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Abstract  

Heating, ventilation, air conditioning and refrigeration (HVAC&R) systems account for 

more than 60% of the energy consumption of buildings in the UK. However, the effect 

of the variety of HVAC&R systems on building energy performance has not yet been 

taken into account within the existing building energy benchmarks. In addition, the 

existing building energy benchmarks are not able to assist decision-makers with 

HVAC&R system selection. This study attempts to overcome these two deficiencies 

through the performance characterisation of 36 HVAC&R systems based on the 

simultaneous dynamic simulation of a building and a variety of HVAC&R systems 

using TRNSYS software. To characterise the performance of HVAC&R systems, four 

criteria are considered; energy consumption, CO2 emissions, thermal comfort and 

indoor air quality. The results of the simulations show that, all the studied systems are 

able to provide an acceptable level of indoor air quality and thermal comfort. However, 

the energy consumption and amount of CO2 emissions vary. One of the significant 

outcomes of this study reveals that combined heating, cooling and power systems 

(CCHP) have the highest energy consumption with the lowest energy related CO2 

emissions among the studied HVAC&R systems.  
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1. Introduction 

According to the international Kyoto protocol (1997), the UK government is committed 

to reduce  greenhouse gas emissions by 30% and 80% below the 1990 level respectively 

by 2020 and 2050 [1]. It is worth noting that, in the UK, buildings account for more 

than 38% and 45% of energy consumption and CO2 emissions  respectively [2-4]. 

Therefore, to achieve these commitments, all  new domestic  buildings are planned to be 

zero carbon by 2016 and non-domestic buildings from 2019 [5]. HVAC&R systems are 

responsible for more than 60% of the UK building energy consumption [6]; which 

underlines the importance of HVAC&R systems in  achieving these commitments.  

The national concern regarding the environmental impact of building energy related 

CO2 emissions along with increasing demands for indoor environmental quality in one 

hand and the variety of HVAC&R systems on the other, highlights the importance of 

choosing the most appropriate system for a building. In the building design process, 

HVAC&R system selection is conducted in the early stages of a project [7-9]. Decisions 

within these stages significantly influence the total building energy performance and 

establishes up to 90% of the life time occupants' satisfaction and building running costs 

[10]. This strategic decision requires a broad insight into the performance characteristics 

of a variety of HVAC&R systems. It should be noted that this study is focused on the 

technical aspects of HVAC&R systems and economic aspects are not within the scope 

of work in this research.  

The open literature reveals the gap in holistic studies on HVAC&R system performance 

characterisation [11, 12]. Despite many studies with a very narrow scope which 

examined individual topics e.g. the optimisation of  HVAC&R control systems and the 

simulation/integration of some elements of HVAC&R systems [13-15], few holistic 
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studies have been conducted on HVAC&R system performance characterisation [16-

18]. Energy consumption guide 19 (ECG-19), is one the most cited references on the 

characterisation of the building energy consumption and their corresponding CO2 

emissions [18]. ECG-19 categorised the office buildings into four main groups. For 

each category a breakdown of energy consumption and CO2 emissions are introduced 

for both "typical" and "good practice" cases based on surveys of a large number of 

occupied buildings. In one study the Chartered Institution of Building  Services 

Engineers (CIBSE) extended the approach of ECG-19 to other non-domestic buildings 

in order to support the requirements of display energy certificates [16]. This was 

subsequently  updated to the "energy benchmark technical memorandum 46" (TM46) to 

simplify the allocation of buildings into different categories [17]. The existing UK 

building energy benchmark (TM46) has been reviewed based on the latest Display 

Energy Certificate (DEC) records [19]. Despite the valuable results drawn from real 

buildings within these three building energy benchmarks [16-18] and also the latest UK 

energy benchmark review based on the DEC results [19], none of them effectively 

addresses the influence of different HVAC&R systems on building energy performance.  

This deficiency has also been observed in other building energy performance 

characterisation studies [20, 21]. In most of these studies, survey results did not provide 

sufficient details to make a clear distinction between surveyed HVAC&R systems and 

their energy consumption [20-22]. Consequently, this deficiency has been coarsely 

overcome by assuming a typical HVAC&R system for each building category [18, 20].  

Therefore, the aim of this study is to overcome this deficiency through an investigation 

of the performance of a variety of HVAC&R systems within a robust framework based 

on dynamic simulation of a prototypical office building. 
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2. Research design 

In this study, simultaneous dynamic simulation of a typical office building and 

HVAC&R systems are adopted to analysis the energy performance of different parts of 

HVAC&R systems. The open literature introduces more than twenty simulation 

packages for building dynamic performance simulations [23, 24]. Several researches are 

conducted using different simulation packages such as TRNSYS, ESP-r, EnergyPlus 

and other dynamic simulation tools [23, 24], but in general terms, all of these tools are 

validated by well-recognised academic organisations. Crawley et al. [23, 24] have 

conducted a comprehensive comparison study for the existing simulation tools. It shows 

that Transient System Simulation Tool (TRNSYS) is one of the best options for 

HVAC&R system studies by providing more features for HVAC&R systems. In 

TRNSYS the components are configured and assembled using a fully integrated visual 

interface with ability to develop new components [23, 24]. In terms of software 

validation, TRNSYS is one of the listed simulation programs in the Building Energy 

Software Tools Directory of the US Department of Energy (DoE) and  International 

Energy Agency (IEA) [25]. Moreover, several successful studies have been conducted 

using this tool [26-30]. Hence, the last Version of TRNSYS simulation package 

(Version 17.00.0019) is selected to analyse the dynamic performance of a variety of 

HVAC&R systems in this study. In performance evaluation of HVAC&R systems using 

TRNSYS, four major criteria are considered within the scope of work in this research. 

These criteria include energy consumption, CO2 emissions, thermal comfort and indoor 

air quality. In the following sections, a prototypical office building and HVAC&R 

systems that are investigated in this research are described in detail.  

 

http://apps1.eere.energy.gov/buildings/tools_directory/
http://apps1.eere.energy.gov/buildings/tools_directory/
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3. Building descriptions 

In this study a prototypical daylit cellular office building has been selected to form a 

basis for the performance evaluation of a variety of HVAC&R systems. This built form 

is chosen because it accounts for more than 67% of office buildings in England and 

Wales [31]. The building has four floors with a total floor area of 1920 m2. Room depth 

(distance from windows) is considered less than 6m to comply with the definition of  

daylit cellular office buildings [32].  

To identify the amount of glazing area within the case study building, the ratio of 

glazing per floor area (G/F) is assumed as the average values of G/F for cellular office 

buildings with different building structures as reported by NDBS project [33]. An 

isometric model and typical plan of the case study office building is shown in  

.  

 

 

Figure 1: Isometric model and typical plan of the case study office building. (All      

     dimensions in meters) 

 

 

Overall heat transfer coefficient of walls, roof and windows are respectively assumed as 

0.28, 0.18 and 1.8 (W/m2.C) [34] and the infiltration rate is set to 0.3 air change per 

hour [35]. To achieve an acceptable indoor air quality level, the ventilation rate is set to 

10 (L/s.person) [36]. Occupancy density of the prototypical building is assumed  to be 

10 (m2/person) [35]. For typical office activities, human body sensible and latent heat 

rejection are respectively defined as 75 and 55 (W/person) [35]. To achieve an 
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5

2

4

1
2



 6 

illuminance of 300-500 (lx), a power load of 15 (W/m2) is assumed [37]. Finally, the 

electrical equipment load is assumed as 200 (W/person) [35]. With regard to the 

occupancy pattern, the building is in use only during weekdays between 8 am to 6 pm. 

Indoor design temperature is set to 23°C in cooling mode and 22°C during heating 

mode. In heating mode, the humidity control is set to 45% relative humidity [35]. It 

should be noted that considering a variety of profiles for internal energy loads and 

delighting control along with different forms of possible shadings is not within the 

scope of this research. The prototypical building and the HVAC&R systems are created 

in TRNSYS and simulated using the London-Gatwick weather data file. This data file 

has been developed based on a comprehensive meteorological reference (Meteonorm) 

used by TRNSYS simulation package [33].  

 

4. HVAC&R systems 

In the open literature, there are several different approaches to the categorisation of 

HVAC&R systems [16, 38-41]. Among them, CIBSE categorised HVAC&R systems 

into three main groups; centralised air systems, partially centralised air/water systems 

and local systems [16]. This study is mostly concerned with the energy performance 

characterisation of a variety of centralised HVAC&R systems as applied to the case 

study building. Three primary and 12 secondary systems which in total form 36 

permutations of primary and secondary systems are investigated within this study. The 

primary systems include three combinations of heating and cooling systems (Table.1). 

The secondary systems include constant air volume (CAV) and variable air volume 

(VAV) distribution systems with heat recovery, economiser and terminal reheat units 

and provide 12 permutations which are described in Table 2.   
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Table 1: Primary systems. 

No. Heating and cooling parts 

1 Gas boiler with reciprocating air cooled chiller 

2 Gas boiler with absorption chiller with cooling tower 

3 Combined heat and power (CHP) with absorption chiller and cooling 

tower (CCHP) 

 

Table 2: Secondary systems. 

No. Part 1 part 2 part 3 

1 Constant air volume (CAV) -   - 

2 Variable air volume (VAV) -   - 

3 Constant air volume (CAV) Heat recovery - 

4 Variable air volume (VAV) Heat recovery - 

5 Constant air volume (CAV) Economiser  - 

6 Variable air volume (VAV) Economiser  - 

7 Constant air volume (CAV) -   Reheat coil 

8 Variable air volume (VAV) -   Reheat coil 

9 Constant air volume (CAV) Heat recovery Reheat coil 

10 Variable air volume (VAV) Heat recovery Reheat coil 

11 Constant air volume (CAV) Economiser  Reheat coil 

12 Variable air volume (VAV) Economiser  Reheat coil 

 

 

The temperature of the supply chilled water (Tschw) and supply hot water (Tshw) for all 

primary systems are respectively set to 6°C and 80°C [16] (Figure 2). The energy 

efficiency of primary systems are defined based on actual manufacturer information 

within the recommended range according to ASHRAE standard 90.1 and British 

standard BS/EN:15316 [42, 43]. Table  shows the recommended minimum efficiency of 

the main primary systems along with the assumed values (based on manufacturer's 
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product specifications) that are taken into account in this study. It should be noted that 

the efficiencies mentioned in Table 3 are compulsory indicators that proves the 

compliance of equipment with the existing standards [42, 43] and TRNSYS simulates 

the HVAC&R systems based on actual full/partial loads.  
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Figure 2: Primary systems a) boiler with air cooled chiller, b) boiler with absorption 

      chiller and cooling tower, c) CHP with absorption chiller and cooling tower 

      (CCHP). 

 

 

Table 3: Recommended minimum energy efficiency required and the values assumed in 

    this study.  

System  
Energy efficiency * 

Min requirements [42, 43] This study 

Air cooled reciprocating chiller COP≥2.802  COP=3.2 

Double effect absorption chiller COP≥1 COP=1.2 

Gas boiler  Et≥80% Et=85% 

Combined heat and power (CHP) Te=73%-95% Te=80% 

Notes- Et: Thermal efficiency ; COP: Coefficient of performance, Te: Total 

efficiency, *:Energy efficiency under test conditions [42, 43] 

 

In the secondary systems, the air distribution in VAV arrangement provides the required 

indoor air temperature by changing the amount of delivered air (Figure a). Heating and 

cooling coils control the supply air temperature (Tsa) while the VAV fan changes the air 

a) b) c) 
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flow rate. The Indoor temperature moves towards the desired indoor design temperature 

by changing the opening fraction of the supply air damper. These changes directly 

influence the performance curve of the air distribution system; therefore to avoid either 

over or under delivery of the air into the distribution system, the VAV fan keeps the air 

distribution system pressure at a set level (Pset). Due to the design pressure loss of the 

VAV system, Pset is defined as 450 (Pa) to ensure that required amount of air would be 

available in the distribution system at all partial load circumstances. In the case of 

utilising reheat coils, additional control would be available to cover the rapid changes 

on heating and cooling demands which can not be tracked by the VAV fan. Also, the 

heat recovery between exhaust and fresh air streams is an option which has been 

investigated within the heating mode. Heat recovery efficiency of the heat recovery unit 

is assumed equal to 70%. It should be noted that the performance of heat recovery units 

is simulated based on recovery efficiency of the unit together with both the temperature 

and the humidity of air streams. Also, an economiser with temperature control 

capability is another energy saving option which is used in the cooling mode. A 

temperature control economiser achieves the predefined mixed air temperature (Tma) 

through the maximum use of the outdoor air when its temperature (Tfa) is below the 

return air temperature (Tre). In this study the economiser mixed air temperature (Tma) is 

set to 15°C to make use of the free cooling opportunity in the UK.  

In the CAV air distribution system (Figure 3b); the fan operates at constant speed. In 

order to maintain the desired indoor temperature; heating and cooling coils change the 

supply air temperature (Tsa) according to the temperature feedback from the return air 

(Tra) (Figure b). Similar to the VAV system, a heat recovery and an economiser option 

have been investigated. For both air distribution systems (CAV and VAV), an electrical 
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humidifier is installed to provide an indoor relative humidity level of 45%. The 

humidifier gets feedback from the return air relative humidity (RHra) and alters this 

value to the desired set point.  
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Figure 3: Schematic diagram for secondary systems a) VAV and b) CAV both with 

      reheat coil, economiser and heat recovery options. 

 

5. Analytical calculations for building heat and moisture mass transfer:  

TRNSYS calculations are based on the heat balance method. Time dependent indoor air 

temperature ( iT ) is calculated by taking into account the space capacitance ( iC ) and net 

heat gain ( iQ ) through the following energy balancing equations [33]:  

i
i

i Q
dt

dT
C           (1) 

i,ig,cilg,cp,ci,vent,ciinf,,ci,surf,cri qqqqqQ        (2) 

 ii,star

i,star

i,surf,cr TT
R

q 
1

        (3) 

)TT(Cmq iapiinf,iinf,,c          (4) 

)TT(Cmq iventpi,venti,vent,c          (5) 

 
e

ie,bpelg,cp

n

inpnlg,cpilg,cp,c )TT(Cm)TT(Cmq
11

    (6) 

a) b) a) b) 
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Where, i,surf,crq , iinf,,cq , i,vent,cq , ilg,cp,cq  and i,ig,cq  represent, the combined (convection 

and radiation) heat gain from inside surfaces, the convection heat gain corresponding to 

air infiltration, the convection heat gain corresponding to ventilation, the convective 

gain due to the air flow from the adjacent airnode or boundary conditions and internal 

convective gain respectively. iinf,m , i,ventm , nlg,cpm and elg,cpm  are the infiltration mass flow 

rate, the ventilation mass flow rate, the air mass flow rate from adjacent spaces and the 

air mass flow rate from known boundary surfaces. Finally, Tstar is an artificial 

temperature node to calculate parallel energy flow from an internal surface by 

convection to the airnode and by radiation to the other surfaces. Also, Rstar is an artificial 

conduction resistance to calculate the energy flow from an internal surface to the 

airnode [33]. These two parameters are calculated in each simulation time step by taking 

into account the following radiation heat flow equation: 

 gainwall,rw,longw,solig,rw,r qqqqq         (7) 

Where, w,rq , ig,rq , w,solq , w,longq  and gainwall,rq 
  represent, the radiation gain from wall 

surfaces, the radiation internal gain, the radiation solar gain, the long-wave radiation 

between internal surfaces and the user-specified heat flow to the wall or windows.  

The time dependent indoor air humidity ( ) is calculated through the following 

moisture balancing equations in an effective capacitance humidity model [33]:  

)(mW)(m)(m
dt

d
M in

n

nlg,cpi,igii,venti,ventiaiinf,
i

i,eff 



1

  (8) 

i,airi,eff MRatioM          (9) 

Where, i,effM and i,airM  represent the effective moisture capacitance of the entire room 

and the moisture capacitance of the room air respectively. Also, ' Ratio ' represents the 
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ratio between room effective moisture capacitance and room air moisture capacitance 

and finally, i,igW  represents the internal moisture gain.  

 

6. Mathematical approach for HVAC&R systems performance evaluation:  

The mathematical approach for performance evaluation of HVAC&R systems is 

introduced here. Firstly, the energy consumption of the systems are evaluated using the 

outcome of simultaneous simulation of the HVAC&R systems and the building. It is 

defined according to the following equation: 


j

jECTEC
1

         (11) 

Where TEC is the annual energy consumption of the entire HVAC&R system and ECJ 

represents the energy consumption of the jth HVAC&R process. Also, the energy 

related CO2 emissions of HVAC&R systems are calculated by considering CO2 

emission factors of gas and electricity from the UK National Grid,  equal to 0.19 and 

0.55 (kg CO2/kWh) respectively [17].  

Essentially the main goal of utilising HVAC&R systems is to provide acceptable indoor 

environmental quality. In this study user satisfaction is measured by considering the 

thermal comfort and the indoor air quality according to the model introduced by 

TRNSYS [33] based on the Standard BS EN 15251 [44] . This standard categorised the 

indoor air quality and thermal comfort into four main groups (Table 4). The first three 

groups are recommended; but, the forth category is only acceptable if it occurs for a 

limited time in a year [44].  

 

 



 13 

 

Table 4: Thermal comfort and indoor air quality categories [44]. 

 

     Category 

     (Rating grades)    

Thermal comfort Indoor air quality 

Predicted Percentage 

Dissatisfied (PPD) 

Predictive mean 

vote (PMV) 

CO2 concentration  

(PPM) 

1 PPD< 6% -0.2<PMV<+0.2 PPM<750 

2 PPD < 10% -0.5<PMV<+0.5 PPM<900 

3 PPD < 15% -0.7<PMV<+0.7 PPM<1200 

4 PPD >= 15% -0.7>=PMV>=0.7  PPM>=1200 

 

Total grade of thermal comfort (TGTC) for all spaces in a year is taken into account to 

measure the level of comfort according to the following equations: 



 


i h

h,i

i

h,i

h

h,i

X

)XTRG(

TGTC

1 1

1 1        (12) 

Where TRGi,h and Xi,h respectively represents the thermal comfort rating grade 

(according to Table 4) and the number of occupants in the space i at hour h. Using a 

similar approach, the total grade for indoor air quality (TGIAQ) for all spaces in a year 

is used to measure the level of indoor air quality according to the following equations: 



 


i h

h,i

i

h,i

h

h,i

X

)XIRG(

TGIAQ

1 1

1 1       (13) 

Where IRGi,h and Xi,h respectively represent the indoor air quality rating grade 

(according to Table 4), and the number of occupants in the space i at hour h.  
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7. Results  

The simultaneous dynamic simulation of the building and a variety of HVAC&R 

systems culminated in a series of results giving the breakdown of end-use energy 

consumption and amount of energy related CO2 emissions produced by the different 

HVAC&R systems. Also, it provides measures for thermal comfort and indoor air 

quality associated with HVAC&R systems which are shown in Table 5. 

Table 5 demonstrates the annual occurrence percentage of the studied HVAC&R 

systems in each category of thermal comfort and indoor air quality as introduced in  BS 

EN 15251 [44]. This table highlights that the studied HVAC&R systems performed 

within the first three recommended categories of thermal comfort and indoor air quality 

for 96-100% of the time within a year (Table 5). Therefore, the energy consumption and 

CO2 emissions analyses would be more indicative for the characterisation of the variety 

of HVAC&R systems.  

 

Table 5: Annual occurrence percentage of the HVAC&R systems performance under 

    each category of thermal comfort and indoor air quality. 

 
     Category 

(Rating grades) 

BS EN 15251[44] 

Total grade thermal comfort 

(TGTC) occurrence percentage 

in each category  

Total grade indoor air quality 

(TGIAQ) occurrence 

percentage in each category  

1 61-73% 31-52% 

2 84-100% 94-100% 

3 96-100% 96-100% 

4 0-4% 0-4% 

 

 

In order to present the results in a format similar to the breakdown of energy used in the 

UK building energy benchmarks [16, 18], the energy consumption of HVAC&R 

systems are classified into five main groups: 
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1. Energy use for cooling  

2. Central heating energy consumption  

3. Humidification energy use  

4. Auxiliary energy including energy required for running fans and pumps   

5. Energy consumption for reheat process 

Figures 4, 5 and 6 demonstrate the energy consumption and energy related CO2 

emissions of the 36 permutations of primary and secondary HVAC&R systems. These 

results are normalised with respect to building floor area in order to be comparable with 

existing building energy benchmarks [16-18]. For the same reason, these energy 

consumptions results represent the real demand of building to natural gas and electricity 

rather than representing the equivalent primary energy used in building.  

 

 

 
a)                                                                        b) 

 

Figure 4: First primary systems (gas boiler with reciprocating chiller) a: energy     

     consumption b: energy related CO2 emissions. 
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a)                                                                        b) 

Figure 5: Second primary systems (gas boiler with absorption chiller) a: energy    

     consumption b: energy related CO2 emissions. 

 

 

 

 

 
a)                                                                        b) 

Figure 6: Third primary systems-CCHP (absorption chiller with CHP) a: energy     

     consumption b: energy related CO2 emissions. 

 

To validate the results, ECG-19 [18] has been used because it is a widely cited reference 

in the most of the building energy benchmarking studies in the UK [16, 17, 45]. In this 

benchmark, energy consumption and CO2 emissions of a standard air conditioned 

building are described as two levels "good practice" and "typical". The reference 

building is assumed to be equipped with an air cooled chiller, a gas boiler and a VAV 

air distribution system [18]. This assumption is similar to the combination of the first 
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primary system (Table ) and the second secondary system (Table 2) which has been 

investigated in this study.  

Simulation results reveal that both the energy consumption and CO2 emissions of this 

system are within the ECG-19 [18]  ranges and about 15% higher than the good practice 

(Figures 4).  

According to the  recommendation of building energy benchmarking references [16, 

18], performance of office buildings with a HVAC&R systems other than the mentioned 

standard system, should be appraised by their total CO2 emissions. This approach has 

been adopted in this study to compare the simulated performance of a variety of 

HVAC&R systems with the standard benchmark building in Figures 4b, 5b and 8. 

For HVAC&R systems which are linked to a CCHP system (third primary system), the 

amount of generated electricity (Figure 7) is also needed to compare the results. It 

should be noted that, regarding to the variation of building energy demand under 

different secondary systems, the CHP unit works with different partial load regimes and 

generates different amount of electricity.  

The CHP unit of the CCHP system reduces the dependency of the building on the 

National Grid because of the amount of generated electricity.  Consequently, the 

corresponding amount of CO2 emissions from national grid electricity should be 

extracted from the CO2 emissions of the systems linked to the CCHP system (Figure 6b) 

to provide the actual CO2 emissions which is shown in (Figure 8).  
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 Figure 7: The generated electricity by the third primary system (CCHP)  

 

 

 

 
Figure 8: The actual energy related CO2 emissions of the third primary system (CCHP) 

     by considering the amount of generated electricity. 

 

 

8. Discussions 

To analysis the results, two approaches are adopted; a detailed comparison and a holistic 

approach. In the detailed approach, when comparing the total energy consumption of 

systems (Figures 4a, 5a and 6a) it is revealed that, apart from the type of primary 

systems, auxiliary and total energy consumption of the HVAC&R system equipped with 

VAV air distribution (even secondary systems) are respectively 15-35% and 5-15% 

lower than corresponding CAV air distribution (odd secondary systems). This trend is 
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also true for secondary systems linked to the CCHP system after taking into account the 

amount of electricity generation by the CHP unit (Figure 7). In addition, systems 

connected to the VAV air distribution system use slightly higher energy to meet the 

required heating and cooling demands compared with CAV air distribution. This has 

also been observed by Korolija et al. [45]. It is believed that this trend is mainly because 

of the higher air flow rate in CAV systems which results in higher heat dissipation to 

the supply air from fan units [45]. In addition, this study reveals that VAV systems are 

able to track the desired indoor temperature better than CAV systems. In the other 

words, the closer to the indoor desired temperature, the more energy would be used.  

In Figures 4a, 5a and 6a, comparing the energy consumption of secondary systems 

numbers 3, 4, 9 and 10 respectively with numbers 1, 2, 7 and 8 demonstrates that 

HVAC&R systems which are equipped with a heat recovery unit use 12-28% less 

energy to provide the required heating regardless of the type of primary systems. Using 

the same approach, when comparing the energy consumption of the secondary systems 

numbers 5, 6, 11 and 12 respectively with systems numbers 1, 2, 7 and 8 reveals that 

using an economiser in the secondary systems reduces the energy consumption for 

cooling by 33-65%. This is mainly because of the mild weather condition for London in 

summer. Also, Figures 4a, 5a and 6a reveal that using reheat coil does not significantly 

affect the total energy use when comparing systems number 1-6 with systems number 7-

12 regardless of the type of primary system.  

Analysis of the results using a holistic approach, comparison of energy consumption 

results (Figures 4a, 5a and 6a) reveals that reciprocating chillers with boiler (first 

primary system) has the lowest and the CCHP system (third primary system) has the 

highest total energy demand when connected to an identical secondary system. Also, the 
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energy related CO2 emissions of HVAC&R systems (Figures 4b and 5b) shows that, 

even though the energy consumption of secondary systems linked to an absorption 

chiller with a gas boiler is higher than the corresponding secondary systems linked to a 

reciprocating chiller with a gas boiler (Figure 4a and 5a), the CO2 emissions of the 

former are not significantly higher than the latter (Figure 4b and 5b).  

The CO2 emissions shown in Figure 8 reveal that utilising a CCHP system reduces the 

amount of CO2 emissions up to 30% compared to the other systems by the simultaneous 

generation of heating, cooling and power. This is based on the difference between the 

CO2 emission factor of natural gas and electricity delivered by National Grid [17].  

In summary, among the studied systems, higher and lower energy demands are 

associated with the CCHP system (Figure 6a) when linked to the VAV system with 

reheat (eighth secondary system) and reciprocating chiller with a gas boiler (Figure 4a) 

when linked to the VAV system with heat recovery unit (fourth secondary system) 

respectively.  

In terms of CO2 emissions, the best performance is delivered by the CCHP system 

(Figure 8) when linked to the VAV system with heat recovery (fourth secondary 

system); whereas, the highest pollution is produced by the absorption chiller and boiler 

(Figure 5b) when linked to the CAV system with terminal reheat coils (seventh 

secondary system).  

With the same approach proposed in the ECG19 [18], the outcomes of this research 

could be extended into the other climates using degree day theory [46, 47].  This 

provides the opportunity to use the outcome of this research to the other cities 

regardless of their geographical location.  
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8. Conclusions  

The aim of this study was to enhance the existing building energy benchmarks approach 

in the performance characterisation of a variety of HVAC&R systems. The 

investigation of the energy consumption and CO2 emissions of different HVAC&R 

systems together with the consideration of the achieved levels of indoor air quality and 

thermal comfort, are further strengths of this study.  

A prototypical office building has been used as a case study; specifications of the 

building are defined based on the outcome of previous studies of non-domestic building 

stock in the UK and the latest regulations. Results of this study show that, in the 

secondary part of HVAC&R systems, utilising the VAV system (instead of CAV 

system) reduces the auxiliary energy consumption by 15-35% which is equal to a 5-15% 

reduction in the total energy consumption of the building. In addition, the amount of 

energy used to meet the heating and cooling demands in VAV systems is slightly higher 

than in CAV systems. It has also shown that utilising a heat recovery unit and an 

economiser respectively reduces the energy used for heating by 12-28% and the energy 

used for the required cooling by 33-65%.  

In the primary part of HVAC&R systems, the reciprocating air cooled chiller with a gas 

boiler provides the lowest total energy consumption and the CCHP system has the 

highest energy demand. Despite the highest energy demand of the CCHP system, the 

total CO2 emissions of the system is significantly lower than the other two primary 

systems.  

Finally, the results of this study on the performance evaluation of 36 HVAC&R systems 

can be used as a complementary part of the existing building energy benchmarks in 

order to enhance the performance characterisation assessment of a variety of HVAC&R 
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systems. This is especially applicable to the decision making involved in HVAC&R 

system selection carried out in the early stages of a project design process.  

 

Nomenclature 

C : Space capacitance (kJ/K) 

pC : Specific heat capacity (kJ/kg.K) 

IRG : Indoor air quality rating grade (-) 

M : Moisture capacitance (kg) 

m : Mass flow rate (kg/hr) 

P : Pressure (pa) 

Q : Net heat gain (kJ/hr) 

q : Heat transfer (kJ/hr) 

R : Thermal resistance (K.hr/kJ) 

Ratio : Moisture of air to total moisture of space 1-10 (kg/kg) 

RH : Relative humidity (Percent)  

T : Temperature (°C) 

t : Time(s) 

TEC : Total energy consumption (kJ/hr) 

TGIAQ : Total rating grade for indoor air quality (-) 

TGTC : Total rating grade for thermal comfort (-) 

TRG : Thermal comfort rating grade (-) 

W : Moisture flow (kg/hr) 

X : Number of occupants (No.)  
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Greek style 

 : Humidity ratio (kg/kg) 

 

Subscripts  

a: Ambient 

b: Boundary surface 

c: Convection 

cr: Convection and radiation 

cplg: Internal zone/air node coupling  

e: Number of adjacent boundary surfaces 

eff: Effective 

fa: Fresh air 

gr: Internal gain 

h: Hour 'h' 

i: Space 'i' 

ig: Internal gain 

inf: Infiltration 

j: the jth energy consuming process within HVAC&R system 

long: Long-wave radiation 

ma: Mixed air 

n: Number of adjacent space/air node 

r: Radiation heat transfer 

re: Return air 

sa: Supply air 
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schw: Supply chilled water  

set: Set-point 

shw: Supply hot water 

sol: Solar radiation gain through zone windows 

star: An artificial node to calculate parallel energy flow 

surf: Surface  

vent: Ventilation 

w: Wall 

wall-gain: Predefined wall/win gain 
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