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ABSTRACT

The behavior of the ensemble Kalman filter (EnKF) is examined in the context of a model that exhibits a

nonlinear chaotic (slow) vortical mode coupled to a linear (fast) gravity wave of a given amplitude and

frequency. It is shown that accurate recovery of both modes is enhanced when covariances between fast and

slow normal-mode variables (which reflect the slaving relations inherent in balanced dynamics) are modeled

correctly. More ensemble members are needed to recover the fast, linear gravity wave than the slow, vortical

motion. Although the EnKF tends to diverge in the analysis of the gravity wave, the filter divergence is stable

and does not lead to a great loss of accuracy. Consequently, provided the ensemble is large enough and

observations are made that reflect both time scales, the EnKF is able to recover both time scales more

accurately than optimal interpolation (OI), which uses a static error covariance matrix. For OI it is also found

to be problematic to observe the state at a frequency that is a subharmonic of the gravity wave frequency, a

problem that is in part overcome by the EnKF. However, error in the modeled gravity wave parameters can be

detrimental to the performance of the EnKF and remove its implied advantages, suggesting that a modified

algorithm or a method for accounting for model error is needed.

1. Introduction

Four-dimensional (4D) data assimilation is now op-

erationally implemented at the European Centre for

Medium-Range Weather Forecasts (ECMWF), Météo

France, the UK Met Office, the Japan Meteorological

Agency, and the Canadian Meteorological Centre

(Rabier 2005) and is in the process of being extended to

the upper stratosphere and mesosphere, where obser-

vations are both new and typically sparse. Gravity

waves, generally considered as unimportant noise in the

context of numerical weather prediction, play an im-

portant role in the upper stratosphere and mesosphere,

especially in driving the quasi-biennial oscillation

(QBO) and meridional circulation, as well as in the

dissipation of the tides. In these regions gravity waves

represent a significant component of the flow in both

observations and models (Koshyk et al. 1999). This

presents a new challenge for data assimilation: the

separation and correct representation of (fast) gravity

waves and (slow) balanced motion when both flow

components are present in the true state.

Because 4D assimilation methods evolve error co-

variances in time, they have the potential to improve on

the traditional method of statistical or optimal inter-

polation (OI; Bergman 1979; Daley 1991). Of the two

principal 4D assimilation algorithms, four-dimensional

variational data assimilation (4D-Var) and the ensemble
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Kalman filter (EnKF), 4D-Var is currently more widely

used for operational deterministic weather forecasting,

although the EnKF is used for the ensemble prediction

system at the Canadian Meteorological Centre (Houte-

kamer and Mitchell 2005) and represents a promising

algorithm for future use because of its relative ease of

implementation. Variational methods are able to analyze

unbalanced flow by choosing balanced and unbalanced

variables as uncorrelated control variables and estimat-

ing their covariances (e.g., Parrish and Derber 1992;

Derber and Bouttier 1999; Gauthier et al. 1999). Note

that the balance can also be nonlinear so that the un-

balanced variables are defined as departures from the

nonlinear balances (Fisher 2003).

However, here we focus on the ability of sequential

(nonvariational) 4D methods to separate the ‘‘slow’’

balanced vortical motion from relatively ‘‘fast’’ unbal-

anced motion. Our specific focus is on the EnKF rela-

tive to the simpler OI. Because application of the EnKF

is still largely in a discussion/testing phase (Lorenc 2003;

Houtekamer and Mitchell 2005), the ability of this al-

gorithm to capture unbalanced motion is still poorly

understood. Szunyogh et al. (2005) report a single case

in which an EnKF-type assimilation method captured a

gravity wave that was present in reality but not in the

model estimate, thereby suggesting that flow-dependent

covariance models can potentially capture unbalanced

motion better than stationary ones. It is unclear, how-

ever, whether the additional cost of developing an en-

semble of states can generally be expected to make it

easier to recover different time scales from a set of

observations, or whether a static covariance model is

sufficient or even preferable.

In regimes in which modeled flows are expected to be

balanced, it has been found that 4D data assimilation

can cause the excitation of spurious unbalanced motion,

essentially because of the development of unphysical

correlations (Polavarapu et al. 2000; Lea et al. 2002;

Houtekamer and Mitchell 2005; Neef et al. 2006, here-

after NPS06) A general solution to this problem in-

volves imposing balance constraints on the analysis

(Courtier and Talagrand 1990; Dee 1991; Todling and

Cohn 1994; Polavarapu et al. 2000; Kepert 2004) or

simply filtering out fast waves. In the upper stratosphere

and mesosphere, excessive filtering can eliminate im-

portant gravity waves and either remove or amplify the

tides (Sankey et al. 2007). There also appears to be a

significant unbalanced component to flow in the tropical

stratosphere, which makes it similar in many respects to

the mesosphere (Nezlin et al. 2009).

It is also unclear how the frequency and type of the

available observations affect the recovery of an unbal-

anced state. Observed quantities project differently onto

vortical and inertia–gravity wave modes; moreover,

gravity waves have time scales (from tens of minutes up

to the inertial period) that are similar to or shorter than

data assimilation intervals (usually 6 or 12 h). If obser-

vations are assimilated roughly once (or less) in a fast

period, it will be difficult to glean the wave’s magnitude

and frequency.

Here we address these issues using a simple model of

a chaotic vortical mode coupled to a linear gravity wave.

This work follows in the vein of NPS06, which examined

balance (and the loss thereof) in sequential 4D data

assimilation in the case of a balanced truth. It was shown

there that the EnKF is generally able to conserve bal-

ance in the analysis, given a large enough ensemble,

because it retains nonlinearity in the estimation of error

covariances. Using the same model, and motivated by

the current challenge of assimilation in the mesosphere

and the tropical stratosphere, we now address regimes

of imbalance and time scale overlap.

The model and the EnKF equations are described in

section 2. In section 3, the regimes of convergence and

divergence of the EnKF are defined in the context of the

present model. Section 4 examines numerically how the

physical characteristics of the gravity wave that is pre-

sent in the true state affect the EnKF’s ability to capture

the dynamics of both time scales from observations of

the partial state. A generalization to imperfect models is

made in section 5. Conclusions and some discussion are

provided in section 6.

2. Methodology

a. Model

As in NPS06, we use the model derived by Lorenz

(1986) and extended by Wirosoetisno and Shepherd

(2000):

df

dt
5 w, (1)

dw

dt
5 �C

2
sin(2f 1 2ebx), (2)

dx

dt
5 �z

e
, (3)

dz

dt
5

x

e
1

bC

2
sin(2f 1 2ebx), (4)

C(t) 5 a0 1 a1 cos(gt). (5)

Equations (1)–(5) describe a chaotic vortical mode in f

and w, coupled to a linear gravity wave in x and z. The four

variables are the spectral coefficients of potential vorticity

f and w (note that f is actually related to the phase of two
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potential vorticity coefficients from the original deriva-

tion), geostrophic imbalance z, and divergence x. The slow

vortical mode varies on a nondimensional time scale of

about six time units, and the gravity wave has frequency

e21 (where typically e� 1) and period TGW 5 2pe. If the

slow time scale is assumed to correspond to typical

weather-system time scales of 36–48 h, we can say that one

time unit corresponds to 6–8 h; thus, for e 5 0.1, the

gravity wave period is about 4 or 5 h. The two modes are

coupled by the parameter b, which corresponds to a ro-

tational Froude number. Chaos in the slow mode is con-

trolled by the periodic variation of C(t) with a0 5 1, a1 5

0.8, and g 5 0.92. Further description and a derivation of

this system are given in appendix 1 of NPS06 and chapter 2

of Neef (2007).

Wirosoetisno and Shepherd (2000) showed that the

gravity wave variables have components that are

‘‘slaved’’ to the slow mode and are given [to O(e2)] by

the asymptotic balance relations

Ux(f;e) 5 �e

2
Cb sin 2f 1 O(e3) and (6)

Uz(f, w;e) 5 e2(Cbw cos 2f 1
C9

2
b sin 2f) 1 O(e3),

(7)

where C9 is the time derivative of C(t). If the model is

initialized with x(0) 5 Ux and z(0) 5 Uz, the free gravity

wave will be suppressed, meaning it will have an am-

plitude ;e3, with a growth rate that is exponentially

slow in e (Wirosoetisno and Shepherd 2000). For a

general state of the system, the free gravity wave is the

unslaved part of x and z; its magnitude can be approx-

imated [to O (e2)] as ~I 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 1 ~z2

p
and its phase as

u 5 tan�1 (~z/~x), where ~x 5 x�Ux and ~z 5 z�Uz. In

principle, the separation between fast and slow compo-

nents can be made more accurate by extending the balance

relations (6) and (7) to higher order in e (Wirosoetisno

and Shepherd 2000), but we use the second-order rela-

tions here.

b. The nonlinear Kalman filter

Sequential, variance-minimizing assimilation systems

have the following form:

xf
k

5Mk�1(xa
k�1), (8)

xa
k 5 xf

k
1 Kk(zk � Hkxf

k
), (9)

Kk 5 P
f
k
HT

k (HkP
f
k
HT

k 1 Rk)�1 (10)

(e.g., Kalnay 2003, sections 5.3 and 5.4). Equation (8)

represents the forward evolution of the state estimate

xa
k21 by the forecast model Mk21. In (9), the resulting

forecast xf
k is compared to a vector of observations zk

(made at a discrete time k) and adjusted proportionally

to the difference between them (where the operator Hk

maps the forecast state to observation space). The so-

called observation increment zk 2 Hkx f
k is weighted by

the optimal gain matrix Kk, a function of the observa-

tion error covariance matrix Rk and the forecast error

covariance matrix Pf
k.

OI (Bergman 1979) is a three-dimensional (3D) data

assimilation algorithm because the error covariance

matrix Pf
k 5 Pf is defined in the model space but is static

in time. In OI, (9) is cycled with (8) to produce a series

of forecasts and analyses that sequentially approximate

the true state. In the Kalman filter (Kalman 1960; Ghil

et al. 1981; Miller et al. 1994), Pf
k is instead estimated

dynamically by evolving it forward in time using a

model, then updating it to reflect the information

brought in by observations in (9).

For nonlinear models, both the evolution and analysis

update of the covariance matrix depend on higher-order

moments of the forecast error distribution, and a closure

approximation must be made. The extended Kalman

filter (EKF) estimates the evolution of Pf by linearizing

the model about the state estimate at each discrete point

in time. Whereas NPS06 compared the EnKF to the

EKF, here we focus entirely on the EnKF, in light of the

fact that the EKF algorithm has been shown to be highly

unstable (e.g., NPS06; R. Todling 2007, personal com-

munication). The EnKF (Evensen 1994) estimates fore-

cast and analysis error covariances according to the en-

semble averages

P
f
k

5 h(xf
i,k
� hxf

i,k
i)(xf

i,k
� hxf

i,k
i)Ti and (11)

Pa
k 5 h(xa

i,k � hxa
i,ki)(xa

i,k � hxa
i,ki)

Ti, (12)

where the subscript i denotes individual forecasts in an

N-member ensemble. The analysis step (9) is performed

N times, with each ensemble member updated with a

randomly perturbed observation [corresponding to the

estimated observation error statistics (Burgers et al.

1998)]. Thus, the EnKF produces an ensemble of state

estimates, the mean of which is the EnKF best estimate

of the analysis state.

c. Assimilation experiments

This study is focused primarily on so-called twin ex-

periments, where ‘‘true’’ and ‘‘estimated’’ states are

evolved with the same model, which is also used to

generate observations. This way, the forecast error at

observation times comes from the initial state error,

accumulated analysis error, observation error, and the

growth of perturbations between observation times, but

not from model error.
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Numerical results shown, except for single examples,

will be averages over K different realizations of the initial

conditions. In each experiment (or realization), the initial

true state xt 5 (ft, wt, xt, zt)T is generated by randomly

selecting initial values of f and w, computing the corre-

sponding slaved components of x and z [(6) and (7)], and

then generating a free gravity wave of magnitude ~It.

Unless noted otherwise, the parameters that define the

gravity wave will have values ~It 5 1.5, e 5 0.1, and b 5

0.71. The initial estimated state is generated by randomly

perturbing the slow component of the truth (f and w) N

times, with the perturbations for both variables having

variance s2
0 5 0.25. Ensemble members are initialized

with free gravity wave magnitudes chosen randomly from
~Ii ;N (0, s2

~I
), where s~I 5 ~It. The sensitivity of the as-

similation result to this estimated initial gravity wave

error is examined in section 3. The gravity wave phases

are chosen randomly from a uniform distribution be-

tween [2p, p], such that the mean free gravity wave in

the initial ensemble mean is zero. Likewise, the initial

state estimate in OI experiments is generated with no

free gravity wave. The truth and forecast are both

evolved forward in time using a fourth-order Runge–

Kutta method with a time step of Dt 5 0.01.

Observations are generated at intervals Dtobs by adding

random noise rk ;N (0, s2
obs) to the truth. In general, we

set Dtobs 5 0.1 (corresponding to an assimilation interval

of about 40 min) and the ensemble size to 24. The choice

of these parameters is justified in the following section.

Two types of observations are considered in the ex-

periments. In general, we will observe the mixed–time

scale state given by

zMIX 5
fobs

w9obs

� �
, (13)

where w9 [ (w 2 bz)/(11b2) represents a mixed–time

scale quantity related to vorticity. To examine the be-

havior of the EnKF when the gravity wave is excluded

from the observations, we also compare observations of

the entirely slow state given by

zSLOW 5
fobs

wobs

� �
. (14)

Because model variables are directly observed, the

observation operator Hk is linear. Hereafter the time

subscripts on H and R will be dropped because neither

operator changes in time. All experiments are run with

the correct observation error statistics—that is, with

R 5 s2
obsI2, where I2 represents the 2 3 2 identity matrix,

and sobs 5 0.1.

Whereas the EnKF covariance matrix is given by (11),

OI requires an estimate of the stationary covariance

matrix. This requires an estimate of multivariate cor-

relations as well as the average variances. Table 1 shows

the six correlations between the components of the

model state, estimated from an ensemble of 50 states

integrated to 500 time units (with e 5 0.1 and b 5 0.71).

The correlations were computed at each time step and

then averaged over all time steps, which amounts to 2.5

million samples of each variable. The associated stan-

dard deviations for each correlation term are also shown

in Table 1. Note that except for rf,w, the standard de-

viations are much larger than the mean correlations.

This indicates that the correlations are strongly time and

state dependent, which in turn indicates that a station-

ary covariance matrix, despite the above optimizations,

will not be a good approximation.

It can furthermore be seen that all correlations except

rf,w average to zero. Although the correlations between

fast and slow variables (e.g., rw,x) increase with in-

creasing e and b (to be discussed in more detail in sec-

tion 4), we verified that they are still zero in the time

average. We therefore formulate the static OI covari-

ance matrix as

P
f
0 5

s2
s s2

s rf,w 0 0

s2
s rf,w s2

s 0 0

0 0 s2
f /2 0

0 0 0 s2
f /2

0
BBB@

1
CCCA. (15)

For the correlation term rf,w we take the average

value given in Table 1, rf,w 5 0.49. The variances as-

cribed to the slow and fast variables (ss and sf, re-

spectively) were optimized by sweeping over a range of

values and selecting the values that minimize error (see

appendix). The optimal values of ss and sf were found

to depend on the observation interval, with approxi-

mate functional dependencies given by ss
opt 5 0.3Dtobs

and sf
opt 5 0.03 1 0.14Dtobs 1 0.06(Dtobs)2. Given these

values, (15) represents the best possible OI implemen-

tation for the exL86 model.

Although OI does not update the forecast error co-

variance matrix, an analysis error covariance matrix can

TABLE 1. The estimated correlations of the six variable pairs of

the exL86 model, estimated from an ensemble of 50 states run to

500 time units.

Average correlation Correlation standard error

f, w 0.4851 0.0941

f, x 20.0005 0.1645

f, z 0.0001 0.1644

w, x 0.0000 0.1530

w, z 0.0009 0.1531

x, z 0.0000 0.1830
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be computed after the assimilation of the observations

(Kalnay 2003, chapter 5):

Pa 5 (I� KH)Pf (I� KH)T
1 KRKT. (16)

Here, (16) represents the reduction in uncertainty due

to the information gained from the observations and

corresponds theoretically to the ensemble-estimated

errors produced by the EnKF (12).

3. Convergence and divergence of the EnKF with
two time scales

a. Convergence regimes for the slow mode

Filter divergence is the phenomenon whereby the

dynamic errors estimated by the assimilation system

become increasingly small relative to actual errors, such

that subsequent observations are rejected and the al-

gorithm can no longer correct itself (eventually arriving

with high confidence at a poor analysis). In the EnKF,

filter divergence means that ensemble members become

more tightly clustered around their mean than the dis-

tance from the mean to the true state. To examine the

treatment of gravity waves in the EnKF analysis, we will

first establish the regimes (in the space of assimilation

parameters) where the EnKF converges for the slow

mode, then examine the analysis of the fast mode.

Convergence of the EnKF is controlled by the size of

the ensemble and by the frequency at which observa-

tions are made. Figure 1 examines the stability of the

slow-mode analysis for different regimes of these two

parameters by comparing the ratio between the actual

and ensemble-estimated error in w as a function of Dtobs

for five ensemble sizes. Each line represents an average

over 50 experiments where the mixed–time scale state

zMIX (13) is observed. The ratio shown is computed

from the actual and ensemble-estimated errors aver-

aged in time according to

Ew 5 h(wt � hwai)2i1/2
DT and (17)

Ee
w 5 hh(w

f
i � hw

ai)2ii1/2
DT , (18)

where the inner brackets indicate the ensemble average

and the brackets h�iDT indicate the average over all time

steps of a time window DT [ [40, 100]. The temporal

averaging window is chosen to avoid an adjustment

period that will be explained in section 3c.

For N 5 4 and 8, the ratio is much larger than unity

for all observation intervals. Estimated errors match the

true errors consistently for N ’ 20 members. To mini-

mize ensemble sampling error, we will choose N 5 24 as

the standard ensemble size in all subsequent experiments.

[We have verified, but not shown, that the apparently

higher average errors in the N 5 24 case here are only due

to statistical noise. Note also that for small ensemble

sizes the ratio between actual and estimated errors is

larger for more frequent observations. This happens

because the ensemble is updated often but poorly,

causing it to cluster around an erroneous state and not

spread enough between observation times (NPS06).]

b. Fast and slow analysis increments

To understand how the EnKF treats the fast mode,

consider the two analysis increments dwa 5 wa 2 wf

(representing the slow-mode increment) and dza 5 za 2 zf

(representing the fast-mode increment) for observations

of either the slow variable w or the mixed–time scale

variable w9. If w is observed, then only the balanced

components of the fast variables (x and z) can be

gleaned from the observations, and the analysis incre-

ments become

dwa 5 wa � wf 5 kww(wobs � w f ) and (19)

dza 5 za � zf 5 kzw(wobs � w f ), (20)

with weights

kww 5
s2

w

s2
w 1 s2

obs

and (21)

kzw 5
czw

s2
w 1 s2

obs

, (22)

FIG. 1. Averages of the ratio between RMS error in w and the

EnKF-estimated error as a function of the observation interval

Dtobs, for five different ensemble sizes. Each line represents an

average over 50 experiments with observations of the mixed–time

scale state zmix (13).
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where s2
w is the estimated error variance for w and czw is

the estimated covariance between fast z and slow w.

Because the slow mode and free gravity wave are pre-

sumed to be independent, czw results entirely from the

slaving relationship. The fraction of the observation

increment added to z in (20) is proportional to czw be-

cause wobs contains information about the slaved com-

ponents of the fast variables. Therefore, the balance

relationship must be captured by the estimated fast–

slow error covariances (such as czw) in order to correctly

update the fast variables with observations of the slow

variables. Error in the estimation of these fast–slow

covariances will cause a misadjustment of fast variables,

which can lead to an excitation of a gravity wave that

has nothing to do with the true free gravity wave. Note

that the forecast error standard deviations ascribed to

the free gravity wave (s~x and s~z) do not affect the fast-

variable increments in this case.

The problem changes if the observed variable is the

mixed–time scale quantity w9, in which case observa-

tions also contain information about the free gravity

wave, and the analysis increments become

dwa 5 kww9 w9obs �
1

1 1 b2
(wf � bzf )

� �
and (23)

dza 5 kzw9 w9obs �
1

1 1 b2
(wf � bzf )

� �
, (24)

with weights

kww9 5
cww9

s2
w9

1 s2
obs

and (25)

kzw9 5
czw9

s2
w9

1 s2
obs

, (26)

where

cww9 5
1

1 1 b2
(s2

w � bczw) and (27)

czw9 5
1

1 1 b2
(czw � bs2

z). (28)

In this case, fast–slow covariances such as czw are needed

not only to correctly update the (balanced components of

the) fast variables but also to recover information about

the slow mode from the fast-variable component of the

observations. If estimated correctly, these balanced

terms will comprise a small correction to the slow mode

analysis. If overestimated, however, they can cause filter

divergence in the slow mode.

For the fast variables the analysis step [e.g., (24)] now

also depends on estimated fast-variable error variances

[s2
z in (28), but also s2

x]. These have both balanced and

free gravity wave components, where the free gravity

wave components (which have linear evolution) will

dominate for an unbalanced truth.

The nature of fast–slow covariances (and how these

are explicitly evolved in the EnKF) is illustrated in Fig. 2.

Figure 2a shows f(t) and x(t) for a reference state with

a free gravity wave defined by ~It 5 1.5, e 5 0.1, and

b 5 0.71. The correlation between errors in f and x is

rfx 5 cfx/sfsx. The error in x at each time can be ap-

proximated by linearizing the balance relationship (6)

about the time-varying state estimate. Then the co-

variance term cfx becomes

cfx 5 hefexi ’ ef

›Ux

›f
ef

� �
5 �eCb cos (2f)s2

f,

(29)

where ef represents the error in f at each time. Then

the correlation can be approximated as

rfx 5 �eCb cos 2f
sf

sx
[ hLIN(t)

sf

sx
, (30)

where

hLIN(t) 5 �eCb cos 2f (31)

approximates the slow–time scale evolution of the co-

variance between f and x, and it results from a linear-

ization of the slaving relationship (6). We can evaluate

the slow–fast correlations estimated by the ensemble by

comparing hLIN to the quantity hENS 5 rfx (sx/sf),

where sx and sf are computed from the ensemble. This

is done for an example state in Fig. 2b, where hENS is

computed from a 24-member EnKF analysis, with

mixed–time scale observations (13) assimilated at in-

tervals Dtobs 5 0.1.

Both estimates of h show again that the correlation is

strongly state dependent, which implies that a dynamic

covariance model will be more useful than a static one

for the recovery of both time scales. We have verified

(not shown) that the similarity between hENS and hLIN

increases with ensemble size. The 24-member EnKF

used in this example can at times produce large esti-

mation errors and is contaminated by oscillations with

the period of the gravity wave, which result from re-

sidual imbalance in the ensemble average. However, it

captures the overall variability of h, at least as approx-

imated by linearization.

Figure 3 shows two EnKF analyses for this state,

comparing a 24-member ensemble and a six-member

ensemble, each with observations of zmix assimilated

every Dtobs 5 0.1 time units. Figures 3a,b compare the

truth and estimates of f and x for this state. For visual
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clarity, only the last 20 time units of the assimilation

period are shown. In both plots, the analysis of f is

nearly indistinguishable from the truth. Accordingly,

the true and EnKF-estimated errors in f, shown in Figs.

3c,d for the respective cases, are similar over the assim-

ilation period. For the six-member EnKF, the analysis of

x (Fig. 3b) has the correct phase but the wrong ampli-

tude. Figure 3f compares actual and estimated error in x

for this case, and the estimated errors are found to

quickly become several orders of magnitude smaller

than the true error. The EnKF is diverging in the fast

mode (with the ensemble tightly locked around a

gravity wave of the wrong amplitude), even though it is

clearly in a regime of convergence of the slow mode. In

the 24-member case, the truth and analysis for x are also

very close (Fig. 3a), with a correspondence between the

true and estimated errors in x (Fig. 3e), indicating that

the estimation of fast–slow covariances in Fig. 2b is

sufficient for the analyses of both the slow and fast mode

and that the estimated fast variances have been adjusted

sufficiently. Note also that a slight underestimation of

the error in x is starting to grow by the end of the as-

similation period.

c. Evolution of average slow and fast errors in time

Figure 4 shows the average time evolution of EnKF-

estimated and actual errors. Errors are shown for con-

vergent (N 5 24) and divergent (N 5 8) regimes, with

Dtobs 5 0.1 in both cases. Average errors are subdivided

into w, x, and u components, with each line representing

an average over 200 experiments. For each ensemble

size, solid lines represent actual errors and dashed lines

the estimated errors. The initial-time standard devia-

tions in w [sw(0) 5 es], x [ sx(0) 5 ~It/
ffiffiffi
2
p

], and the

gravity wave phase u [su(0) 5 p/2] are indicated in the

respective panels by a horizontal black line.

The top row of Fig. 4 compares average errors for

observations of the mixed–time scale state (13), that is,

when both fast–slow covariances and fast-variable vari-

ances must be estimated accurately. For both ensemble

sizes, the average error in w is reduced well below the

initial standard errors as soon as the first few observa-

tions are made, although for N 5 8 (as expected) the

actual w errors grow in time whereas the corresponding

estimated errors decrease in time. Average errors in x

and u behave quite differently from this for both en-

semble sizes, decreasing in time but with the distance

between actual and estimated errors increasing in time.

Thus, on average there is filter divergence in the fast

mode even while there is convergence in the slow mode,

for both the small (N 5 8) and large (N 5 24) ensembles.

The bottom row of Fig. 4 shows the same quantities but

for observations of the slow state (14)—that is, where

only the slaved components of the fast variables can be

recovered while the free gravity wave is ignored. For N 5

24, average w errors are not changed significantly by the

change from mixed–time scale observations to observa-

tions of the full slow mode, suggesting that fast–slow

covariances were estimated sufficiently well in the former

case to retrieve the slow mode even though it was only

partially observed. For N = 8, the change of observation

variable reduces w error slightly. The extra information

about the slow mode that is gained by the change in ob-

servation variable is compensated by a loss of informa-

tion about the fast mode: average x error does not de-

crease in time. Estimated x error, however, does decrease

FIG. 2. (a) Evolution of the slow variable f and the fast variable x over 100 time units, for an example state with a

gravity wave of magnitude ~I
t

5 1.5. In this case, e 5 0.1 and b 5 0.71. (b) The term h, which governs the evolution of

the correlation between f and x for the same state, as given by the linear approximation [(31); thick line] and as

computed by a 24-member EnKF (thin line), with mixed–time scale observations (13) assimilated every Dtobs 5 0.1

time units.
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in this case. This means that spurious fast–slow correla-

tions are causing the EnKF to reduce estimated error,

leading to eventual filter divergence, in the fast mode.

There are two reasons why the EnKF might diverge in

the fast mode even while converging in the slow mode.

One reason is that the free gravity wave is linear: the

ensemble members do not spread in time between ob-

servations, so that small estimation errors in the analysis

increments accumulate and the ensemble eventually locks

too tightly on either an erroneous amplitude (e.g., Fig. 4b)

or both the wrong amplitude and phase (e.g., Figs. 4e,f).

A second reason is that the fast mode is observed about

10 times less frequently per cycle than the slow mode;

this will be examined in the subsequent section.

Despite filter divergence there is still significant error

reduction in x and u (when both modes are observed),

even for a small ensemble, while ignoring the fast mode

does not significantly impact the slow-mode analysis.

Note also that there exists (in the convergent cases) a

spinup period of about 40 time units, after which slow

mode error stabilizes. To take this into account, assimi-

lation experiments will hereafter be evaluated by com-

paring RMS errors for w, x, and u, averaged over the last

60 time units, as in (17), and defining also

Ex 5 h(xt � hxai)2i1/2
DT and (32)

Eu 5 h(ut � huai)2i1/2
DT . (33)

d. Observation interval

For Dtobs 5 0.1 and e 5 0.1 (as above), the gravity

wave is observed about six times in a cycle and the

slow mode 60 times. Figure 5 examines how the re-

covery of the fast mode is affected as the observation

FIG. 3. Two sample assimilations with the EnKF. (a),(b) A comparison of f (the slow chaotic curve)

and x (the fast oscillation) for the true state (black) and the analysis (gray). For clarity, only the last 20

time units of the 100-time-unit assimilation period are shown in each case. In both experiments, the

observation interval is Dtobs 5 0.1 and the mixed–time scale state (13) is observed. The two experiments

differ only in ensemble size: a 24-member ensemble is used in (a), and a six-member ensemble in (b). (c),(d)

The true (solid) and estimated (dashed) errors in f over the entire assimilation period, corresponding

respectively to (a) and (b). (e),(f) The true (black) and estimated (gray) errors in x for each case.
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interval approaches and surpasses the gravity wave pe-

riod (TGW ’ 0.6). Average actual and estimated Ex are

compared for a 24-member EnKF and OI, each assim-

ilating mixed-time scale observations (13) with Dtobs =

0.1. Figure 5a shows that the average true error in the

EnKF exceeds the average estimated error at all ob-

servation intervals. However, the ratio between actual

and estimated Ex (Fig. 5b) does not increase with Dtobs,

and actual errors are moreover consistently lower in the

EnKF than for OI. Thus, despite a tendency to under-

estimate fast variable error, the EnKF, which dynami-

cally estimates slow–fast correlations, is still able to

retrieve the fast mode better than OI, which relies on

average correlations.

For both methods there exist peaks, in average actual

and estimated error, at Dtobs equal to multiples of the

gravity wave period. These peaks reflect the fact that it

is impossible to infer the amplitude of a wave when

observing at single phase. Note that the peaks are more

pronounced in OI. In the EnKF, estimated error also

increases for these special observation intervals, al-

though generally error is underestimated more (as in-

dicated by spikes in the error ratio in Fig. 5b).

e. Ensemble size

It is of course also possible to increase the ensemble

size beyond what is required to achieve convergence in

the slow mode, although this may not be a feasible op-

tion in realistic applications. Figure 6 shows average

true and estimated Ex as a function of the ensemble size,

again assimilating mixed-time scale observations with

Dtobs = 0.1. Also shown are the initial-time Ex and the

average Ex that results from 50 OI assimilation runs

using mixed-time scale observations with Dtobs = 0.1.

The actual error is reduced from the initial value by

over an order of magnitude for as few as six ensemble

members; 18–20 ensemble members are required to

have errors lower than those returned by OI. In order

for estimated errors to match actual errors, around

80 ensemble members are needed—almost 4 times as

many ensemble members as are needed to achieve

convergence in the slow mode. Nonetheless, even when

sampling error is large the assimilation of fast mode

observations can be useful, and fewer ensemble mem-

bers are required to improve on OI than to completely

eliminate filter divergence.

FIG. 4. Convergence/divergence of the EnKF in time. In the top row, average errors are shown for (a) the slow variable w,

(b) the fast variable x, and (c) the gravity wave phase u for experiments in which MIX observations (13) are assimilated every

Dtobs 5 0.1 time units. Each line represents an average over 200 experiments, comparing ensemble sizes N 5 8 (gray) and 24

(black). Solid lines show actual errors and dashed lines the estimated errors. (d)–(f) As in (a)–(c) but for SLOW observations

(14). The horizontal solid lines in each panel represent the average initial-time error.
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f. Fast variance of the initial ensemble

Recall that in the case of mixed–time scale observa-

tions, the ability to capture the gravity wave also de-

pends on the variance attributed in the ensemble to the

fast wave [section 3b, specifically (28)]. Figure 7 exam-

ines average true and estimated Ex over a range of s~I ,

the standard error from which the gravity waves in the

initial ensemble are generated (assimilating mixed–time

scale observations, with N 5 24 and Dtobs 5 0.1). The

errors are again compared to the initial-time error, and

the average OI error with similar observations; Ex de-

creases as the magnitude of the initial fast variance in-

creases, saturating around s~I 5 1. Because there is no

increase in error when s~I(0) exceeds the true value

(s~I 5 ~It 5 1.5), this experiment suggests that it would

be prudent, in realistic applications, to overestimate the

fast variable error. It is also encouraging that the EnKF

can initially underestimate the fast variable standard

deviation by about 50% and yet substantially reduce

errors from the initial value and improve over OI.

On the other hand, an 80% underestimation of the

fast-variable standard deviation [i.e., s~I(0) 5 0.3] yields

analysis errors that are twice the minimum error that

can be achieved by increasing s~I . Moreover, actual er-

rors remain consistently larger than estimated errors

over all s~I(0). Thus, Fig. 7 also shows that although it

helps to overestimate fast errors, it is also difficult to

fully eliminate divergence of the EnKF (in the case

where the ensemble is too small to fully converge in

the fast mode) by attributing more initial error to the

gravity wave.

In summary, we can say that the EnKF is able to re-

trieve both time scales as long as mixed–time scale ob-

servations are made, although with a strong tendency to

diverge in the fast mode. Even if the ensemble is not

large enough to achieve convergence in the fast mode,

however, fast-mode errors are stable in time, generally

small compared to the initial-time errors, and may still

be lower than OI errors.

FIG. 5. (a) Average error in x (32) for a 24-member EnKF,

comparing true (black) and estimated (gray) errors as a function of

the observation interval. These are further compared to true

(black dashed) and estimated (gray dashed) error for OI. (b) The

average ratio between true and estimated error in x for the EnKF.

In both the EnKF and the OI, the mixed–time scale state (13) is

observed.

FIG. 6. Average true (black) and EnKF-estimated (gray) error in

x (32) as a function of the ensemble size, computed for 50 reali-

zations (with Dtobs 5 0.1 throughout). The initial fast variable error

is indicated by a dashed line, and the average OI error is shown by

the plus signs. In both the EnKF and the OI, the mixed–time scale

state (13) is observed.
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4. Gravity wave parameters

We now examine how the quality of the analysis, the

relative value of slow– and mixed–time scale observa-

tions, and the EnKF’s possible advantage over OI are

affected by the parameters that define the gravity wave.

In this set of experiments, we compare three assimila-

tion systems. The first, denoted MIX, is a 24-member

EnKF with observations of the mixed–time scale state

(13) made at intervals of Dtobs 5 0.1. The second, de-

noted SLOW, is the same except that the observations

are made of the slow–time scale state (14). In the third,

mixed–time scale observations are made but assimilated

using OI. Comparison of SLOW and MIX shows the

relative benefit of observing or ignoring the gravity

wave, whereas comparison of MIX and OI shows

the possible advantage of time-dependent covariance

estimation.

a. Gravity wave magnitude

The influence of the gravity wave on the evolution of

the full system can be changed by varying its magnitude.

This will change the relative value of slow– and mixed–

time scale observations because slow observations ig-

nore a greater component of the system as ~It increases.

Because the initial-time ensemble mean state is bal-

anced, a larger true gravity wave magnitude also means

that the first few analysis increments in the assimilation

period will be larger, thereby amplifying any potential

errors in estimated covariances. Consequently, a larger-

magnitude true-state gravity wave, given a balanced ini-

tial estimate, could lead to a worse analysis in both

modes, in which case it may be better to simply neglect

the fast–slow covariances, as in our OI implementation.

Figure 8 shows the three error measures as a function

of ~It, comparing MIX, SLOW, OI, and the corre-

sponding estimated errors for all three. For MIX, both

Ew and Ex are unaffected by the increased magnitude of

the true gravity wave, although the EnKF’s underesti-

mation of fast error remains throughout. For SLOW, Ew

increases slightly as ~It increases because of the in-

creasingly large source of variability that is now ignored

by the observations. For OI, where the fast mode is

observed but covariances and variances are kept con-

stant, Ex increases slightly with ~It, although we found

(not shown) that this increase in error can be removed

by slightly increasing sf with ~It in (15). Thus, the ad-

vantage of the EnKF over OI does not clearly change

with the magnitude of the true gravity wave. However,

the value of observing both time scales does increase

with increasing gravity wave magnitude.

Note also that Eu decreases with ~It in the two cases

where the free fast mode is observed, MIX and OI.

Presumably this happens because increasing the mag-

nitude of the gravity wave decreases the ratio between

observation error and the gravity wave signal.

b. Gravity wave period

Changing the time scale of the gravity wave also

changes the significance of the gravity wave in the ev-

olution of the full system. Increasing e means that the

balanced components of x and z [(6) and (7)] become

larger, while the correlations between fast and slow

variables become both larger and more nonlinear.

This is illustrated in Fig. 9, which compares hLIN and

hENS for a state that is equal to the state shown in Fig. 2a

in all respects except that the gravity wave frequency

has been changed to e21 5 3, corresponding to a gravity

wave period TGW ’ 2. It can be seen by both approxi-

mations that the magnitude of the slow–fast correlation

increases relative to Fig. 2b. For OI, this means that the

zero correlations used in the covariance matrix, al-

though still representative of the average, will become a

poorer estimate. Increased fast–slow correlation also

means that error in the estimation of the fast mode more

strongly influences the evolution of (true) error in the

slow mode, and vice versa. For the SLOW case, in-

creasing e will mean that a larger component of the

fast variables can be recovered from the observations,

while at the same time the lack of observed information

about the gravity wave may worsen the analysis of the

slow mode. Disagreement between hENS and hLIN also

FIG. 7. Average true (black) and EnKF-estimated (gray) error in

x (32), as a function of the standard deviation s~I from which the

fast components of the initial ensemble are generated, computed

for 50 realizations (with Dtobs 5 0.1 throughout and a 24-member

ensemble). The initial-time true fast variable standard deviation is

indicated by a dashed line, and the average OI error is shown by

the plus signs. In both the EnKF and the OI, the mixed–time scale

state (13) is observed.
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increases between Figs. 2 and 9, indicating that the

nonlinearity of the balance relationship is increasing,

which may make the ensemble less Gaussian and thus

increase error in either the SLOW or MIX cases.

Figure 10 compares average errors over a range of

TGW for MIX, SLOW, and OI. The change in fast–slow

correlation that comes with changing TGW does not

clearly affect the performance of OI relative to the

EnKF (MIX). The MIX case shows only a weak effect of

TGW on average errors (average Eu increases slightly), so

we can infer that the increasingly nonlinear balance re-

lationship is not much more difficult to capture by the

EnKF cycle. Changing the fast time scale does, how-

ever, affect how much information about the fast mode

can be recovered from slow observations: both Ex and

Eu decrease with increasing TGW for SLOW. This means

that after a certain point (TGW * 2), more information

can be recovered about the fast mode using the EnKF

and slow observations than by using OI and mixed–time

scale observations. Note also that Ew also increases with

TGW for SLOW, reflecting the increasing effect of the

unobserved free gravity wave on the slow mode, al-

though average Ew for SLOW is mostly below average

Ew for OI.

c. Slow–fast coupling

Changing the coupling parameter b also changes the

nonlinearity of the balance relationship and the magni-

tude of the fast–slow correlations, but now without

changing the time scale overlap of the two modes. Fig-

ure 11 shows hLIN and hENS for the same initial condi-

tion as in the previous examples, but now with b 5 3.

Again, the fluctuations in the correlation term are

larger, and the difference between the EnKF-estimated

correlation and the linearized value increases, implying

greater nonlinearity. Changing b also changes the in-

formation content of observations, with w9 becoming

more gravity wave dominated as b increases. This means

that MIX observations as defined in (13) will contain

increasingly more information about the gravity wave

and less about the slow mode as the coupling between

the two modes increases. Changing b in the exL86 model

thus illustrates the effect of observations that project

more or less strongly onto the gravity wave manifold.

FIG. 8. The three error measures [(17), (32), and (33)], as a function of ~I
t
, the magnitude of the true-state gravity wave. Average

errors are compared for the three cases outlined in section 4. The actual errors for each case are indicated by black lines and plot

symbols and the estimated errors by gray ones.

FIG. 9. As in Fig. 2b, but for a state with e 5 1/3. A 24-member EnKF (with Dtobs 5 0.1) is used to estimate hENS.
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Figure 12 compares the effect of changing b while

keeping e and ~It fixed. Here Ew increases with b for

SLOW and OI but not for MIX, a result similar to that

of Fig. 10. In terms of Ex and Eu, there is an ‘‘optimal’’ b

(roughly b 5 1) such that MIX and OI give their most

accurate recovery of the fast mode, whereas SLOW

simply improves in the fast mode with increasing b. The

results can be explained as follows: As coupling increases,

SLOW neglects an increasingly relevant source of var-

iability, which increases slow error. At the same time,

the additional fast-mode information contained in the

observations decreases Ex and Eu. As coupling increases,

OI neglects an increasingly relevant time-varying cor-

relation, which also increases Ew with increasing b. In

contrast to the previous experiment, however, Ex and Eu

now decrease with b for OI and MIX when b & 1, a

decrease that is presumably due to the fact that obser-

vations of w9 become more fast-mode dominated as b

increases. The subsequent increase in Ex and Eu for

MIX and for b * 1 suggests that the fast–slow correla-

tion, which helps to recover the fast mode, becomes

more important at large b. By preserving fast–slow cor-

relations the EnKF (MIX) excels over OI in its recov-

ery of the gravity wave.

5. Model error experiments

In all experiments shown so far, forecasts and truths

were evolved with the same model, such that the EnKF

had to estimate the amplitude and phase of the gravity

wave but was always perfect in gravity wave frequency.

It can be argued that this could be the reason why the

EnKF performed so much better than OI in the ex-

periments above. In practice, not all gravity wave fre-

quencies are observed and not all frequencies are

modeled. For example, fast gravity waves are less likely

to be observed than slow gravity waves simply because

fast waves spend less time in an instrument’s observa-

tion region (Alexander and Barnet 2007). Modeled

gravity wave frequencies depend on a model’s resolu-

tion and on generation mechanisms such as convective

parameterization, and their dispersion relation may be

deformed by the time-integration scheme. In consider-

ation of these limitations, two sets of experiments were

performed in which the perfect model restriction is re-

moved by introducing error in the modeled gravity wave

parameters e and b.

In the first experiment, the gravity wave frequency

assumed by the forecast model, now denoted ef, is

FIG. 10. As in Fig. 8, but as a function of the period of the true-state gravity wave.

FIG. 11. As in Fig. 2b, but for a state with b 5 3. A 24-member EnKF (with Dtobs 5 0.1) is used to estimate hENS.
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changed while the true state is kept at et 5 0.1. Figure 13a

shows the three error components as a function of ef.

The 24-member EnKF is compared to OI, using mixed–

time scale observations (13) in both cases. For the EnKF,

misestimation of the gravity wave frequency is detri-

mental to the recovery of the gravity wave: both Ex and

Eu shoot to the initial error levels for any ef 6¼ et. Note Ex

even exceeds the initial-state error, indicating the exci-

tation of gravity waves that are not of the same fre-

quency, phase, or magnitude as the true gravity wave and

are left uncontrolled by the observations. OI errors in x

and u are a bit lower for ef 6¼ et, or at least not greater

than the initial-time error, which indicates that it is better

in these experiments to simply neglect fast–slow covari-

ances. In the slow mode (Ew), the EnKF is able to per-

form at least as well as OI when ef is close to the true

frequency (i.e., for |ef 2 et| & 0.1), but OI clearly yields a

better analysis overall. For the EnKF, the strong growth

of Ew for ef * 1.5 reveals an unfavorable characteristic of

the (large-ensemble) EnKF: recovery of the slow mode

can be harmed when the gravity wave is not captured at

all, in which case it would be better to force fast–slow

correlations to zero.

The second case of model error is shown in Fig. 13b,

where the estimated coupling parameter, now denoted

bf, is changed while the true value is kept constant at

bt 5 0.71. The EnKF again returns large errors in all

three variables when the estimated b exceeds the true

parameter by a certain amount. Interestingly, under-

estimating the coupling parameter (bf , 0.71) increases

error less than when it is overestimated (bf . 0.71). The

difference can be understood from the fact that b

changes the information content of the observation (13)

from being purely slow to being mixed. For bf . 0.71,

the assimilation is assuming that w9 is more time scale

mixed than it actually is, resulting in adjustment of the

gravity wave away from its true amplitude and phase

and not enough adjustment of the slow variables, the

estimates of which have suffered from the misestimated

gravity wave. For bf , 0.71, the assimilation is assuming

that w9 is less mixed; thus, it adjusts the slow mode with

more information than is actually contained in obser-

vations, while the gravity wave is not adjusted enough.

Slow-mode error consequently increases relative to es-

timated error for bf , 0.71 but, given less simultaneous

adjustment of fast variables, the impact is presumably

smaller. Again, although OI behaves similarly, it is more

accurate overall.

These admittedly simplistic experiments show that

the EnKF’s ease in locking onto a linear gravity wave

phase will be limited by differences between the re-

solved frequencies in observations and models. When

the ability to capture a gravity wave is lost, the analysis

of the vortical mode suffers as well, especially if the

correlation between the fast and slow modes is over-

estimated.

6. Summary and conclusions

This study examined the behavior of the ensemble

Kalman filter in the physical context in which there is a

preponderance of free gravity waves in the truth. This

problem differs from the initialization problem of nu-

merical weather prediction but is relevant to data as-

similation in the mesosphere and tropical stratosphere

(Nezlin et al. 2009). We used a highly simplified model

in which the state consists of a vortical mode and a free

gravity wave of a relatively fast time scale.

It was found that the EnKF analysis cycle can cause

the ensemble to lock onto a gravity wave of the wrong

amplitude, causing filter divergence in the analysis of

the fast mode, even in regimes where it converges in the

slow mode. To prevent this type of filter divergence

requires upward of 3 times as many ensemble members

as are required for convergence in the slow mode

(Fig. 6). When the ensemble size is too small to fully

FIG. 12. As in Fig. 8, but as a function of the coupling parameter b.

1730 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 66



converge in the fast mode, the impact of fast-mode filter

divergence on the overall analysis can be lessened by

increasing the amount of error initially attributed to the

free gravity wave (Fig. 7), although this only alleviates

the problem and does not eliminate it. Fast-mode filter

divergence comes about because the linear–nonchaotic

gravity wave ensemble does not spread between ob-

servations, and thus persists even when observations are

very frequent (Fig. 5). Because gravity waves in the real

atmosphere are also linear to a first approximation, this

may indicate a fundamental problem for assimilating

unbalanced states with the EnKF.

In realistic applications it is possible that gravity

waves that are present in the truth may not be captured

in the observations, perhaps because of filtering or av-

eraging of observations. In that case, only the compo-

nent that is slaved to the slow mode can be controlled by

observations, which requires the error covariance esti-

mation cycle to capture the balance relationships be-

tween slow and fast model variables. Despite diver-

gence in the fast mode, the EnKF’s covariance model

was found to be more accurate than the highly tuned

static covariance model used in our OI, resulting in a

better recovery of both modes if a mixed–time scale

state is observed, and of the slow mode and the slaved

component of the fast mode if slow variables are ob-

served. For sufficiently large ensembles, recovery of

the full slow mode from the observations that contain

both time scales was found to be nearly as accurate as it

would be from the observations where the gravity wave

signal is absent (Fig. 4), and the EnKF was able to re-

cover the gravity wave more accurately than OI even for

observation periods much longer than the gravity wave

period (Fig. 5). The EnKF was also found to more easily

overcome the error associated with observing at or near

multiples of the gravity wave period (the peaks in Fig. 5)

because information is spread forward in time.

Changing the magnitude of the gravity wave, the time

scale separation, or the coupling between the two modes

changed the relative benefit of observing both time scales

versus observing only the slow time scale. Large gravity

waves are more difficult to ignore by the EnKF (Fig. 8),

and it was found that for gravity waves above a certain

magnitude the EnKF can better recover the slow mode

if both time scales are observed partially than if the

full slow mode is observed alone. On the other hand,

the amount of information about the fast mode that can

be recovered from entirely slow observations increases

FIG. 13. (a) The three error measures [(17), (32)–(33)] as a function of (a) the gravity wave frequency assumed in the model

estimate and (b) the coupling parameter assumed in the model estimate, keeping the true values constant at the reference

values, e 5 0.1 and b 5 0.71. The 24-member EnKF (black) is compared to OI (gray), and average actual errors for each case

(solid lines) are compared to average estimated errors (dashed lines).
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as the correlation between the two modes increases, and

we found a case (Fig. 10, center) for which the EnKF

returns a better analysis of the fast mode with slow

observations than OI does with mixed–time scale ob-

servations. Thus, changing the gravity wave parameters

(Figs. 8, 10, and 12) also illustrated the flexibility of the

EnKF relative to OI.

Model bias is generally large in the middle atmos-

phere and comes from a variety of sources, such as

uncertainty in parameterized processes (Dee 2005;

Polavarapu et al. 2005). Model error implies that distances

between the truth and forecast will grow faster than

estimated forecast errors, leading to increased filter di-

vergence. In a sense, the SLOW experiments shown

above can be interpreted as model-error experiments:

because one mode is not captured in the analysis, the

evolution of the forecast state is systematically different

from the truth, resulting in larger analysis increments

and the amplification of covariance estimation error.

Because the analysis of the slow mode (reflected in Ew)

does not suffer greatly from the change of observation

variable from MIX to SLOW (Figs. 4, 8, 10, and 12), the

EnKF seems to be somewhat resistant to small sys-

tematic dynamical errors.

However, by introducing an error into the estimated

gravity wave frequency or coupling parameter, it was

found that capturing the fast mode becomes far more

difficult when the gravity wave parameters assumed by

the model differ from the true values. The inability to

capture a correct gravity wave in this case also harms

the slow mode analysis, and no benefit was found in

using the EnKF rather than OI. This indicates that other

methods, or a method for estimating and accounting for

model error, might be necessary when assimilating un-

balanced states.

Several issues remain that this study did not address. In

the exL86 model, the gravity wave neither propagates

away nor dissipates between observation times. Szu-

nyogh et al. (2005) point out that in reality gravity wave

events may not last through the entire observation in-

terval and thus may not be captured by either the ob-

servations or the assimilation. The propagation of gravity

waves and the role of observation spatial density are is-

sues to address in higher-dimensional model studies.

In future studies it will also be important to address

the comparative performance of 4D-Var for unbalanced

truth states. It was mentioned in the introduction that

variational methods can be made to handle unbalanced

motion by statistically or analytically prescribing the

covariance matrix, which is not evolved explicitly as in

the Kalman filter. 3D and 4D variational methods rep-

resent a very different approach to the same problem

and a detailed comparison between 4D-Var and the

EnKF is beyond the scope of a single paper, although a

short comparison of the two algorithms is made in Neef

(2007).

This study also did not address currently suggested

modifications to the EnKF algorithm, such as inflation

of covariances, the addition of stochastic model error, or

the use of two ensembles in the EnKF, which are

designed to keep the filter from diverging. A brief ex-

amination of such modifications is performed in Neef

(2007). We also did not look at alternative Kalman

filter–type schemes, such as deterministic ensemble fil-

ters (Tippett et al. 2003) or the so-called kernel or par-

ticle filter (Anderson and Anderson 1999; Xiong et al.

2006). Because the usefulness of these modified algo-

rithms in practical data assimilation problems is still un-

der consideration, future comparisons of these alterna-

tive algorithms should include an examination of the

effects of different coexisting time scales.
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APPENDIX

The optimal variances in the OI forecast error co-

variance matrix were computed numerically by sweeping

FIG. A1. RMS error in w as a function of the assumed slow

variable (f, w) variance in the static OI covariance matrix for

seven different observation intervals. The minima of the curves are

indicated by black circles.
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over ss and sf for different values of Dtobs and then

performing a polynomial regression to find approximate

functional dependencies of ss and sf on the observation

interval.

Figure A1 shows the error measure Ew as a function

of ss for seven different observation intervals, each line

representing an average over 100 realizations. We per-

formed a polynomial regression on these seven exper-

iment sets and found that the dependence of the opti-

mal ss on Dtobs is approximately linear and is given by

ss
opt 5 0.3Dtobs.

Figure A2 shows average error in x (Ex), averaged over

100 runs for the same seven observation intervals, now as

a function of sf. Again, the optimal assumed variance is a

function of the observation interval, and a polynomial

regression yields an approximate functional dependence,

given by sopt
f 5 0.03 1 0.14Dtobs 1 0.06(Dtobs)2.

By similar experiments, we also found that the opti-

mal sf is not sensitive to the choices of the gravity wave

parameters ~It, e, and b.
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