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Abstract: The ability to retrieve information from different layers within a 
stratified sample using terahertz pulsed reflection imaging and spectroscopy 
has traditionally been resolution limited by the pulse width available. In this 
paper, a deconvolution algorithm is presented which circumvents this 
resolution limit, enabling deep sub-wavelength and sub-pulse width depth 
resolution. The algorithm is explained through theoretical investigation, and 
demonstrated by reconstructing signals reflected from boundaries in 
stratified materials that cannot be resolved directly from the unprocessed 
time-domain reflection signal. Furthermore, the deconvolution technique 
has been used to recreate sub-surface images from a stratified sample: 
imaging the reverse side of a piece of paper. 

©2012 Optical Society of America 
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1. Introduction 

Pulsed terahertz (THz) spectroscopy and imaging, by design and necessity often operates in 
the reflection geometry, resulting in signals which comprise reflections from multiple 
interfaces, including the surface of interest. This technique is used in a range of application 
areas including: medical imaging, cultural heritage and non-destructive testing. 
Deconvolution is a mathematical technique which, theoretically, enables the deconstruction of 
signals reflected from stratified materials to recreate the internal structure of those samples. 
For example, a reflection measurement of a liquid sample inside a fluid cell contains 
information about the fluid and the cell window. Correct deconvolution will extract from this 
signal the reflection from the fluid, providing direct information about the sample. 
Techniques have been described in the literature which present, or use a deconvolution 
method, but concentrate on technological advances to reduce the terahertz pulse width to gain 
enhanced resolution [1], or use commercial algorithms in conjunction with additional signal 
processing techniques to extract information from the signal [2]. Unlike these earlier attempts, 
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this paper shows that, when correctly applied, deconvolution can yield deep sub-wavelength 
and sub-pulse width depth resolution in terahertz images. Moreover, the resulting impulse 
response function provides a new imaging parameter, which is entirely sample dependent. 

The deconvolution algorithm presented in this paper has been designed specifically for 
pulsed terahertz radiation. It innovatively uses padding in the time domain to enhance the 
signal to noise of the impulse response function, a process which is essential to extract this 
feature, and furthermore it demonstrates that the technique is not dependent on the width of 
the incident terahertz pulse. The standard approach to deconvolution is enhanced through 
filtering in the frequency domain and, when necessary, the inclusion of de-noising techniques 
to improve signal to noise ratio. The deconvolution technique is described through theoretical 
modeling, and demonstrated in a range of practical examples which indicate the range of 
impact of the technique, both for reflection spectroscopy, and imaging stratified material, 
chronologically at depth. 

2. Theory 

The reflected signal in THz spectroscopy, Po(t), is the convolution of the incident THz signal, 
Pi(t), represented in the time domain, with the impulse response function, IRF(t), which 
represents the reflected signal that would be obtained if the incident signal were an 
infinitesimally thin impulse. The impulse response function will therefore consist of a series 
of time domain signatures, obtained with infinite time resolution, corresponding to reflections 
from the boundaries within a stratified sample (Eq. (1)). 

      o iP t P t IRF t   (1) 

Using the convolution theorem, Eq. (1) can be transformed into the frequency domain, where 
the reflected signal spectrum, So(v), equals the incident THz signal spectrum, Si(v), multiplied 
by the transfer function of the sample, T(v). This is expressed mathematically in Eq. (2). 

      o iS S T     (2) 

Deconvolution retrieves the impulse response function from the inverse Fourier transform of 
the transfer function, which can be expressed, via Eq. (2), as the ratio of the reflected and 
incident THz signal spectra (Eq. (3)). 

  
 

 
o

i

S
IRF t iFT

S





 
   

 
 (3) 

Deconvolution is a black box technique. The incident (sometimes referred to as the 
“reference”) THz pulse is a signal collected in transmission geometry, i.e. the radiation 
incident on the stratified sample. By instrument design or experimental practicality it may not 
always be possible to directly measure this data. In this scenario a reference pulse can be 
recorded through reflection from a metallic reflector and the frequency dependent phase shift 
induced by the mirror can be corrected through application of the Drude model. While it is 

acceptable just to multiply by a factor of 1 to correct for the reflection induced phase shift, 
calculations using the Drude model indicate a frequency dependent trend in reflectance 
(reflectance decreases with increasing frequency) for gold mirrors, which were used 
exclusively in this paper. However, the assumptions made to derive the Drude model become 
increasingly less appropriate at higher frequencies and further work is required to determine 
an acceptable frequency range for this theoretical description of the reflection of 
electromagnetic radiation from a metallic surface. 

Blindly applying Eq. (3) to THz data proves unsuccessful. A series of concepts and 
modifications are necessary for the technique to work. The sequence of these adaptations is as 
follows: a) ensure that the time domain signals are sampled with a sufficiently short sampling 
interval to enable the retrieval of sample features with the desired resolution; b) pad the 
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incident and reflected data sets in the time domain; c) denoise the data when necessary; d) 
employ thresholding in the frequency domain. These four key elements are illustrated in the 
following section. 

2.1 Data sampling 

As indicated by Eq. (1), the reflected time domain signal, Po(t), contains information about 
the internal boundaries within a stratified sample in the form of its impulse response function. 
Moreover, this information will be contained within Po(t) whatever the form or duration of the 
incident signal. The only limitation to the information contained within Po(t) is that it is 
representative of the optical behaviour of the sample over the range of frequencies present in 
the incident signal and not at any other frequency. 

However, although both the incident and reflected pulses are continuous signals, all 
terahertz pulsed imaging and spectroscopy systems sample the reflected signal at discrete 
time intervals. Therefore, in order to resolve features of a given width in the impulse response 
function, the Nyquist sampling theorem indicates that the time domain sampling interval 
needs to be less than or equal to half that width. This has been verified through numerical 
simulation. 

In the simulation, the incident signal and impulse response function were both represented 
by 10 000 point data series. The simulated incident pulse had positive and negative going 
parts and spanned an overall width of 1100 points. The simulated impulse response function 
consisted of two peaks, each of width 5 points, with a centre-to-centre spacing of 10 points 
(see Fig. 1). The incident pulse and impulse response function were convolved to give the 
simulated reflected signal, another 10 000 point data series. These incident and reflected 
signals were then sampled with different sampling intervals by omitting intervening points 
within each data series, and the resulting impulse response function recovered by taking the 
inverse Fourier transform of the ratio of their spectra, as in Eq. (3). The transformation of the 
signals from the time to frequency domain and the subsequent inverse transform of their ratio 
to retrieve the impulse response function were carried out using complex fast Fourier 
transforms. In Fig. 1, the resulting recovered impulse response functions corresponding to 
sampling every second point (1:2), every fifth point (1:5) and every tenth point (1:10) in the 
incident and reflected signals are compared with the original, “unsampled” impulse response 
function. 

Sampling 1:2 data points results in recovery of the features in the impulse response 
function. Sampling 1:5 data points, which corresponds to the Nyquist limit for the impulse 
response function peaks spaced at 10 data points in the original data series, just resolves those 
two peaks. Sampling 1:10 data points does not recover the two peak feature in the impulse 
response function. 

This simulation has verified that it is the relative size of the sampling interval to the 
feature to be reconstructed that determines the theoretical resolution limit of the technique, 
not the pulse width. Other authors have spent considerable effort on trying to reduce the pulse 
width to improve the depth resolution, however, this is unnecessary if the techniques in this 
paper are used. These results were repeated with a variety of pulse widths and shapes, 
including a sine wave, and with a variety of impulse response functions. It is worth noting 
that in the case of a periodic incident waveform, the reconstruction technique works equally 
well for wavelengths both shorter and longer than the distance between the peaks in the 
impulse response function. 

2.2 Time domain padding 

It is well known that padding the time domain signal with zeroes prior to fast Fourier 
transformation, i.e. extending the time domain waveform by stringing additional zero 
amplitude points onto the end of the recorded data series, produces a similar increase in the 
number of points in the frequency domain, but with the new points interpolated between the 
existing spectral data points. The spectral bandwidth remains unchanged through this process, 
but the energy is spread across more spectral “bins”. While this process is sometimes used to 
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produce a spectrum that appears more pleasing to the eye through interpolation, it can be 
shown that the additional points introduced into the spectrum contain no extra spectral 
information above and beyond that contained in the spectrum obtained without padding [3,4]. 
In the context of deconvolution, however, padding serves a different purpose: it improves the 
signal-to-noise ratio in the recovered impulse response function. 

 

 

Fig. 1. Illustration of the Nyquist sampling theorem in the recovery of a two peak feature in the 
impulse response function following deconvolution. 

In considering the role that padding plays in the deconvolution process, it is helpful to 
firstly set out the equations for the discrete Fourier transform and associated inverse. One 
convention for the discrete Fourier transform as computed by some fast Fourier transform 
algorithms is 

 
1 2

0

1
kN i n
N

k n

n

X x e
N





   (4) 

where Xk is the transformed data array (complex), N is the number of points in the data series, 
xn is the initial data series and k is related to frequency, the quantity k/N being analogous to 
frequency measured in cycles per sampling interval. 

The corresponding inverse transform is: 

 
1 2

0

1
nN i k
N

n k

k

x X e
N

 



   (5) 

Now, if the number of points in the time domain data series is increased by a factor p through 
padding with zeroes, each of the resulting pN points in the frequency domain will be 
computed from the summation in Eq. (4), which now extends over the pN time domain points 
and will have its amplitude modified by the pre-multiplying factor which becomes (pN)

-1/2
. 

Therefore, if both the incident and reflected time domain signals are padded to the same 
degree, their corresponding spectra will accrue the same number of bins in the frequency 
domain. Equally, the factor p

-1/2
 that reduces the amplitude is the same for each data series 

and therefore the transfer function (see Eq. (2)), although distributed over more bins, has the 
same amplitude irrespective of the amount of padding that has been applied. 
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The contribution at each frequency in the transfer function can be considered to be the 
sum of a signal component Sk and a noise component Ek: 

 
k k kX S E   (6) 

Upon performing an inverse fast Fourier transform of the transfer function to retrieve the 
impulse response function (Eq. (3)), each point in the impulse response function can also be 
written in terms of a signal component sn and a noise component en: 

  
1

n n n n nx s e s e
pN

      (7) 

Each point in the impulse response function is, in essence, the result of a summation over all 
pN component frequencies, each with an appropriate phase factor (Eq. (5), with N replaced by 
pN). The phase factors in Eq. (5) adjust with p in order to ensure that the phase evolves with 
frequency at a rate which keeps step with the number of points in the interpolated transfer 
function, maintaining the overall shape of the impulse response function regardless of the 
padding factor that has been used. As the padding spreads the transfer function over p times 
more bins in the frequency domain, but without altering its shape or overall amplitude, the 
signal contribution to the impulse response function from the summation part of Eq. (5) will 
be directly proportional to the number of bins: 

 
ns pN   (8) 

However, as the noise is random, it has to be added in quadrature, i.e. 

  
1/2

2 2 2 2

0 1 2 1n pNe E E E E 
      (9) 

Now, if all the noise components are of equal amplitude but random phase (i.e. white noise), 
this becomes 

 n ke pN E    (10) 

Thus, taking account of the (pN)
-1/2

 factor in the inverse Fourier transform, the total 
contribution from the signal to the impulse response function is seen to be proportional to the 
square root of the number of bins: 

 
1

n ns s pN
pN

    (11) 

whereas the noise contribution becomes independent of the number of bins: 

 
1

n n ke e E
pN

    (12) 

Therefore, as a result of padding, the signal is expected to increase as the square root of the 
padding factor p while the noise stays more or less constant. This behaviour has been 
observed by extending the simulation discussed in Section 2.1, adding normally distributed 
noise to the sampled signals and including padding. The effect of different padding factors on 
the recovered impulse response function is illustrated using the simulation in Fig. 2. 

#175883 - $15.00 USD Received 10 Sep 2012; revised 8 Nov 2012; accepted 9 Nov 2012; published 19 Nov 2012
(C) 2012 OSA 3 December 2012 / Vol. 20,  No. 25 / OPTICS EXPRESS  27234



 

Fig. 2. Illustration of the effect of padding on the signal to noise ratio of the recovered impulse 
response function following deconvolution. 

The signal level shows the expected p
1/2

 increase with padding factor. However, rather 
than staying constant, the noise also shows a slight increase with padding factor. This small 
discrepancy may be due to the fact that not all of the noise terms in the transfer function are 
strictly independent as has been assumed in the simple treatment above, as a consequence of 
the interpolation process that is inherent in transforming the padded data series to the 
frequency domain. Indeed, in real data the noise is unlikely to be distributed equally across all 
frequencies and will tend to be system dependent, so the exact behaviour of the noise 
component may show some deviation from that predicted above. Nevertheless, both the 
simulation and real data show a significant enhancement of the signal-to-noise ratio of the 
recovered impulse response function through the use of padding. 

It should be noted that some fast Fourier transform routines use alternative conventions 
for the discrete Fourier transform and its inverse, instead of those given in Eq. (4) and Eq. (5). 
In one in common use, the factors of N

-1/2
 that appear in front of both transforms are replaced 

with a factor of 1/N in the forward transform and factor of 1 in the inverse transform. This is 
usually accompanied by a reversal in sign of the exponents. Following the same arguments as 
above, in this case padding would be expected to result in an increase in the signal level in the 
recovered impulse response function by a factor of p, while the noise should increase by p

1/2
. 

However, the predicted increase in the signal-to-noise ratio remains the same, regardless of 
the Fourier transform convention used. 

2.3 Denoising 

Signal denoising is not always necessary, but the authors have found, particularly on data 
reflected from highly absorbing/scattering stratified samples, that it makes reconstruction of 
internal structure from even poor signals possible. None of the results presented in this paper 
required the use of denoising, however, the authors have used this technique to identify and 
locate the presence of sub-surface paint layers in inhomogeneous plaster [5]. Due to the low 
signal to noise ratio in the recorded data the following denoising routine was used to enhance 
the quality of the results. Denoising routines are applied after padding, using motherfunctions 
from the Daubechies family (04 and 09) for the wavelet denoising of incident and reflected 
signals respectively, however the interested reader can fine more detail in the following 
references [2,6]. Following denoising, apodisation of the signal is necessary to prevent signal 
ringing [7], a tapered cosine apodisation function having been found to work well. 
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2.4 Thresholding 

Thresholding in the frequency domain is a necessary consequence of Eq. (3). The division of 
noise by noise in the higher frequency region of the signal results in division by very small 
numbers, causing spikes in the higher frequency region of the transfer function which 
dominate the signal of interest (the channel spectrum) in the lower frequency part of the 
signal. If not removed, these spikes are distributed across the impulse response function 
following application of the inverse fast Fourier transform, and dominate the information of 
interest. Locations within the incident data where the signal falls below a set percentage of the 
maximum value (5% was used to achieve the experimental results presented [8]) are 
identified and set to zero in the reflected data set. This suppresses dominant spikes in noisy 
regions of the data (Eq. (3)) and results in the calculation of the impulse response function of 
the stratified sample of interest. 

2.5 Summary 

A methodology has been identified for the effective deconvolution of THz reflection data 
which includes the following sequence of tasks. This methodology is presented schematically 
in Fig. 3. 

 

Fig. 3. Schematic diagram illustrating the deconvolution process. 

3. Experimental results 

All experimental results were recorded on a Picometrix T-Ray 4000 system. Reference 
signals, to be used as incident signal data, were collected from reflections from a metallic 
surface, and the Drude model applied to correct for the induced phase change between the 
incident and reflected radiation. All reflection measurements were recorded at normal 
incidence. A 320 ps measurement window was used and 4096 data points collected with a 
sampling interval of 0.078 ps. This corresponds to a theoretical resolution limit of 13 µm. 

For all data analysis using the proposed deconvolution routine a padding factor of 20 was 
used with a 5% thresholding percentage. Padding below a factor of 20 compromised results 
by reducing the benefits of the enhanced signal to noise as a result of padding (as indicated in 
Fig. 2), while a factor greater than 20 significantly increased computation time for only a 
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marginal increase in signal to noise of the impulse response function (again deducible from 
Fig. 2). 

3.1 Reflection spectroscopy 

Reflection data were recorded from two sheets of modern papyrus, 150 µm thick, spaced 2 
mm apart. The reflected signal can be seen in Fig. 4(a), the two peaks representing reflections 
from the first and second layer of papyrus respectively. The individual contributions from the 
front and back of each sheet of papyrus cannot be distinguished from the overall reflected 
radiation in this signal. The absolute value of the impulse response function calculated from 
the deconvolution algorithm is shown in Fig. 4(b). The impulse response function indicates 
four peaks, corresponding to reflection interfaces in the sample: the front and back of each of 
the papyrus sheets. These peaks were isolated from the data set, by setting all data to zero 
except the peak in question, for each of the four main peaks, and each were individually 
reconvolved with the incident data set. The sum of these four individual signals matches the 
original measured signal. Furthermore, the four individual signals show all the hallmarks of 
reflections from each of the papyrus surfaces: for example, a 180° phase inversion for 
reflections from a low to high refractive index boundary. These results are seen in Fig. 5, 
while Fig. 6 shows the summation of these four signals compared to the measured reflection 
data, the slight discrepancy in peaks three and four of these two signals is due to the 
ambiguity of the selection of the end of the second deconvolved peak in Fig. 4(b) and the start 
of the third. 

 

Fig. 4. (a) shows a reflection signal from two sheets of modern papyrus, each 150 µm thick, 
separated by 2 mm. Figure 4(b) shows the resulting impulse response function calculated using 
the deconvolution routine. 

The resolution limit of the technique was tested by recording reflections from a series of 
optically transparent plastic sheets. The thinnest of these was 57 ± 0.1 µm, (measured by a 
Mitutoyo Litematic) and was easily resolved by the technique. The measured time domain 
trace is shown in Fig. 7(a) and the deconvolved signal in Fig. 7(b). 

#175883 - $15.00 USD Received 10 Sep 2012; revised 8 Nov 2012; accepted 9 Nov 2012; published 19 Nov 2012
(C) 2012 OSA 3 December 2012 / Vol. 20,  No. 25 / OPTICS EXPRESS  27237



 

Fig. 5. shows reconvolved signals representing reflections from the front and back surfaces of 
two sheets of papyrus separated by 2 mm. These add to match the measured signal reflected 
from the two sheets. 

 

Fig. 6. shows the sum of the reconvolved signals in Fig. 5 compared to the measured signal 
reflected from two sheets of papyrus. 

3.2 Reflection imaging 

While the deconvolution technique presented in this paper will prove a powerful tool for the 
analysis of reflection spectroscopy data for a variety of applications, including the analysis of 
biological spectroscopy data, it also has potential to open up new application areas in THz 
reflection imaging. While the reconvolved signals, independently representing surfaces that 
were not resolved in the measured reflection signal, can be used in their own right through 
traditional THz imaging parameters to form images, there is a compromise in signal to noise. 
The impulse response function, however, proves an interesting source of imaging parameters. 

Each peak of the impulse response function corresponds to a reflection from a boundary 
or refractive index mismatch within the sample. The amplitude of the peak is an indication of 
the reflection coefficient of this boundary, although second and subsequent peaks are adjusted 
in light of absorption/reflection at previous surfaces. This can be corrected for in post-
processing, using a simple addition-based algorithm. 

Reflection data were recorded from a stack of three pieces of paper, each 100 µm 
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Fig. 7. (a) Time domain pulse measured following reflection from a 57 µm plastic sheet. 
Figure 7 (b) Impulse response function for a 57 µm plastic sheet. 

thick, with a unique symbol drawn on each side of each sheet. The ink used was created from 
a 2:3 ratio of carbon black to gum Arabic. Figure 8 shows a typical signal from the data set, 
while Fig. 9 shows the THz images of the front and back of the first layer of paper generated 
using the maximum amplitude of the first and second peaks of the impulse response function, 
compared to photographs of the same. 

 

Fig. 8. shows a typical data series from the reflection image from a stack of three sheets of 
paper, each 100 µm thick. 

It is evident from Fig. 8 than more information is contained within the recorded signal 
about the further obscured pages. Regardless of this, a clear image of the reverse side of the 
top page was achieved, without indication of the images beneath, using the proposed 
deconvolution routine. 

4. Discussion 

A robust deconvolution algorithm has been described through theoretical simulation for 
pulsed THz radiation. It is achieved through an innovative use of data padding that the 
authors have never seen demonstrated elsewhere. The potential of the algorithm for reflection 
spectroscopy and imaging is presented in this paper. This is an important tool for a number of 
THz applications which by design, or necessity, use reflection spectroscopy. The reflection 
signal of interest from within a stratified sample can now be identified by simply identifying 
the correct peak in the impulse response function, and recreated by reconvolving this peak 
with the incident signal. Furthermore, the impulse response function provides a powerful 
imaging parameter, allowing the reconstruction of sub-surface images by using the peak 
representing the layer of interest. This gives the potential to move, layer-by-layer, 
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chronologically, through a stratified sample using an imaging parameter based on the peak of 
the impulse response function features, which theoretically (from Eq. (3)) contain only 
information about the stratified sample and the refractive index contrast at boundaries within 
it. 

 

Fig. 9. shows THz images of the front and back of the first sheet of paper. 

Other image parameters however become available to the user as a result of the technique. 
As demonstrated in Fig. 4, it is possible to reconstruct reflections from layers that are not 
resolvable using the unprocessed time domain measurement. Standard THz imaging 
parameters in both the time and frequency domain can be used to construct images from this 
new data. There are however two main drawbacks to this approach. Firstly, the use of padding 
in the deconvolution routine significantly improves the signal to noise ratio of the impulse 
response function. Any subsequent reconvolution reintroduces noise from the original data 
and reduces this advantage. Secondly the image parameters derived from the time and 
frequency domain of the reconvolved data intrinsically also contain pulse and system 
dependent information removed from the impulse response function. 

5. Conclusion 

A deconvolution algorithm has been presented, which has been specifically designed for THz 
spectroscopy and imaging and incorporates a series of novel features. The resolution of the 
technique is not a feature of the pulse shape or width used, but rather a consequence of the 
sampling period. Padding the time domain data series by a factor p as part of the algorithm 
increases the signal of the impulse response function by a factor of p

1/2
 while the noise 

remains more or less constant. Thresholding the signals in the frequency domain, before 
calculating the transfer function reduces high frequency noise spikes which dominate the 
lower frequency channel spectrum following inverse Fourier transformation. For a 0.078 ps 
time step a theoretical resolution of 13 µm was calculated and in practice a 57 ± 0.1 µm sheet 
of transparent plastic was resolved. 
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Finally, the use of the peaks of the impulse response function to recreate a sub-surface 
image was demonstrated by imaging the reverse side of a 100 µm sheet of paper. Work 
continues with the aim of reconstructing images from specific sides of a sheaf of pages. 
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