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Abstract
A necessary condition for a good probabilistic forecast is that the forecast system is shown to
be reliable: forecast probabilities should equal observed probabilities verified over a large
number of cases. As climate change trends are now emerging from the natural variability, we
can apply this concept to climate predictions and compute the reliability of simulated local and
regional temperature and precipitation trends (1950–2011) in a recent multi-model ensemble
of climate model simulations prepared for the Intergovernmental Panel on Climate Change
(IPCC) fifth assessment report (AR5). With only a single verification time, the verification is
over the spatial dimension. The local temperature trends appear to be reliable. However, when
the global mean climate response is factored out, the ensemble is overconfident: the observed
trend is outside the range of modelled trends in many more regions than would be expected by
the model estimate of natural variability and model spread. Precipitation trends are
overconfident for all trend definitions. This implies that for near-term local climate forecasts
the CMIP5 ensemble cannot simply be used as a reliable probabilistic forecast.

Keywords: verification, GCM, climate response

S Online supplementary data available from stacks.iop.org/ERL/8/014055/mmedia

1. Introduction

Climate projections are often seen as forecasts, especially for
the short lead time period in which the differences between
emission scenarios are small. The uncertainties up to 2050
are dominated by natural variability of weather and climate,
and model uncertainty, the extent to which climate models
faithfully represent the real world. On the regional and local
scales, where climate information is most often useful, the
uncertainties are often taken to be given by the spread of
a large climate model ensemble (e.g., van den Hurk et al
2007), which includes both the model estimate of the natural
variability and the spread between models. The ensemble

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

is considered to be an estimate of the probability density
function (PDF) of a climate forecast. This is the method
used in weather and seasonal forecasting (Palmer et al 2008).
Just like in these fields it is vital to verify that the resulting
forecasts are reliable in the definition that the forecast
probability should be equal to the observed probability (Joliffe
and Stephenson 2011). If outcomes in the tail of the PDF
occur more (less) frequently than forecast the system is
overconfident (underconfident): the ensemble spread is not
large enough (too large). In contrast to weather and seasonal
forecasts, there is no set of hindcasts to ascertain the reliability
of past climate trends per region. We therefore perform
the verification study spatially, comparing the forecast and
observed trends over the Earth. Climate change is now so
strong that the effects can be observed locally in many
regions of the world, making a verification study on the trends
feasible. Spatial reliability does not imply temporal reliability,
but unreliability does imply that at least in some areas the
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forecasts are unreliable in time as well. In the remainder of
this letter we use the word ‘reliability’ to indicate spatial
reliability.

This problem was approached in a similar way in
two previous studies. Räisänen (2007) showed a global
comparison of modelled linear trends (1955–2005) in
temperature and precipitation over land in the CMIP3
multi-model ensemble to observed trends. Considering the
frequency of cases in which the verification fell outside the
forecast distribution, he found that only the temperature trends
were compatible with the ensemble spread, precipitation
trends were not. Yokohata et al (2012) verified this more
formally over the shorter period 1960–1999 using the rank
histogram, which indicates how often the observed trend falls
in percentile bins of the probability distribution obtained from
the model ensemble (Joliffe and Stephenson 2011). Among
many measures of the mean state they also included linear
temperature trends, which were found to be reliable in CMIP3.
Using a different method, Sakaguchi et al (2012) show that
the spatial variability of the simulated temperature trends
in the CMIP5 ensemble is not large enough. Bhend and
Whetton (2012) find that the observed local temperature and
precipitation trends are not compatible with the ensemble
mean within the observed natural variability, without taking
model spread into account. Regional verification studies are
discussed in section 4.

Our analysis differs in that we use the more recent
CMIP5 ensemble and include the years up to 2011. We also
use a different trend definition to improve the signal/noise
ratio. In addition, we employ a definition that factors out the
global mean climate response to isolate the pattern of climate
change that multiplies the global mean temperature change.
This addresses the more stringent test whether the regional
temperature trends are reliable relative to the global mean
temperature trend.

2. Data and methods

The CMIP5 historical runs (Taylor et al 2011) up to 2005 are
concatenated with the corresponding RCP4.5 experiments for
2006–2011 to cover the observed period. We use Nmod = 37
models with in total 91 realizations. Multiple realizations of
the same model are assigned fractional weights so that each
model or physics perturbation has equal weight. Temperature
fields have been interpolated bilinearly to a 2.5◦ grid, for
precipitation a conservative remapping was used.

For temperature the GISTEMP analysis with 1200 km
decorrelation scale (Hansen et al 2010) is used over
1950–2011, during which the observations are most reliable.
This dataset contains SST rather than 2 m temperature over
the ocean, but the differences in trends are negligible in
the models. The results were checked against the NCDC
merged analysis (GHCN v3.2.0/ERSST v3b2, Peterson and
Vose 1997) and HadCRUT4.1.1.0 (Morice et al 2012). The
equivalent figures for these datasets are available in the
supplementary material (available at stacks.iop.org/ERL/8/
014055/mmedia).

For precipitation we used the 2.5◦ GPCC v6 analysis
over 1950–2010 (Schneider et al 2011). Boxes with no
observations were set to undefined. Results were validated
against the CRU TS 3.10.01 analysis (1950–2009) averaged to
2.5◦ (Mitchell and Jones 2005). Again, we only note features
common to both datasets.

Prior to the satellite era analyses south of 45◦S are
based on very few observations and therefore inaccurate. We
therefore exclude this region from the computation of the
rank histograms. We show results for the annual mean of all
quantities.

For the rank histograms we have to convert the ensemble
into a forecast probability. We start by using only a single
ensemble member from each model. In that case a definition
that works well in conjunction with the rank histogram
is to assign a probability 1/(Nmod + 1) to each interval
between ensemble members and also to the area below the
lowest member and above the highest member. (Note that the
probability assigned to the tails is arbitrary, another common
choice is to use 1/(2N) for the tails and 1/N for the N − 1
intervals. Alternatively parametric fits or kernels can be used.)
The percentile pi of the observed trend in the ensemble
is linearly interpolated between the two ensemble members
between which it falls, or set to 100/(Nmod + 1)% if it falls
below the lowest ensemble member, 100 N/(Nmod + 1)% if it
falls above the highest member.

An obvious extension to the case in which there are
multiple ensemble members for all models is to give a
weight wi = 1/Nens,i to all ensemble members of model i.
In case these weights are equal this simplifies to the original
formulation. If they are not equal the weight given to each
model stays the same (‘model democracy’). The remaining
problem is which weight to assign to the tails. We have chosen
to use a probability w1/(Nmod+wN) for the probability that a
trend falls below the lowest ensemble member and N/(Nmod+

wN) that it falls above the highest ensemble member. When
the trend falls within the ensemble, the probability is again
linearly interpolated between the points ni/(Nmod + wN) and
(ni + wi+1)/(Nmod + wN) with ni the summed weight of all
members with trends lower than observed. This definition puts
less weight in the tails, so we verified that all results are also
valid in the definition that uses only a single ensemble member
from each model.

The pi are collected in a histogram. Ideally this rank
histogram should be flat, in which case the forecast probability
is equal to the observed probability: each bin j of forecast
probability p running from pj to (pj + 1) then has the same
observed frequency 1.

3. One grid point

The method to compute the rank histograms is illustrated
at a single grid point. For this we take The Netherlands,
where homogenized temperature and precipitation series are
available (van der Schrier et al 2011, Buishand et al 2012).
The first trend definition we consider is the linear trend, which
is used in most studies (Räisänen 2007, Yokohata et al 2012):

T(x, y, t) = C(x, y)t + ζ(x, y, t), (1)
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Figure 1. (a) Trend in the homogenized central Netherlands temperature over 1950–2011 compared to the CMIP5 ensemble interpolated to
52◦N, 5◦E using a linear trend definition (K yr−1). (b) Same for the homogenized Netherlands precipitation (% yr−1). (c, d): As (a, b) but
with the trend defined as the regression on the low-pass filtered observed global mean temperature, equation (2) (K K−1), (% K−1).
(e, f): As (c, d) but using the modelled global mean temperature, equation (3).

with t the time in years and ζ(x, y, t) the residuals of the fit,
which include the part of the forced response that is not linear
in time as well as the natural variability on all timescales
with mean zero. The trends C(x, y) are determined using a
least-square regression, which implies that we assume that the
ζ(x, y, t) are normally distributed.

In figures 1(a) and (b) a histogram for linear trends over
the period 1950–2011 is shown for the observations and the
CMIP5 ensemble. The temperature observations are on the
high side of the ensemble: 84% of the models have a trend
that is lower than the observed one of 0.024 K yr−1. For
precipitation, 98% of the models has a lower trend than the
observed 0.21% yr−1 change (van Haren et al 2013).

The figures also show an estimate of the (unforced)
natural variability σnat around the linear trend, deduced from
the intra-model spread of those models with four or more
ensemble members. The model spread σmod is estimated from
the difference between the full ensemble spread σtot and this
estimate, σ 2

mod ≈ σ
2
tot − σ

2
nat. As these are based on different

model sets the uncertainty in σmod is relatively large. Still, it
shows that more than half the ensemble spread is due to the
model estimate of natural variability and less than half due to
model spread at this location.

An alternative definition of the trend giving a better
signal/noise ratio is the change per degree of observed global
mean temperature trend (low-pass filtered, in this case with a
4 yr running mean, to filter out ENSO effects):

T(x, y, t) = A(x, y)Tobs
global(t)+ ε(x, y, t), (2)

with A(x, y) the trend and ε(x, y, t) again the variations around
the trend. The amplitude of these are smaller than for a linear
trend definition, especially for temperature, as the forced
trend has been non-linear over the last 62 years and locally
often resembles the global mean temperature trend in shape.
Using this definition, the histograms for the trends in The
Netherlands look very similar (compare figures 1(c) and (d)
with figures 1(a) and (b)). Now 88% of the models have a tem-
perature trend below the observed one, for precipitation 98%.
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Inspection of the climate model simulations with high
temperature trends in The Netherlands shows that the
temperature in these models rises very strongly everywhere,
rather than just in western Europe (van Oldenborgh et al
2009). The high trend is connected with a high global mean
climate response in these models. This response Tmod

global(t)
has been studied extensively (e.g., Frame et al 2005, Knutti
and Hegerl 2008). We separate it from the pattern of climate
change B(x, y) that multiplies the global mean temperature
change by using the slightly different decomposition (van den
Hurk et al 2007, Giorgi 2008, van Oldenborgh et al 2009):

T(x, y, t) = B(x, y)Tmod
global(t)+ η(x, y, t), (3)

with Tmod
global(t) again low-pass filtered. By definition, the global

average of B(x, y) equals one for each model, whereas the
average of A(x, y) is related to the climate response of each
model. The pattern B(x, y) therefore measures whether the
model can simulate regional differences in climate change.
Using this definition, 94% of the CMIP5 model experiments
have a temperature trend lower than the observed trend in the
Netherlands. For relative precipitation trends the fraction is
96%.

Although the observed temperature and precipitation
trends at this grid point are high compared to the CMIP5
ensemble (van Oldenborgh et al 2009, van Haren et al 2013),
this could well be a coincidence: on a world map, we expect
roughly 5% of the grid points to show observed trends that are
higher than 95% of the models. To draw conclusions on the
reliability of the ensemble we therefore repeat the exercise
at all grid points with observations and collect the results in
a rank histogram (weighed by grid box size). The expected
fluctuations around a flat line due to both model estimates
of natural variability and model differences are estimated by
taking the first ensemble member of each model in turn as
truth. The width of this distribution is computed for each bin
of the histogram as in Annan and Hargreaves (2010). This
procedure checks whether the observations are as similar to
the climate models as the climate models are to each other,
and therefore takes into account the spatial autocorrelations
of all fields.

4. Global results

We start again with a common trend for all climate models, the
regression on the low-pass filtered global mean temperature
A(x, y) in equation (2). In figure 2 we show the trends in the
observations, GISTEMP (Hansen et al 2010) and GPCC v6
(Schneider et al 2011) (top row), in the CMIP5 multi-model
mean (second row), and for each grid point we show the
percentile p of the CMIP5 ensemble that is lower than the
observed trend (note the non-linear scale). In the grid point
corresponding to The Netherlands the GISTEMP trend is
slightly lower than the trend of the homogenized Central
Netherlands temperature, so that the percentile is just below
80%. (HadCRUT4 uses the homogenized time series for The
Netherlands and reproduces the result of figure 1 in this
grid point, see supplementary material available at stacks.

iop.org/ERL/8/014055/mmedia) The most notable feature in
the trends maps is the lack of warming over most of the
Pacific Ocean, which is not reproduced by the CMIP5 model
mean. In the North Pacific the observed cooling trend is not
only lower than the mean, but also falls outside the spread
of the ensemble. Much of the Caribbean Sea and western
(sub)tropical North Atlantic Ocean has also warmed slower
than in more than 95% of the models. However, the areas
falling below the 5% rank cover no more than 10% of the
globe north of 45◦S. This falls well within the bandwidth
expected by chance: the 90% confidence limits that are
denoted by the grey area in the rank histograms.

The flatness of the temperature trend rank histogram
confirms for the CMIP5 ensemble earlier findings (Räisänen
2007, Yokohata et al 2012) that the temperature rank
histograms are flat when taking the same reference for each
model, equation (2). However, this does not mean that the
ensemble is reliable. The map of figure 2(e) shows coherent
spatial patterns that seem to point to physical processes rather
than statistical fluctuations resulting from weather noise. This
is supported by the observation that the climate models that
agree with the relatively high trend in The Netherlands did so
because of a high global climate response (section 3).

This becomes clear when considering the trend pattern
B(x, y) relative to the modelled global mean temperature
rather than the observed one (equation (3), figure 3). Using
this measure the ensemble is no longer reliable. There are
many more areas with very low and very high percentiles
in figure 3 than expected by chance: the rank histogram of
the observations is outside the 90% envelope spanned by the
CMIP5 models. The reliability of the temperature trends in
figure 2 is therefore due to the different climate responses
of the global mean temperature in the models and not due
to a correct simulation of the pattern of warming. For each
point separately the models encompass the observations, but
the width is large enough for the wrong reason.

The main areas of discrepancies of temperature trends
seem to correspond to well-defined regions. The Pacific
Ocean Warm Pool (except the cooling South China Sea) and
large areas of the Indian Ocean have been warming faster
than the CMIP5 models simulate. This disagreement and the
effects on the world’s weather have been discussed for the
CMIP3 ensemble (Shin and Sardeshmukh 2011, Williams and
Funk 2011). The western tropical Atlantic Ocean also has
warmed faster than modelled. In Asia, the polar amplification
extends further south in the observations than in the models.
Western Europe also has warmed faster than modelled (van
Oldenborgh et al 2009). The main areas where the observed
trend is lower than in the CMIP5 ensemble are in the Pacific
Ocean and (sub)tropical western Atlantic Ocean. Due to the
high natural variability over land in the models the ‘warming
hole’ in the central and southeastern US is well within the
model spread in this analysis. The same holds for the lack of
warming over the northern North Atlantic Ocean associated
with a decline in the meridional overturning circulation
(Drijfhout et al 2012).

For precipitation trends, the reliability diagrams show
an overconfident ensemble in both trend measures. This
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Figure 2. Observed trends 1950–2011 in (a) GISTEMP temperature (decorrelation scale 1200 km) (K K−1) and (b) GPCC precipitation
(% K−1) as regression on the observed global mean temperature equation (2) (white areas do not have enough data to compute a trend);
(c, d) corresponding CMIP5 multi-model mean trends; (e, f) percentile of the observed trends in the CMIP5 ensemble at the same grid
point; (g, h) red line: rank histograms of GISTEMP temperature and GPCC precipitation trends versus the CMIP5 trends north of 45◦S,
grey area: the 90% range obtained from the inter-model variations.

only covers land, as we do not have long precipitation
observations over sea. The trend towards more rainfall in
the central US is outside of the CMIP5 ensemble, as is
the wetting trend in the western half of Australia. The
latter has been attributed to ozone effects (Kang et al 2011)
and aerosols (Rotstayn et al 2012). The observed rainfall
trend in northern Europe (van Haren et al 2013) is also
on the high side of the CMIP5 ensemble, in agreement

with figure 1. West Africa and northern China are drying
in contrast to the modelled wetting trends. The latter could
be an effect of aerosol pollution (Menon et al 2002) that
is not correctly simulated by the models. These are all
large, coherent areas, mostly with high-quality observations,
where both precipitation datasets agree on the discrepancy
(see supplementary material available at stacks.iop.org/ERL/
8/014055/mmedia).
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Figure 3. As figure 2, but now temperature and precipitation of each model have been regressed against the global mean temperature of
that model, equation (3).

5. Conclusions and outlook

We investigated the reliability of trends in the CMIP5
multi-model ensemble prepared for the IPCC AR5. In
agreement with earlier studies using the older CMIP3
ensemble, the temperature trends are found to be locally
reliable. However, this is due to the differing global mean
climate response rather than a correct representation of
the spatial variability of the climate change signal up to
now: when normalized by the global mean temperature

the ensemble is overconfident. This agrees with results of
Sakaguchi et al (2012) that the spatial variability in the
pattern of warming is too small. The precipitation trends
are also overconfident. There are large areas where trends
in both observational dataset are (almost) outside the CMIP5
ensemble, leading us to conclude that this is unlikely due to
faulty observations.

It is not obvious how the discrepancy affects future
projections. There are three possibilities to explain the
overconfidence. The low-frequency natural variability could
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be underestimated by the models. However, up to timescales
that can be compared with observations the modelled
temperature variability agrees well with the observations
(Knutson et al 2013), with amplitudes dropping off to levels
well below the trends already at the timescales sampled by
the observations. A second possibility is that the discrepancies
are due to errors in local forcings or the sensitivity of the
models to those forcings. Aerosol forcings are poorly known
over much of the period and direct and indirect effects are
uncertain. Land use changes are unlikely the main cause given
the location of the trend differences. Thirdly, the patterns
can differ due to missing or incorrectly represented local
effects of greenhouse warming. For near-term projections all
three possibilities must be taken into account, longer-term
projections are dominated by greenhouse gases.

For future improvements, the mechanisms behind the
differing trends have to be identified in order to improve the
climate models. For now, the overconfidence of the ensemble
has to be taken into account when interpreting CMIP5 data as
an estimate of a probability forecast.

Acknowledgments

We acknowledge the World Climate Research Programme’s
Working Group on Coupled Modelling, which is responsible
for CMIP, and we thank the climate modelling groups for
producing and making available their model output. The
CMIP5 model data have been obtained via the ETHZ sub-
archive and are also available on the KNMI Climate Explorer
(http://climexp.knmi.nl). The research was supported by
the Dutch research program Knowledge for Climate and
received funding from the European Union Programme
FP7/2007-13 under grant agreement 3038378 (SPECS).
FJDR’s work was supported by the MINECO-funded RUCSS
(CGL2010-20657) project.

References

Annan J D and Hargreaves J C 2010 Reliability of the CMIP3
ensemble Geophys. Res. Lett. 37 L02703

Bhend J and Whetton P 2012 Consistency of simulated and
observed regional changes in temperature, sea level pressure
and precipitation Clim. Change doi:10.1007/
s10584-012-0691-2

Buishand T A, De Martino G, Spreeuw J N and Brandsma T 2012
Homogeneity of precipitation series in The Netherlands and
their trends in the past century Int. J. Climatol. 33 815–33

Drijfhout S S, van Oldenborgh G J and Cimatoribus A 2012 Is a
decline of AMOC causing the warming hole above the North
Atlantic in observed and modeled warming patterns? J. Clim.
25 8373–9

Frame D J, Booth B B B, Kettleborough J A, Stainforth D A,
Gregory J M, Collins M and Allen M R 2005 Constraining
climate forecasts: the role of prior assumptions Geophys. Res.
Lett. 32 L09702

Giorgi F 2008 A simple equation for regional climate change and
associated uncertainty J. Clim. 21 1589–604

Hansen J, Ruedy R, Sato M and Lo K 2010 Global surface
temperature change Rev. Geophys. 48 RG4004

Joliffe I T and Stephenson D B 2011 Forecast Verification: A
Practitioner’s Guide in Atmospheric Science (Chichester:
Wiley)

Kang S M, Polvani L M, Fyfe J C and Sigmond M 2011 Impact of
polar ozone depletion on subtropical precipitation Science
332 951–4

Knutson T R, Zeng F and Wittenberg A T 2013 Multi-model
assessment of regional surface temperature trends: CMIP3
versus CMIP5 20th century simulations J. Clim. at press

Knutti R and Hegerl G C 2008 The equilibrium sensitivity of the
Earth’s temperature to radiation changes Nature Geosci.
1 735–43

Menon S, Hansen J, Nazarenko L and Luo Y 2002 Climate effects
of black carbon aerosols in China and India Science
297 2250–3

Mitchell T D and Jones P D 2005 An improved method of
constructing a database of monthly climate observations and
associated high resolution grids Int. J. Climatol. 25 693–712

Morice C P, Kennedy J J, Rayner N A and Jones P D 2012
Quantifying uncertainties in global and regional temperature
change using an ensemble of observational estimates: the
HadCRUT4 data set J. Geophys. Res. 117 D08101

Palmer T N, Doblas-Reyes F J, Weisheimer A and Rodwell M J
2008 Toward seamless prediction: calibration of climate
change projections using seasonal forecasts Bull. Am.
Meteorol. Soc. 89 459–70

Peterson T C and Vose R S 1997 An overview of the global
historical climatology network temperature data base Bull. Am.
Meteorol. Soc. 78 2837–49
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