scaling

factors derived above. While we show continuous curves here, the

correction was performed for binned data. It is obvious from the

reasonably close match that dispersive connectivity may well be

mistaken for an exponential decay, given the large statistical and

systematic errors typically involved in synaptic counts. Note that

the n~1 divergence for small distances would not be visible in a

binned count. Nevertheless, it is obvious that the n~1 case, and

hence the long-wavelength approximation, does not match an

exponential decay better than higher powers of n. Furthermore,

Figure 1. Dispersive propagator: synaptic connectivity and marginal velocity distribution. (A) Synaptic connectivity wjk(r~esjkx) for
different powers n, which has been adjusted to match an exponential decay (thin curve). While the curves are continuous here, adjustment with Eq.
(25) assumes a bin size Dx~0:25, see text for details. (B) Marginal velocity distribution vjkfjk(v) for different powers n. Note that concerning the
dimensionless ratio u~v=vjk one obtains fjk(u)~vjkfjk(v). The long-wavelength approximation ~vvjk

~ff (v) of Eq. (36) is shown for comparison as thin
curve. See Eqns. (19) and (32) for (A) and (B), respectively.
doi:10.1371/journal.pcbi.1000653.g001

ð26Þ
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for n~1 in this example we find the optimal scaling

w0
jk~1:673:ŵw0

jk and sjk~2:385:ŝsjk. In general for long-wave-

length models one should actually choose w0
jk and sjk which are

significantly larger than those measured in experiments. Note that

our long-wavelength decay scale absorbed an expansion factorffiffiffiffiffiffiffiffi
3=2

p
to keep Eq. (6) simple. Without this, scaling byffiffiffiffiffiffiffiffi

2=3
p

:2:385^1:947 would be required here.

Eq. (3) enables us to determine the underlying conduction

velocity distribution of the axonal fibres that arises from our newly

proposed dispersive propagator. Thus we obtain

Gjk(r,t)~

ð?
0

dvfjk v jrð Þwjk(r)d t{
r

v


 �
~

v2

r
fjk v~

r

t
jr


 �
wjk(r) : ð27Þ

Using the Green’s function Eq. (11), the distance-dependent

velocity distribution fjk v jrð Þ becomes

fjk v jrð Þ~
rGjk r,t~

r

v


 �
v2wjk(r)

~

vjk

v


 �n{1

exp {
r

sjk

v2zv2
jk

2vvjk

" #

2vKn{1
r

sjk

� � , ð28Þ

which has a maximum at

vmax~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

nsjk

r


 �2
r

{
nsjk

r

" #
:vjk ,

lim
r=sjk??

vmax

vjk

~1{
nsjk

r
, lim

n??

vmax

vjk

~
1

2

r

nsjk

:

ð29Þ

The fjk v jrð Þ distribution indicates the probability of conduction

velocity v at a given distance r. As far as experimental data are

concerned, this distribution is appropriate for measurements of

conduction latencies between brain regions. For that case we can

consider r to be fixed and note that fjk v jrð Þ is properly normed as a

conditional probability distribution in v, i.e.,
Ð 1

0
dvfjk v jrð Þ~1. The

time t~r=vmax indicates the moment when most propagated activity

arrives at once in a region. One can speculate that this has the

highest likelihood to induce a signal visible over local background

activity. According to the first limit in Eq. (29), we then expect

latency data for distant (r&nsjk) regions to measure conduction

velocities *vjk. Fig. 2A shows a plot of the cumulative distribution

Fjk v jrð Þ~
ðv

0

dufjk u jrð Þ , ð30Þ

corresponding to Eq. (28). We prefer to show the cumulative

distribution here, because of the large variations of fjk v jrð Þ in the

shown range of v and r. Furthermore, this allows a direct

comparison with the long-wavelength approximation later on.

The sigmoidal shape of Fjk v jrð Þ in v corresponds to the unimodal

form of fjk v jrð Þ. The position of the mode vmax of fjk v jrð Þ is

indicated by a solid black line on the Fjk v jrð Þ surface. That

Fjk vmax jrð Þv0:5 indicates that the distribution is skewed towards

higher velocities. However, we can see that the distribution becomes

less skewed for larger r. Furthermore, we see that neuronal

populations at greater distances on the cortical surface are

connected by faster fibres. While from a functional perspective this

makes intuitive sense, there is at present no direct anatomical or

histological evidence for this. We discuss some indirect evidence

below. The second limit in Eq. (29) shows that higher order n
distributions describe overall slower connectivity for the same vjk.

The distance-dependent connectivity function for each fibre

system of velocity v, wjk(v,r), is then

Figure 2. Cumulative distance-dependent velocity distributions: dispersive propagator vs. long-wavelength approximation. Shown
are cumulative distributions integrated over v as in Eq. (30). Dotted black lines on the base and on the plot surface show a grid of r=sjk and v=vjk

values, solid black lines on the plot surface show the positions of the maxima of the unintegrated distributions. (A) Dispersive propagator for n~3,
where Fjk v jrð Þ corresponds to Eqn. (28). (B) Long-wavelength approximation, where ~FFjk v jrð Þ integrates Eqn. (33). We set ~ssjk~sjk and ~vvjk~vjk for
comparison.
doi:10.1371/journal.pcbi.1000653.g002
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wjk(v,r)~wjk(r)fjk v jrð Þ

~
w0

jk

2nz1pC(n)s2
jkv

r

sjk

vjk

v

� �n{1

exp {
r

sjk

v2zv2
jk

2vvjk

" #
ð31Þ

where
Ð

dr2pr
Ð

dvwjk(v,r)~w0
jk, and w0

jk counts the total number

of synapses formed. Hence, wjk(v,r)=w0
jk defines the joint

probability distribution for propagation with speed v to distance

r. The marginal propagation velocity distribution over all r is then

fjk(v)~

ð?
0

dr2pr
wjk(v,r)

w0
jk

~
2p

v2w0
jk

ð?
0

drr2Gjk r,t~
r

v


 �

~
2nvv2n

jk

(v2zv2
jk)nz1

ð32Þ

where
Ð?

0
dvfjk(v)~1. As far as experimental data are concerned,

this distribution is appropriate for measurements of local fibre

diameter statistics, which can be related to conduction velocities.

Such statistics catalogue all fibres passing through a local slice,

irrespective of the distance between the neural populations they

connect. This corresponds to integrating out the distance in Eq. (32).

We show the marginal velocity distribution (multiplied by the

constant vjk) in Fig. 1B for several different powers n. The rapid

sharpening up of the distribution for higher powers is readily

apparent. The statistical characteristics of the dispersive f (v)
distribution are collected in Tab. 1; note also that it becomes a

beta-prime distribution with a~1 and b~n under nonlinear

scaling x:v2=v2
jk. For nƒ1=2 both the mean and standard

deviation of the dispersive f (v) do not exist, like for a Cauchy

random variable, and for 1=2vnƒ1 the mean exists but not the

standard deviation, due to the tail-thickness of the distribution.

Thus at n~1 large variations of the conduction velocity are

probable. The coefficient of variation sv=SvT asymptotes to 0:523,

even then indicating a broad distribution. For n~2,3,4 the

corresponding velocity distributions already have 66%, 79% and

84%, respectively, of this maximal ‘‘sharpness’’. Skew c1,v exists for

nw3=2 and indicates preference for higher velocities. The mode

vmode of the marginal dispersive velocity distribution is smaller

than vjk, see Tab. 1. This is more pronounced for higher order n
due to a larger fraction of slower fibres. By contrast, the mode vmax

of the conditional dispersive velocity distribution approaches vjk

for large distances, see Eq. (29), but again more slowly for larger n.

Both mode speeds are identical in the dispersive case for

r~sjk

ffiffiffiffiffiffiffiffiffiffiffiffi
1z2n
p

, where below this distance vmaxvvmode and above

this distance vmaxwvmode. As we see from this example,

comparisons of the dominant speeds – vmode estimated from fibre

diameters in a local slice and vmax from latencies between distant

brain regions – can be used as an experimental probe of the

underlying connectivity. For fibre distributions like the dispersive

one, in which more distant regions are connected by faster fibres,

one would expect distance-dependent relations between vmode and

vmax qualitatively similar to the ones just described. Latencies

observed at different distances could complement the experimen-

tal constraints from local fibre diameter measurements quantita-

tively, too. However, the difference between vmode and vmax

becomes more significant for measurements at larger distances,

where unfortunately one would also generally expect worse signal

to noise ratios. Thus it is currently unclear whether such

comparisons are in fact feasible experimentally beyond a

qualitative consistency check. Nevertheless, there is a chance to

gain significant new insights into brain connectivity here using

comparatively ‘‘simple’’ techniques, or even from a re-analysis of

previously obtained data.

The distance-dependent velocity distribution for the long-

wavelength approximation Eq. (6), unlike for the dispersive

propagator, is truncated for velocities greater than vjk:

~ffjk v jrð Þ~
exp {

r

~ssjk

~vvjk

v

� �
H ~vvjk{v
� �

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

v2

~vv2
jk

s
K0

r

~ssjk

� � : ð33Þ

Again for r fixed ~ffjk v jrð Þ becomes a conditional probability

distribution in v appropriate for comparisons with experimental

conduction latencies. Fig. 2B shows a plot of the corresponding

cumulative distribution ~FFjk v jrð Þ, integrated as in Eq. (30). Note

that ~ffjk v jrð Þ?? for v?~vvjk, whereas ~FFjk v jrð Þ is well-behaved

in the limit and hence can be plotted easily. For rv
1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
(71{17

ffiffiffiffiffi
17
p

)

r
~ssjk^0:337~ssjk, there is a local maximum of the

distribution at small velocities:

~vvmax~
1

6

r

~ssjk

z cos
w

3
{

ffiffiffi
3
p

sin
w

3

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

~ssjk

� �2

z6

s2
4

3
5:~vvjk , ð34Þ

w: arctan

3
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8{71

r

~ssjk

� �2

z4
r

~ssjk

� �4
s

45
r

~ssjk

{
r

~ssjk

� �3
: ð35Þ

For very small r this maximum even formally becomes dominant,

but at such distances the MFM loses validity. Thus the global

maximum is in practice always determined by the cut-off

~vvmax~~vvjk. The position of the maxima of ~ffjk v jrð Þ is indicated in

Fig. 2B by two solid black lines on the surface of ~FFjk v jrð Þ. The

corresponding marginal velocity distribution, which can be related

to measurements of axonal diameters, is given by

~ff (v)~
v

~vv2
jk

H ~vvjk{v
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

v2

~vv2
jk

s , ð36Þ

and its statistical characteristics also are collected in Tab. 1. We see

that this distribution is very sharp, with a coefficient of variation

sv=SvT~0:284, and skewed to lower velocities. Indeed, high

velocities are cut off at ~vvjk. Note that the mode of the marginal

distribution is the same ~vvjk as the maximum velocity between

distant brain regions of the distance-dependent distribution. Thus

here we would predict that fibre diameter and latency measure-

ments derive roughly the same conduction velocity. Basically the

long-wavelength approximation retains the original sharply

peaked velocity distribution of fibres with a single conduction

velocity ~vvjk. If the comparison between conduction velocities

derived from diameter measurements and latencies can achieve

sufficient statistical significance, then this would allow an

experimental distinction between the dispersive and long-wave-
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length propagators. We consider investigating inter-hemispheric

connectivity between contra-lateral brain regions as promising,

because it is heavily dominated by just one fibre type (myelinated

fibres), with fairly homogeneous regional expression across large

distances. This adds particular significance to our fit of diameter

data of myelinated axons from human corpus callosum performed

below.

Incorporating anisotropy and inhomogeneity. In our

presentation of the dispersive propagator, and the subsequent

derivation of the conditional and marginal velocity distributions,

we have assumed both isotropy and homogeneity of the

corresponding connectivities. It is fortunate that these restrictions

can be relaxed, given that neither homogeneity nor isotropy would

be expected to hold fully in real brains, particularly not so for long-

range connectivity. First, inhomogeneities will be described well by

our equations in an average sense, as long as they are relatively

small and random according to some unimodal distribution, e.g., a

normal distribution. This fits well with the general MFM approach

of describing only the ‘‘mean fields’’ of cortex. Further, the

parameters may vary in an arbitrary inhomogeneous fashion over

distances farther away than a few times the characteristic scale of

synaptic connectivity sjk, without causing local complications.

Conducted over these distances a local pulse will have mostly

decayed away, hence the PDEs remain valid. This suggests a

separation of cortex into regions of ‘‘homogeneous enough’’

conduction properties. If the inhomogeneous variation of

conduction properties across cortex is nevertheless smooth, then

even a single PDE with matching spatial variation of parameters

Table 1. Statistical characteristics of the dispersive, long-wavelength, and difference marginal velocity distributions.

SvT/ v̂ sv/ v̂ ª1,v vmode/ v̂ vmedian/ v̂

dispersive
(�vv~vjk)

ffiffiffi
p
p

2
g(n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n{1
{

pg2(n)

4

r ffiffiffi
p
p

�vv3

4s3
v

½pg3(n)z

3g(n)

n{3=2
{

6g(n)

n{1
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1z2n
p

ffiffiffiffiffiffiffiffiffiffiffiffi
2

1
n{1

q

n~1 ^1:571 ~ ~ ^0:5774 1

n~2 ^0:7854 ^0:6190 ^4:086 ^0:4472 ^0:6436

n~3 ^0:5890 ^0:3912 ^1:909 ^0:3780 ^0:5098

n~4 ^0:4909 ^0:3039 ^1:432 ^0:3333 ^0:4350

n~5 ^0:4295 ^0:2560 ^1:218 ^0:3015 ^0:3856

n~6 ^0:3866 ^0:2249 ^1:094 ^0:2774 ^0:3499

n~7 ^0:3543 ^0:2027 ^1:014 ^0:2582 ^0:3226

n~8 ^0:3290 ^0:1860 ^0:9580 ^0:2425 ^0:3008

n&1
^

ffiffiffi
p
p

2

1ffiffiffi
n
p ^

ffiffiffiffiffiffiffiffiffiffiffi
1{

p

4

r
1ffiffiffi
n
p ^

ffiffiffi
p
p

(p{3)

4 1{
p

4


 �3
2

^
1ffiffiffi
2
p 1ffiffiffi

n
p ^

ffiffiffiffiffiffiffiffi
ln 2
p 1ffiffiffi

n
p

^
0:8862ffiffiffi

n
p ^

0:4633ffiffiffi
n
p ^0:6311

^
0:7071ffiffiffi

n
p ^

0:8326ffiffiffi
n
p

long-wave.
(�vv~~vvjk)

p

4
^0:7854

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
{

p2

16

r
^0:2232

p p2{10
� �

�vv3

32s3
v

^{1:151
1

ffiffiffi
3
p

2
^0:8660

difference (�vv~v1)
ffiffiffi
p
p

2
g(n1)wa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wb

n1{1
{

pg2½n1�w2
a

4

s ffiffiffi
p
p

�vv3

4s3
v

½pg3(n1)w3
a

z
3g(n1)wc

n1{3=2
{

6g(n1)wawb

n1{1
�

numerical numerical

n1,m~2,1 ^0:8625 ^0:6276 ^4:270 ^0:5214 ^0:7163

n1,m~2,3 ^0:8394 ^0:6239 ^4:217 ^0:5040 ^0:6951

n1,m~4,1 ^0:5265 ^0:2970 ^1:521 ^0:3593 ^0:4683

n1,m~4,3 ^0:5174 ^0:2984 ^1:501 ^0:3503 ^0:4596

n1,m~6,1 ^0:4141 ^0:2175 ^1:177 ^0:2947 ^0:3755

n1,m~6,3 ^0:4079 ^0:2189 ^1:162 ^0:2884 ^0:3695

n1,m~7,1 ^0:3796 ^0:1955 ^1:096 ^0:2734 ^0:3460

n1,m~7,3 ^0:3742 ^0:1967 ^1:082 ^0:2678 ^0:3408

n1,m~8,1 ^0:3526 ^0:1789 ^1:040 ^0:2562 ^0:3226

n1,m~8,3 ^0:3478 ^0:1801 ^1:027 ^0:2511 ^0:3179

Statistics are shown for the following marginal velocity distributions: dispersive Eq. (32), long-wavelength Eq. (36), and difference Eq. (51). The characteristic velocities �vv
for these three distributions are vjk , ~vvjk , and v1 , respectively. SvT, sv , and c1,v are the mean, standard deviation, and skewness in v, respectively. In order to achieve a

compact notation, we have defined g(n):C n{ 1
2

� �
=C(n), where g(n)^1=

ffiffiffi
n
p

for n&1. Further, we use wr~
w1{lrw2

w1{w2

with r~a,b,c and la:
v2g(n2)

v1g(n1)
, lb:

v2
2(n1{1)

v2
1(n2{1)

,

and lc:
v3

2 n1{3=2ð Þg(n2)

v3
1 n2{3=2ð Þg(n1)

. For w2~0 one finds wr~1, as the difference propagator turns into the dispersive one. We have not found a closed analytic form for the

mode vmode and median vmedian of the difference distribution, but they can be computed numerically. Further definitions needed for the evaluation of the difference

distribution statistics are collected in Eqns. (43) and (52).
doi:10.1371/journal.pcbi.1000653.t001
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could be used as model. Otherwise one would have to take special

care at the boundaries.

Second, to describe anisotropic conduction a generalization to

‘‘patchy’’ propagators is possible. Work by Robinson [37] has

shown that one can generate basically arbitrary angular

modifications of conduction properties at the price of introducing

more PDEs. Basically this technique relies on a spatial Fourier

decomposition of long range connectivity. Hence the sharper the

anisotropy one wishes to describe, the more PDEs one has to

employ. See for example Ref. [30], where sinusoidal variations in

two principal directions required the solution of four coupled

complex PDEs, instead of one real PDE. In practice a compromise

between biological fidelity and numerical complexity has to be

made. Consider then the following ‘‘patchy’’ Green’s function

GM
jk x,x0,tð Þ~Gjk x{x0j j,tð ÞMjk x{x0ð Þ , ð37Þ

which is homogeneous but anisotropic. It allows the specification

of anisotropic connectivity through a decomposition into an

isotropic Green’s function Gjk and an anisotropic, but time-

independent, modifier Mjk. Now we can use Eq. (3) for GM
jk and

integrate over the Dirac d-distribution, as for Eqns. (27) and (28),

but without any assumption of isotropy. The synaptic footprint is

again the integration over time of GM
jk , like in Eq. (19). Thus the

conditional velocity distribution becomes here

f M
jk v jx,x0ð Þ~

x{x0j jGM
jk (x,x0,t~ x{x0j j=v)

v2
Ð
GM

jk (x,x0,t)dt

~
x{x0j jGjk( x{x0j j,t)
v2
Ð
Gjk( x{x0j j,t)dt

~fjk v j x{x0j jð Þ ,

ð38Þ

i.e., the anisotropic modifier Mjk cancels out and the conditional

velocity distribution f M
jk is found to be isotropic, and identical with

the fjk of the isotropic Green’s function Gjk. Thus an isotropic

conditional velocity distribution is entirely compatible with

anisotropic connectivity.

Rewriting Eq. (3) in polar coordinates, x{x0j j and h, one finds

that in general

Gjk x{x0j j,h,t~ x{x0j j=vð Þ

~
v2

x{x0j j fjk v jh, x{x0j jð Þwjk h, x{x0j jð Þ ,
ð39Þ

and thus the potential anisotropy of propagation velocities is

independent of any evidence or assumptions regarding the

anisotropy of synaptic connectivity. In other words, how fast the

fibres connecting two regions are is a different question to the

number of fibres that connect these two regions. Hence even for

real brains one can start with the parsimonious isotropic

assumption for the conditional velocity distribution

fjk v jh, x{x0j jð Þ~fjk v j x{x0j jð Þ, and assume that anisotropies

are due only to wjk h, x{x0j jð Þ. Then the fibre system is potentially

anisotropic, but where fibres grow their distribution of conduction

velocities is not dependent on the direction in which they are

growing. Further, define the ‘‘angular average’’

w
ShT
jk x{x0j jð Þ: 1

2p

ð2p

0

dhwjk h, x{x0j jð Þ : ð40Þ

Then the generalization of Eq. (32), which assumes that the

conditional velocity distribution is isotropic but allows for

anisotropy in the connectivity, can be written as

fjk(v)~

ð
dr2pr

w
ShT
jk (r)fjk(vjr)

w0
jk

, ð41Þ

w0
jk~

ð
dr2prw

ShT
jk (r) , ð42Þ

where we have set r~jxj again. This clearly depends only on

w
ShT
jk (r), and may very well be practically indistinguishable from

isotropic conditions. For example, a fibre system with one strongly

dominant direction wjk(h,r)~wjk(r)d(h{h0), which is roughly the

case within corpus callosum, yields the same isotropic fjk(v) through

the renormalization of w0
jk. For these reasons we will continue with

the assumption of isotropy for fits of the marginal velocity

distributions to data. However, more precise data on both

connectivity and conduction latencies may well make possible in

future to disentangle anisotropies further, potentially showing that

our parsimonious assumption of an isotropic conditional velocity

distribution was incorrect. One also needs to keep in mind that for

simulations of cortex the introduction of inhomogeneous regions

and ‘‘patchy’’ propagators will likely be required to achieve good

biological fidelity, even if one assumes isotropic velocity distribu-

tions. In this regard the methods of Daunizeau et al. [38] may prove

particularly useful, which systematically map conduction PDEs to

heterogeneous cortico-cortical connectivity in the human brain.

Difference propagator
Finally, there appears to be a general trend in experimental data

that higher mammals have a larger proportion of small diameter

fibres, see for example the discussion in the section ‘‘Species

differences’’ of [31]. We will encounter this phenomenon when

trying to fit human [31] and rat data [36]. Small fibre diameters

correspond to low conduction velocities, as we will see in detail

below. Unfortunately the dispersive propagator predicts too much

low velocity conduction, and thus a too large fraction of small

diameter fibres, to fit the rat data well. Whereas the long-

wavelength approximation fails entirely to describe either human

or rat data, but because of high, not low, velocity conduction: its

marginal velocity distribution is sharply peaked close to an upper

velocity limit, while all data require a broad, unimodal velocity

distribution. We have been unable to find another single

propagator equation, which both yields the polynomial Fourier

structure leading to a PDE and describes the data from lower

mammals better.

A constructive approach for dealing with this problem posed by

animal data has however proven successful. The basic idea is to

subtract two dispersive propagators wtot~w1{w2, where the

second dispersive propagator conducts activity more slowly, so that

the resulting distribution is reduced at small velocities. This

construction we will then call the difference propagator. Before we

provide further mathematical details, we wish to justify this

method with regards to the actual biology it is supposed to

describe. Clearly there are no ‘‘anti-fibres’’ in the brain, hence w2

and therefore also w1 lack any direct biological meaning taken

separately. But the biological meaning of the constructive solution

wtot is not necessarily compromised, since in the end it is actually

wtot which is compared with empirical measurements. The

dispersive and long-wavelength propagators we have investigated

so far are biologically meaningful and appropriate because of the

following characteristics: First, they correspond to a Green’s

Axonal Velocity Distributions
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function non-negative for all positive times and distances. This

implies that a positive local pulse also leads to positive pulses

arriving at distant synaptic terminals. The impact of these pulses

may be ‘‘negative’’, if they excite inhibitory populations, but the

action potentials themselves do not somehow change sign. Second,

synaptic connectivity has a roughly exponential decay with

distance, as is appropriate for describing background connectivity

in the brain. Third, the distance-dependent velocity distribution

has a dominant mode, i.e., there is a preferred conduction velocity

leading to typical latencies between brain regions. Fourth, the

marginal velocity distribution has a shape which compares

favourably with fibre diameter distributions. We will construct

our difference propagator so that it shows all these characteristics.

Hence while it may be less intuitive, and requires more

computational effort, wtot will be as valid in terms of biology as

the dispersive and long-wavelength propagators.

We first compute the ratio of two dispersive Green’s functions

Gjk(r,t) from Eq. (11), which have different parameters

G1(r,t)

G2(r,t)
:

Gjk(r,t)
��n~n1,vjk~v1,sjk~s1,w0

jk~w1

Gjk(r,t)
��n~n2~n1zm,vjk~v2~

ffiffiffiffi
n2
pffiffiffiffi

n1
p fv1,sjk~s2~

ffiffiffiffi
n1
pffiffiffiffi

n2
p f s1,w0

jk~w2~zw1

~e
m
n1

tz1{f 2

f 2
y2

t t{m n1

n2

� �n2C(n2)

C(n1)

f 2

z
§em nn1

1

nn2

2

C(n2)

C(n1)

f 2

z
:1 ,

ð43Þ

with normed spatial variables t:v1t=(2s1) and y:r=(2s1). The

inequality is valid for powers n1,m[N1, and thus n2wn1, as well as

factor 0vf ƒ1, and we have set

z:em nn1

1

nn2

2

C(n2)

C(n1)
f 2 with 0vzvf 2

ƒ1 and lim
n1,n2??

z~f 2

ffiffiffiffiffi
n1
pffiffiffiffiffi

n2
p :ð44Þ

If we now define

w1,2(x,t):
ð?

{?
dt’
ð

C

dx0 G1,2(jx{x0j,t{t’)S(x0,t’) , ð45Þ

wtot(x,t):w1(x,t){w2(x,t)

~

ð?
{?

dt’
ð

C

dx0 Gtot(jx{x0j,t{t’)S(x0,t’) ,
ð46Þ

then it is clear that for wtot local firing S will be propagated with a

combined Green’s function Gtot(r,t)~G1(r,t){G2(r,t)§0. By

construction we have made certain that no unbiological ‘‘negative

pulses’’ can arise here in spite of the subtraction. Thanks to the

linear combination, the distributions are computed trivially, e.g.,

synaptic connectivity is

wtot(r)~
w1

2n1 pC(n1)s2
1

r

s1

� �n1{1

Kn1{1
r

s1

� �
{

w2

2n2 pC(n2)s2
2

r

s2

� �n2{1

Kn2{1
r

s2

� �
,

ð47Þ

w0
tot~w1{w2~w1(1{z) : ð48Þ

Note that as integral over Gtot, see Eq. (19), wtot(r) and hence w0
tot

must be positive, since Gtot§0 and not zero in the entire

integration range. In practice w0
tot is the biological quantity and

determines w1 via Eqns. (48) and (44). We can again compute how

this connectivity compares to an assumed exponential decay, as

explained at Eq. (25). The sum to be minimized becomes now

Ximax

i~0

e{xi {e{xiz1ð Þ{ e

2n{1C(n)d
k exi ,exiz1ð Þ{emfn

n1{1
2

1

2mn
n2{1

2

2

k
e
ffiffiffiffiffi
n2
p

f
ffiffiffiffiffi
n1
p xi ,

e
ffiffiffiffiffi
n2
p

f
ffiffiffiffiffi
n1
p xiz1

� �" #( )2

, ð49Þ

where r=s1:ex. For different powers n we obtain here scaling

factors d and e which are similar to those of the dispersive

propagator:

n

d

e

~f
~f
~f

1, 2, 3, 4, 5, 6, 7

0:5438, 1:266, 1:380, 1:422, 1:443, 1:457, 1:466

0:6631, 1:667, 2:262, 2:732, 3:129, 3:483, 3:804

g ,

g ,

g :
ð50Þ

In Fig. 3A the corresponding difference connectivity is shown. We

see that it may become feasible to measure experimentally the

deviation to an exponential decay in particular for small x and

high powers n, though overall the shape is still roughly

exponential. The distance-dependent velocity distribution

ftot v jrð Þ~rGtot(r,t~r=v)=½v2wtot(r)� and the distance-dependent

connectivity wtot(v,r)~rGtot(r,t~r=v)=v2 are of course also

positive. It is straightforward to show that for r=s1&1 the

conditional distribution ftot v jrð Þ is indeed unimodal, with the

maximum given by Eq. (29) upon replacing n?n1, sjk?s1, and

vjk?v1. At r~2s1 the mode velocities of the dispersive and

difference propagators already differ by less than 10% for n1w1.

Finally we can compute the marginal velocity distribution

ftot(v)~

w1

2n1vv2n1

1

(v2zv2
1)n1z1

{w2

2n2vv2n2

2

(v2zv2
2)n2z1

w1{w2
: ð51Þ

Its statistical characteristics can again be found in Tab. 1. As before

mean SvT only exists for n1w1=2, standard deviation sv only for

n1w1, and skewness c1,v only for n1w3=2. No further condition is

required, since n2wn1. We have not been able to find analytic

expressions for vmode and vmedian for unspecified powers n1 and n2.

However, computing them numerically for chosen powers is

straightforward. Since we wish to deplete ftot(v) at small v, we

want to maximize positive skewness c1,v using the still available

factor f . There is a clear mode of c1,v in the range 0vf ƒ1, but

again it is too difficult to find it analytically. Instead we obtain 225

numerical solutions for n1~2, . . . ,16 and m~n2{n1~1, . . . ,15,

and then obtain a good three parameter fit for maximum skewness:

f: max
0vf ƒ1

c1,v,tot(f )

� �
(n1,m)^0:629 1zn{2:70

1 {
1

2
m0:0589

� �
:ð52Þ

With Eq. (52) we complete the specification of our difference

propagator. In practice then, the difference propagator can be

computed using two PDEs

L
Lt

z
v1

2s1

(1{s2
1+

2)

� �n1

w1(x,t)~
w0

1vn1

2n1 sn1

1

Sj(x,t) ,

L
Lt

z
v2

2s2
(1{s2

2+
2)

� �n2

w2(x,t)~
w0

2vn2

2n2 sn2

2

Sj(x,t) ,

wtot(x,t)~w1(x,t){w2(x,t) :

ð53Þ

ð43Þ

ð49Þ

ð50Þ
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where only four parameters are actually free: n1, s1, v1, and n2. All

the other parameters are dependent, see Eqns. (43), (44) and (52).

Furthermore, n2wn1 is also required. Thus in comparison to the

dispersive propagator only one additional parameter is introduced

here: the chosen power n2 of the subtracted dispersive propagator.

While the variables w1 and w2 have no independent meaning here

as such, both describe independently propagated activity since

their PDEs are not coupled. Hence one can think of w1 as

representing a ‘‘full’’ propagator, which one would encounter in

humans, and of w2 as representing a ‘‘depletion’’ propagator,

which then removes activity conduction lacking in lower

mammals.

Comparing dispersive and difference distributions for n1~n in

Tab. 1, we find now that both mean and standard deviation of the

difference distribution are larger, but its coefficient of variation is

smaller. Thus the difference distribution is sharper. Skewness is

indeed more positive for the difference distribution, indicating the

increased preference for higher velocities we aimed for. For m??
one finds w2?0, i.e., the difference distribution becomes the

dispersive one again. The m~1 case then also turns out to be least

similar to the dispersive one concerning statistical characteristics.

Our skewness fit cannot be expected to be faithful outside of the fit

range, which however is sufficient for all practical purposes. The

only exception is n1~1 where skewness does not exist, but which

may be of interest. The approximation in Eq. (52) extrapolates

viably in that case with 0vf ƒ1, and for simplicity’s sake we

adopt here the fit for all n1. The resulting distribution is shown in

Fig. 3B. In comparison to Fig. 1B we see the clear depletion at low

velocities for powers nw1, which we aimed to achieve. The

extrapolated n~1 case however does not show a significant

depletion. Note that extrapolation of the fit for large powers does

not leave the 0vf ƒ1 range till m§129,082. We conjecture that

the marginal velocity distribution Eq. (51) is unimodal for our choice

of v2 and w2. We have checked the 240 cases obtained by varying

both n1~1, . . . ,16 and m~1, . . . ,15. In every case the derivative

of ftot(v) was zero for just one vw0. Since ftot(v)§0, and zero only

for v~0 and v??, this indicates a single maximum for ftot(v).

Results

Fits to myelinated fibre diameters in human corpus
callosum

How well does the dispersive propagator and its distance-

dependent fjk v jrð Þ and marginal fjk(v) velocity distributions, as

well as the difference propagator and distributions derived from it,

reflect physiological reality? This is a difficult question to answer

since there are surprisingly few studies that have attempted to

experimentally quantify the distribution of cortico-cortical con-

duction velocities in animals or humans. Existing experimental

estimates can be divided into two groups: those based directly on

conduction latencies, for which the distance-dependent velocity

distribution fjk v jrð Þ is appropriate, and those based on the

transformation of histologically determined axon diameters, to

which the marginal velocity distribution fjk(v) applies. Estimates of

cortico-cortical conduction velocities obtained using these ap-

proaches cover a wide range, and depend on whether the fibres

are myelinated or unmyelinated. For example, myelinated fibres of

the corpus callosum are found to have an order of magnitude

variation in diameters (0:25{2:25 mm in rat, rabbit, cat and

monkey [42–45]), with conduction velocities expected to vary

roughly linearly with these different calibres. Furthermore, strong

regional differences can occur, for example in monkey callosal

latency measurements yield a median of 7:0 ms{1 [46], whereas

in visual cortex one obtains only *3:5 ms{1 [47]. In the following

we will concentrate on fibre diameters and hence the marginal

velocity distribution fjk(v), since here some fairly detailed data sets

Figure 3. Difference propagator: synaptic connectivity and marginal velocity distribution. This figure is like Fig. 1, but for the difference
propagator with m~n2{n1~1. (A) Synaptic connectivity fit to an exponential decay (thin curve), Eqns. (47) and (49) are used. (B) Marginal velocity
distribution Eq. (51). The dispersive n~3 case is shown as thin curve for comparison.
doi:10.1371/journal.pcbi.1000653.g003
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are available. Furthermore, the analysis of latency measurements

requires knowledge about the distance between brain areas and

adds uncertainties concerning the precise time when transmitted

impulses actually lead to a measurable response. However, we will

indicate below where latency measurements may solve ambiguities

in our fits to data.

For myelinated axonal fibres conduction velocity is found to be

linearly related to fibre diameter v~kd. The constant of

proportionality k however is not well determined. Below we first

concentrate on the work of Aboitiz et al. [31], since they provide

empirical data for the distribution of callosal axonal diameters in

human brains. That paper uses k~8:7 ms{1 mm{1. But for

example data summarised in Boyd and Kalu [48] suggest that

for myelinated axonal fibres with diameter v10 mm the linear

scale factor should be rather k~4:5{6:0 ms{1 mm{1. However,

we will see below that this uncertainty does not influence our data

fit directly, but merely scales its result. Aboitiz et al. [31] obtained

the number of fibres over a given threshold diameter in the corpus

callosum of twenty human brains (10 males and 10 females). To

this purpose saggitally sectioned and stained post-mortem callosal

pieces were examined using light microscopy. In addition electron

micrographs were used for one brain. A summary of their data

suitable for our purposes is given in Tab. 2. Note that in this table

only the last four rows and first two columns contain their directly

measured data. The first row and the last two columns are

estimates based on other approximate measurements also reported

in [31]: On one hand we have subtracted the number of

unmyelinated fibres, and on the other hand we have estimated

the full unthresholded count. For details see the caption of Tab. 2.

Aboitiz et al. [31] counted the number of fibres over a given

observed diameter threshold dobs. The observed diameters must be

corrected for an estimated 65% tissue shrinkage due to formalin

fixation and paraffin embedding [31]: d~dobs=j with j^0:65.

This general shrinkage fortunately maintains the linear relation to

conduction velocity: v~k=j:dobs. In order to fit this thresholded

data, we calculate

N thr:N

ð?
v

du
2nuv2n

jk

(u2zv2
jk)nz1

~N 1z
v2

v2
jk

 !{n

~N

ð?
dobs

dd
2ndd2n

jk

(d2zd2
jk)nz1

~N 1z
d2

obs

d2
jk

 !{n

,

ð54Þ

where N represents the number of all (myelinated) fibres in their

corpus callosum sample and fjk is the marginal velocity

distribution Eq. (32) of our newly proposed dispersive propagator.

N thr is then the predicted number of fibres having conduction

velocities larger than v. Note that thanks to the linear relationship

of diameter to velocity, we can directly compare this to the

experimental count N thr of the number of fibres with a diameter

larger than dobs. We will then fit the optimal parameters N and

djk, and can relate the latter to the characteristic velocity as

vjk~k=j:djk. This means that the substantial uncertainties for the

velocity scale factor k does not directly influence our fit. If k
becomes more precisely known the new vjk can be obtained simply

by multiplication. For reporting velocities we will use the factor

k=j~8:7=0:65 ms{1 mm{1 in the following. An effect not

covered by the general shrinkage factor j is the possibility of

differential shrinkage of the tissue, i.e., fibres of different diameters

may have shrunk at different rates in the preparation. Little is

known about such effects. Furthermore, fibres typically have a

somewhat irregular ‘‘oval with dents’’ cross section in practice,

leading to uncertainties in precise determinations of the diameter.

Finally, both observer error in the tedious task of counting

thousands of fibres and equipment limitations (in particular for

small diameters) come into play. For all these reasons it is likely

that the dobs of Tab. 2 should be considered to have some error. In

order to take into account all these uncertainties, in particular the

unknown differential shrinkage error, we repeat the data fit four

times with sdse=dobs~f0%,2%,4%,6%g.
In Fig. 4 we show the result of fitting N and djk for powers n

from one to ten. We have repeated the fit in steps of 0.1 in order

to obtain smooth curves, but as discussed above only integer

powers allow easy computation in terms of PDEs. Shown is the

probability of obtaining a x2 equal to or greater than the actual

x2, assuming that the data is drawn from the model for a selected

n using best-fit parameters. This we will consider as the

confidence level of the model with this particular n. We use here

and throughout ‘‘generalized chi-square-fitting’’, which takes into

account errors in both dependent (y) and independent (x)

variables at every i-th data point using s2
i ~s2

y,iz(Ly=Lx)2
i s2

x,i,

to compare our predicted marginal velocity distributions with the

empirically observed data. More advanced approaches, for

example those based on Bayesian inference, could in principle

give statistically more robust and informative estimates of model

parameters. However, the kind of data available to us, from a

purely practical point of view, limits the advantages one could

obtain with more involved statistical analyses. On one hand, we

Table 2. Threshold counts of myelinated fibres in human corpus callosum based on Aboitiz et al. data.

observed threshold diameter dobs total number of fibres N tot number unmyelinated number myelinated N thr

w0:0 mm (2:003+0:338):108 (2:028+0:225):107 (1:800+0:355):108

w0:4 mm (1:602+0:250):108 (1:622+0:160):107 (1:440+0:266):108

w1:0 mm (3:770+0:994):107 — (3:770+0:994):107

w3:0 mm (1:651+0:858):105 — (1:651+0:858):105

w5:0 mm (3:517+2:087):104 — (3:517+2:087):104

Light microscopy counts (first two columns) are from Tab. III in [31]. The counts for w1{5 mm used Loyez stains of only myelinated fibres, but w0:4 mm represents

Holmes stains, which include unmyelinated fibres. Electron microscopy revealed ‘‘about 16%’’ unmyelinated fibres in the (three segments of the) genu and ‘‘usually less

than 5%’’ in the other parts [31]. Using Fig. 1 in [31], we hence estimate the unmyelinated count as Ntot
G1zG2zG3

:16%zN tot
rest
:5%, with a 1% error on both percentages.

‘‘Approximately 20%’’ of fibres were not detected with light as compared to electron microscopy [31], hence we estimate the first row from the 0:4 mm da by dividing

by 80% with a 1% error. The first row of the table represents estimates of the average number of fibres in human corpus callosum: total, and distinguished into

unmyelinated and myelinated kinds, respectively.
doi:10.1371/journal.pcbi.1000653.t002
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use here aggregate data from publications, not individual

observations, i.e., counts per area and per individual. On the

other hand, human data is too scarce and we will see below that

the rat data shows systematic deviations from the models.

However, our results are sufficiently clear to exclude the long-

wavelength velocity distribution for all data, and motivate the use

of the dispersive propagator for human and the difference

propagator for rat data.

In Tab. 3 we collect the results for maximum confidence level,

i.e., minimum x2. We see that depending on whether the

diameter uncertainty is larger or smaller, integer powers n~3
and n~4 are favoured, respectively. The fitted number of all

myelinated fibres N remains well inside one standard deviation

of the estimate N thr
w0:0mm in Tab. 2, but is systematically larger and

grows for larger diameter uncertainties. The fitted diameters djk

and characteristic velocities vjk are lower for larger assumed

diameter uncertainties. But this mainly reflects the lower fitted

powers n, since the extracted mean diameters and velocities

remain similar, i.e., larger n imply ‘‘slower’’ distributions Not

surprisingly, larger assumed errors allow better fits, but fit quality

is generally satisfactory. Re-fitting with integer n where the best

fit is obtained with non-integer n yields similar fit quality with

somewhat changed parameters. Given our lack of knowledge

concerning the precise diameter uncertainty, it is probably best

to consider the 0% case with n~4, N~1:889:108,

vjk~18:74 ms{1 and the 6% case with n~3, N~1:935:108,

vjk~14:91 ms{1 as reasonable limiting cases. They have

confidence levels of 51.41% and 68.17%, respectively. The

quality of these fits is apparent in Fig. 5. Note that the 0% case

predicts dmode~0:4667 mm (vmode~6:246 ms{1) and the 6%

case dmode~0:4211 mm (vmode~5:636 ms{1). The difference of

diameters predicted from these limiting cases is hence likely too

small to be detected directly from slice measurements. However,

larger n mean overall ‘‘slower’’ diameter distributions. A fit to

diameter data naturally reduces the impact of n on predicted

diameters, but it does so by compensating with an increase of the

characteristic djk. If conduction latencies for large distances are

roughly *vjk, as speculated above, then measuring the resulting

larger difference between vjk~14:91 ms{1 and vjk~18:74 ms{1

may help distinguishing the n~3 and n~4 fits experimentally.

This nicely demonstrates the (speculative) complementarity of

diameter and latency measurements. Conduction latencies for

callosal fibres in rhesus monkey gave velocity estimates of median

7:0 ms{1 [46]. This may suggest a preference for lower vjk, i.e.,

n~3 and/or the lower k values of Boyd and Kalu [48], if one

assumes that the inter-species difference between humans and

monkeys is not too drastic. For the n~3 case with

Figure 4. Confidence levels obtained from fits to the data in
Tab. 2. The power n of Eq. (54) was varied in steps of 0.1 for four
different uncertainties of the observed threshold diameters
sdse=dobs~f0%,2%,4%,6%g. The assumed relative diameter error
reflects mainly differential shrinkage. As confidence level the probability
that x2 is greater than the fitted x2 is shown.
doi:10.1371/journal.pcbi.1000653.g004

Table 3. Dispersive and difference fits to threshold counts of myelinated fibre diameters in human corpus callosum.

n N djk?SSdTT�sd ½½mm�� vjk?SSvTT�sv ms^1
� 	� 	

x2 conf.

0% 4 1:889:108 1:400?0:6872+0:4255 18:74?9:198+5:695 2.292 51.41%

2% 3.9 1:894:108 1:371?0:6835+0:4254 18:35?9:149+5:694 2.262 51.98%

2% [4] 1:885:108 1:404?0:6892+0:4267 18:79?9:225+5:712 2.266 51.90%

4% 3.3 1:931:108 1:191?0:6594+0:4265 15:94?8:826+5:708 2.067 55.86%

4% [3] 1:958:108 1:088?0:6409+0:4256 14:56?8:578+5:697 2.131 54.57%

6% 3 1:935:108 1:114?0:6562+0:4358 14:91?8:783+5:833 1.502 68.17%

0% 3.8, [m~1] 1:834:108 1:312?0:7133+0:4070 17:56?9:547+5:448 2.118 54.83%

0% [4], [m~1] 1:814:108 1:378?0:7257+0:4094 18:45?9:714+5:479 2.153 54.13%

6% 2.9, [m~1] 1:893:108 1:035?0:6722+0:4138 13:86?8:998+5:539 1.525 67.65%

6% [3], [m~1] 1:883:108 1:071?0:6797+0:4138 14:34?9:097+5:538 1.534 67.46%

Data of Tab. 2 was fit with dispersive Eq. (54). Fits were repeated assuming uncertainties 0%, 2%, 4%, and 6% of the observed threshold diameters sdse=dobs for n varying
from 0 to 10 in steps of 0.1. The values reported here are those of the confidence level peak, i.e., the minimum x2, cf. Fig. 4. Where power n was not an integer at the

peak, we also provide the fit with the closest integer n, shown in square brackets. For comparison, we repeated this procedure with difference Eq. (55). Difference fits

are indicated by a m~1 in square brackets, the value we used throughout to minimize the fraction of small diameter fibres, and n1<n, N<Ntot , d1<djk , v1<vjk for

tabulation. We show results for minimal and maximal diameter uncertainties, again also constrained to integer values. The fit quality of the dispersive and difference fits

is basically identical, but difference fits have slightly lower N and larger djk . Velocities are calculated here with v~8:7=0:65 ms{1 mm{1:d.
doi:10.1371/journal.pcbi.1000653.t003
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k~4:5 ms{1 mm{1, one would find a very similar vjk~

7:71 ms{1 for humans.

We have repeated the entire procedure for difference Eq. (51),

which yields

N thr
tot ~

Ntot

w1{w2
w1 1z

d2
obs

d2
1

� �{n1

{w2 1z
d2

obs

d2
2

� �{n2
� �

, ð55Þ

where n2~n1zm with n1,m[N1. Furthermore, d2~
ffiffiffiffiffi
n2
p

=
ffiffiffiffiffi
n1
p

fd1

and w2~zw1 with z and f given by Eqns. (44) and (52),

respectively. We choose m~1 for the difference fits, because for

this m difference and dispersive distributions are most dissimilar,

whereas for m?? they become the same. We have checked that

larger m indeed produce results closer to the dispersive fits.

Nevertheless, even for m~1 we find confidence levels basically

identical with dispersive fits of the same order, see Tab. 3. The

difference fits are also shown in Fig. 5, and the similarity to the

dispersive curves is evident. The only marginal improvement is

that the fitted Ntot are slightly closer to the experimental value for

N thr
w0:0mm of Tab. 2. Thus our current data for humans is too scarce

and imprecise to warrant the introduction of the more complicated

difference model, which requires twice the computational effort. A

useful fit of the data in Tab. 2 using the long-wavelength Eq. (36)

~NN thr~ ~NN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

d2
obs

~dd2
jk

vuut H ~ddjk{dobs


 �
, ð56Þ

cannot be obtained, since its shape is too much at odds with what is

required by the data. It is hence also not clear how to best compare

results for the dispersive and the long-wavelength propagator,

respectively, since their velocity distributions are so different. One

possible suggestion is to match their median velocities, in which case

for n~3 one obtains ~vvjk^0:5887:vjk^8:782 ms{1, while keeping
~NN~N. Another possibility is to simply ignore the two data points at

largest threshold diameters, which constrain the overall shape, and

fit only the first three. Then a fit for sdse=dobs~6% with a

probability of 85.43% for x2
w0:0337 can be obtained. Parameters

are ~NN~1:680:108 and ~ddjk~1:026 mm?~vvjk~13:73 ms{1. Both of

these possibilities are also shown in Fig. 5. We can see that the the

long-wavelength propagator matches at low threshold diameters

either the new propagator or the first three data points, according to

our choice. For comparable numerical simulations one should also

adjust the connectivity decay length according to Eq. (25), e.g.,

~ssjk^4:930sjk for n~3. While we strongly recommend using our

new propagators, the long-wavelength one perhaps remains

attractive for its computational simplicity. But in future one should

then use such appropriately ‘‘matched parameter values’’ for ~vvjk and

~ssjk. It is interesting that the exponential propagation decay time of

Eq. (6) and Eq. (11) with r?vjkt turns out to differ substantially:

~ss=~vvjk^8:370sjk=vjk for n~3. This suggests that the dispersive

propagator acts more locally than the long-wavelength propagator.

Fits to fibre diameters in rat subcortical white matter
We now turn to animals, where more comprehensive data is

available. Partadiredja et al. [36] have recently provided extensive

data on axon diameter distributions in rat. As mentioned above,

there appears to be a general trend in lower mammals that less of

the small diameter fibres are myelinated. Rat data hence provides

a convenient test for our difference propagator constructed to deal

with such depletion, since we would expect more small diameter

fibres and hence easier fits for other animals closer to humans, for

example macaques. Furthermore, unlike the human data used

above and other data sets from animals, Ref. [36] resolves

diameters very finely and hence allows us to pinpoint the strengths

and weaknesses of our ansatz. Partadiredja et al. [36] provide their

fibre count data in terms of the total densities rexp of axons per

100 mm2 and corresponding percentage histograms pexp depen-

dent on fibre diameters, see their Tabs. 1 and 2 and Figs. 4, 5 and

6. They provide electromicroscopic results averaged over six adult

male Wistar rats, but differentiated according to myelinated and

unmyelinated axons of frontal, parietal, and occipital subcortical

white matter from both left and right hemispheres.

Partadiredja et al. [36] found differences between left and right

hemispheres only for parietal unmyelinated fibres with appreciable

statistical significance (probability ƒ4:5%). Furthermore, an

independent check with a second set of data, albeit at lower

magnification, did not confirm even this difference. Thus it is

reasonable to average their data for left and right hemispheres.

However, it remains difficult to estimate appropriately the errors

on their pexp bins by only comparing data from left and right

hemispheres. Considering measured mean calibres, they found

only one significant regional difference (probability ƒ1:3%,

parietal vs. occipital) for unmyelinated axons and one marginally

significant one (probability ƒ5:6%, frontal vs. occipital) for

myelinated axons. Hence we will proceed here by averaging bin-

wise over the six pexp histograms (left and right for frontal, parietal

and occipital) available each for myelinated and unmyelinated

axons, and simply use the corresponding unbiased estimator of the

standard deviation in our fits. It is possible that regional differences

could be described with a more sophisticated procedure, but this is

sufficient for a parsimonious theoretical description and judging

Figure 5. Fits to threshold counts of myelinated fibre
diameters in human corpus callosum. The diameter data is
collected in Tab. 2, and the fit results with the dispersive Eq. (54) and
difference Eq. (55) in Tab. 3. For the dispersive propagator the n~3 and
n~4 fits are shown, which are optimal assuming sdse=dobs equal to 6%
and 0%, respectively. This relative diameter error (magenta error bars:
6%) reflects mainly differential shrinkage. Corresponding difference
propagator fits are also shown, which have basically the same
confidence levels. Thus these data cannot distinguish the dispersive
and difference models, and the former is preferred for its computational
simplicity. For the long-wavelength propagator a reasonable fit with Eq.
(56) to all data cannot be obtained. Two curves are shown: one
matching the median velocity of the dispersive n~3 case, the other
fitting only the first three data points with sdse=dobs~6%.
doi:10.1371/journal.pcbi.1000653.g005
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the suitability of our ansatz. We will always take direct averages of

the percentage histograms instead of using weighted sums.

Considering for simplicity only the average over left and right

hemispheres, we thus use p
exp
l&r~(p

exp
leftzp

exp
right)=2 instead of

introducing total density weights p
exp
l&r~(r

exp
leftp

exp
leftzr

exp
rightp

exp
right)=

(r
exp
leftzr

exp
right). This minimizes the problem of correlated errors,

since the errors on rexp were extracted from the same data as the

pexp histograms. To predict densities for different diameters one

should multiply the averaged pexp with the likewise averaged rexp.

We relate the marginal velocity distribution Eq. (51) once more

linearly v~k:d to diameters (the diameters in [36] are already

corrected for shrinkage), and obtain for a distribution in bins

½di,diz1� with di~i:Dd and i[N0:

ptot
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where n2~n1zm with n1,m[N1. Furthermore, d2~
ffiffiffiffiffi
n2
p

=
ffiffiffiffiffi
n1
p

fd1

and w2~zw1 with z and f given by Eqns. (44) and (52),

respectively. Below we wish to compare the quality of dispersive

and difference fits to rat data. The equivalent formula for the

dispersive propagator from Eq. (32) is

pi~P 1z
d2

i

d2
jk

 !{n

{ 1z
d2

iz1

d2
jk

 !{n" #
: ð58Þ

It is also easy to obtain the corresponding result for the long-

wavelength approximation from Eq. (36)

~ppi~~PP
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However, we will see that since ~ppi:0 for diw
~ddjk, no reasonable fit

can be obtained. As in the human case, the complete lack of a

large diameter (high velocity) tail in the long-wavelength

distribution is at odds with experimental data from rat. The

following discussion of the ptot
i and Ptot in Eq. (57) applies likewise

to the equivalent quantities in Eqns. (58) and (59): If the fitted

probability norm Ptot deviates from 100%, then this indicates that

the theory prefers a different total density of axons than the

experimental mean, namely rtot~Ptotr
exp. For comparisons with

the experiment we further re-norm Eq. (57) by multiplying the

predicted ptot
i with a factor Ptot=(

P
p

exp
i

w0 ptot
i ). Then the sum of

the predicted ptot
i over only those bins where the experimental data

p
exp
i w0 already yields Ptot. This adjusts for the systematic

mismatch between the experimental data, which assigns 100%

to the total as sum over those bins which have non-zero empirical

entries, and the model, which assigns 100% to the total as sum

over all predicted bin counts. Thus we can now truly expect

Ptot~100% from the fit.

While the linear relation v*d is widely accepted for

myelinated axons [49], it is currently not clear how conduction

velocity is related to diameter in unmyelinated axons. Theoretical

results [50–52] tend to favour a v*
ffiffiffi
d
p

dependence. Experimen-

tally one has found varying results, from squid v*d0:61 over crab

v*d0:75 to mammalian C fibres v*d, see for example [49] and

references therein. Studies of sensory neurons in cat have also

suggested a linear relationship [53]. Since currently the situation

Figure 6. Fits to binned counts of unmyelinated fibre diameters in rat subcortical white matter. The binned diameter data are averages over
the unmyelinated data shown in Figs. 4–6 of Partadiredja et al. [36]. sdse=dobs~3% (magenta error bars) has been assumed to reflect mostly differential
shrinkage, but fit dependence on this is mild. Fit results using the difference Eq. (57), and its dispersive counterpart Eq. (58), are collected in Tab. 4. For
unmyelinated axons the optimal fit with n1~2, m~1 is shown. For comparison, the optimal n~3 fit with the dispersive propagator is also displayed. It is
viable, but has a three times larger x2 . For the long-wavelength propagator a reasonable fit with Eq. (59) to all data cannot be obtained. Two curves are
shown for illustration: one matching the median velocity of the difference n1~2, m~1 case, the other fitting only the first four data points.
doi:10.1371/journal.pcbi.1000653.g006

ð57Þ
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is inconclusive, we use a linear relationship also for unmyelinated

axons, but naturally with a lower k than for myelinated ones. As

mentioned, this allows us to fit diameters directly and scale the

result to velocities. If we assumed for example v~e
ffiffiffi
d
p

instead,

then we would have to relate distributions nonlinearly

f (v)~2vf (d~v2=e2)=e2. This would inconveniently turn diame-

ter bins of the same size into different size velocity bins.

Nevertheless, it is important to note that sublinear diameter

powers sharpen up the velocity distribution as compared to the

linear case. This is in general detrimental for the quality of our

fits. Thus the linear fits to unmyelinated fibre data we provide

below need be considered as the ‘best case scenario’. In order to

compare better with the previous fits to human data, we again use

kmyel:~8:7 ms{1 mm{1 and follow Tab. IV in Aboitiz et al. [31]

as well in setting kunmyel:~3:2 ms{1 mm{1, which is based on

callosal rabbit data in Ref. [54]. We note once more that for the

linear case different assumed k simply re-scale our fit results given

below.

Fits of our difference propagator Eq. (57) to the data by

Partadiredja et al. [36] are collected in Tab. 4, and compared

there with corresponding dispersive fits using Eq. (58). The results

for unmyelinated fibres are displayed in Fig. 6. The fit to

unmyelinated fibre diameters has a proper optimum concerning

the difference propagator model, i.e., upon trying n1~1, . . . ,16
and m~1, . . . ,15 we find an optimal fit for n1~2 and m1~1 (and

thus n2~3). We see that this fit is excellent with a confidence level

of 99.997%, likely indicating an overestimate of the errors. Keep

in mind though that this is the ‘best case scenario’ linear fit, with

lower powers in the relation between velocity and diameter fit

quality would deteriorate. Furthermore, it is noteworthy that Ptot

is close to 100% and that the mean diameter of the distribution

corresponds very closely to the one estimated from experimental

data. This further confirms that the fit performs well. However,

and perhaps not surprisingly, the unmyelinated diameters can also

be fit with the dispersive propagator, as shown in Tab. 4 and Fig. 6.

Once more we find a proper optimum, although for n~3. All

criteria for a very good fit remain: the confidence level remains

high at 91.74%, Ptot is close to 100% and the mean diameter is

close to the experimental value. However, we see that x2 has

actually gone up by a factor of three as compared to the difference

propagator fit. Due to the much higher x2, the quality of the

dispersive fit is considerably more sensitive to the uncertainty in

the relation of velocity to diameter. Inspection of the fit curves in

Fig. 6 also suggests that the dispersive fit has a trend of being too

wide.

The large diameter tail in the data, which precludes any direct

fit with Eq. (59), is obvious in Fig. 6. One can try once more to

match the median velocities of the long-wavelength approximation

to that of a more viable fit. From the n1~2, m~1 difference fit

one obtains ~vvjk^0:8271:v1^0:6609 ms{1. For a fair comparison,

we adjust the long-wavelength data norm ~PP optimally for the

number of bins where ~ppi=0. Since ~ddjk^0:2065 mm, this includes

the first five bins and yields ~PP~73:95%. Alternatively one can

ignore again the data points at large threshold diameters. The best

fit is possible for the inclusion of the first four bins, where
~PP~55:56% and ~ddjk~0:1656 mm (~vvjk~0:5299 ms{1), for

sdse=dobs~3% with a confidence level of 72.52% for

x2
w0:6427. The confidence level for including the first three

bins would be 51.26%, and for the first five bins 15.64%. Both the

long-wavelength prediction matched in median velocity and the

one fit to the first four bins are displayed in Fig. 6. Note that the

long-wavelength ~ppi basically rises monotonically with diameter

and then suddenly drops to zero. The only slight complication

arises for the last non-zero ~ppi, which can rise or fall as compared to

the previous bin at smaller diameters. Yet an extended large

diameter tail as seen in the data is impossible to achieve.

Table 4. Difference and dispersive fits to bin counts of fibres diameters in rat subcortical white matter.

n1 m Ptot d1?SSdTT�sd ½½mm�� v1?SSvTT�sv ms^1
� 	� 	

x2 conf.

M [4] 1 72.33% 1:092?0:5749+0:3243 9:500?5:002+2:822 44.15 19.52%

M [6] 1 74.48% 1:367?0:5662+0:2974 11:89?4:926+2:587 38.23 41.34%

M [7] 1 75.03% 1:486?0:5641+0:2904 12:93?4:908+2:527 36.69 48.34%

M [8] 1 75.41% 1:596?0:5626+0:2854 13:88?4:895+2:483 35.60 53.45%

M [4] — 58.76% 1:200?0:5890+0:3647 10:44?5:125+3:173 78.84 0.007419%

M [6] — 60.89% 1:498?0:5790+0:3368 13:03?5:037+2:930 73.32 0.03474%

M [7] — 61.44% 1:627?0:5765+0:3299 14:15?5:016+2:870 71.88 0.05199%

M [8] — 61.83% 1:748?0:5751+0:3251 15:21?5:003+2:829 70.85 0.06733%

M 6� 1 85.72% 1:212?0:5019+0:2636 10:54?4:366+2:293 (13.46) (99.90%)

60.79 0.08155%

M 7� — 84.93% 1:345?0:4764+0:2726 11:70?4:145+2:371 (16.29) (99.34%)

141.3 0%

U 2 1 98.92% 0:2497?0:2154+0:1567 0:7990?0:6892+0:5015 3.861 99.997%

U 3 — 92.96% 0:3651?0:2151+0:1428 1:168?0:6882+0:4570 11.96 91.74%

Myelinated (M) and unmyelinated (U) diameter data from the histograms in Figs. 4, 5 and 6 of Partadiredja et al. [36] were fit with difference Eq. (57), and its dispersive
counterpart Eq. (58). Dispersive fits are indicated by a missing m value, and n<n1 , P<Ptot , djk<d1 , vjk<v1 for tabulation. sdse=dobs~3% was used for all fits, but
dependence on this was mild. For myelinated fibres the difference fit had no optimal n1 , hence several orders were tried as indicated by n1 in square brackets. However,
m~1 was optimal for any chosen n1 . The same holds true for the dispersive fit, and matching n were tried. The entries marked with a � show fits made to diameters
§0:2 mm only, i.e., without the first four (myelinated) data bins. Then optimal fit orders exist as shown. Here two sets of x2 and confidence level are given: in brackets for
the large diameters, without brackets compared to the full data. Unmyelinated data directly leads to the shown fits with optimal fit orders. SdT and sd are compatible

with the corresponding mean over values in Tabs. 4 and 5 of [36]: (0:5100+0:2467) mm for myelinated and (0:2133+0:1317) mm for unmyelinated fibres. Velocities are

calculated here with (vM ,vU )~(8:7,3:2) ms{1 mm{1:d.
doi:10.1371/journal.pcbi.1000653.t004
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Turning now to our fit results for myelinated fibres, see Tab. 4,

we find that the difference propagator has some trouble matching

the data. In Fig. 7 this is illustrated by two curves for n1~4 and

n1~8, respectively, with m~1 in both cases. Essentially, the

experimental distribution is more sharply peaked around 0:3 mm
than the difference propagator can easily accommodate. Since the

difference propagator becomes more sharply peaked for larger n1,

higher powers always provide a better fit in the tested range

n1ƒ16, i.e., we cannot find an optimal n1 for the model. However,

for any given n1 one finds that m~1 is optimal, since that

maximizes the skewness of the distribution. That Ptot is only about

75% also indicates that our fit has trouble matching the sharp

maximum. That said, formally one finds reasonable confidence

levels for higher powers of n1, e.g., 53.45% for n1~8.

Furthermore, the mean diameters of the distributions are well

compatible with the experimental value. While acknowledging the

difficulties, we hence conclude that the difference propagator is

sufficient for a rough fit even to rat data. Fitting the long-

wavelength propagator to these data is of course hopeless, due to

the extended large diameter tail. Since we have already considered

artificial matching procedures in the unmyelinated case, we do not

discuss any long-wavelength fits here. The dispersive propagator

also prefers large n without proper optimum. But if we fix n to the

same value as the n1 of the difference propagator, then we find

roughly a two times larger x2 in the dispersive case. This then

implies negligible confidence levels for the fit, i.e., the dispersive

propagator can be considered as excluded for the myelinated rat

data. We show in Fig. 7 two corresponding dispersive curves with

n~4 and n~8, respectively. It is obvious that compared to their

difference counterparts they are primarily less able to accommo-

date the sharp peak around 0:3 mm.

These results can be summarized also as follows: the depletion

of small diameters fibres in the experimental data appears to be

even stronger than predicted by the difference model, and

excludes the dispersive model. In order to demonstrate that the

small diameter data is the culprit, we have repeated the fits, but

removed the small diameter bins one by one. We find that after

removing the first four bins, and thus for considering only

diameters greater than 0:2 mm, both the difference and the

dispersive fit acquire optimal fit orders, namely n1~6, m~1 and

n~7, respectively. These fits for larger diameters are also shown in

Fig. 7, and are indicated by a � in the legend. As one can see in the

figure and in Tab. 4, fit quality is excellent for large diameters for

both models. But if one uses the so obtained parameters and

compares to the full data set including the small diameter bins,

then the confidence levels become negligible. Though again the x2

of the dispersive model is about two times larger. It is possible that

some experimental problem exists that leads to a systematic

underestimate of the number of small diameter myelinated fibres,

though we are not in fact aware of any. If that were the case, then

the large diameter fits might be closer to reality. Furthermore, the

large diameter fit for the difference propagator is actually in

accord with the two smallest diameter bins. Hence one could use it

instead of say the regular n1~8 fit, in order to trade a mismatch in

the third and fourth bin for an improved description of the peak.

Myelinated diameter counts for higher mammals, which show less

depletion at small diameters, should be described more easily with

the difference propagator. Indeed, this is also suggested by the

Figure 7. Fits to binned counts of myelinated fibre diameters in rat subcortical white matter. Data and fits are obtained as for Fig. 6, but
using the myelinated counts. Two regular difference fit curves are shown: n1~8 and n1~4, with m~1 in both cases. Systematic deviations from data
around 0:3 mm are obvious, but fit quality remains tolerable with a confidence level of 53.45% for n1~8. Even larger n1 can increase the confidence
level to about 70%. For comparison, dispersive fits with orders n~8 and n~4 are also shown. Their x2 is almost a factor two larger, rendering their
confidence level negligible. Fits with the long-wavelength propagator are not show, but fail drastically, cf. Fig. 6. The curves marked with a � show
additional fits for diameters §0:2 mm only, i.e., without the first four data bins. Then one can find optimal fit orders for both propagators. These fits
are of comparable, excellent quality compared to the reduced data set. But both predict too many small diameter fibres, and hence have negligible
confidence levels compared to the full data set, with the dispersive x2 again being about two times larger.
doi:10.1371/journal.pcbi.1000653.g007
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success of our own fit with the dispersive, and hence ‘‘non-

depleted’’, propagator to human data.

We can now use the fit to unmyelinated rat data to speculate

about the human case, for which we have not enough data

available for an independent fit. Let us assume that like

unmyelinated rat subcortical white matter, also human unmyelin-

ated callosal fibres can be fit with a n~3 dispersive propagator.

Then we can use the two available values from Tab. 2 to

determine the characteristic diameter

djk~
dobsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N

N thr

� �1=n

{1

s ~
0:4 mmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:028:107

1:622:107

� �1=3

{1

s ^1:439 mm , ð60Þ

and we thus find vjk~3:2=0:65 ms{1 mm{1:djk^7:083 ms{1.

This completes our data fits. We have collected our best fit results

in Tab. 5 for easy reference.

For human callosal fibres, we see from Tab. 2 that 9.19% of

fibres are unmyelinated, whereas for rat subcortical white matter

we derive from the mean numbers in Tabs. 1 and 2 of [36] that

83.35% of fibres are unmyelinated. We can use these fractions to

construct combined marginal velocity distributions in order to

understand overall activity conduction properties:

fhuman(v)~9:19%:fa(v)z90:81%:fb,c(v) , ð61Þ

frat(v)~83:35%:fd,e(v)z16:65%:ff,g,h(v) , ð62Þ

where we have used the labels of Tab. 5 as subscripts to indicate

alternatives. In Fig. 8 we show these combined distributions, and the

respective myelinated and unmyelinated contributions. To disen-

tangle the curves vf (v) rather than f (v) is shown. Thus the area of

these curves is normed to mean velocities, rather than to one.

Furthermore, to give some feeling for the remaining uncertainty

even in our ‘‘best fits’’, we show bands using the minimum and

maximum envelopes of Eqns. (61) and (62). Thus for example the

lower border of the ‘‘rat – myelinated’’ band is computed as

0:1665:v min ff (v),fg(v),fh(v)
� 	

. There are of course considerable

caveats: the human unmyelinated part is derived speculatively, the

rat myelinated part is only a rough fit, and the unmyelinated

estimates are in general plagued by the uncertain relation of

diameter to velocity. Nevertheless, we expect that the clear

differences one can observe here will hold true at least qualitatively:

In rat subcortical white matter there are two modes, a dominant,

sharp one at low velocities and a broad one at higher velocities. In

human corpus callosum one finds only a single, very broad mode at

high velocities. One would have to lower the ratio of the myelinated

to unmyelinated k from 8.7/3.2 = 2.7 to about 1.9 to turn the

second rat mode into a high velocity shoulder, and further down to

about 1.0 to obtain a smooth unimodal distribution. It is biologically

implausible to assume that the k ratio could be so low, since that

would abandon the distinction between fibre types. Furthermore, a

sublinear relation of velocity to diameter in rat would sharpen the

distinction between the modes even more. It is hence likely that rat

subcortical white matter operates in two distinguishable velocity

regimes, whereas human corpus callosum features only a single one.

Turing instability analysis
Following Coombes et al. [30] we investigate the consequences

of the new dispersive propagator in terms of a Turing instability

analysis. The Turing instability analysis represents the standard

approach to understanding the emergence of spatio-temporalTable 5. Summary of best propagator fits recommended for
use with human and rat data.

label data set n or n1 m vjk or v1 ms^1
� 	

comments

a human U 3 — 7.083 speculative,
based on 2 data
points

b M 3 — 14.91 optimal fit, 6%
diameter
uncertainty

c 4 — 18.74 optimal fit, 0%
diameter
uncertainty

d rat U 2 1 0.7990 optimal fit, best x2

e 3 — 1.168 optimal fit, easier
to compute

f M 8 1 13.88 good overall,
best at small
diameters

g 6 1 10.54 large diameters
only, best at
peak

h 4 1 9.500 tolerable overall,
easier to
compute

Shown is a summary of our best fit results for easy reference. ‘‘U’’ stands for
unmyelinated, ‘‘M’’ for myelinated, and difference propagator fits are
distinguished from dispersive ones by having an entry for m. For example, label
‘‘c’’ would indicate choosing a dispersive propagator with parameters n~4 and
vjk~18:74 ms{1 for human myelinated axons.
doi:10.1371/journal.pcbi.1000653.t005

Figure 8. Comparison of combined marginal velocity distribu-
tions: human corpus callosum vs. rat subcortical white matter.
Shown are unmyelinated and myelinated contributions, and their sum:
for human corpus callosum according to Eq. (61) and for rat subcortical
white matter according to Eq. (62). The lower and upper borders of the
bands are the minimum and maximum envelope, respectively, of all the
‘‘best fit’’ alternatives indicated in these equations, cf. Tab. 5. Since there
is only one estimate for the human unmyelinated contribution, in that
case a line instead of a band is drawn.
doi:10.1371/journal.pcbi.1000653.g008
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patterns of activity in spatially continuous non-linear dynamical

systems [55–58]. Specifically it enables the determination of the

conditions under which the stability of a homogeneous steady state

is lost and the types of patterns of activity that subsequently

emerge. This analysis method has been of great utility in

understanding self organized pattern formation in a range of

physical, chemical and biological systems. In order to facilitate

comparison with previously developed long range propagators, we

explore the stability of the homogeneous steady state for a Wilson-

Cowan or Amari style neural field model in which the mean soma

membrane potential is given by

hk(x,t)~
X

j

ujk(x,t)zh0
k , ð63Þ

ujk(x,t)~

ðt

0

ds gjk(s)wjk(x,t{s) : ð64Þ

Here gjk(t) corresponds to the time course of a unitary

postsynaptic potential (PSP) and wjk(x,t) represents the total rate

of arrival of presynaptic impulses to neuronal population k arising

from neural population j. We choose the bi-exponential

gjk(t)~
ajkbjk

bjk{ajk

e{ajk t{e{bjk t
� 	

H(t) [
Fourier

gjk(v)~
iv

ajk

z1

� �
iv

bjk

z1

 !" #{1

,

ð65Þ

to model PSPs. Therefore the system of equations for the Turing

instability analysis are

hk(x,t)~
X

j

ujk(x,t)zh0
k , Sk h½ �~ 1

1ze{kkh
ð66Þ

1

ajk

L
Lt
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� �
1
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L
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 !
ujk(x,t)~wjk(x,t) ð67Þ

L
Lt

z
vjk

2sjk

(1{s2
jk+
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� �n

wjk(x,t)~
w0

jkvn
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2nsn
jk

Sj hj(x,t)
� 	

ð68Þ

where kk is a gain parameter in the firing rate sigmoid Sk. The

homogeneous steady state hk(x,t)~h�k is then given by

h�k~
P

j w0
jkSj ½h�j �zh0

k. A linearization around this state with

hk(x,t)~h�kzhkelteik:x and like perturbations of ujk and wjk yields

the system of equations

hk~
X

j

l

ajk

z1

� �
l

bjk

z1

 !" #{1
w0

jkvn
jk

2nsn
jk lz

vjk

2sjk
1zs2

jkk2

 �h in S’j ½h�j �hj

~
X

j

gjk(v~{il)Gjk(k,v~{il)cjhj:
X

j

Djk(k,l)hj ,

ð69Þ

where S’j ½h�~LSj=Lh and cj:S’j ½h�j �. See Refs. [55–58] for further

detail on this linearization method and its application to the

Turing instability analysis.

Nontrivial solutions for hk will only exist for

det½D(k,l){1 �:E(k,l)~0, where 1 is the identity matrix of

appropriate dimension. Solutions to E(k,l)~0 then yield a

continuous spectrum of eigenvalues, l~l(k), that define the

dispersion relationship. Clearly each spatial mode k will be stable

if the real parts of the corresponding eigenvalues l(k)v0, and thus

the homogeneous state will be stable to all perturbations if

<l(k)v0 for all k. As various model parameters are changed, we

expect a critical point will be reached for some k~kc where the

real part of the corresponding eigenvalue l(kc) becomes zero. By

parametrically moving beyond this critical point the eigenmodes

having critical wavenumber kc and critical frequency vc:=l(kc)
will start to grow, leading to the emergence of spatio-temporal

patterns of activity. The expected type of emergent activity can be

inferred from the values of kc and vc. If kc~0 and vc=0 then we

expect to see the emergence of spatially uniform periodic

oscillations. If kc=0 then we expect to see the emergence of

spatial patterns of activity that can either be periodic in space but

constant in time (vc~0), or periodic in space and time (vc=0).

These three bifurcation scenarios are typically referred to as Hopf

(kc~0, vc=0), Turing (kc=0, vc~0), and Turing-Hopf (kc=0,

vc=0) bifurcations, respectively.

For computational purposes it is preferable to split E(k,l)~0
into real and imaginary parts and define l:nziv:

0~ER(k,n,v; q):<E(k,l)jq , ð70Þ

0~EI (k,n,v; q):=E(k,l)jq , ð71Þ

where q~fajk,bjk,n,w0
jk,vjk,sjk,kkg indicates the chosen set of

model parameters. Solutions to Eqns. (70) and (71) for a given set

of parameters q thus yield curves n(k,v; q) in the (n,v)-plane

parameterised by k, see for example the insets in Fig. 9B. Formally

a Hopf bifurcation occurs when kc~0 and vc=0 which from Eqns.

(70) and (71) gives the condition

ER(0,0,vc; q)~EI (0,0,vc; q)~0 ð72Þ

A Turing-Hopf bifurcation occurs when kc=0 and vc=0 and

requires that the solution trajectory n(k,v; q) should be a tangent

to n~0 at kc,vcð Þ, i.e.,

LvER(k,0,v; q)½ �LkEI (k,0,v; q){ LvEI (k,0,v; q)½ �LkERf

(k,0,v; q)gk~kc ,v~vc
~0 ,

ð73Þ

in addition to kc and vc satisfying

ER(kc,0,vc; q)~EI (kc,0,vc; q)~0 : ð74Þ

Eq. (73) can be derived by noting that the total derivatives of Eqns.

(70) and (71) with respect to k are by the chain rule

dER,I

dk
~LkER,Iz LnER,Ið Þ dn

dk
z LvER,Ið Þ dv

dk
~0 : ð75Þ

Solving these two equations by eliminating dv=dk yields

dn

dv
½ LnERð ÞLkEI{ LkERð ÞLnEI �z LvERð ÞLkEI{ LkERð ÞLvEI~0 ,ð76Þ

ð69Þ
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and condition Eq. (73) follows by requiring tangency dn=dv~0. It

should be noted that the Turing-Hopf bifurcation results in the

emergence of a global pattern with wavenumber kc travelling

coherently with a critical phase velocity c~vc=kc. The Turing

bifurcation occurs when vc~0 and thus EI:0 and ER:E, leaving

E(kc,0,0; q)~0 and LkE(k,0,0; q)jk~kc
~0 , ð77Þ

as conditions for the bifurcation. The derivation of Eq. (77)

proceeds in a similar manner to that of Eq. (73). In principle one

also has to check that such tangential solutions are locally right-

bounded, with the local turning point being least stable, but for the

dispersive, difference, and long-wavelength propagators under

consideration we have found this to be always the case in practice.

In the following, we will investigate the existence of these

bifurcations by changing one model parameter qa and solving the

equations for vc, kc, and a second model parameter qb. As in

Coombes et al. [30], for simplicity we consider only two neuronal

populations: excitatory (k~e) and inhibitory (k~i). We further

simplify the PSP time courses by setting both aik~bik~1 and

aek~bek~1. Explicit synaptic delays are not modelled. Because in

neocortex excitatory connections have much greater lateral extent

than inhibitory connections, we assume that sekwsik, and here set

sik~1 and sek~2. Connectivity weights represent local domi-

nance of inhibition with w0
ek~1 and w0

ik~{4, respectively.

Uniform axonal conduction velocities vjk~v and firing rate

functions Sj~S are assumed for simplicity. For subsequent

numerical simulations, and without loss of generality, we set

h�k~0 so that the linearized gain c~k=4. Fig. 9 shows the results

of the Turing instability analysis for the dispersive and long

wavelength propagator models. Figure 9A shows the critical curves

in the (v,c) plane. Above each of the respective curves a

homogeneous steady state succumbs to dynamical instabilities for

kc~0 (bulk oscillations, Hopf) and kc=0 (travelling waves,

Turing-Hopf), with the lower curve determining the actual

bifurcation at a given v. Neither model gives rise to a Turing

bifurcation within the admissible parameter space, i.e., Turing

bifurcations only occur for negative c. This is in contrast to Steyn-

Figure 9. Turing instability analysis of the dispersive and long-wavelength propagators. Bifurcations are investigated by varying the
axonal conduction velocity v and determining vc , kc , and the critical linearized gain c. All other model parameters remain at the values discussed in
the text. (A) Solid curves represent Turing-Hopf bifurcations (kc=0), dot-dashed curves Hopf bifurcations (kc~0). Results for orders n~1{5 of the
dispersive propagator and for the long-wavelength model are shown. Above the Turing-Hopf curves travelling waves emerge, whereas above the
Hopf curves bulk oscillations are seen. Stability will be lost at a given v through the less stable bifurcation, which has smaller critical c. (B) Critical
wavenumber kc of the Turing-Hopf bifurcation. Insets show the position in the complex plane of the most weakly damped pole under variations of k
(open circles k~0, closed circles k??) for the dispersive model at the indicated (v,c). (C) Critical frequency vc of the less stable bifurcation. (D)
Critical phase velocity c, shown where Turing-Hopf is the less stable bifurcation.
doi:10.1371/journal.pcbi.1000653.g009
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Ross et al. [59], in which the effects of both chemical and electrical

(gap junction) synaptic transmission are modelled in a mean field

model that includes a long-wavelength propagator. They observed

stationary Turing instabilities when homogeneous driving terms

similar to h0
k were varied.

Both the dispersive and long wavelength propagators are

capable of exhibiting Hopf and Turing-Hopf instabilities. As

Fig. 9B shows for the chosen parameter sets, the Turing-Hopf

critical wavenumber kc exists only above a finite velocity v for both

dispersive and long-wavelength models. In all cases the kc rises

smoothly with v and asymptotes to a maximum value. Considering

the critical wavelength lc~2p=kc as a typical size, increasing v
will hence change bulk oscillations first into large travelling waves,

which then contract to some minimal size. While the boundaries of

instability are of similar shape in the long-wavelength and

dispersive propagators, there are nevertheless differences between

the loci of the two curves that may be of considerable physiological

relevance. As can be seen in Fig. 9A, loss of stability occurs for

significantly smaller values of the linearized gain c in the dispersive

model with nw1 as compared to the long-wavelength one, for a

given characteristic conduction velocity v. In general this remains

true for a reparametrization of the bifurcation curves in terms of

the mean, median, or mode of the corresponding velocity

distributions, cf. Tab. 1. Because the linearized gain

c:S’½h��~kS�(1{S�) where S�~S½h�� is the steady state firing

rate, cf. Eq. (66), changes in c can be achieved by alterations in the

steady state firing rate via Dc~kDS�(1{2S�base). Thus for the

nw1 dispersive propagators a smaller change DS� from a given

basal firing rate S�base is required to induce pattern formation, as

compared to the long-wavelength propagator. This may follow

more closely the biological situation, where a range of metabolic

and energetic constraints need to be negotiated.

In Fig. 9C we show the critical frequency vc only of the less

stable bifurcation, which actually determines the instability. The

vc of the propagators are seen to transit smoothly from Hopf to

Turing-Hopf with increasing velocity. However, the long-wave-

length vc increases more quickly with velocity than the dispersive

ones, except for the n~1 case which is a close match. Thus at a

given velocity, nw1 dispersive travelling patterns will emerge at

lower critical frequencies than long-wavelength ones. Fig. 9D

displays the critical phase velocity c~vc=kc of the emerging

patterns. We find a lower v limit for which c formally diverges,

since kc?0 in this limit. Both the dispersive and the long-

wavelength critical phase velocities then rise mildly for larger

velocities. It is known that developmental changes to the diameters

and myelination of axonal fibres occur and partly depend on

activity feedback, see for example [60] and references therein.

Although highly speculative, it is conceivable that the transitions

between bulk oscillations and travelling waves in response to

changing conduction velocities, which we have just discussed,

could provide a relevant feedback mechanism. That the phase

velocity c remains close to independent of v above a threshold –

particularly so for larger n dispersive propagators, less so for

smaller n and the long-wavelength case – may then be significant

for connectivity development. Obviously significant differences

exist between the dispersive and long-wavelength models,

especially for larger n. Such differences likely also occur in the

bifurcation structure of other parameter planes. The biological

implications of these dynamical differences require future detailed

investigations, which need to go beyond our qualitative consider-

ations here by restricting the parameters more specifically to

experimentally allowed ranges.

In order to test the predictions of our linear stability analysis we

have performed numerical simulations of Eqns. (66) to (68) over

suitably chosen domains. Tab. 6 shows the results of comparisons

between the spatio-temporal properties of the numerical simula-

tions for (v,c) just beyond the Turing-Hopf bifurcation, and the

corresponding linear predictions. As can be seen there is excellent

agreement for a range of parameters and dispersive propagator

orders. In all cases parallel moving stripes were seen beyond the

Turing-Hopf bifurcation when integrations were continued for a

long enough time (results not shown), but a range of other patterns

also occurred depending on the initial conditions. Thus this system

likely possesses multiple attractors. By moving further away from

the Turing-Hopf bifurcation boundary more complicated, and

arguably biologically more plausible, self-organizing behaviour is

seen. One such example is shown in Figure 10, see also the

corresponding supplementary animation S1. No attempt was

made to determine whether the Turing-Hopf bifurcations were

subcritical or supercritical in character, though in principle this

could have been established by brute force numerical simulation

or more elegantly using the method of harmonic balance [61].

Performing a Turing instability analysis for either of the

difference propagators of Eq. (62) in the (v1,c) parameter plane

revealed a qualitative match with the corresponding n~n1

dispersive propagator. In particular, root-loci parameterised with

respect to k, see insets of Fig. 9B for representative examples,

reveal that the effect of depleting low velocity fibres in accord with

the rat data is to alter the most weakly damped branch of the

dispersion relationship only for large values of k, with the low

critical wavenumbers observed for the dispersive propagator

remaining essentially unchanged. Since the critical curves for the

difference propagator would basically reproduce those of the

dispersive propagator in Fig. 9, we do not show our additional

results for the difference propagator. These predictions also have

been verified by numerically integrating Eqns. (66) and (67) using

either the un-myelinated or myelinated difference propagator of

Eq. (62). Thus on the basis of a linear instability analysis in the

context of our current, highly simplified, neural field theory there

Table 6. Comparison of linear Turing instability analysis with
numerical integrations for the dispersive propagator.

n v ªlin
c & ªsim vlin

c vs: vsim
c klin

c vs: ksim
c1 ,ksim

c2

1 50 22.33 8.04 0.21 linearization

23 8.38 0.14, 0.22 simulation

100 44.27 11.34 0.27 linearization

45 11.73 0.22, 0.28 simulation

3 50 7.23 4.54 0.15 linearization

8 4.82 0.09, 0.17 simulation�

100 14.43 6.41 0.20 linearization

14.5 6.92 0.18, 0.26 simulation{

For selected orders n and conduction velocities v linear Turing instability analyses

of Eqns. (66)–(68) were used to predict the critical Turing-Hopf clin
c , vlin

c , and klin
c ,

cf. Fig. 9. For numerical simulations, a csim somewhat larger than clin
c was chosen.

The space-averaged 1D temporal Fourier spectrum uee(v) was used to estimate

vsim
c as the maximum of juee(v)j. The time-averaged 2D spatial Fourier transform

uee(kx,ky) was used to obtain two estimates: ksim
c1 as the k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xzk2
y

q
for which

juee(kx,ky)j is maximal; and ksim
c2 as the k for which the mean of juee(kx,ky)j over a

circle around the origin with radius k is maximal. For the estimates grid time

series of 50 time units with dt~0:01 (500 samples total) were recorded, after

initial ‘‘transients’’ of 100 ({3000) time units were discarded. The spatial grid was

128|128 (�180|180) with discretization steps Dx~Dy~1.
doi:10.1371/journal.pcbi.1000653.t006
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appear to be no essential dynamical differences between the

dispersive and difference propagators concerning bifurcations.

However, the dynamical consequences of these propagator forms

need to be investigated in future with physiologically more realistic

theories of brain electrorhythmogenesis, such as those of Liley et al.

[26] and Robinson et al. [25]. Furthermore, the combination of

myelinated and unmyelinated fibre systems, see Eqns. (62) and

(61), as well as Fig. 8, reveals differences that are likely to be

significant dynamically. However, in order to make meaningful

inter-species comparisons of brain dynamics, on one hand more

experimental connectivity data, in particular human, is required

and on the other hand local brain activity descriptions by mean

field theories will have to be adjusted for different species as well.

Discussion

Understanding the physiological basis of brain dynamics

requires one to account for the activity of distributed populations

of cortical neurons. Modelling the details of their ongoing

communication will generally form an important component of

any theoretical description. Continuum mean field models

(MFMs) of neural population activity [1,2,4,23,25,26] are a

particularly useful theoretical tool for bridging the gap between

the macro- to mesoscopic assays associated with non-invasive

neuroimaging (e.g., EEG or fMRI BOLD) and our knowledge of

the underlying microscopic anatomy, physiology and pharmacol-

ogy. However, MFMs have faced one particularly significant

technical challenge: the biologically plausible, yet computationally

tractable, propagation of neuronal activity via long-range (cortico-

cortical) connectivity. Most current MFMs have followed the

pioneering work by Jirsa and Haken [27], which relied on a

number of simplifying assumptions in order to derive a

numerically efficient and analytically tractable ‘‘long-wavelength’’

propagation PDE. However, in doing so a substantial degree of

biological fidelity has been lost, the most crucial of which involves

the distribution of axonal conduction velocities. As we have

demonstrated here, these PDE formulations have assumed a

sharply peaked velocity distribution with a definite cut-off, a

feature which is completely at odds with the available empirical

evidence that instead suggests rather broad distributions. On this

backdrop we have introduced two new long range propagators,

the dispersive propagator and the difference propagator derived

from it, which retain all the advantages of a PDE formulation but

produce broad velocity distributions in keeping with the

experimental measurements.

We have provided an extensive analysis of the mathematical

properties of these new propagators, and contrasted them with the

commonly used long-wavelength model. Of particular note are the

following results: First, we can distinguish between the distance-

dependent and the marginal velocity distribution. The former is

appropriate for the description of experimental measurements of

conduction latencies, the latter can be related to the histological

determination of fibre diameters in slices. Second, our new

propagators predict that more distant brain areas are generally

connected by faster fibres. This could be relevant for isochronicity

in the brain, see for example [60]. In contrast, the long-wavelength

propagator assumes essentially one conduction velocity irrespec-

tive of fibre length. Third, if conduction velocities of fibres indeed

depend on distance, then typical velocities as extracted from

latency and diameter measurements, respectively, are expected to

differ. We are not aware that this effect has been described or

systematically studied so far. For our new propagators, we can

speculate that measuring activity delays over large distances should

results in faster velocity estimates than deriving them from the

diameters observed in local slices. It may even become possible to

falsify propagator models using the constraints from these different

types of data, though it is at present unclear whether the current

Figure 10. Typical simulation result of the dispersive neural system far beyond a critical Turing-Hopf boundary. Subplots (A)–(D)
represent successive snapshots of the spatial patterns of activity in uee spaced a quarter of the average temporal oscillation period apart. The
dispersive propagator model of Eqns. (66)–(68) was computed for n~3 and v~100 with c~30 chosen well beyond the Turing-Hopf critical value, cf.
Fig. 9A. Spatial derivatives were approximated using finite differences on a regular square grid of 128|128 with spacing Dx~Dy~1. The resulting
system of equations was rewritten as a first-order system and integrated using ode45 in MATLAB starting from random initial conditions in uee. See
also the supplementary Video S1 for the corresponding animation.
doi:10.1371/journal.pcbi.1000653.g010
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modelling of brain anatomy is accurate enough to allow such

conclusions. Fourth, we have shown that two dispersive propaga-

tors can be subtracted from each other such that the resulting

difference propagator does not exhibit unphysiological properties.

This approach, which we have introduced here to deplete the

number of low velocity fibres for our rat data fits, can be

generalized to the construction of other, more complicated

propagators as need arises.

The empirical relevance of our proposed dispersive propagator

was illustrated by fitting the associated marginal axonal velocity

distribution to histological measurements of axonal fibre diameters

obtained from human corpus callosum by Aboitiz et al. [31], see

Fig. 5 and Tab. 3. A similar fit with the long-wavelength model

was simply impossible, since its functional form entirely mis-

matched the data. Thus this fit provides for the first time a realistic

description of activity propagation in the human brain in the

context of MFMs, though unfortunately only callosal data is

available in the human case. In order to obtain data from other

subcortical matter we turned to the extensive data of Partadiredja

et al. [36] for rat. Here we had to introduce the difference

propagator to account for the depletion of low velocity axons

relative to human in lower mammals. The difference marginal

velocity distributions were then shown to fit reasonably well the

empirically derived distributions of rat axonal conduction

velocities, see Figs. 6 and Fig. 7, as well as Tab. 4. Some

systematic deviations between theory and experiment were

however visible, caused by an even stronger low velocity axon

depletion in the data as compared to our theory. However, it is

known that this depletion is the less severe the phylogenetically

higher the animal. Indeed we have described the human callosal

data successfully here with the ‘‘non-depleted’’ dispersive propa-

gator. Hence it is likely that rat data is a kind of ‘‘worst case’’, and

human data a kind of ‘‘best case’’, for our new propagators, and

reasonable fits were obtained for both.

The results of these fits further allowed us to speculate that the

overall velocity distributions of rat subcortical and human callosal

fibres are qualitatively quite distinct, see Fig. 8. In rat subcortical

matter one finds two modes: a narrow low velocity one

corresponding to unmyelinated fibres and a broad high velocity

one corresponding to myelinated fibres. Whereas in human corpus

callosum there is a single very broad mode at high velocities

supported by both fibre types. Therefore rat data (and possibly

other mammalian data) may be misleading for the purposes of

MFM parameterisation in the context of understanding the spatio-

temporal dynamics of human long-range connectivity. Neverthe-

less, caution must be exercised regarding the actual fitted

parameter values due to limitations in the available data: in all

cases only data aggregated across individuals and (sub-)regions was

used, and this aggregate data was scarce for human and proved

difficult to fit for rat. While the advantage of incorporating a high

velocity tail with the dispersive and difference distributions is

compelling for all data, and the depletion of low velocity fibres

with the difference one is important for data from lower mammals,

more robust estimates of the fitted parameters will be essential to

obtain greater biologically fidelity in future MFM studies. This will

depend on the availability of more and ‘‘purer’’ empirical data, as

well as the use of more advanced inferential methods for the

parameter estimation. For example, an analysis could be made

using the Bayesian inferential framework, whereby prior beliefs

about the parameters are updated using the available data. One

can then simulate from the resulting posterior distributions of the

parameters using Markov Chain Monte Carlo (MCMC) method-

ology [62]. This would have the advantage of more fully taking

into account parameter uncertainty, and would allow direct

probability statements to be made about the parameters. It would

however introduce additional complications in terms of the model

fitting process. The outcome would also be dependent on prior

beliefs; in the absence of prior beliefs, one could specify prior

distributions that are uninformative, but there are several ways of

doing so. The frequentist approach that we have followed here is

relatively simple to apply, is objective, and comparison of fitted

models is straightforward.

In order to investigate the dynamical consequences of our newly

proposed propagators, we have embedded them in a Wilson-

Cowan or Amari style neural field formulation of local activity

which while somewhat simplistic and abstract, is nevertheless more

amenable to analytic treatment than biologically more realistic

models such as those of Liley et al. [26] and Robinson et al. [25].

This also facilitates comparisons with previous works [30] and

highlights contributions to the observed dynamics from activity

propagation. Turing instability analyses were then used to

characterise how spatially homogeneous steady states lose stability,

and in particular how the patterns of emergent spatio-temporal

activity vary as model parameters are changed. These analytic

results are based on a systematic linearization of the model, but

were confirmed for several cases with numerical simulations of the

full equations. The difference propagator was seen to result in

essentially the same bifurcation dynamics as the dispersive

propagator, at least in this setting. However, considerable

differences in the bifurcation dynamics between the dispersive

and the long-wavelength propagator were found. Both models

predict a transition for increasing axonal conduction velocities

from bulk oscillation to travelling waves as dominant instabilities.

But the dispersive propagator more easily transits from a

homogeneous stable state to self-sustained spatio-temporal pat-

terns. In particular it is found that pattern formation can be

induced for smaller changes in neuronal firing rates with the

dispersive propagator compared to the more standard long-wave

length propagator for given axonal conduction velocities. The

biological implications of these features are at present unclear,

though it might be speculated that this represents better the

biological situation, where a range of metabolic and energetic

constraints need to be negotiated in order to ensure that pattern

formation, and thus perception, occurs in optimal circumstances.

However, an important qualification needs to be attached to

these results. The emergence of self-sustaining spatiotemporal

patterns of activity was predicted and simulated with isotropic and

homogeneous connectivity. We did not explore here more realistic

synaptic footprints, since their inclusion would have considerably

complicated the qualitative picture we wished to paint by requiring

mappings to coupled PDEs and multiple cortical patches

[30,37,38]. Furthermore, for quantitative predictions independent

connectivity data at the level of detail appropriate for MFMs is still

lacking, e.g., what fraction of synapses on a local MFM neuron are

associated with input from a specific distant region of cortex is

generally not known with adequate precision. However, Jirsa and

Kelso [63] have elegantly shown that the stability of spatial

patterns can be changed by systematically varying the underlying

connection topology. Even relatively simple MFMs can then

undergo a series of spatiotemporal bifurcations. Since the stability

of spatial patterns could also critically depend on heterogeneous

connections, considerable uncertainty remains concerning the

effects of conduction velocity distributions which we have reported

here. It is essential that further work is performed to systematically

assess the effects of conduction velocity distributions together with

that of heterogeneous connectivity. In this regard it is fortunate

that recent advances in modelling the latter [30,37,38] can be

straightforwardly combined with our work here by changing the
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underlying conduction PDEs to our dispersive or difference

propagators. Future studies with biologically realistic MFMs need

to consider carefully whether changing the propagation model

would significantly alter their predictions.

Studying the dynamical consequences of the dispersive

propagator with more realistic MFMs of brain activity for example

may provide greater insight into the role variations in axonal

conduction velocity have in health and disease. For instance it has

been hypothesised, on the basis of physiological measurement, that

general anaesthetics may alter cognitive function through their

effects on axonal conduction velocity [64]. A variety of general

anaesthetic agents can cause increases in axonal conduction

velocity of 10–20% in the peripheral nerves of human volunteers

[65]. It is therefore reasonable to speculate that similar changes

will occur in other myelinated axons, such as myelinated cortico-

cortical fibres. However, more recent studies involving hippocam-

pal tissue slices have shown no effect of the volatile anaesthetic

halothane on the conduction velocities of myelinated Schaffer

collaterals [66]. Our newly developed propagator, in the context of

a realistic mean field theory of electrocortical activity, may help

resolve the role that changes in conduction velocity have in

determining anaesthetic action.

Now that our novel propagators allow reasonable fits to

experimental data in animal and human, we hope for a surge in

theoretical investigations of conduction effects, which in turn

should stimulate more targeted experimental measurements. In

particular, MFMs can now include realistic activity conduction on

an empirical basis in the computationally convenient fashion of a

PDE for the first time. Furthermore, we expect that our result that

fibre diameters and activity latencies estimate different, comple-

mentary, aspects of conduction in the brain to be a general feature

of underlying velocity distributions, and hence to be of general

interest beyond the specific scope of our current work. Finally, our

finding that rat subcortical and human callosal fibre systems differ

significantly in their velocity distributions beyond simple scaling,

while admittedly speculative and clearly limited due to the

comparison of different anatomical regions, is of great significance

in terms of the inferences we can make about human brain activity

from animal models. In particular more attention must be paid to

the possible confounding effects that models parameterised on the

basis of animal data have in theoretically characterising and

accounting for the propagation of axonal activity in human brains.

Supporting Information

Video S1 Spatiotemporal patterns of activity produced by a

Wilson-Cowan or Amari style neural field model with the

dispersive propagator. The video shows a numerical simulation

(1000 frames at a resolution of 0.01 time units) of Eqs. (66)–(68)

with parameters as described below Eq. (77) on a 1286128 grid.

An initialisation transient of 300 time units was discarded. The

axonal conduction velocity v = 100 and the linearized gain c = 30

were chosen well beyond the Turing-Hopf boundary, cf. Fig. 9A.

Snapshots of this numerical simulation are presented in Fig. 10.

Found at: doi:10.1371/journal.pcbi.1000653.s001 (5.82 MB AVI)
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