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Abstract 

 

We studied the synergetic effect of confinement (carbon nanopore size) and surface chemistry 

(the number of carbonyl groups) on carbon dioxide capture from its mixtures with methane at 

operating conditions of industrial adsorptive separation. Although both confinement and 

surface oxidation impacts on the efficiency of carbon dioxide/methane adsorptive separation 

at thermodynamics equilibrium, we showed that rarely studied surface functionalization is far 

more important for the designing of an efficient adsorbent for carbon dioxide capture. 

Systematic Monte Carlo simulations revealed that adsorption of methane either pure or mixed 

with carbon dioxide on oxidized nanoporous carbons is only slightly increased by the 

presence of charged functional groups. In contrast, adsorption of carbon dioxide is very 

sensitive to the number of carbonyl groups (charged dipoles), which can be examined by a 

strong electric quadrupolar moment of carbon dioxide. Interestingly, the adsorbed amount of 

methane is strongly affected by the presence of the co-adsorbed carbon dioxide. In contrast, 

the carbon dioxide uptake does not depend on the molar ratio of methane in the bulk mixture. 

The optimal carbonaceous porous adsorbent used for carbon dioxide capture near ambient 

conditions should consist of narrow carbon nanopores and large number of oxygen-containing 

functional groups dispersed on the carbon pore walls. Furthermore, the carbon 

dioxide/methane mixtures with dilute carbon dioxide component maximized the equilibrium 

separation factor. The maximum equilibrium selectivity of CO2 over CH4 of ~18-20 is 

theoretically predicted for strongly oxidized nanoporous carbons. Our interesting findings call 

for a review of the standard uncharged model of carbonaceous materials used for the 

modeling of the real adsorption separation processes of gas mixtures containing carbon 

dioxide (and other molecules with strong electric quadrupolar moment or dipole moment). 

 



 3 

Key words: carbon dioxide capture, adsorptive separation, oxidized carbonaceous materials, 

molecular simulations, and coalbed methane recovery 

 

1. Introduction 

 The study of adsorption and separation of CO2-CH4 mixtures on pure and oxidized 

nanoporous carbonaceous materials near ambient operating conditions is important from both 

fundamental and practical perspectives. From fundamental perspective: the equilibrium 

adsorption and separation of molecules with large electric quadrupolar moment like CO2 

depends on two factors: the size/topology of carbon nanopores (i.e., effect of nanoscale 

confinement), and the specific short-range interactions with oxygen-containing functional 

groups dispersed on the carbon surface.
1-15

 It is expected that specific dipole-quadrupolar 

interactions give rise to preferential adsorption of CO2 over non- and weakly polar fluids (e.g. 

CH4, N2, SF6, H2, C2H5, C2H4, and others) at low pore loadings.
13,14,16-28

 Furthermore, it is 

commonly known that enhanced adsorption field in carbon nanopores increases CO2 

adsorption capacity and the equilibrium separation factor over mentioned above fluids at low 

pore loadings.
5-10,15,29-35

 However, it is not clear how various factors, including: bulk mixture 

composition, pore loading, the number and type of surface oxygen-containing groups, and 

carbon texture impact on the CO2/CH4 separation factor near ambient operating conditions. 

From practical perspective: developing methods to energy efficient capture of CO2 from 

industrial combustion exhaust gases is a challenge with enormous environmental implications. 

Optimization of CO2/CH4 separation factor is also crucial for practical implementation of 

novel solutions in clean energy technologies, such as: coalbed methane recovery, geologic 

CO2 sequestration, shale gas exploration, and others.
15,36-42 

 Oxygen is chemically bounded to the carbon surface in the course of oxidation.
43-47

 

Unsaturated carbon edge faces are oxidized by exposure to air at room temperature. This 
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phenomenon, called “aging”, depends on the relative humidity, temperature, and the 

reactivity/topology of carbonaceous material. Therefore, no pure carbonaceous material 

exists, but carbon surface becomes more and more oxidized (i.e., hydrophilic) with the time. It 

is to be expected that most of oxygen is bounded by covalent bounds in the form of oxygen-

containing functional groups, such as: carboxyl, phenolic hydroxyl, carbonyl, carboxylic 

anhydrides, lactones, lactols, and ether-type oxygen atoms.
43-45,48,49

 Obviously, one can easily 

adjust the number and chemistry of the oxygen-containing functional groups on carbon 

surface by controlled oxidation processes. Concentrated nitric acid, perhydrol, and potassium 

permanganate are most common oxidation agents.
45,48,50-53

 Because, overall, oxidation 

transforms hydrophobic carbon surface to more hydrophilic one, adsorption of organics from 

aqueous solutions strongly depends on the number and types of oxygen-containing functional 

groups. Water clusters bounded to the oxidized pore entrances reduce the pore accessibility 

for organics.
54-57

 It has also been shown that the number and types of oxygen-containing 

functional groups strongly affect adsorption of water vapor, especially at low humidity.
58-63

 

The mechanism of water adsorption involves the nucleation of water clusters on the acidic 

functional groups, and further fusion of these clusters at higher humidity.
64-67

 Similarly to 

water adsorption, acidic surface oxides increase the adsorption capacity for other polar 

molecules such as ammonia and alcohols vapors.
68-72 

 In contrast, the impact of oxidation on the adsorption and separation of non- and 

weakly polar fluids from the gas phase is poorly understood. Tamon and Okazaki
72

 

investigated the influence of acidic surface oxides of activated carbon on gas adsorption 

characteristics. The authors showed that mild oxidation of microporous CAL activated carbon 

sample by HNO3 slightly reduces micropore volume and surface area. Thus, the oxidation of 

micro- and nanoporous carbonaceous materials by exposure to air at room temperature is not 

expected to impact on the surface topology and porosity of carbonaceous materials. As others, 
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Tamon and Okazaki
72

 found that during adsorption of water and ammonia from the gas phase, 

adsorption capacity increases greatly with oxidation of carbon sample. Furthermore, ammonia 

was irreversibly adsorbed on the oxidized carbon samples. In constant, the adsorption 

isotherms of simple alcohols (i.e., CH3OH, C2H5OH, and others), C6H6, and C6H12 on pure 

and oxidized carbon samples were almost identical. Thus this experiment shows that the 

presence of the specific short-range interactions between some polar molecules and oxygen-

containing functional groups not necessary increases their adsorption. Cluster formation 

around oxygen-containing functional groups is a possible explanation of these experimental 

findings. In contrast to water, the clustering of other polar molecules around charged O-C 

dipole is expected to be much weaker. First, these polar molecules are larger than water. The 

packing at restricted nanospaces may inhibit the accessibility of functional group to clusters 

composed of larger polar molecules. Second, the strength of hydrogen bonds (H-bonds) 

formed by other polar molecules is much weaker as compared to water. Because the clusters 

of polar molecules are too small, they do not aggregate at higher vapor pressures. Thus, the 

adsorbed amount is not enhanced by the cluster-mediated mechanism of adsorption that is 

responsible for high water uptake. What about adsorption of CO2 on pure and oxidized 

carbonaceous materials? From the electronic properties, it is expected that large electric 

quadrupolar moment of CO2 (i.e., 13.4×10
-40

 C/m
2
), will develop the specific short-range 

directional interactions with the charged oxygen-containing functional groups.
13,14,16-28

 

Therefore at low pore loadings, the equilibrium CO2/CH4 separation factor should increase 

with the content of the charged surface oxygen. However two important questions arises. 

First, how much the CO2/CH4 separation efficiency will increase with the surface oxidation? 

Second, how the CO2/CH4 separation efficiency on pure and oxidized carbonaceous materials 

depends on the pore size and bulk/pore mixture composition? 
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 In contrast to surface chemistry, the impact of the pore size on the adsorption and 

separation of CO2 from the gas mixtures by nanoporous carbonaceous materials has been 

explored and understood. Recently, Sevilla and Fuertes
73

 have summarized the CO2 

adsorption capacities for various carbonaceous materials measured at 298 K and 1 bar. As 

expected, CO2 adsorption capacity is strongly correlated with the content of narrow carbon 

nano- and micropores. Activated graphite fibers and mesoporous carbons adsorb only 1.3-1.7 

mmol/g (storage per mass: 59-76 mg/g). In contrast, highly microporous sustainable porous 

carbon samples prepared by chemical activation of hydrothermally carbonized 

polysaccharides and biomass are able to adsorb 5.5-5.8 mmol/g
 
(storage per mass: 230-256 

mg/g). Furthermore, these porous carbons exhibit a high CO2 adsorption rate, a good 

selectivity for CO2-N2 separation and can be easily prepared. Silvestre-Albero et al.
74

 reported 

similar high CO2 adsorption uptake in microporous carbon samples produced by the chemical 

activation of petroleum pitch (i.e., 4.7 mmol/g, storage per mass: 207 mmol/g at 293 K and 1 

bar). Finally, Builes et al.
75

 investigated the CO2 uptake in two samples of novel microporous 

zeolite template carbons (i.e., EMT-ZTC and FAU-ZTC). Both carbon samples adsorbed 

exceptionally high amount of CO2 at higher pressures, ~30-35 mmol/g at 273 K and 30 bar. It 

is worth to point out that these CO2 adsorption capacities are competitive to the best organic 

and inorganic adsorbing frameworks (zeolites and mesoporous silicas, COFs and MOFs). 

Taking into account experimental and recent theoretical results obtained by Palmer et al.
10

 

and Kowalczyk et al.
76

, it seems reasonable to assume that carbonaceous materials with a 

large number of narrow carbon nanopores (pore size ~ 0.5-0.6 nm) are optimal for CO2 

adsorption. In strong confinement imposed by carbon nanopores, the linear shaped CO2 

molecules have broken rotational symmetry. Highly oriented adsorbed CO2 molecules 

maximized their dispersion interactions with carbon pore walls. Moreover, as has been also 

shown, the equilibrium separation factor of CO2 over other simple molecules is also very high 
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in narrow carbon nanopores.
6,29

 Nevertheless, we need to take care to the conclusions that 

have been taken from experimental results. This is because the experimental samples of 

carbonaceous materials are never pure carbon. They inherently poses some surface functional 

groups, defect, heteroatoms, mineral contaminants, etc. Therefore it is hard or even 

impossible to isolate the impact of porosity and surface oxidation on the CO2 adsorption and 

separation from the raw experimental measurements. Computer simulation studies are 

powerful methods that complement and extrapolate experimental knowledge. 

 In the current work we study the cooperative effect of the structural heterogeneity (i.e., 

distribution of nanopore sizes) and surface oxidation on the equilibrium CO2/CH4 mixture 

adsorption and separation at 298 K. For this purpose we systematically investigated the 

CO2/CH4 single-component and mixture adsorption on a series of the well-defined 

pure/oxidized virtual porous carbon samples (VPCs) at various operating conditions, 

including the entire range of CO2 molar fractions in the bulk mixture. Most of the 

experimental work in the literature focuses on the either the impact of the porosity or the 

surface chemistry on the CO2 capture by adsorption. On the other hand, the simulation studies 

have been limited to pure carbonaceous materials that are poor approximation to these used in 

industrial separation processes. Therefore, in the current work we concentrated on two major 

issues. First, we used Monte Carlo simulations to advance our understanding at the 

microscopic level of the adsorption mechanism of CO2/CH4 mixtures on pure/oxidized 

carbonaceous materials at industrial operating conditions. Second, we predicted theoretically 

the maximum equilibrium selectivity of CO2 over CH4 on pure/oxidized carbonaceous 

materials at 298 K. We believe that presented results are not limited to carbonaceous materials 

and they are viable information for designing of efficient adsorbents for the equilibrium 

CO2/CH4 mixture separation. 
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2. Calculation details 

 

2.1. Simulation boxes 

 The S00 virtual porous carbon (VPC) sample proposed by Harris et al.
77-83

 was used to 

generate a sequence of VCPs samples with different porosity. This sequence was obtained by 

random placing of subsequent small carbon fragments to pores of the S00 VPC sample.
83

 

Therefore, the pore size distributions of generated VPSs were progressively shifted to 

narrower carbon nanopores. Subsequent VPCs samples were denoted respectively as S00, 

S04, S08, S12, S16, S20, S24, S28, S32, and S35 (where the number denotes the number of 

introduced carbon fragments). Additionally, two representative samples of VPCs (i.e., S00 

and S35) were virtually oxidized
13

 in order to study the impact of the surface oxidation (more 

precisely, the number of carbonyl groups) on the CO2/CH4 mixture separation. Note that the 

S35 sample contains the narrower carbon nanopores, whereas the S00 sample contains the 

wider ones. The following VPCs samples were generated from virtual oxidation of S00 

sample: S00_036, S00_072, S00_108, S00_144, and S00_180.
13

 Here, the second number 

denotes the number of introduced carbonyl groups. Similarly, the following VPCs samples 

were generated from virtual oxidation of S35 sample: S35_072, S35_144, S35_216, S35_288, 

and S35_360.
14

 All carbonaceous samples were placed in a cubicoid simulation box having 

dimensions 4.6 × 4.6 × 4.6 nm with periodic boundary conditions in x, y, and z direction, as is 

presented in Figure 1. 

 The porosity of VPCs samples was evaluated from the geometrical method of 

Bhattacharya and Gubbins (BG).
84

 Following to BG method, the uniform grid of points was 

generated in the simulation box (here we used 100×100×100). Next, for each such point 

(located in a pore) the largest sphere containing this point (and situated in the pore) was found 

and recorded. Its diameter corresponds to the pore size. From the statistical analysis of data 
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for all points we determined the histograms of pore diameters for all studied VPCs samples 

(see References 13 and 85 for details). 

 

2.2. Monte Carlo simulations 

 We used grand canonical Monte Carlo method (GCMC) to study the equilibrium 

CO2/CH4 mixture adsorption/separation at 298 K.
86-88

 We investigated four values of the total 

CO2/CH4 mixture pressure. Because of industrial interests, we selected the atmospheric 

pressure (0.1 MPa) and three higher pressures, i.e. 0.25, 0.5, and 1.0 MPa. For each total 

pressure we studied the following CO2 mole fractions in bulk phase (yCO2): 0.0, 0.01, 0.025, 

0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 0.99 and 1.0. In our GCMC 

simulations, the previous configuration of adsorbed mixture was updated by the randomly 

selected perturbation: (i) displacement and/or rotation of randomly chosen molecule, (ii) 

creation of new molecule, (iii) annihilation of randomly chosen existing molecule or (iv) swap 

move with equal probabilities. We used equal probability for each perturbation to guarantee 

the condition of microscopic reversibility. Each GCMC simulation run consisted of 2.5×10
8
 

iterations. The first 1.0×10
8
 iterations were discarded to guarantee equilibration. 

 As previously, we used the rigid model for both CO2 and CH4 molecules.
13-15,76,89-92

 

The three-site model with force field developed by Nguyen was used for CO2.
93

 For CH4 we 

used revised five-site model proposed by Sun et al.
89

 The values of the parameters for the 

carbonaceous skeleton and the atoms forming carbonyl groups were taken from our previous 

studies.
13,14,59,90

 Table 1 collects all applied values of the interaction parameters. The Lorentz–

Berthelot mixing rules were used calculation of cross-term energy parameters. Other 

computations details are documented in our previous works, in details.
13,14,89,90 
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 From GCMC simulations, we determined the average numbers of CO2 and CH4 in the 

simulation box (i.e., 2CO  and 4CH ). Than the mole fraction of CO2 and CH4 in the 

adsorbed phase is simply given by: 

 

x
CO

2

=
CO

2

CO
2

+ CH
4

          (1) 

 

x
CH

4

=
CH

4

CO
2

+ CH
4

          (2) 

 

The equilibrium selectivity of CO2 over CH4 is computed from well-known relation
87 
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where x and y are the mole fractions of the studied mixture components in adsorbed and bulk 

phase, respectively. The enrichment of adsorbed phase in CO2 mixture component 

corresponds to S
CO

2
/CH

4

>1. 

 

3. Results and discussion 

 Knowledge of the pore size distribution of carbonaceous materials is one the most 

important factor that impact on the efficiency of the adsorptive separation. Figure 2 shows the 

histograms of pore diameters computed for studied pure VPCs (samples: S00-S35). Taking 

into account the International Union of Pure and Applied Chemistry (IUPAC) classification of 

pores, all studied VPCs are microporous materials (i.e., pore diameters are less than 2 nm). 
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Passing from S00 to S35 sample, we notice a gradual increasing from the contribution of the 

smallest carbon nanopores. Further, as we added more and more carbon fragments to S00 

VPC sample, the pore size distributions are more homogenous and shifted to smaller carbon 

nanopores. Figures S1 and S2 attached to supporting information display the histograms of 

pore diameters for studied samples of oxidized VPCs. The most important conclusion is that 

virtual oxidation of VPCs does not affect the porosity of pure carbonaceous samples (i.e., 

carbon templates used for oxidation). This observation is in good agreement with the 

experiment, which further confirms the realism of the virtual oxidation algorithm.  

 Figures S3-S5 attached to supporting information depict CO2 and CH4 single-

component adsorption isotherms computed from GCMC for all studied VPCs samples. Here 

we expressed the absolute value of adsorption as an average number of molecules in the 

simulation box. For comparison and further discussion of simulation results, we expressed the 

absolute value of adsorption as an average number of molecules per unit mass adsorbent too. 

As would be expected, both porosity and oxygen content affect the adsorption of both CO2 

and CH4 adsorbates. Interestingly, regardless the porosity and oxidation intensity of studied 

VPCs, the CO2 adsorption amount is at least two times greater than the CH4 adsorption 

amount. Further, we notice that for both CO2 and CH4 narrowing of pore diameters results in 

higher number of adsorbed molecules in the simulation box. Region of high pressures is an 

exception. This is because the nanopore volume accessible for adsorbed molecules is 

decreasing by adding additional graphitic fragments to the initial S00 VPC sample (see upper 

panel in Figure S3 attached to supporting information). As would be expected, the CO2 and 

CH4 adsorbed amount expressed per unit mass of adsorbent is decreasing with the narrowing 

of the pore diameters. A significant increase in the number of carbon atoms in the simulation 

box for VPCs samples characterized by the narrow nanoporosity is responsible for this effect 

(compare sample S00 and S35). Careful inspection of simulation results revealed that the 
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single-component CO2 adsorption isotherms are more affected by the porosity/surface 

oxidation than the single-component CH4 ones. The increase in the oxygen content causes an 

increase in adsorption of both studied adsorbates. However, we notice that the presence of 

carbonyl functional groups affects the CO2 uptake far more than CH4 one (see Figures S4 and 

S5 attached to supporting information). In the case of CH4, the presence of oxygen-containing 

groups increases slightly the adsorption, while the CO2 uptake is increased by up to several 

tens of percent. Analogical effects were reported in our previous papers.
13,14,90

 Observed 

regularities can be easily explained by the electric nature of studied adsorbates. CO2 molecule 

has strong electric quadrupolar moment, while CH4 has only weak electric octupolar moment. 

Therefore, the electrostatic interactions of CO2 with carbonyl groups (which are dipoles) are 

far stronger and slowly decrease with the intermolecular distance in the comparison with 

CH4.
94 

 For clarity of the presented simulation results, for all studied CO2/CH4 mixtures, we 

expressed the adsorption amount of mixture components as an average number of molecules 

in the simulation box. Clearly, one should expect that the electrostatic interactions pay an 

essential role in a case of CO2/CH4 mixture adsorption and separation. However, we need 

bear in mind that co-adsorption and displacement of mixture components from carbon 

nanopores is also affected by their mutual interactions (particularly at high pore loadings). 

Figures 3-5 display the variation of the CO2 mole fraction and equilibrium selectivity as a 

function of the CO2 mole fraction in the bulk mixture. Additionally, Figures S6-S8 attached to 

supporting information present the comparison between the average number of CO2 and CH4 

molecules in simulation boxes. We notice that for all studied VPCs samples the CO2 mole 

fraction in the adsorbed phase (xCO2) is significantly higher than in the gaseous phase (yCO2). 

This is because CO2 molecules are preferentially adsorbed over CH4 ones. Furthermore, the 

equilibrium selectivity is monotonically decreasing with the concentration of CO2 in the bulk 
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mixture. This monotonic reduction in the equilibrium separation factor is strongly marked for 

low and moderate CO2/CH4 total mixture pressures. Here, we predicted that CO2/CH4 

mixtures with dilute CO2 mixture component can be efficiently separated by studied VPCs 

materials. Interestingly, for high total CO2/CH4 mixture pressures, we predicted a non-

monotonic variation of the equilibrium selectivity with the CO2 concentration in the bulk 

mixture. Here, equilibrium selectivity is higher for high CO2 concentration in the bulk mixture 

as compared to its infinite dilution. Therefore we suggest that the CO2/CH4 mixtures can be 

also efficiently purified by adsorption at high operating pressures. The energy consumption of 

high-pressure adsorptive separation favors the CO2/CH4 mixtures with low CO2 

concentration. 

 Let us now analyze the CO2/CH4 mixture adsorption on pure VPCs in details (i.e., 

S00-S35, see Figure 3). Regardless the total pressure and mixture composition, CO2 mole 

fraction increases with narrowing of the pore diameters (i.e., from S00 sample to S35 one). 

That is why we observe an enhancement of the equilibrium selectivity by 1-2 for VPCs 

samples consisting the significant fraction of narrow carbon nanopores. Interestingly, the 

strongest effect is observed for the total CO2/CH4 mixture pressure of 1 MPa. Here, for all 

VPCs samples, the variation of equilibrium selectivity with the CO2 concentration in the bulk 

mixture is non-monotonic, with initial decreasing and further increasing with CO2 mole 

fraction in the bulk phase. Similar behavior (but weakly marked) is also observed for lower 

total pressure in the case of more nanoporous VPCs. This interesting result can be explained 

by the displacement of CH4 from nanopores by co-adsorbed CO2 molecules. As we have 

shown recently, the displacement of CH4 from adsorbed phase by co-adsorbed CO2 is 

facilitated in narrow carbon nanopores.
15 

 The presence of surface functionalities (i.e., oxygen-containing functional groups) has 

far more important effect on the equilibrium CO2/CH4 separation factor comparing to porosity 
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(see Figures 4 and 5). Increasing of the oxygen content on VPCs results in substantial 

enhancement of the CO2 mole fraction in the adsorbed phase. Therefore, the most oxidized 

VPCs samples (i.e., S00_180 and S35_360) show the equilibrium selectivity of 2-3 times 

greater than the pure VPCs ones. In the case of the S00_180 structure (having carbon 

nanopores dispersed in the range up to 2 nm) the equilibrium selectivities approach 8-10, 

while in the case of strictly nanoporous S35_360 VPC sample (having carbon nanopores with 

pore diameters below 1 nm) the values of equilibrium selectivities are ~2 times greater. This 

is a clear manifestation of the synergistic effect of the porosity and the surface oxidation on 

the energetic of CO2 adsorption (see Figure 6). As previously, at high total CO2-CH2 mixture 

pressures, we found higher equilibrium separation factor as compared to CO2 infinite dilution. 

This is a consequence of CH4 displacement from carbon nanopores, and the co-adsorption of 

the CO2 in the whole accessible pore volume. The comparison between the number of CO2 

molecules adsorbed in pure and oxidized VPCs samples clearly show that oxidized 

carbonaceous materials adsorb more CO2 at the same operating conditions (see Figure 6 and 

Figure S6-S8 attached to supporting information). In contract, for CH4, the number of 

adsorbed molecules is only slightly affected by the presence of the carbonyl groups. 

 Figures 7 and 8 depict the partial pressure variation in the average number of adsorbed 

CO2 and CH4 molecules for selected samples of VPCs. Adsorption data computed for pure 

mixture components are also presented. We grouped all simulation results in series 

corresponding to different values of total CO2/CH4 mixture pressure. It is clear that the 

presence of CH4 practically does not influence CO2 adsorption from CO2-CH4 mixtures. What 

is more important, this conclusion seems to be correct for different mole fractions of CH4 in 

the bulk phase. On the other hand, the presence of CO2 in the bulk phase (even at low 

concentrations) strongly affects CH4 adsorption. Note, that this interesting observation is 

predicted for both pure and oxidized VPCs samples. If fact, it has been shown experimentally, 
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that to maximize the CO2/X equilibrium separation factor (X denotes other component, such 

as: CH4, N2, etc.), one need only to optimize the structure of porous materials in respect to 

CO2 adsorption. Our simulation results give deeper understanding of this important feature of 

adsorptive CO2/X mixture separation. 

 Concluding, we showed that CO2 is preferentially adsorbed over CH4 on both pure and 

oxidized VPCs samples. However, the preferential adsorption towards CO2 is intensified by 

the decrease in the average pore diameter and by the increase in surface oxidation. Therefore, 

in order to optimize the performance of activated carbons towards the equilibrium separation 

of CO2/CH4 mixtures its pore size should be decreased and the concentration of oxygen-

containing functionalities should be increased. We argue that this conclusion is not limited to 

CO2 mixtures with CH4, but it is more general. Similar trend is expected for adsorptive 

separation of CO2-X mixtures (where X is characterized by weaker electrostatic and 

dispersion interactions with oxidized porous materials as compared to CO2). Finally, the 

maximum equilibrium selectivity of CO2 over CH4 of ~18-20 is theoretically predicted, which 

is in good qualitative agreement with experimental results. Finally, we speculate that similar 

order of CO2/CH4 separation factor is expected for other porous materials where the dominant 

adsorption mechanism is physisorption. Therefore, to further enhance the CO2/CH4 separation 

efficiently the other mechanism of adsorption (such as: partial charge transfer, chemisorption, 

strong polarization by heavily charged atoms, etc.) needs to be considered. 

 

4. Conclusions 

 

 We have presented a detailed study of CO2/CH4 mixture adsorption and separation at 

298 K on pure and oxidized virtual porous carbons using grand canonical Monte Carlo 

simulations. To the best of our knowledge, this is the first comprehensive work, where the 



 16 

synergetic effect of carbon nanopore size and surface oxidation on carbon dioxide adsorptive 

separation has been described. We found that surface oxidation is far more important factor 

than carbon nanoporosity that impact on the efficiently of the CO2/CH4 mixture separation at 

thermodynamics equilibrium. This is because short-range electrostatic interactions between 

adsorbate and charged functional groups are much stronger for carbon dioxide as compared to 

methane. Therefore both single-component and mixture adsorption of carbon dioxide is 

significantly enhanced by the presence of charged surface functionalities. Furthermore, we 

showed that the adsorbed amount of methane is strongly affected by the presence of the co-

adsorbed carbon dioxide. Interestingly, carbon dioxide uptake does not depend on the molar 

ratio of methane in the bulk mixture. Thus, by maximizing of carbon dioxide uptake, one can 

predict the optimal adsorbent (i.e., its porosity and surface oxidation) as well as operating 

conditions for its adsorptive separation. As a rule of thumb one can assume that the optimal 

adsorbent for carbon dioxide capture by equilibrium adsorption mechanism should consist of 

narrow carbon nanopores decorated by high concentration of charged oxygen-containing 

functional groups. Moreover, the optimal operating conditions for CO2/CH4 mixture 

separation corresponds to low concentration of carbon dioxide in the bulk mixture. At these 

operating conditions, the high CO2/CH4 equilibrium selectivity results from preferential 

adsorption of carbon dioxide over methane at the most energetic centers of an adsorbent (i.e., 

in narrow nanopores with oxidized pore walls). Efficient separation at high CO2/CH4 mixture 

pressures is an interesting option but it will require significant energy consumption. At higher 

CO2/CH4 mixture pressures, the enrichment of adsorbed phase in carbon dioxide component 

results from displacement of methane from porous adsorbents by co-adsorbed carbon dioxide. 

High CO2/CH4 equilibrium separation factor of ~18-20 at 298 K is theoretically predicted and 

associated with the strong oxidization of nanoporous carbonaceous materials. Finally, we 

argue that our conclusions on the efficiently of carbon dioxide capture by adsorption are not 
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limited to carbonaceous materials, because of the nature of intermolecular forces behind 

carbon dioxide physisorption. Our simulation results shed some light on the modeling of the 

adsorption separation processes of gas mixtures containing carbon dioxide on real 

carbonaceous materials. 
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Table 1 

The values of LJ potential parameters and point charges applied in simulations 

Molecule 

Geometric 

parameters 

Centre 

 

[nm] 

/kB 

[K] 

q/e Reference 

CO2 lC=O = 0.1162 nm 

C 0.2824 28.680 + 0.664 

93 

O 0.3026 82.000 – 0.332 

CH4 lC–H = 0.1090 nm 

C 0.3400 55.055 – 0.660 

89 H 0.2650 7.901 + 0.165 

C-H
a) 

0.3025 30.600 – 

VPC lC=O = 0.1233 nm 

C
b) 

0.3400 28.000 – 

59 C
c)

 0.3400 28.000 + 0.500 

O 0.2960 105.800 – 0.500 

a)
 cross-interaction parameters 

b)
 non-carbonyl group atom of C 

c)
 carbonyl group C atom 
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