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Abstract

The functional networks of cultured neurons exhibit complex network properties similar to those found in vivo. Starting
from random seeding, cultures undergo significant reorganization during the initial period in vitro, yet despite providing an
ideal platform for observing developmental changes in neuronal connectivity, little is known about how a complex
functional network evolves from isolated neurons. In the present study, evolution of functional connectivity was estimated
from correlations of spontaneous activity. Network properties were quantified using complex measures from graph theory
and used to compare cultures at different stages of development during the first 5 weeks in vitro. Networks obtained from
young cultures (14 days in vitro) exhibited a random topology, which evolved to a small-world topology during maturation.
The topology change was accompanied by an increased presence of highly connected areas (hubs) and network efficiency
increased with age. The small-world topology balances integration of network areas with segregation of specialized
processing units. The emergence of such network structure in cultured neurons, despite a lack of external input, points to
complex intrinsic biological mechanisms. Moreover, the functional network of cultures at mature ages is efficient and highly
suited to complex processing tasks.
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Introduction

The organizational properties of biological, technological and

social systems are increasingly being characterized by representing

them as abstract networks of interacting components and

quantifying non-random features of their structure [2,3,4,5,6].

Many real-world networks have an organization (topology) that is

neither completely random, nor completely regular. Termed

complex networks, these typically afford excellent integration

between their constituent parts yet they also provide tightly

interconnected subnetworks that segregate efficient within-group

interaction. An example is social networks, for which a seminal

study [7] revealed that any two individuals in the world could

communicate via only a small number (,6) of mutual acquain-

tances. Such networks are sparse – only a tiny proportion of the

world’s population are associated, yet they are incredibly well-

connected. The phenomenon has been termed ‘small-world’ –

hence the concept of a small-world network.

For neuronal connectivity, the abstract network (graph-theoretic)

approach to analysis has allowed common organizational principles

to be identified at both the macroscale level of whole brain imaging

[8,9,10,11], and the microscale level of connections between

individual neurons [12,13]. Importantly, this form of analysis

enables the relationship between neuronal network organization

and (whole or partial) brain function to be investigated. There are

numerous complex network statistics for assessing the non-random

properties of these abstract networks (for review see [14]), each of

these statistics enable direct comparison of results from diverse

experiment modalities and over a range of species and scales [2,5].

Moreover, properties may also be compared with those of networks

from other domains [15]. Two important metrics are the level of

integration and segregation; high levels of which are found in

random and lattice networks, respectively. Since small-world

networks have high levels of both properties, the extent to which

a given network approximates or deviates from small-worldness

may be evaluated by considering the balance between integration

and segregation [16,17]. This balance has become an important

benchmark for the assessment of neuronal networks and the small-

world topology has been found at multiple scales over a range of

species in both structural [16,18] and functional [9,19,20,21]

networks. Moreover, its influence on network efficiency [8] and

robustness [9] has been demonstrated, and deviation from the

small-world topology has been associated with abnormal or

decreased brain function [8,19,20,22,23].

The focus of the present study is the development of complex

network properties within cultures of neurons, grown in vitro.

Unlike in-vivo brain networks, where the range of experimental

conditions is typically constrained by the availability of subjects

with a given condition, or strict regulation regarding experimental

manipulation, cultures of dissociated neurons grown on multi-

electrode arrays (MEAs) provide an experimental platform for the

long-term investigation and manipulation of neuronal cells. Such
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neurons spontaneously form connections [24,25] and non-random

properties have been found in the resulting structural network

[13]. Moreover, cultures share several important characteristics

with their in vivo counterparts [26,27,28], for review see [25].

Consequently, these preparations are increasingly being used in

investigations of cellular and network processes that underlie

complex cognitive functions [29,30,31,32,33] and as models of

pathophysiological states (e.g. epilepsy and stroke [34]). Impor-

tantly, since the cultures have no pre-built infrastructure, they

allow the network formation to be observed - making them well-

suited to investigating neuronal network development in a living

biological system.

Cultured neurons and investigating network function
Two aspects of the cultures that are of particular interest are

their structural (anatomical) circuitry and the interactions which

take place over this circuitry, both determining the computational

capacity of the underlying network. Whilst cultures are typically

too dense for accurate observation of their structural connectivity,

analysis of functional connectivity provides a probabilistic estima-

tion of the relationship between distributed neuronal units [2],

thereby enabling spatio-temporal interactions between areas of the

network to be measured throughout experiments. This provides a

useful means to investigate the network properties of cultures,

particularly since functional connectivity estimated over certain

timescales may contain information about the underlying struc-

tural network [35].

Existing literature indicates that the functional network

properties of cortical cultures change during maturation [36]

and following stimulation [29,37,38]. However, such studies have

focused on changes in the expected link-level properties such as the

mean strength and metric distance of connections [36], or the

proportion of links which are strengthened or weakened following

stimulation [37,38]. These aggregate measures capture gross

changes in global connectivity, but they do not reflect the

organizational features of the network, e.g. the distribution of

properties amongst the neural units, or whether there are groups

of neural units that are more densely connected than others.

Analysis of such organizational features would reveal the

architecture of the network, enabling investigation into which

interactions the network could support and how the network

organization changes under different experimental conditions.

Importantly, by assessing the complex network properties, the

relevance of results from cultures to investigations of whole-brain

networks would be increased.

Reports that rigorously compare culture’s complex network

properties under different experimental conditions are very sparse.

Mature cultures were assessed in [39] and networks from cultures

subject to an in vitro glutamate injury model of epileptiform activity

were assessed in [34]. The utility of cultures for investigating

changes in cognitive function, characterizing drug effects and

modeling disease states, could be greatly extended by applying

complex network statistics to quantify the influence of experimen-

tal manipulation on the network architecture. Moreover, com-

parison with results from in vivo networks may reveal basic

organizational principles common to both.

Experiments utilizing cultures can be undertaken across a range

of ages, yet little is known about whether developmental changes

occur in culture’s complex network properties. Questions such as

when and which non-random properties are present, their stability

over time and the variability between cultures and their ages

remain largely unanswered. The nature of such spontaneously

occurring changes in a culture’s functional network are important

a priori knowledge for assessing experimental outcomes using

complex network statistics. Moreover, by analyzing these ‘known’

conditions, a framework can be established for evaluating a variety

of experimental conditions, including those resulting from

embodying a culture in a closed loop system. [40,41,42,43].

The density at which cultures are seeded exerts an important

influence on the rate of maturation. Dense cultures mature faster

than their sparse equivalents, and they demonstrate bursting

activity earlier in development [44]. For the purpose of the present

paper, dense cultures were deemed preferable, since their use

enabled network properties to be measured earlier in development

than would have been possible on much sparser cultures.

Additionally, to investigate changes in the functional network

properties during culture maturation, maintaining consistency in

plating parameters was important to minimize differences in

cultures structural properties. Such differences would have

complicated the analysis and interpretation of results. Therefore,

cultures at a fixed density were used (those described in [44] as

‘dense’). At ,1,500 to 6,500 cells within the ,1.6 mm2 recording

area of the MEA, the cells in such cultures form a monolayer.

Moreover, they can be maintained for many months [45] and the

density is comparable to that used by other groups (typically

,2,500–3,000 cells per mm2 [24,30,36,42,46,47]).

The present study establishes the baseline network statistics for

cultures at specified stages of development and uses them to

characterize culture maturation. The topological, spatial and

performance properties of functional networks captured every 7

days (7 to 35 days in vitro [DIV]) were compared using a

population of 10 cultures. The study is one of the first to

investigate functional connectivity in an evolving complex system.

Here, the evolution of network properties is a counterpart of

biological processes shaping the culture’s development.

Methodological considerations
Since the graph-theoretic approach and use of complex network

statistics is a relatively novel method for investigating functional

Author Summary

Many social, technological and biological networks exhibit
properties that are neither completely random, nor fully
regular. They are known as complex networks and
statistics exist to characterize their structure. Until recently,
such networks have primarily been analyzed as fixed
structures, which enable interaction between their com-
ponents (nodes). The present work is one of the first
empirical studies investigating the adaptation of complex
networks [1]. Network evolution is particularly important
for applying complex network analysis to biological
systems, where the evolution of the network reflects the
biological processes that drive it. Here, we characterize the
functional networks obtained from neurons grown in vitro.
Network properties are described at seven day intervals
during the neurons’ maturation period. Initially, neurons
formed random networks, which spontaneously reorga-
nized to a ‘small-world’ architecture. The ‘small-world’
concept derives from the study of social networks, where it
is referred to as ‘six-degrees of separation’: the connection
of any two individuals by as few as six acquaintances. In
brain networks, this translates to rapid interaction
between neurons, mediated by a few links between locally
connected clusters (cliques) of neurons. This architecture is
considered optimal for efficient information processing
and its spontaneous emergence in cultured neurons is
remarkable.

Small-World Network Emerges in Cultured Neurons
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connectivity in cultures, the key methodological decisions are

described next.

Applying network connectivity analysis to multi-electrode

array data. Although both structural and functional neuronal

networks can be explored using graph theory [5,14], the present

study concentrates on functional networks. The main steps

involved in a graph-theoretic analysis of neuronal networks are

described in [5]. Figure 1 illustrates their application to neuron

cultures (or other in-vitro preparations utilizing multi-electrode

recordings). At step 1, the nodes of the network are defined: for the

present study, potential nodes were the 59 electrodes (channels) of

the MEA. At step 2, functional links are defined, for example using

activity recorded from the electrodes: a computationally straight-

forward technique estimating pair-wise correlation of spike-times

recorded via MEA electrodes [34] was used for the links herein.

Many techniques exist to estimate dependence between time-series

[48,49] and, whilst the choice is in the hands of the experimenter,

the decision may influence the interpretation of results. Regardless

of the chosen technique, it is important to consider the time-period

over which links are estimated, particularly with respect to the

form of activity that will be used to define inter-node connections.

Due the non-stationary mixture of high frequency bursting and

low-frequency ‘tonic’ activity found in cultures [44], the links

herein were defined over two time-scales:

Firstly, at short time-scales (hundreds of milliseconds), connec-

tivity was assessed during each network-wide burst, a threshold

was then applied to include only the links between highly related

nodes [5] (Step 3). Secondly, to filter out inter-burst fluctuations in

activity levels, the ‘persistent’ network infrastructure was estimated

over a longer time- scale (20 minutes) based on the frequency with

which links were identified over the set of burst-based (‘transient’)

networks (step 4). The application of a threshold at step 3 reduces

the complexity of the analysis, and is useful if link ‘strength’ is not

the focus of the study. However, selection of an appropriate

threshold is important for the interpretation of results.

To compare networks from a sequence of experimental

‘conditions’, the development of the network itself may be of equal

importance to the development of its topology. However, methods

for characterizing functional connectivity principally focus upon

static networks. Analysis of networks evolving over time is more

challenging; network evolution involves the birth and death of

links and in some cases, nodes themselves. Consequently, it is not

desirable to fix the number of nodes, or adjust the link definition

threshold to achieve a pre-determined connection density (c.f.

[9,20]). Thus, for the present study, a relative threshold (based on

the specificity of the cross-covariance peak) determined whether a

given link was included in the network or regarded as ‘noise’.

Once all potential links had been assessed, only those nodes with a

connection to at least one other node were included in the

network.

The dual time-scale approach to network definition (Figure 1,

Step 4) results in two types of network graph, which enables

assessment of a culture’s network activity over different timescales.

For the work herein, analysis of the topological and non-

topological properties of the longer time-scale persistent networks

allowed structural and spatial properties to be investigated every 7

DIV, thereby characterizing the network development. Addition-

ally, at short time-scales, the set of each cultures’ transient

networks allowed the activity that took place over the networks to

be analyzed. This enabled performance and reliability metrics to

be estimated.

A number of topological metrics may be calculated and from

these the complex network statistics [2,5,14,16,18] may be derived

(see Materials and Methods). In order to compare the persistent

network properties at each age, both local (node related) and

network-wide statistics were calculated. Table S1 provides

definitions of all complex network measures used, many of which

were described in [14]. The magnitude of the topological

properties from a given network are dependent on the number

of nodes (n, referred to herein as network ‘size’), the number of

links (m) and the resultant edge density (j). To calculate complex

network statistics, empirical network properties are compared

against those expected in equivalent random (or lattice) null

hypothesis networks [14]. These comparison networks have the

same number of nodes and links, thus the same connectivity

density. However, it is important to verify certain assumptions

regarding the size and density of networks that may be compared

(see Materials and Methods). Whilst the number of nodes (n) and

the average number of connections per node (K) are often used to

specify a graph’s basic properties, this does not allow instant

Figure 1. Steps in functional connectivity analysis of multi-electrode array data. Steps 1–3 and step 5 are based on recommendations from
Bullmore & Sporns (Nature Reviews Neuroscience, 2009). Steps 4, 6 and 7 refer to techniques specific to analysis of culture activity recorded from
multi-electrode arrays (MEAs, example pictured top right). The 868 grid indicates the recording area of the MEA (inset: close-up of two electrodes
with visible neurons in their vicinity).
doi:10.1371/journal.pcbi.1002522.g001

Small-World Network Emerges in Cultured Neurons
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evaluation of edge density. Therefore, for the analysis herein, edge

density was used instead of mean node degree. The property

equates to the mean node degree normalized to the maximum

possible, which provides a density measure (j) that is independent

of the network size (n). The measure reflects the sparseness or ‘cost’

of the network [8] and most importantly, it can be directly

compared between networks with different numbers of nodes.

Asides from the level of integration and segregation, an important

aspect to characterizing a network’s ‘class’ is the form of the degree

distribution. This may be measured by determining the best fitting

model: A fast-decaying (exponential or Gaussian) model provides a

good fit for networks with a homogeneous population of nodes,

whereby most nodes have a comparable number of connections and

few nodes deviate from this number significantly. Such networks are

classed as ‘single-scale’ and their scale is equal to their mean node

degree. Conversely, networks that have no characteristic scale are

termed ‘scale-free’, these are identified by a degree distribution that

decays progressively more slowly towards infinity – hence there is no

characteristic mean node degree. These are typically represented by

a power-law model.

Random and lattice networks both have a single-scale degree

distribution, conversely, many real-world networks have been

found to possess a power-law degree distribution [50]. Since both

single-scale [51] and power-law [52] degree distributions have

been reported for neuronal networks, to ascertain the degree

distribution of the networks herein, both exponential and power-

law models were fitted to the data (see Materials and Methods).

The ratio of goodness-to-fit values at each age was used to

determine whether the distribution changed during the stages of

maturation.

Since cultured neuronal networks are embedded in physical

space, spatial and temporal characteristics of interaction, such as

inter-node distance and signal propagation speed, can also be

informative about changes in the activity patterns. Therefore,

physical link length (derived from inter-electrode distance), and

network-wide signal propagation efficiency (via mean burst

propagation time) were also assessed. Additionally, the frequency

with which individual links are activated can provide information

on the influence of a given link in the various network interactions.

Therefore, the reliability of link activation was calculated from the

analog (weighted) persistence adjacency matrix. Tables 1 & 2

provide an overview of the main measures used for the present

study, along with their range and interpretation.

Results

Results are split into two sections. The first presents topological,

then spatial network statistics from persistent networks. The second

presents statistics on the propagation of activity over the network

(from the transient networks). Network statistics were obtained for

each culture at each age (DIV 7, 14, 21, 28, 35). NOTE, at DIV 7

only one culture was found to have a persistent network, therefore

this age was not considered for the significance testing.

Culture’s persistent networks acquire non-random
properties during development

The number of nodes and links for a given culture was used to

calculate the edge density of its network. Figure 2 shows the

expected values for each property. The mean number of nodes

was relatively constant and independent of age (P = 0.272). In

Table 1. Topological & non-topological network properties for the present study (part 1).

Property type, name and Description Range & units Interpretation

Complex network
properties

L Mean path length: LNorm 1+ (# hops btw nodes) Integration: Ability for any two nodes to interact via a minimal
number of intermediary nodes. A short (low) mean path length
reflects high integration (i.e. a low average number of hops
between nodes) as found in random networks.

CC Mean clustering coefficient:
CCNorm

0–1 Segregation: Ability for groups of nodes to interact. A high level of
segregation (as found in lattice networks) reflects the presence of
highly interconnected node subgroups (clusters) within the
network.

S/W ‘Small-worldness’: CCNorm/LNorm 0+ Complexity: balance between integration and segregation

Non-topological
properties

Network broadcast
time

Measured as the burst
propagation time

,100–1000 ms Performance of the network in terms of the time required for a
signal to reach all nodes

The measures used to quantify the persistent, and transient (last 1) network properties.
doi:10.1371/journal.pcbi.1002522.t001

Table 2. Topological and non-topological network properties for the present study (part 2).

Property type, name and Description Range, units and Interpretation

Complex network
properties

Node degrees Node degree distribution Relative influence of nodes in the network (node degree = 1–58) -Nodes with a high
degree have many connections: A fat tailed degree distribution indicates presence
of highly influential nodes, whilst homogeneity indicates lack of network structure.

Non-topological
properties

Link lengths Spatial properties: Link-length
distribution

Assess form and the proportion of links between nearby vs distant nodes (link
length = ,200–1980 mm). Metabolic cost increases with link length, short links incur
lower cost.

Link persistence levels ‘Reliability’ props: Link
activation frequency distribution.

Assess form and the contribution of persistent links (link persistence = 0–1).
Persistent links represent frequent interactions between neural units.

The measures used to assess the persistent, and transient (last 2) network properties (part 2).
doi:10.1371/journal.pcbi.1002522.t002

Small-World Network Emerges in Cultured Neurons
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contrast, the mean number of links measured at DIVs 14 and 21

was lower than at DIVs 28 and 35, with a strong trend towards a

significant increase between the younger and older ages

(P = 0.074). Edge density increased significantly between DIVs

14 and 21 (P = 0.012) and showed no significant change thereafter.

Statistics quoted are for the n = 5–8 cultures valid for complex

network analysis (see Materials and Methods). However, results

were comparable when all cultures were used. Numbers of nodes

and links followed a comparable trend for two different persistence

thresholds (see Figure S1), indicating their robustness to threshold

selection. Edge density followed different trends for the different

link persistence thresholds; this was due to small differences in the

numbers of nodes at each age, resulting in larger differences in

edge density (Figure S1).

Complex topological properties. Complex network statis-

tics from each culture’s persistent network were used to assess

changes in network topology as the cultures matured. Figure 3

shows the progression of network-wide statistics as a function of

age: there was a significant (P = 0.018) increase in the mean

clustering coefficient between DIVs 14 and 28, whilst mean path

length was relatively stable across ages (P = 0.6). The combination

of increased clustering coefficient and stable mean path length

resulted in a significant increase in the small-worldness property

(P#0.001) and networks were classified as small-world at DIVs 28

and 35. Homogeneous subsets were DIV 14 and 21, and DIV 28

and 35, indicating a change in the small-worldness between the

third and fourth week in vitro.

To assess the relative influence of nodes in the network, the

form of the node degree distributions were compared between

ages. As the cultures matured, the number of nodes with a high

degree increased, leading to a fatter tailed node degree distribution

(Figure 4). To quantify this change, both slow decaying (power

law) and fast decaying (exponential) statistical models were fitted to

the data (see Materials and Methods). There was a significant

increase in the goodness of fit ratio (power law/exponential) as the

cultures aged (P = 0.024). The few data points at DIV 14 meant

that goodness of fit could not be reliably distinguished between

models. However, at DIV 21 the ratio was ,1 indicating a closer

fit by an exponential model, whilst at DIV 35 the ratio was .1

indicating a closer fit by a power law model. Post hoc tests showed

that the DIV 21 ratio was significantly smaller than the DIV 35

ratio (P = 0.017, P = 0.021, Tukey HSD and Bonferroni post hoc

tests respectively).

Spatial network properties. The spatial organization of

nodes and links also changed as cultures matured. At DIV 14, the

proportion of links between distant nodes was significantly higher

than the proportion of links between nearby nodes (P = 0.028),

whilst at subsequent ages there was no significant difference

(P = 0.27, 0.83, 0.5, for DIV 21, 28, and 35, respectively), Figure 5

panel A. The distribution of link lengths (Figure 5, panel B) is

Figure 2. Basic topological properties of the persistent networks as a function of culture age. Number of nodes, links and edge density;
calculated for 10 cultures at each age (DIV). Left: mean number of nodes and links found in the persistent networks. Note, although the number of
nodes is a very different magnitude from the number of links, number of nodes was not found to change significantly (P = 0.272). Results for numbers
of links at each age suggested an increase between younger (DIV 14 and DIV 21) and older (DIV 28 and 35) ages, however the increase was not
significant (P = 0.074). Right: mean edge density of the persistent networks. Edge density (i.e. link density) quantifies the ‘cost’ of the network in terms
of the number of links (m)/the maximum possible number of links ((n*(n21)), given the number of nodes (n). Edge density was first calculated for
each culture and then averaged over all cultures. Mean edge density at DIVs 21 to 35 was significantly higher than at DIV 14 (P = 0.012). In cases
where no links were found the data were excluded from the analysis. All statistics quoted are for the n = 5–8 cultures valid for complex network
analysis. Error bars represent 6 standard error of mean (s.e.m, n = 5 to 8).
doi:10.1371/journal.pcbi.1002522.g002

Figure 3. Complex topological properties of the persistent
networks as a function of culture age. Mean path length,
clustering coefficient and conservative small-worldness; averages
(n = 5–6), were normalized as follows: mean path length (L) and
clustering coefficient (C) were normalized against the expected value
from an equivalent population of random networks (n = 50) with the
same number of nodes and links. Small worldness was calculated
conservatively as (Creal/Clattice)/(Lreal/Lrand). Error bars represent 6 s.e.m.
The average shortest path length and clustering coefficient at DIV 14
were both close to the value expected for a random network. A
statistically significant increase in the clustering coefficient was found
between DIV 14 and DIV 28. The combination of a short mean path
length and high clustering at DIVs 28 and 35 lead to a network classified
as ‘small-world’.
doi:10.1371/journal.pcbi.1002522.g003

Small-World Network Emerges in Cultured Neurons
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characteristically Gaussian at DIV 14, but appeared bimodal at

DIV 21. Notably at DIVs 28 and 35, the distribution was slightly

longer tailed and positively skewed (skewness = 0.000, 0.085, 0.352

and 0.572, at DIVs 14, 21, 28 and 35, respectively). Skewness

followed a linearly increasing trend between DIVs 14 and 35

(R2 = 0.964), reaching significance at DIV 35 (P = 0.018).

Network graphs were generated to depict the spatial arrange-

ment of each culture’s network components. Figure 6, panel A

shows the persistent network of a representative culture at DIVs

14, 21, 28 and 35. At DIV 14, the graph was a sparse collection of

links between often distant nodes. In some cases regions were

disconnected from the main graph (as can happen when high

thresholds are applied to correlation matrices [8]). At DIV 21,

there were fewer nodes and links in some (but not all) cultures.

From this age onwards, there was a more even distribution of links

between nearby vs distant nodes. At DIVs 28 and 35 some cultures

Figure 4. Change in the node degree distribution with culture development. Node degree distributions, obtained from all the nodes of the
persistent networks of all cultures using a bin size of 10%. Panel A: bar graphs represent node degree distributions on a linear scale. Solid lines show
the best fitting model at each age, broken lines represent 95th percent confidence interval. Top left: DIV 14, bottom left: DIV 21, top right DIV 28,
bottom right: DIV 35. DIVs 14 and 21 show exponential fit on a linear scale, DIVs 28 and 35 show power law fit on a linear scale. Panel B: scatter plots
represent node degree distributions on a log-log scale, DIVs 28 and 35 are shown with a linear fit. The fat tailed node degree distribution found at
DIVs 28 and 35 is indicative of nodes with a high degree (hubs).
doi:10.1371/journal.pcbi.1002522.g004

Small-World Network Emerges in Cultured Neurons
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Figure 5. Change in the link lengths with culture development. Panel A: Each bar represents the median proportion of links between nodes
up to (and including) two electrodes apart (classified as ‘nearby’) and links between nodes greater than two electrodes apart (classified as ‘distant’),
diagonal neighbors were included; values were calculated from all cultures at each age. Upwards error bars represent the 75th percentile and
downwards bars the 25th percentile. Notably, at DIV 14 there was a significantly higher number of connections between distant nodes. Panel B:
Normalized histograms of link lengths at each culture age, constructed from the link lengths of all cultures, measured as the proportion of each
culture’s links at each length. Median values from all cultures were used for each bin in the histogram. Bin size was based on spacing between
electrodes of MEA, with one bin for each electrode distance (i.e. bin 1 is all links between neighboring electrodes - including diagonal neighbors, bin
2 is all links between nodes up to two electrodes distance, and so forth until seven electrodes distance which is the maximum between any two
nodes on the MEA). Bin edges (X-axis) specify the start of each bin, measured as the distance between electrodes on the MEA (micrometers). Y-axis is
the same for all histograms in panel, only DIV 14 Y-axis is labeled to avoid overcrowding.
doi:10.1371/journal.pcbi.1002522.g005
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had more nodes and links, and there was a trend towards an

increase in the number of links between DIVs 14/21 and DIVs

28/35 (see Figure 2). Figure 6, panel B shows the persistent

networks from the same culture at a lower link persistence threshold.

As expected, there were more nodes and links at each age,

nonetheless changes in the numbers of nodes and links followed a

comparable trend to the main results (see also Figure S1).

Figure 7 shows a close up of one culture’s network at DIVs 28

and 35, highlighting the position of high degree nodes (hubs) [18]

in the networks. Since cultures have no pre-built infrastructure,

and the cells are randomly distributed over the MEA, the absolute

position of the hubs in the culture dish is not of particular interest.

However, the relative position of the hubs (with respect to the

nodes that they connected to) may reveal patterns such as whether

hubs are located in close proximity to one another, or have a

higher proportion of links to distant vs nearby nodes. There are

numerous potential patterns and it was not possible to evaluate

them for the present study. However, the figure is intended to

illustrate some of the possibilities for future research.

Network properties and activity propagation
Results presented thus far have focused on identifying changes

in the network infrastructure (via the persistent interactions

between different areas [nodes] in the cultures). Here, the results

focus upon the activity that takes place over this infrastructure.

Each transient network is considered as a ‘snapshot’ of network

activity, measured over a short time-scale (duration of a network-

wide burst) and reflects interactions between different areas of the

culture in this period.

As per the persistent networks, the basic properties relating to

network size were compared. Additionally, since there were

multiple transient networks for each culture, the coefficient of

variation was also analyzed (see Materials and Methods). Figure 8

panel A shows the expected number of transient links as a function

of culture age, panel B shows the equivalent data for number of

nodes. There was a strong trend towards an increase in the mean

number of transient network links (P = 0.087), and a strong trend

towards an increase in the number of nodes (P = 0.089). Figure 8

panel C shows the expected coefficient of variation for the number

Figure 6. The persistent network of a representative culture at DIV 14, 21, 28 and 35. Graphs illustrate the spatial organization of network
components at each culture age: the 8 by 8 grid corresponds to positions of the electrodes on the multi-electrode array (MEA). Nodes that are part of
the network (i.e. for which a link was identified) are numbered according to their MEA hardware numbers, and the lines between electrodes represent
un-directed links between nodes. Panel A: graphs from the networks thresholded at 25% link persistence. Panel B: graphs from the networks
thresholded at 15% link persistence, this lower threshold results in more nodes and links.
doi:10.1371/journal.pcbi.1002522.g006

Figure 7. Visualization of hubs in a representative culture at DIVs 28 and 35. Graphs illustrate the location of hubs in the persistent
network of a representative culture at two separate ages. The 8 by 8 grid corresponds to positions of the electrodes on the multi-electrode array
(MEA). Nodes that are part of the network (i.e. for which a link was identified) are numbered according to their MEA hardware numbers, and the lines
between electrodes represent un-directed links between nodes. At DIV 28 (left hand graph), nodes 4 and 38 were classified as hubs in the network,
whilst at DIV 35 (right hand graph), nodes 34, 38, 40, 48, 49 and 53 were hubs. Hubs were classified as nodes having a high degree (degree greater
than mean node degree plus one standard deviation) and are highlighted with blue circles.
doi:10.1371/journal.pcbi.1002522.g007
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of transient links. This was largest at DIV 21 and there was a

significant increase in coefficient of variation between DIV 14 and

DIV 21 (P = 0.021). This demonstrated that transient networks at

DIV 21 varied considerably in their numbers of links, more so

than at any other age. Panel D shows the equivalent data for

number of nodes (no significant difference).

Influence of functional network properties on efficiency

of activity propagation. To assess whether network properties

influenced the transfer of information across the culture, burst

propagation time was compared at each age (Figure 9). There was

a significant difference in the median burst propagation times

(P = 0.002), with DIV 14 significantly different to DIVs 28 and 35

(P,0.05). At DIV 14, median burst propagation time was highest

(389 ms), and although it reduced to 275 ms at DIV 21, variability

was highest at this age. Burst propagation time further decreased

between the remaining ages (to 108 ms at DIV 28, and 112 ms at

DIV 35). Variability of the burst propagation times showed a large

reduction between DIV 21 and DIV 28 (inter quartile ranges

577 ms, 36 ms, respectively).

Influence of functional network properties on reliability

of activity propagation. To investigate whether links became

more reliable (persistent) as the cultures matured a histogram of

link persistence values was generated. The fat tailed link

persistence distributions at DIVs 28 and 35 reflected the fact that

persistent links became more numerous and were activated more

frequently (Figure 10). There was a significant increase in the

contribution of the persistent links as the cultures aged, P = 0.044,

(mean ranks: 1.50, 1.75, 3.00, 3.75). On closer inspection, the

increase was for the contribution of links in the 50 to 75% link

persistence categories (P = 0.010).

Discussion

The present study characterizes the evolution of functional

networks observed in cortical cultures and extends previous work

where network properties of cultures were investigated at a single

developmental stage [34,39]. Analysis of activity from multiple

bursts allowed the identification of frequently activated links - the

Figure 8. Basic topological properties of the transient networks as a function of culture age. Panels A, B: mean number of links and
nodes (respectively) in transient networks, averaged over all cultures at a particular age (solid black lines). Error bars represent 6 s.e.m. The mean
numbers of links at each culture age suggested an increasing trend in the number of links between DIVs 14 and 28, however the trend was not
significant (P = 0.087). Likewise the mean numbers of nodes suggested an increasing trend (P = 0.089). The mean numbers of persistent network links
and nodes are shown for reference (dotted red lines). Panels C, D: expected coefficient of variation for the numbers of links and nodes (respectively)
in each culture’s set of transient networks. Error bars represent 6 s.e.m. Coefficient of variation for number of links was significantly higher at DIV 21
than DIV 14 (P = 0.021).
doi:10.1371/journal.pcbi.1002522.g008

Figure 9. Network-wide burst propagation time as a function of
culture age. Bar chart shows the median burst propagation time (from
all transient networks of all cultures at each age), values outside the 5th to
95th percentiles were removed as outliers, giving n = 6–8 for each age).
Error bars show 25th and 75th percentiles. A (network-wide) burst was
defined as a near-simultaneous (within 250 ms) occurrence of channel
bursts on multiple ($4) channels. A channel was considered to display
bursting activity if $4 spikes were detected in 100 ms. For each channel
included in the burst, recruitment time was the timestamp of the first
spike in the $4 spikes in 100 ms sequence. Burst propagation time was
calculated as the time to recruit all channels in a network-wide burst. At
DIVs 28 and 35, this time was significantly lower than at DIV 14.
doi:10.1371/journal.pcbi.1002522.g009
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persistent network, which was robust to inter-burst fluctuations in

activity and suitable for analysis of complex network statistics.

Results demonstrated that cortical cultures exhibit developmen-

tally-dependent structured interactions, which are reflected in their

persistent patterns of activity. These data suggest the evolution of a

complex network of links that supports increasingly efficient

information flow and specialized processing. Given the absence of

external chemical or electrical stimulation applied to the cultures,

these findings support the assertion that such complex network

evolution is an intrinsic property of neuronal maturation.

Moreover, the characterization of age-dependent network prop-

erties enables appropriate selection of culture development stages

for specific experiments [24,37,38,42].

Unstructured interactions in the spontaneous activity of
immature cultures

Immature cultures (DIV 14) exhibited limited interactions

between neuronal units, resulting in a network of few nodes and

links. The observation that at DIV 14 activity could spread rapidly

between any two neuronal units (short mean path length in

Figure 3, reflects high integration), but was slow to propagate

network-wide (Figure 9) indicated an absence of functional

organization. The homogeneous node degree distribution and

low clustering coefficient exemplified the poor functional differ-

entiation between nodes, with no evidence of densely intercon-

nected areas that could support segregation of neural processing.

Together, these network properties implied a disordered spread of

activity, across a random network topology, whilst the long burst

propagation time indicated an inefficient structure for widespread

information transfer. Since dissociated neurons were seeded

randomly onto the MEA and received no external stimulation, it

could be expected that their initial connectivity resulted in a

random topology. Moreover, since neuron-synapse maturation is

incomplete at DIV 14 [24,53], it is unsurprising that the complex

network properties found in mature cultures [39] were not present

at this age. However, the prevalence of long-distance connections

at DIV 14 (Figure 5 and [36]) is counter to the economy of wiring

principle [54] and suggests that units are not simply making

spatially convenient connections. In in vivo and ex vivo preparations

the cell type and neurochemical identity have been proposed as

guiding influences for connectivity [55] and there is evidence that

the variety and proportions of neuron types in cortical cultures are

similar to those found in vivo [25,27,56], therefore connectivity in

cultures could be similarly guided by these influences.

Development of a small-world network during culture
maturation

Whilst interactions at DIV 14 were clearly unstructured, the

subsequent 14 days of development represented a critical window,

during which functional complexity increased (Figure 3), leading

to the emergence of the small-world topology at DIVs 28 and 35.

Figures S2, S3 and S4 demonstrate the robustness of the small-

world result.

We consider the possible driving forces behind this topology

change to include the level of synchronization, the ratio of

excitation-inhibition and the mechanism of Hebbian learning.

Synchronization of culture activity can be defined over a range

of timescales – from ‘synchronous busting’ [57], where areas of the

network are synchronously active (usually to within ,100 millisec-

onds), to precise synchronization between the spike times of two or

more neural units [36] (usually to within ,10 ms or less). For the

present study, the network links were derived from firing-pattern

correlations and thus represent synchronization levels between

neural units (nodes); the low number of nodes and links at DIV 14

reflects a low level of synchronization (i.e. between only a few

units), compared to a high level of synchronization (i.e. between

many units) at DIVs 28 and 35. Literature indicates that a low

level of synchronization at DIV 14 may be due to an excitatory-

Figure 10. An increase in the number of links with high persistence as cultures aged. Each histogram shows the percentage of links found
at each link persistence level for all cultures at each age (normalized count of links found at the persistence value, expressed as the percentage of
transient networks (bursts) in which the link was found, bin size 5%, bin edges specify the end of each bin). Top left: DIV 14, bottom left: DIV 21, top
right: DIV 28, bottom right: DIV 35. Red (solid) line is the link persistence threshold (link presence in at least 25% of the transient networks). The
histograms are cropped to show the detailed distribution, inset histograms show the full scale. At DIV 21, many links were found infrequently (i.e.
below the link persistence threshold). The more pronounced tail of the distribution as the cultures matured, reflected a significantly higher
contribution of persistent links in the network’s of mature cultures.
doi:10.1371/journal.pcbi.1002522.g010
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inhibitory imbalance [53]. Conversely, evidence suggests that a

high level of network-synchronization found in older cultures

(whereby many neural units are activated within a short time-

window [24]) is supported by a balanced excitatory-inhibitory

subsystem [53], with tight synchronization between pairs of neural

units (as observed in [36]) arising from the activity-based

refinement of synaptic connection strengths [24,58].

In a previous study of functional connectivity during develop-

ment [36] culture properties at DIV 14 and DIVs 28–35 are in

accordance with those of the present study. However, at DIV 21

[36] reported an increased level of synchronization and a dramatic

change in burst properties (compared to those at DIV 14). In

contrast, the present study revealed no such increase in

synchronization at DIV 21, yet burst properties were highly

variable - as reflected by a highly variable number of transient

links (Figures 2,8), and there was a highly variable burst

propagation time (Figure 9). Results herein suggest a network

with an uneven balance between highly and poorly interconnected

areas, whereby bursts initiated from different sites (as reported in

[59]) propagate at different rates, with little link activation

regularity (as reflected by the low link persistence at this age).

We posit that the highly variable burst properties reported herein

and in [24,36] point to itinerant rather than persistent synchro-

nization at DIV 21. Such transient synchronization effects may be

averaged out by requiring multiple occurrences of correlated

activity over long time-scales [58]. Therefore, our persistent

networks at this age may not reflect the increased synchronization

found in [36] (where links required only a period of correlated

activity during the entire recording).

Crucially, the combination of varied burst properties and

transient synchronization at DIV 21 indicates a mixture of regular

and irregular activity. Modeling studies have suggested that such

mixed activity constitutes optimal conditions for the emergence of

a small-world topology via Hebbian learning rules and activity

driven plasticity [60]. Thus, a change in the culture’s spontaneous

activity patterns could drive the topology transformation. Results

herein and in [61] suggest that once the topology of the network

has emerged, equilibrium states may exist at different time scales -

from transient synchronization between subgroups of neural units

at the short time-scale to regular occurrence of such transiently

activated subgroups over longer time-scales. Modeling studies may

provide further insight into the role of synchronization and the

evolution of such equilibrium states [62], whilst pharmacological

manipulation of specific neuron sub-types could verify biological

mechanisms behind activity modulation.

Increased clustering of connections. Our results demon-

strate that functional clustering increases from DIV 14. Moreover,

this increased clustering (rather than a reduced mean path length)

was the cause of increased small-worldness, which continued until

cultures reached a state of semi-maturity at DIV 28. We note that

the increased clustering was accompanied by a change in the

distribution of link lengths, from a clear dominance of long-range

links at DIV 14 to an increased proportion of short links thereafter,

which suggests an increase in localized lattice-like clustering. The

change of the link length distributions from Gaussian to bimodal,

to long-tailed at DIVs 14, 21 and 28–35 respectively (Figure 5

panel B), coincides with the network topology shift from random,

to mixed, to small-world. Moreover, the small proportion of long-

range links at DIVs 28 and 35 suggests connections between

distant areas – perhaps between clusters. Together, these findings

suggest that spatial considerations may also play a role in the

topology change.

Increasing presence of hubs. During culture maturation,

the distribution of node connections changed from a rapidly

decaying and homogeneous degree distribution to one with a

longer tail, indicating a small but non-negligible proportion of

highly connected nodes (hubs). The small-world topology does not

require hubs [51] and both random and lattice networks have a

single-scale degree distribution. Nonetheless, hubs have been

identified in various small-world networks [9,18,35]. Moreover,

modeling studies imply that presence of a non-Gaussian degree

distribution is more likely when networks of neurons evolve from

irregular firing [60], thus it is plausible that the irregular burst

properties at DIV 21 may be related to the formation of hubs.

Mature cultures and the influence of network topology
on activity

Networks at DIVs 28 and 35 were classified as small-world,

exhibiting several highly connected areas (clusters of highly inter-

connected neural units), alongside the ability for any two areas to

interact via few intermediary connections (short mean path

length). Interestingly, when the network properties at DIVs 28

and 35 were compared, smaller differences were found than

between earlier ages, suggesting a state of maturity [24,32,36,63].

The non-trivial network structure demonstrated at DIVs 28 and

35 corresponds well with previous work [39], which concluded

that mature cultures had complex network properties similar to

those found in vivo.

Small-world networks have an architecture which supports

efficient information transfer [8,64]. Accordingly, our results

showed a developmental reduction in burst propagation time that

accompanied the emergence of cultures’ small-world properties

(Figure 9). Furthermore, variability of burst propagation time was

lower at DIVs 28 and 35 than at younger ages. Since burst events

are typically initiated from a number of sites [59], this reduced

variability suggests that burst propagation times in mature cultures

are not influenced by burst source; information propagates

efficiently from all parts of the network. Interestingly, a small-

proportion of links at DIVs 28 and 35 were activated extremely

frequently (Figure 10), suggesting that they facilitate many of the

interactions; it is possible that they represent activation of the

small-world ‘short cuts’ between clusters.

The increasing prevalence of highly connected nodes in older

cultures suggests that such hubs play a greater role in network

activity as the cultures mature, perhaps indicating sources [65],

sinks, or bridges [18,33] for network activity. Interestingly,

structural and functional hubs have recently been identified in

the developing hippocampus where GABAergic interneuron hubs

were found to orchestrate network synchrony [52], firing

immediately prior to network bursts. Similarities between connec-

tivity of GABAergic interneurons in the hippocampus and

neocortex [66] and suggestions that cortical cultures develop

subsystems akin to those found in vivo [25,53,56], imply that similar

functional hubs may be present in the primary cortical cultures

employed herein.

Conclusions and future work
The present study has demonstrated that networks derived from

the spontaneous activity of cultures develop non-random proper-

ties despite a lack of external input. Based on these results, we

draw four main conclusions. Firstly, to mitigate fluctuations in

spontaneous activity, multiple network bursts should be assessed to

obtain the persistent network. Secondly, the functional network of

a cortical culture evolves from an initial random topology to a

small-world topology; we propose this is due to a change in the

culture’s spontaneous activity patterns that is driven by the

maturing excitatory-inhibitory balance and an increase in

network-wide synchronization. Thirdly, the reduction in burst
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propagation time with culture maturation that accompanies the

evolution of a small-world topology supports the efficient network-

wide flow of information afforded by a small-world network.

Lastly, the presence of hubs and increasing contribution of links

with high persistence suggests a proportion of highly influential

nodes and links.

To the authors’ knowledge, this is the first demonstration of

small-world properties evolving in the functional networks of

cortical neurons grown in vitro. This further supports work

suggesting maturation of in vitro networks around the age of DIV

28 to 35; importantly, our results indicate that experiments which

require complex network features should be undertaken from DIV

28 onwards, whilst those aiming to shape network maturation

should be undertaken before DIV 28. Moreover, the work herein

further supports the use of complex network statistics to quantify

network level changes resulting from different experimental

conditions, and importantly it provides a benchmark against

which to assess the influence of closed loop stimulation on shaping

cultures network properties - a fundamental question for the work

on closed loop culture embodiment.

An important area for future work is to investigate the role of

frequently activated nodes (hubs) in cultured neurons; including

whether the presence of network-synchrony controlling hubs in the

underlying substrate could mediate the timing and extent of

functional interactions between otherwise segregated clusters,

perhaps coordinating synchronous network-wide bursting. Addi-

tionally, the use of staining to identify the location and proportion

of the different neuron types and sub-types, and the use of

pharmacological manipulation to verify their effect on activity may

help elucidate mechanisms behind the different network proper-

ties.

Materials and Methods

Cell cultures and sample population selection
Data used for the present study was collected for [44], from

cultures of pre-natal (E18) rat dissociated cortical neurons and glia

cells, seeded onto multi-electrode arrays (MEAs, Multi Channel

Systems, Reutlingen, Germany). Cultures were maintained in

Teflon sealed MEAs in an incubator at 5% CO2, 9% O2, 35uC
and 65% relative humidity [44]. For the present study, ‘dense’

cultures (estimated cell density of 2,50061,500 per mm2) were

used.

Culture’s electrical activity was recorded daily during their first

5 weeks of development. For the present study, a sample

population was selected from the large number of cultures

recorded, specifically, 10 cultures from 4 preparations (plating

batches). Cultures were arbitrarily selected from those that had

recordings every 7 DIV, i.e. those which survived for the full 5

weeks and for whom none of the weekly recordings were missed.

The use of multiple preparations is important as bursting patterns

across preparations vary considerably [44]. Additionally, since the

variation in burst properties measured at the same age (DIV) from

different cultures (of the same plating), can exceed day-to-day

differences in their properties (and inter-plating differences are

significantly larger) [44], network properties were compared at

weekly intervals. This also allows easy comparison with results

from other studies [32,36].

Electrophysiological recording
Data were recorded from cultures for 30 minutes daily in the

incubator used for culture’s maintenance. Unit and multi-unit

spontaneous spike firing was recorded from the MEA (868 array

of 59 planar electrodes, each 30 mm diameter with 200 mm inter-

electrode spacing [centre to centre]). The pre-amplifier was from

Multi Channel Systems (MCS), excess heat was removed using a

custom Peltier-cooled platform. Data acquisition and online spike

detection was performed using MEABench [67]. According to the

MEA user manual (MCS) spike detection is reliable up to

,100 mm from the electrode centre, beyond which spikes become

indistinguishable from the background noise. Therefore, each

MEA provides a grid of 59 non-overlapping 100 mm recording

horizons (once the four analogue channels and single ground

electrode are removed). It should be noted that data recorded on

each channel may be from multi-neuron activity, no attempt was

made to spike sort the data as overlapping waveforms found

during a burst can present problems [44]. Lastly, as recording

began immediately after the cultures were transferred to the pre-

amplifier, the first 10 minutes were discarded from the analysis in

order to mitigate any movement induced changes in culture

activity [44,68].

Data pre-processing and burst detection
Spikes were detected online (using MEABench), positive or

negative excursions beyond a threshold of 4.56 estimated RMS

noise, were classed as spikes. Their peak amplitude timestamp (ms),

plus electrode number were stored. For the present study, all

positive amplitude spikes were removed to avoid counting spikes

on both upwards and downwards phases.

In cortical cultures, global bursts (population bursts), charac-

terized by an increase in culture activity across the entire MEA,

are typically present from DIV 4–6 onwards [44], but sometimes

as late as DIV 14 onwards [36]. Such bursts provide a time

window during which many culture interactions take place and

thus a useful opportunity to assess network-wide connectivity. For

the present study, global bursts were identified as an increase in

the number of spikes detected per unit time, summed over all

electrodes in the array: specifically $4 spikes per channel in

100 ms, on $4 channels within 250 ms; based on the SIMMUX

algorithm, included as Matlab (The MathWorks, Natick, MA,

USA) code with MEABench. Burst start was determined by the

timestamp of the first spike included in the global burst, and burst

end taken as the timestamp of the last spike included. To assess

interactions between neural units underlying all the electrodes,

global bursts in which at least 25% (15/59) electrodes registered

channel bursts ($4 spikes in 100 ms) were selected. These were

termed ‘network-wide’ bursts and ensured that many neural units

participated in the burst (increasing the probability that the

resultant networks would have sufficient numbers of nodes for the

analysis of network properties). Additionally, since there were

typically 10 to 150 such bursts in the 20 minute recording segment

used, it provided a good balance between having sufficient

numbers of bursts for analysis, whilst avoiding the inclusion of

‘tiny’ bursts [44] since these may have biased results.

All activity occurring from the first spike in the nw-burst to the

last spike in the nw-burst (including tonic activity from electrodes

not included in the nw-burst) was used for assessing the

relationships between channel pairs. Spike occurrences were

counted in 1 ms bins, this allowed a certain amount of jitter in

the spike arrival times (which could otherwise decrease the

likelihood of identifying correlated activity). Bin size was selected

based on experimentation with 1, 5 and 10 ms bins. The 1 ms bins

provided a greater separation between correlated and un-

correlated channels, data not shown.

Link definition: Cross covariance
Functional connectivity was assessed by correlating spike times

recorded on pairs of electrodes during a network-wide burst (as per
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[34]). This linear link analysis method assesses the probability of a

spike at time t on one electrode being accompanied by a spike

arriving at t6k on another electrode, where k is the allowable lag

time. Spike times arriving within 613 ms of each other were

considered to be related (under the assumption that a linear

relationship between spike arrival times on pairs of electrodes

indicates their coupling). The maximum lag time was based on

speed of axonal propagation, time for synaptic transmission and

the maximum distance between 2 points on the MEA. Since the

firing rates recorded on each channel may be different, cross-

covariance was used, this correlates deviations in firing rates from

their respective means as a function of lag.

Channels that had fewer than 8 spikes recorded during the burst

were excluded from the cross-covariance analysis, as results from

synthetic data testing showed that performing cross-covariance on

vectors with fewer than 8 spikes was poor at distinguishing related

vectors from independent ones (data not shown).

The cross-covariance function calculates the covariance of two

random vectors:

Cov(X ,Y )~E½(X{mX )(Y{mY )� ð1Þ

In the case where X and Y are time-series the cross-covariance may

depend on the time when it is estimated and on the lag between

the time series:
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For wide-sense stationary time series, covariance is a function of

the lag only:

Cov(X0,Yt)~Cov(X0zt,Ytzt)~C(t) ð3Þ

Cross covariance was calculated using the built in Matlab function

xcov; specifically, each pair of channels with at least 1 ms overlap

in their activity were compared from the time of the first spike on

either channel to the time of the last spike on either channel. The

tightness of the correlation window (X or Y channel recording

spikes), and requirement for overlapping activity was to mitigate

the effects of long periods of quiescence and to ensure that the data

were as wide-sense stationary as possible.

Calculation of the cross-covariance at each lag resulted in a

cross-covariance plot for each channel pair. The maximum cross-

covariance value (peak of the plot) was used to determine whether

a link between nodes was present by comparing it to a threshold as

detailed next.

Transient network link definition threshold. Under the

assumption that a peak in the cross-covariance (XCov) plot

indicates a relationship between the channel pairs [34], the link

definition threshold was set at 4 times the expected value of

uniformly distributed cross-covariance bin counts (the sum of the

counts from all 26 bins excluding 0 lag, divided by the number of

bins). It was decided not to use a fixed threshold, since the mean

XCov value increased as the cultures matured. Moreover, it varied

between cultures and the age related increase did not occur in the

same way for each culture. Thus, when a fixed threshold was used

a proportion of the networks obtained were either too small/

sparse, or too dense for analysis of their complex network

properties (empirical). By setting a threshold that identified peaks

in the plot, the results were not influenced by variations in the

mean cross covariance level. Figure S5 shows the ability of the

threshold to identify true positives and reject false positives. The

threshold calculated for each channel pair was applied to the

weighted adjacency matrix, providing a binary adjacency matrix

(transient network) for each nw-burst. The matrices were

symmetrized (i.e. if a link was found in one direction, a

corresponding link was added in the opposite direction).

The transient networks obtained over the duration of a

recording were found to be highly variable (see Results), therefore

to obtain a more robust estimate of the network infrastructure, a

persistent network was calculated as the set of most frequently

activated links over all transient networks.

Persistent network. To compute the persistent network a

weighted adjacency matrix comprising the count of each link’s

occurrence over all transient networks was obtained by summing

the binary adjacency matrices of all transient networks. A link

persistence threshold was applied to this ‘adjacency frequency

matrix’ to obtain a binary adjacency matrix representing the

persistent network. At a threshold of 1, the persistent network is

simply the superset of all transient networks (and thus, not strictly

speaking, ‘persistent’); conversely a threshold set equal to the total

number of transient networks, requires link presence in every

transient network. Setting the threshold equal to link presence in

25% of transient networks provided a good balance between

minimizing the number of overly dense and overly sparse networks

(see complex network analysis).

Complex network analysis: Topological properties
Table S1 provides the mathematical definitions for the

topological properties and complex network statistics. Basic

topological properties (related to network size), and complex

network statistics, were calculated from the adjacency matrices

(using Matlab, with additional scripts from the Brain Connectivity

Toolbox [14]). For each transient network, only basic topological

properties were measured, complex network statistics were not

calculated due to the highly variable network size and edge density

(see verification of network size and edge density). Instead, the

mean numbers of nodes and links were calculated over all

transient networks in the recording. Additionally, the coefficient of

variation for number nodes and for number of links was calculated

over all transient networks in the recording. The expected

numbers of nodes, and links and the expected coefficients of

variation were calculated over all 10 cultures.

Verification of network size and edge density for complex

network analysis. Since some of the complex network statistics

are defined only for certain ranges of network size, it was

important to ensure that each persistent network was within the

size range suitable for complex network analysis. Specifically, an

assumption made when assessing small-world properties is that the

networks are sparse: n..K [16] (where n is number of nodes and

K is mean node degree). Since the maximum K is constrained by

the number of nodes, this verifies that the average number of

connections per node is much lower than the total number of

nodes in the network (i.e. the graph is far from being fully

connected and is thus ‘low-cost’). To check for the required

sparseness, an edge density (cost; number of links/number of

possible links) in the range 0.05 to 0.34 was sought (following [8]).

To ensure that sufficient numbers of networks met the criterion at

each age, whilst avoiding too many overly sparse networks (those

with K,log(n)) [16], three different persistent link definition

thresholds were tested: 0.15, 0.25, 0.35. These resulted in 3 sets

of networks with increasing numbers of nodes and links (and a

variety of edge densities). The selected threshold (0.25) provided

the best balance between minimizing the number of overly dense

and overly sparse networks, and provided a set of networks where

83% had an edge density in the range 0.05 to 0.34. Additionally,

this threshold resulted in the least variation of edge density
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between ages; this was useful for comparing statistics influenced by

edge density, such as clustering coefficient.

Calculation of network statistics. The expected persistent

network statistics for each age (DIV) were obtained from all 10

cultures. For the numbers of nodes, links and edge density, data

outside the 5th to 95th percentile were removed as outliers

(maximum removed = data from 4 cultures, leaving minimum

n = 5 at all times, once cultures failing to meet the edge density

criterion had been removed). The power of statistical tests was

verified to ensure that n numbers for each network statistic were

sufficient (see Significance testing subsection).

For each persistent network, the network-wide statistics (mean

path length [average shortest path length] (L), global efficiency (E),

mean clustering coefficient (C), small-worldness (Sws), and mean

node degree (K)) were calculated over all nodes that had at least

one link (and in the case of mean path length, over all node-pairs

with non-infinite distances [3]). C, L and E were normalized

against expected values from a population of equivalent random

networks with the same number of nodes and links (see section on

generation of equivalent null hypothesis networks).

Small-worldness of the network [17] was calculated using the

Watts and Strogatz [16] definition of clustering coefficient, by

taking the ratio of normalized mean clustering coefficient to

normalized mean path length. Here, clustering coefficient was

normalized to the value expected for an equivalent lattice network,

and mean path length to the value expected for an equivalent

random network, this provided a conservative estimate of small-

worldness (see Figure S6).

To check that the small-world metric was not influenced by

network disconnectedness (as mean path length is only defined for

connected graphs and not all graphs were connected), the ratio of

global efficiency to the clustering coefficient [8] was also compared

(Figure S4). Global efficiency (E) is inversely related to mean path

length and is suitable for use on connected or disconnected

networks. Thus, replacing mean path length (in the small-world

calculation), with 1/E, enabled calculation of the small-world

metric based on global efficiency.

Assessment of node degree distributions. Node degree

distribution was calculated using all nodes of the network by

counting the number of nodes with each degree in bins of size 2.

Bin size was selected to provide a sufficient number of data points,

whilst minimizing the number of empty bins (sizes 1, 2 and 3 were

tested, data not shown). Hubs were identified as nodes with a

degree greater than mean node degree plus one standard deviation

[18]. To assess if the node degree distribution followed exponential

or power law trend, both of these distributions were fitted to the

node degree data using Graph Pad Prism 4 (GraphPad Software,

Inc., La Jolla, CA, USA). The goodness of fit ratio of power law to

exponential model was calculated for each culture at each age (to

test the null hypothesis that data would not differ from an

exponential fit). The degree distributions P(k) were of the following

form: exponential, P(K),e2aK; and power law, P(K) = k2a.

Generation of equivalent null hypothesis networks. Net-

work size and density may influence the magnitude of complex

network statistics [69]. To counter this, empirical network properties

were compared to both random and lattice null hypothesis networks.

Firstly, as per other studies the significance of empirical network

statistics was assessed using random networks with the same number

of nodes and links to generate a null distribution of the network

statistics. Thus for each persistent network (from one culture at a

particular age), a set of 50 equivalent random networks was

generated (using a script from the Brain Connectivity Toolbox),

providing 500 (50610 cultures) equivalent random networks for

each age. As per the real networks, statistics were calculated for the

random networks of each culture. The expected random network

statistics were then calculated for each culture. Secondly, to assess the

significance of the clustering coefficient for a conservative estimate of

small-worldness, the expected clustering coefficient from an equiv-

alent lattice network was used. Lastly, comparison of the raw

empirical network measurements against those of both equivalent

random and lattice networks allowed results to be validated against

the upper and lower limits expected (see Figure S3). NOTE: For the

alternative link persistence thresholds, the mean path length and

clustering coefficient values expected from a population of equivalent

random networks were approximated using: LRand, = ln(n)/ln(K21),

and CRand, = K/n [64].

Calculation of non-topological properties
In addition to the networks’ topological properties, the spatial

and temporal features of the networks were also assessed; link

distance was calculated as the Euclidean distance between the

electrodes on the MEA, based on 200 mm centre-to-centre spacing

of the electrodes. For the present study, connections between

nodes up to 566 mm (2 electrodes) apart were considered as

‘nearby’ and those greater than 566 mm as ‘distant’. Link

persistence was calculated using the weighted persistent network

adjacency matrix (i.e. prior to thresholding), normalized so that

the persistence value was the percentage of transient networks in

which the link was found.

For both link length (derived from the distance between

connected nodes) and link persistence, histograms were obtained

over all links from all cultures at each age. Thus, for link length, a

count of the number of links in each bin (bin size = 1 electrode

spacing) was calculated for each network, this was normalized to

the total number of links in the network. For link persistence, a

count of the links at each persistence level (bin size 5%) was

calculated for each network. In both cases, median bin values were

obtained over all 10 cultures, therefore the histogram proportions

may not always sum to 1.

To quantify the changes in link length and persistence, two

further measures were assessed: for link length, the proportion of

links between spatially nearby vs distant nodes was calculated for

each culture, and the median of these values was used to compare

results between ages; for link persistence, the contribution of

persistent links was measured as the number of links in each 5%

persistence category multiplied by the category persistence value

(e.g. if 20% of links were found in the 10% persistence category,

the contribution was 200). The link contribution counts were

further binned into transient (,25%) and persistent ($25%).

The efficiency of information broadcast was measured as burst

propagation time (time to recruit all channels in a network-wide

burst). This was calculated in milliseconds from the time of the first

spike in the burst, until the time at which all channels participating

in the burst had been recruited. Channels could be recruited to the

burst whilst the burst was in progress (i.e. sufficient channels

displayed the required activity) but once the number of channels

bursting dropped below the threshold, channels could no longer be

recruited. For each channel included in the burst, recruitment

time was the timestamp of the first spike in the burst activity

sequence. Burst propagation times were calculated for all bursts of

a culture at each age and the median of these was calculated for

each age. Outliers (values ,5th and .95th percentile) were

removed from the data.

Visualization of network graphs. Network graphs were

visualized using a freely available script [70]. The script was

modified to display the node numbers as their corresponding MEA

hardware numbers (0 to 59), with Gnd indicating the ground

electrode. A further modification was made to highlight the nodes
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which had high numbers of links (defined as mean number of links

plus one standard deviation), these were considered to be ‘hubs’ in

the network [2].

Significance testing
All statistics were obtained using SPSS version 17.0 (SPSS Inc.,

Chicago, USA). Unless otherwise specified P,0.05 was set as the

significance level. Statistical tests for each network property were

selected based on the experiment design and form of the resultant

data; Checks were performed to ensure that the assumptions of

each test were met. Following test selection, statistical power was

verified at the 80% level (checking that the proposed test statistic

had sufficient power to detect a genuine effect [71] [typically set to

a difference of 1–2 times standard deviation of the mean], given

the n numbers and variability of the data). For the present study,

where some of the tests were applied to data with relatively low n

numbers it was important to ensure that the power of each test was

sufficient [72]. It was also important to ensure that the

assumptions of the statistical tests were not violated (Text S1

describes the selection and validation of statistical tests used in the

present study). The selected tests were as follows:

To check for a significant increasing or decreasing linear trend

of the network properties as a function of the culture age, results

for each network property were compared using a one-way

ANOVA. Culture age (DIV) was the factor, and the network

property was the dependent variable. The following properties

were assessed in this manner: number of nodes, number of links,

edge density, normalized mean path length, normalized clustering

coefficient, small-worldness, goodness of fit ratio. In cases where a

significant trend was found, Bonferroni and Tukey post-hoc tests

were performed to check for significant differences between each

pair of conditions, where found, the homogeneous subsets are

mentioned in the results. Homogeneity of variances was tested

using the Levene test.

Normality was tested using the Shapiro-Wilk normality test. In

cases where the sample means were not normally distributed, non-

parametric tests were used. For the burst propagation times a

Kruskal-Wallis test was performed on the median burst propaga-

tion times for each culture at each age, with culture age as the

grouping factor and median burst propagation time as the

dependent variable. For the proportion of links to nearby vs

distant nodes at each culture age, a 2-tailed Wilcoxon signed rank

sum test was used. To compare the contribution of persistent links

at each age, Friedman’s rank test was used. Lastly, for the skewness

of the link length distributions, a z-test was calculated based on the

skewness estimate taken over the standard error of the skewness

estimate. The P value was then calculated using the online

statistics analysis tool (http://www.quantitativeskills.com/sisa/

calculations/signhlp.htm, accessed November, 2010).

Supporting Information

Figure S1 Robustness of results to changes in link
persistence threshold: Basic topological properties. To

check the influence of the persistent link definition threshold on

the basic network statistics, results were calculated over a range of

thresholds. The plots show results calculated from 10 trials (10

cultures), at a lower and higher link persistence threshold than the

main results. Graphs on the left are from networks thresholded at

15% link-persistence (i.e. link presence required in at least 15% of

network-wide bursts), and graphs on the right are from networks

thresholded at 35% link-persistence. As for the main results, in

cases where no links were found the data were excluded from the

analysis, resulting in n of 6 to 10 for each age. At both 15% and

35% link-persistence thresholds there was a slight dip in the

number of links between DIVs 14 and 21 (consistent with the 25%

threshold results) and there was an increase in the number of links

from DIV 21 onwards (again consistent with the main results). For

all three link-persistence thresholds, the number of nodes

fluctuated slightly between the ages. Edge density of the networks

(second row) varied differently for each of the alternative link

persistence thresholds. Moreover, at the 15% and 35% threshold

levels some networks were overly dense –breaking the assumption

of ‘sparseness’ required to assess ‘small-worldness’.

(PDF)

Figure S2 Robustness of results to changes in link
persistence threshold: Complex topological properties.
To check influence of the persistent link definition threshold on the

complex network statistics, results were calculated over a range of

thresholds. The graphs show mean path length, clustering

coefficient and small-worldness (top, middle and bottom rows

respectively) for the networks thresholded at 15%, 25% and 35%

link-persistence. Results are from 10 trials (10 cultures), as for the

main results, in cases where no links were found the data were

excluded from the analysis, resulting in n of 6 to 10 for each age.

Mean path length and clustering coefficient were normalized to

the value expected for a random network. Small-worldness was

calculated conservatively as (Creal/Clattice)/(Lreal/Lrand). Mean path

length (top row) was relatively stable for all three thresholds,

although at the 15% link-persistence threshold it increased slightly

between DIV 28 and 35, this increase was not found to be

significant (ANOVA P = 0.511). Clustering coefficient (second

row) followed an increasing trend at all three thresholds. Small-

worldness (bottom row) showed the same trend of increasing small-

worldness between DIVs 14 and 28 at the 15% and 25% persistent

link definition thresholds, however at the 35% threshold the edge

density of the networks precluded accurate assessment of small-

worldness.

(PDF)

Figure S3 Robustness of small-world result: Validation
of empirical results against those from random and
lattice networks. To check the robustness of the small-world

result, complex network statistics from all three link-persistence

thresholds were compared against the values expected for an

equivalent lattice as well as those for an equivalent random

network. Low, medium and high thresholds required link

persistence in 15%, 25% and 35% of network-wide bursts

respectively. Each graph shows the mean network statistic

obtained from the real networks, against the value expected from

an equivalent lattice network and the value expected from a

population of equivalent random networks (same number of nodes

and links in all cases). For all three thresholds the mean path

length (first page of graphs) is close to that of a random network

and less than that of a lattice. Likewise, for all three thresholds the

clustering coefficient increased from close to the value expected

from a random network, to close to the value expected for a lattice

(second page of graphs).

(PDF)

Figure S4 Global efficiency and conservative global-
efficiency based ‘Small-Worldness’ of persistent net-
works. To check the influence of disconnected networks on the

measure of network integration, the global efficiency was tested

(since mean path length is designed for connected networks and

some of the networks were disconnected). Global efficiency is a

measure of integration that is not affected by network dis-

connectedness. The global efficiency was close to 1 at all ages,

indicating a high level of integration and confirming the mean
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path length result. Moreover, the global efficiency-based small-

worldness increased with culture age, consistent with the main

results.

(PDF)

Figure S5 Ability of the link definition threshold to
identify genuine peaks. A: To check whether the defined links

(i.e. above link definition threshold) appeared to be genuine peaks

in the cross covariance (XCov) plots, mean XCov plots were

obtained on a per-channel basis. Plots are shown from a

representative channel during a representative burst. The left

hand plot shows the mean XCov value at each lag, from all

channel pairs with a peak above the threshold (i.e. those that were

considered to be related). There are two well-defined peaks and no

obvious false positives. To check that genuine peaks were not

missed, a mean XCov plot was obtained from all channel pairs

with a peak#threshold (right hand plot). There are no clear peaks.

In addition to checking the mean plots, a number of individual

XCov plots, over a range of cultures at each age, were manually

inspected (i.e. checking for false positives or negatives). In all cases,

those with a maximum peak above the threshold, appeared to

contain a genuine peak in the plots, whilst those that did not cross

the threshold showed no sign of peaks. B: To check the actual link

definition thresholds used and see how they compared to the mean

cross-covariance peak over all links, the mean XCov threshold for

each age, was compared to the mean XCov peak for each age.

Results are depicted in a bar chart, as can be seen, the mean XCov

threshold is well above the mean XCov peak plus one standard

deviation.

(PDF)

Figure S6 Conservative small-worldness: guarding
against high small-worldness values when clustering
coefficient is low. The first graph (Panel A) shows the mean

path length, clustering coefficient and small-worldness values

normalized against the expected values from a population of

equivalent random networks. The second graph (Panel B) shows

the raw network properties alongside those expected from

equivalent random and lattice null hypothesis networks. At DIVs

14 and 21, small-worldness is met (Panel A) despite the clustering

coefficient being far from the value expected for a lattice network

(Panel B). It is not until after DIV 21 that the clustering coefficient

approaches the value obtained for a lattice. Small-worldness is

defined as L$Lrandom and C..Crandom [73], and the small-world

metric has been defined as: (C/Crand)/(L/Lrand).1 [74]. There-

fore an overly optimistic small-world result can be obtained if the

clustering coefficient of the random equivalent networks is very

low, since normalized values of ..1 can be achieved despite a

very low absolute clustering coefficient. Thus, whilst the cultures

had a small-world metric .1 at DIVs 14 and 21 (left hand graph),

it was not considered that these networks met the small-world

criterion, (since their clustering coefficient was so low compared to

a lattice). To address this issue, a conservative estimate of small-

worldness based on: (C/CLattice)/(L/Lrandom) was used for the

present study.

(PDF)

Table S1 Mathematical definitions of the complex
network measures used in this study.

(PDF)

Text S1 Selection and validation of statistical tests.

(PDF)
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