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Abstract 

 

A new family of vanadium-substituted chromium sulphides (VxCr2-xS3, 0<x<2) 

has been prepared and characterised by powder X-ray and neutron 

diffraction, SQUID magnetometry, electrical resistivity and Seebeck coefficient 

measurements. Vanadium substitution leads to a single-phase region with a 

rhombohedral Cr2S3 structure over the composition range 0.0<x≤0.75, whilst 

at higher vanadium contents (1.6x<2.0) a second single-phase region, in 

which materials adopt a cation-deficient Cr3S4 structure, is observed. Materials 

with the Cr2S3 structure all exhibit semiconducting behaviour. However, both 

transport and magnetic properties indicate an increasing degree of electron 

delocalisation with increasing vanadium content in this compositional region. 

Materials that adopt a Cr3S4-type structure exhibit metallic behaviour. 

Magnetic susceptibility data reveal that all materials undergo a magnetic 

ordering transition at temperatures in the range 90-118K. Low-temperature 

magnetization data suggest that this involves a transition to a ferrimagnetic 

state.  

 

T. Erinc Engin, Anthony V. Powell, and 

Steve Hull  

Chem. Mater.  

Structural, Magnetic, and Electronic 

Properties of VxCr2-xS3 (0<x<2)  

 

VxCr2-xS3 exhibits two single-phase regions. 

Above x=1.6, materials are metallic and below 

x=0.75, semiconducting.  The electrical 

resistance of semiconducting phases decreases 

with x, due to preferential occupation of sites 

in a dichalcogenide block by vanadium, 

resulting in increased electron delocalisation. 

Magnetic order is observed in both single-

phase regions.  
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Introduction 

The structures of ternary chalcogenides of the type AyMX2 (0≤y≤1) 

consist of MX2 layers of edge-sharing octahedra, between which there is a 

network of octahedral sites. At the compositional extreme, y=0, these sites 

are vacant and the structure adopted is that of CdI2 in which layers of edge-

sharing MX6 octahedra are separated by a van der Waals’ gap. At the other 

limit, y=1, complete occupancy of octahedral sites between MX2 layers leads 

to the NiAs structure in which metal-centred octahedra share faces as well as 

edges. Between these compositional extremes, occupancy of a fraction of the 

octahedral sites in the van der Waals’ gap by A-cations may lead to ordering 

of vacancies within the partially occupied layer. This gives rise to a variety of 

two-dimensional superstructures1,2,3 whose relative stability depends on y. 

Many binary and ternary transition metal chalcogenides adopt such ordered-

defect structures.4,5,6,7,8 Within the chromium-sulphur system, this includes 

the M2S3 (y=1/3) and M3S4 (y=1/2) structure types, for which the vacancy 

ordering schemes are shown schematically in Figure 1. In Cr2S3 (Figure 2), 

vacancy ordering produces a supercell with dimensions related to those of the 

primitive hexagonal subcell by ppp c3a3xa3  . Cr2S3 is ferrimagnetic9,10 with 

Tc≈125K, the temperature at which an anomaly is observed in the transport 

properties.11 The interaction between charge carriers and localized magnetic 

moments leads to an exchange splitting of the conduction band and it has 

been suggested that spin-disorder scattering of the charge carriers is 

responsible for this anomaly.11 Sulphur deficiency markedly reduces the 

resistivity of the semiconducting phase, introducing a local maximum into ρ(T) 
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at temperatures in the region of the ferrimagnetic ordering temperature, TC. 

Compositions that exhibit this resistivity anomaly exhibit a negative  

magnetoresistance that peaks at TC and attains a maximum of 48% in 

Cr2S2.92.
12  

By contrast, V2S3 adopts a cation deficient M3S4 (y=1/2) structure7 (Figure 3). 

Occupancy of half of the octahedral sites between MX2 units gives rise to a 

ppp c2aa3   supercell and an M3X4 stoichiometry. However, this structure 

can tolerate significant levels of non-stoichiometry whilst retaining the same 

supercell.13,8 In the vanadium-sulphur system, the non-stoichiometry extends 

to a composition of V2S3 in which, in addition to the 50% of available 

octahedral sites between MS2 units that are vacant in the M3S4 structure, 

further cation vacancies are randomly distributed over the 50% of occupied 

sites. This reduces the cation:anion ratio from 0.75 to 0.67. This material may 

thus be formulated (M)0.67[M]2S4, where parentheses and square brackets 

represent sites in the vacancy and fully-occupied layers respectively. 

In this work, the effect on the structural, electron transport and magnetic 

properties of the progressive substitution of chromium in Cr2S3 by vanadium is 

explored. A new series of materials of the general formula VxCr2-xS3 (0<x<2) 

has been prepared that exhibits more complex phase behaviour than the 

Cr3S4-type analogues reported previously.14,15,16  

 

Experimental 

Mixtures of vanadium (Alfa Aesar, 99.5%), chromium (Alfa Aesar, 99.95%) 

and sulphur (Sigma-Aldrich, 99.998%) powders, corresponding to 
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stoichiometries VxCr2-xS3 with 0< x <2, were ground in an agate mortar and 

sealed into evacuated (<10-4 Torr) silica tubes. Prior to use, the vanadium 

powder was washed with dilute hydrochloric acid to remove a green coating 

of oxide. Reaction mixtures were heated initially at 500 °C for 24 h, reground 

and then refired for a total of 7d with one intermediate regrinding. Products 

were cooled to room temperature at 0.8 °C min-1, prior to removal from the 

furnace. Pellets of the materials for electron-transport measurements were 

made by pressing the sample under 10 tons of pressure before sintering in a 

sealed evacuated silica tube at 800 °C.  

Powder X-ray diffraction data were collected using a Philips PA2000 

diffractometer with nickel-filtered Cu-Kα radiation (λ=1.5418 Å). Data were 

collected over the angular range 102/100, counting for 5s at each 0.02 

increment in 2θ. Time-of-flight powder neutron diffraction data were collected 

at room temperature on the Polaris diffractometer at the ISIS Facility, 

Rutherford Appleton Laboratory. Samples (ca. 3 g) were contained in thin-

walled vanadium cans. Initial data manipulation and reduction was carried out 

using the Genie17 spectrum manipulation software. Neutron diffraction data, 

from the highest resolution backscattering bank of detectors (1302/160), 

were summed and normalized for subsequent use in conjunction with X-ray 

data in Rietveld refinement using the GSAS package.18 

The electrical resistance of the samples was measured over the temperature 

range 77≤T/K≤300 using a 4-probe DC technique. An ingot (~6 x 3 x 1 mm) 

was cut from a sintered pellet, four 50 μm silver wires were attached using 

colloidal silver paint and connections were made to a HP34401A multimeter. 
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The sample was mounted in an Oxford Instruments CF1200 cryostat 

connected to an ITC502 temperature controller. Measurements were carried 

out over the temperature range 77≤T/K≤300.  

Determination of the Seebeck coefficient over the temperature range 

80T/K350 was carried out using equipment constructed in-house. Two 50 

μm copper wires were attached with silver paint to each end of a sintered 

ingot (ca. 10 x 4 x 1mm) of material, and connections made to a Keithley 

2182 nanovoltmeter for the measurement of the thermal voltage. The sample 

was mounted on a holder which incorporates a heater that allows a 

temperature gradient to be created across the sample. Two Au:0.07%Fe vs. 

chromel thermocouples connected to an ITC503 temperature controller 

(Oxford Instruments), were placed in contact with the sample at each end of 

the ingot. This assembly was located in an Oxford Instruments CF1200 

cryostat connected to an ITC502 temperature controller. Data were collected 

in 5K increments over the temperature range 80T/K300. At a given 

temperature, the Seebeck coefficient was determined by increasing the 

temperature of one end of the sample and measuring the voltage, V, as a 

function of the temperature difference, T, across the sample. The Seebeck 

coefficient is then determined from the gradient V/T. Values were 

corrected for the effects of the Cu wires.19  

Magnetic susceptibility measurements were performed using a Quantum 

Design MPMS2 SQUID susceptometer. Samples were loaded into gelatin 

capsules at room temperature and data were collected over the temperature 

range 5≤T/K≤300, both after cooling in zero applied field (zfc) and in the 
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measuring field (fc) of 1000 G. Data were corrected for the diamagnetism of 

the gelatin capsule and for intrinsic core diamagnetism. Magnetization data 

were obtained at 5K over the field range 0≤H/G≤10000 in 1000 G steps after 

cooling in zero-field. 

 

Results and Discussion 

Powder X-ray diffraction data reveal that materials in the composition range 

0<x≤0.75 adopt the rhombohedral Cr2S3-type structure of the end-member 

phase. Increasing the vanadium content leads to a two-phase mixture of R-

Cr2S3 and monoclinic Cr3S4-type phases until, for compositions above x=1.6, a 

second single phase region corresponding to the monoclinic Cr3S4-type, is 

observed.  

Powder X-ray and neutron diffraction data were used simultaneously in 

Rietveld analysis in order to determine the distribution of chromium and 

vanadium ions amongst sites in the defective and fully occupied layers. This 

approach exploits the high degree of contrast between the two cations in 

powder neutron diffraction, due to the vanishingly small neutron scattering 

length of vanadium, whilst overcoming the difficulties the latter presents in 

locating vanadium directly by neutron methods alone. Neutron data in the 

time-of-flight range 3000-19300 μs (d ≈0.5-3.2 Å) were used together with X-

Ray data in the angular range 20-100° (d ≈1.0-4.4 Å). In order to facilitate 

comparison of data from the two techniques, units of d-spacing will be used 

throughout this work. Structural refinements for VxCr2-xS3 (0≤x≤0.75) 

materials were initiated in the space group 3R  and those for materials in the 
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composition range 1.6≤x≤2.0 in I2/m, using atomic coordinates and lattice 

parameters from the previous X-ray diffraction study of Cr2S3 and Cr3S4 for the 

initial structural models.6 In the trial structural models, vanadium and 

chromium occupied the available sites in a statistical manner. Neutron 

scattering lengths and X-ray scattering factors incorporated within the GSAS 

program were used. The backgrounds of both X-ray and neutron data were 

modelled using a cosine Fourier series with the coefficients included as 

refinable parameters. A pseudo-Voigt peak shape was used for X-ray data, 

whereas a more complex peak shape description involving the convolution of 

a Gaussian with a double exponential function was used for the neutron data. 

Regions centred at d =2.1–2.2, 1.5-1.6 and 1.2-1.3 Å in the neutron data 

were excluded from refinements owing to the presence of vanadium (d110 = 

2.14 Å, d200=1.52 Å and d211=1.24 Å) originating from the sample can.  

Following initial refinement of scale factors, background terms, X-ray zero-

point, positional and lattice parameters, site occupancy factors and thermal 

parameters were introduced as variables into the refinement. In all cases, a 

single thermal parameter was used for the cations and for the anion. For 

materials with the M3S4-type structure, site occupancy factors of vanadium 

and chromium were allowed to vary with the constraint that the overall 

stoichiometry was maintained. For materials in the M2S3-type region there are 

three crystallographically-distinct cation sites (3(b), 3(a) and 6(c)) and an 

alternative strategy for refining of site occupancy factors was adopted. 

Initially the site occupancy factors for the two cations at the two sites in the 

fully occupied layer (6(c) and 3(a)) were allowed to vary with the constraint 
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that the overall stoichiometry of this layer was maintained. In order to allow 

for the possibility of redistribution of cations between fully occupied and 

vacancy layers, the site occupancy factor of the vacancy layer site was refined 

together with that of each of the two sites in the fully occupied layer in turn. 

In each case a constraint was applied to maintain the nominal stoichiometry. 

This procedure led to a significant improvement in quality of the fit as the 

result of a redistribution of the cations from the statistical arrangement. 

Finally, the possibility that additional vacancies may be present in the vacancy 

layer was explored by allowing site occupancy factors of chromium and 

vanadium residing at the vacancy layer 3(b) site to vary freely. However, with 

the exception of the refinement for V0.6Cr1.4S3, this did not lead to any 

appreciable deviation of the site occupancy factors at this site from their 

previously determined values. For the case of V0.6Cr1.4S3, whilst this site 

remained fully occupied, there were small changes in the relative amounts of 

vanadium and chromium at this site, leading to a slightly altered stoichiometry 

of V0.57Cr1.43S3. Following the introduction of peak shape parameters, the final 

cycle of refinement produced residuals in the range 12.51-17.61% (X-ray) 

and 1.07-2.73% (neutron). Refinements of an initial structural model in which 

the available vanadium was equally apportioned amongst vacancy and fully 

occupied layers converged at essentially the same cation distribution as that 

arrived at using the procedure described above. Observed, calculated and 

difference profiles representative of each single phase region are presented in 

Figure 4, whilst the remaining profiles are provided as supplementary 
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information. Final refined atomic parameters appear in Tables 1 and 2, whilst 

significant bond distances and angles are provided in Tables 3 and 4.  

Examination of cation site-occupancy factors (Tables 1 and 2) reveals that 

across the composition range of the M2S3-type structure, the fraction of 

vanadium that resides in the fully occupied layer (VF) increases with 

increasing vanadium content (Figure 6), reaching a value of ca. 63% at 

x=0.6, corresponding to a formulation (V0.22Cr0.28)[V0.38Cr1.12]S3. At the higher 

levels of vanadium incorporation corresponding to the M3S4-type phases, sites 

in the fully occupied layer are predominantly (ca. 80%) occupied by 

vanadium. This represents a significant difference from the behaviour of the 

analogous VxCr3-xS4 phases,20 in which there is a marked discontinuity in VF as 

a function of vanadium content. For compositions with x0.4, the distribution 

conforms closely to the general formula (Vx/2Cr(1-x/2))[Vx/2Cr(2-x/2)]S4, whilst 

below x=0.4, VF decreases rapidly, leading to a near-normal distribution at 

x=0.2. We have proposed that20 these site-preferences reflect the relative 

abilities of the cations present to delocalize electrons by direct t2g-t2g 

interactions and that the structure adopted is that which best balances the 

competition between electron delocalization and charge separation. In the 

present case, as both chromium and vanadium cations are trivalent, 

redistribution of cations does not lead to charge separation and therefore, it 

would be expected that electronic factors would favour the occupation of sites 

in the fully occupied layer by vanadium, as appears to be the case at higher 

vanadium contents, where the capacity for direct t2g-t2g interactions is 

greatest.  
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Examination of the compositional dependence of the unit-cell volume per M2S3 

formula unit, (Figure 6(a)) reveals a marked discontinuity on going from the 

M2S3-type to M3S4-type structure. The in-plane dimensions of the M2S3-type 

phases (0<x0.75) show only a slight decrease with increasing vanadium 

content, whilst the lattice parameter perpendicular to the dichalcogenide slabs 

increases almost linearly with x (Figure 6(b)). This trend is continued into the 

M3S4-type phases (1.6x2.0), whereas the in-plane dimensions, no longer 

constrained to be equivalent by symmetry, diverge at the phase boundary. 

The b lattice parameter appears to continue the trend established as the 

boundary of the M2S3 region is approached, whilst the a lattice parameter is 

significantly larger than would be expected by extrapolation of the behaviour 

in the M2S3 region. This divergence of the in-plane lattice parameters is 

reflected in the behaviour of the cation-cation distances within the fully-

occupied layer. Each cation in this layer has six in-plane nearest neighbour 

cations. With increasing vanadium content, intralayer cation-cation distances 

decrease slightly, suggesting an increase in the strength of the cation-cation 

interactions, whilst retaining a near-hexagonal arrangement. However, for 

materials in the M3S4 compositional region, the six nearest-neighbour 

distances within the fully occupied layer fall into three pairs, one 

corresponding to the lattice translation along the b-axis, a second pair of 

cation-cation separations at a significantly longer distance and a third at a 

distance of ca. 3Å, below the critical distance, Rc, of 3.1Å estimated for direct 

t2g-t2g overlap. Intralayer distortions of this type, involving the formation of 

zigzag cation chains, have been observed in a number of mixed-metal 
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sulphides.21,22 and have been shown to be associated with the onset of 

metallisation through the creation of a one-dimensional band of t2g-derived 

states.  

The formation of a t2g-derived band, which for materials in the composition 

range 1.6x<2 is only partially filled, manifests itself in the electrical transport 

properties. The resistivity of materials with the M3S4-type structure (Figure 7) 

shows a relatively weak temperature dependence and a positive d/dT, 

consistent with metallic behaviour. By contrast, the temperature dependence 

of the resistivity of materials in the composition region 0≤x≤0.75 is indicative 

of semiconductivity. However, with increasing vanadium content, there is a 

progressive decrease in the resistivity. (Figure 7). Although the resistivity of 

V0.75Cr1.25S3 is six orders of magnitude lower than that of V0.1Cr1.9S3, the 

positive sign of d/dT indicates that semiconducting behaviour persists to the 

phase boundary. The marked decrease in resistivity on substitution of 

vanadium for chromium may be related to the creation of holes in the t2g 

band, resulting from the replacement of Cr3+:d3 by V3+:d2, and to the band 

broadening that results from stronger cation-cation interactions.  

Resistivity data for V0.1Cr1.9S3 and V0.2Cr1.8S3 follow Arrhenius-type behavior 

(Figure 8) above 166 K and 120 K respectively, yielding activation energies of 

66.3(1) meV and 46.9(2) meV. These values are similar to those of 37(6) meV 

determined23 for Cr2S3 and 44(1) meV obtained for a sulphur-deficient 

phase.12 At higher levels of vanadium incorporation (0.25≤x≤0.75) plots of 

ln(ρ) vs. 1/T are non-linear indicating that the conduction mechanism is not of 

the Arrhenius type. However for materials in this composition range, a plot of 
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ln(ρ) vs. 4/1T is linear over the temperature range 80≤T/K≤300 (Figure 9) 

indicating a variable-range-hopping conduction mechanism24,25 of the form 





























0
0

T

T
exp      (1) 

with  = ¼. Increasing levels of substitution of chromium introduces disorder, 

which may cause states at the band edge to become localized, while states in 

the band centre remain delocalized. As the Fermi energy lies on the localized 

side of the mobility edge, the conduction is then dominated by hopping of 

charge carriers between states localized on opposite sides of the Fermi energy 

according to the variable-range-hopping mechanism. The constant 0T (Table 

6), determined for the compounds in the variable-range-hopping regime 

(Equation 1), is given by26, T0=21/kBN(EF)
3
, where N(EF) is the density of 

states at the Fermi level and ξ is the localization length, which is a measure of 

the spatial extent of the wave function localized at a single site. An estimate 

of ξ was obtained by using a value of N(EF) = 1.6  1023 states/ eV cm3 from 

band structure calculations for CrS.27 The value of  so determined increases 

throughout the composition range 0.25x0.75, supporting the view that 

electrons are becoming increasingly delocalised as the level of vanadium 

incorporation increases. 

A Seebeck coefficient of –325 V K-1 has been reported11 for the end-member 

phase, Cr2S3. Sulphur deficiency increases this slightly: a value of -391 V K-1 

being reported12 for Cr2S2.92. This indicates that electrons are the dominant 

charge carriers in the binary phases. Substitution of Cr3+:d3 by V3+:d2 

introduces holes into the conduction band, with the result that both electrons 
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and holes can contribute to the electrical conduction. The Seebeck coefficient 

of such a mixed conductor is then the conductivity-weighted sum of the 

contributions from electrons and holes. At low levels of vanadium 

incorporation, the Seebeck coefficient of VxCr2-xS3 phases is positive (Figure 

10), suggesting that hole-type conduction dominates. Furthermore, the 

relatively large room-temperature value of S exhibited by V0.2Cr1.8S3 is 

consistent with the highly resistive nature of the material. As the vanadium 

content is increased through the M2S3-type region, the resistivity falls as a 

result of increasing electron delocalisation, and there is a concomitant 

reduction in the room temperature value of the Seebeck coefficient, until for 

compositions with x0.5, negative values are observed. This indicates that as 

the phase boundary is approached, electron conduction again begins to 

dominate, as the result of increased electron mobility due to band 

broadening. In the M3S4 region where resistivity data indicates metallic 

behaviour, |S|<10 V K-1: values that are typical of a metal. The metallic 

nature of the M3S4-type phases is further supported by the almost linear 

temperature dependence of |S|. By contrast, the Seebeck coefficient of the 

semiconducting phases (x0.75) does not follow the 1/T dependence 

expected for a conventional broad-band semiconductor.28 Indeed for materials 

with x=0.2 and 0.3, |S| increases with temperature, which is the behaviour 

expected for a metal. Similar metal-like behaviour of S has been observed 

previously in semiconducting NiCr2S4
29 and has been attributed to a constant 

carrier concentration and thermally-activated mobility. In the present case the 

activated mobility is likely to arise from carrier localisation due to disorder 
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associated with cation substitution. As the vanadium content is increased 

across the M2S3 region, in addition to the decrease in the absolute value of 

the Seebeck coefficient, S(T) shows a much weaker temperature dependence 

and a change in sign of dS/dT is observed at ca. 200K, suggesting that more 

than one conduction mechanism may be operative.30 This may also explain 

why S(T) does not follow the T1/2 dependence expected for a variable-range-

hopping semiconductor. 

The zfc and fc magnetic susceptibility data for all phases overlie each other to 

the lowest temperature studied (Figure 11). At high temperatures, the 

susceptibility data follow a Curie-Weiss law. The Curie constant of V0.1Cr1.9S3, 

determined as 3.52(2) cm3 K mol-1 (Table 5), is in good agreement with the 

value of 3.66 cm3 K mol-1 calculated assuming spin-only behaviour of localised 

Cr3+ and V3+ ions, and leads to an effective magnetic moment per cation of 

3.75(1) B. Progressive replacement of Cr3+:d3 by V3+:d2 would be expected 

to reduce the effective magnetic moment across the VxCr2-xS3 series, leading 

to a minimum value of so = 2.95 B at V1.8Cr0.2S3. Examination of the data in 

Table 5 reveals that, with increasing levels of vanadium incorporation, the 

measured moments are significantly reduced from spin-only values, that of 

V0.75Cr1.25S3 attaining less than 55% of so. Although the Weiss constants are 

relatively large and negative, indicative of predominantly antiferromagnetic 

exchange interactions, which would reduce the moment, we believe that the 

principal reason for the reduction in the effective magnetic moment is the 

increasing degree of electron delocalisation across the series, as revealed by 

the measurements of resistivity and Seebeck coefficient discussed above.  
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All materials, with the exception of V0.75Cr2.25S3, show a sharp increase in 

susceptibility on cooling below a critical temperature, TC. Across the M2S3 

region, TC decreases steadily with increasing vanadium content, suggesting a 

weakening of the magnetic exchange interactions as the phase boundary is 

approached, although the behaviour of the M3S4 phases is less systematic. 

The metallic nature of the M3S4-type phases leads to lower susceptibilities at 

low temperature than observed for the semiconducting M2S3-type materials.  

Whilst the increase in magnetic susceptibility on cooling below TC could be 

indicative of ferromagnetic ordering of moments, the negative Weiss 

constants reveal that the dominant magnetic exchange interactions are 

antiferromagnetic in origin. This suggests that the transition to long-range 

magnetic order involves a ferrimagnetic state, in which the spontaneous 

magnetisation arises from incomplete cancellation of ordered moments. 

Further support for this view is provided by the field-dependence of the 

magnetization at 5K (Figure 12). The saturated moments per cation (sat), 

determined by extrapolation to infinite field of M vs. 1/H (Table 3), for 

materials with M2S3-type structures are considerably lower than those 

expected for ferromagnetic ordering of localised ions. The latter would lie in 

the range 2.9 – 2.1 B, depending on vanadium content. The small measured 

saturated moments of <0.25 B are consistent with ferrimagnetism. This is 

similar to the behaviour of the end-member phase, Cr2S3, the magnetic 

structure of which consists of three magnetic sublattices.31 In the 

magnetically ordered phase, moments on two of the sublattices are coupled 

parallel to each other and are aligned antiparallel to the third sublattice, which 
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has twice the multiplicity. In Cr2S3, all cations have identical spin, and 

therefore ordering should produce a complete cancellation of the moments 

and no spontaneous magnetisation. The small ordered moment of 0.04B of 

Cr2S3 appears to result from spin-canting.32 In the VxCr2-xS3 (0<x0.75) 

materials reported here, preferential incorporation of vanadium at a particular 

cation site, as established by structural analysis, removes the equivalence of 

the ordered moments associated with the three sub-lattices, leading to an 

increase in the saturated moment, even in the absence of spin-canting, but 

the values remain significantly less than those expected for ferromagnetic 

order. The values of the saturated moment for materials with M3S4-type 

structures are, at a few hundredths of a Bohr magneton, an order of 

magnitude lower than those of M2S3-type materials. This is again consistent 

with the metallic nature of materials in this compositional region.  

In conclusion, we have shown that the ordered defect structure of Cr2S3 is 

retained on substitution of chromium by vanadium up to a composition of 

V0.75Cr1.25S3. Although semiconducting behaviour persists throughout this 

composition range, the resistivity decreases progressively with increasing 

vanadium content. In Cr2S3, intralayer cation-cation separations are greater 

than the estimated minimum distance for direct t2g-t2g overlap (RC) and, 

therefore, these interactions are weak. Consequently, t2g levels that are 

essentially localised are separated by a band gap from an empty narrow band 

resulting from admixture of cation eg states with anion s/p levels. Substitution 

of Cr3+:d3 with V3+:d2 introduces holes into the t2g levels and also causes band 

broadening through direct cation-cation interactions. The diffraction data 
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indicate that such interactions are likely to be associated predominantly with 

sites in the fully occupied layer, which are preferentially occupied by 

vanadium cations as the level of substitution increases. The fall in resistivity 

may therefore be associated with the increased delocalisation of charge 

carriers, which is reflected in the increase in  across the series. Furthermore, 

substitution leads to mixed conduction, in which both holes and electrons 

contribute to the charge transport, leading to a Seebeck coefficient which 

reflects the conductivity-weighted sum of two contributions of opposite sign, 

whose absolute value decreases with increasing vanadium content.  At higher 

levels of vanadium substitution, both resistivity and Seebeck coefficient data 

are indicative of metallic properties. The change to metallic behaviour is 

marked by a change to a Cr3S4-type structure, the symmetry of which permits 

the formation of zigzag cation chains in which cations are separated by 

distances of ca. 3Å. The existence of such chains appears to be closely linked 

to metallisation in ordered defect phases. An increasing level of electron 

delocalisation is also evident in the magnetic properties, which reveal a 

decrease in effective magnetic moment as the level of vanadium incorporation 

increases. The magnetic data also suggest that in each of the single-phase 

regions, a transition to a long-range magnetically-ordered state occurs at low 

temperatures. Investigation of the nature of this magnetically-ordered state 

and its evolution with composition will require neutron diffraction 

measurements at low temperatures. 

 

Acknowledgements 



 19 

We wish to thank the CCLRC Centre for Materials Physics and Chemistry and 

Heriot-Watt University for financial support to TEE. 

 

Supplementary material 

Final observed, calculated and difference X-ray and neutron powder 

diffraction profiles for VxCr2-xS3  (0.3≤x≤1.8) are available. 
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Table 1: Final Refined Parameters for Materials 0<x<0.75 with the 

Rhombohedral Cr2S3 Structure (space group 3R )a
 

 

 

  x in VxCr2-xS3 

  0.2 0.3 0.4 0.6 

 a /Å 5.9275(1) 5.9272(1) 5.9193(1) 5.9151(1) 
 c /Å 16.7028(1) 16.7325(2) 16.7416(2) 16.7844(3) 
(M(1)) SOF(V) 0.275(-) 0.358(-) 0.378(-) 0.439(-) 
 SOF(Cr) 0.725(-) 0.642(-) 0.622(-) 0.561(-) 
 B/Å2 0.35(1) 0.33(1) 0.32(1) 0.25(1) 
[M(2)] SOF(V) 0.047(4) 0.106(4) 0.171(6) 0.268(8) 
 SOF(Cr) 0.953(4) 0.894(4) 0.829(6) 0.732(8) 
 B/Å2 0.35(1) 0.33(1) 0.32(1) 0.25(1) 
[M(3)] SOF(V) 0.039(2) 0.068(2) 0.125(3) 0.247(4) 
 SOF(Cr) 0.961(2) 0.932(2) 0.875(3) 0.753(4) 
 B/Å2 0.35(1) 0.33(1) 0.32(1) 0.25(1) 
 z 0.3265(1) 0.3261(1) 0.3263(1) 0.3290(1) 
S(1) x 0.3384(3) 0.3388(2) 0.3391(3) 0.3395(5) 
 y -0.0046(3) -0.0052(3) -0.0045(3) -0.0049(5) 
 z 0.2523(1) 0.2525(1) 0.2524(1) 0.2523(1) 
 B/Å2 0.39(1) 0.37(1) 0.41(1) 0.47(1) 
Rwp X-ray 12.51% 14.14% 13.37% 17.61% 
 neutron 1.40% 1.30% 1.79% 2.73% 
χ

2  1.06 1.27 1.18 2.35 

      
 

a Parentheses and square brackets denote cation sites in the vacancy and fully 
occupied layers respectively. (M(1)) on 3(b) (0,0,½); [M(2)] on 3(a) (0,0,0); 
[M(3)] on 6(c) 0,0,z) and S(1) on 18(f) (x,y,z). 
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Table 2: Final Refined Parameters for Materials (1.6x1.8) with the 

Monoclinic Cr3S4 Structure (space group I2/m)a 

 

 

  x in VxCr2-xS3 

  1.6 1.8 

 a /Å 5.8228(1) 5.8158(2) 
 b /Å 3.2978(1) 3.2841(1) 
 c /Å 11.2497(3) 11.2868(4) 
 β (deg) 91.440(3) 91.488(3) 
(M(1)) SOF(V) 0.426(4) 0.525(4) 
 SOF(Cr) 0.240(4) 0.142(4) 
 B/Å2 0.98(8) 1.31(12) 
[M(2)] SOF(V) 0.853(2) 0.937(2) 
 SOF(Cr) 0.147(2) 0.063(2) 
 x -0.030(1) -0.0348(7) 
 z 0.257(1) 0.2564(5) 
 B/Å2 0.98(8) 1.31(12) 
S(1) x 0.3381(3) 0.3388(2) 
 z 0.3650(1) 0.3645(1) 
 B/Å2 0.48(1) 0.39(1) 
S(2) x 0.3372(2) 0.3364(2) 
 z 0.8856(1) 0.8857(1) 
 B/Å2 0.48(1) 0.39(1) 
Rwp X-ray 15.11% 13.70% 
 neutron 1.07% 1.21% 

χ
2  1.88 1.59 

    
 

a Parentheses and square brackets denote cation sites in the vacancy and 
fully occupied layers respectively. (M(1)) on 2(a) (0,0,0); [M(2)] on 4(i) 
(x,0,z); S(1) and S(2) on 4(i) (x,0,z). 
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Table 3: Selected bond distances (Å) and angles (°) for VxCr2-xS3 phases 
(M2S3) 

 

 x in VxCr2-xS3 

bond 0.2 0.3 0.4 0.6 

M(1)-S 2.405(1)  6 2.405(1)  6 2.405(1)  6 2.403(2)  6 

M(2)-S 2.394(1)  6 2.394(1)  6 2.391(1)  6 2.392(3)  6 
M(3)-S 2.369(1)  3 

2.427(1)  3 

2.370(1)  3 

2.427(1)  3 

2.370(1)  3 

2.427(1)  3 

2.397(2)  3 

2.398(2)  3  
M(1)-M(3) 2.898(1)  2 2.908(1)  2 2.908(1)  2 2.870(3)  2 
M(2)-M(3) 3.424(1)  6 3.424(1)  6 3.420(1)  6 3.416(1)  6 

M(3)-M(3) 3.430(1)  3 3.430(1)  3 3.426(1)  3 3.418(1)  3 
     

S-M(1)-S 88.25(3)  6 87.99(3)  6 88.03(4)  6 87.84(6)  6 

 91.74(3)  6 92.00(3)  6 91.97(4)  6 92.16(6)  6 
S-M(2)-S 91.19(4)  6 91.22(4)  6 91.05(4)  6 90.91(6)  6 

 88.81(4)  6 88.78(4)  6 88.95(4)  6 89.09(6)  6 
S-M(3)-S 95.15(4)  3 95.41(4)  3 95.21(4)  3 93.90(9)  3 

 88.73(4)  3 88.68(4)  3 88.86(4)  3 89.09(9)  3 
 88.60(7)  3 88.58(7)  3 88.59(7)  3 88.82(12)  3 

 87.23(4)  3 87.01(4)  3 87.03(5)  3 88.04(9)  3 
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Table 4: Selected bond distances (Å) and angles (°) for VxCr2-xS3 phases 
(M3S4) 

 

 x in VxCr2-xS3 

bond 1.6 1.8 

M(1)-S(1) 2.417(1)  4 2.416(1)  4 

M(1)-S(2) 2.374(1)  2 2.372(1)  2 
mean M(1)-S 2.40 2.40 
   
M(2)-S(1) 2.439(6) 2.464(5) 
 2.436(5)  2 2.437(4)  2 

M(2)-S(2) 2.337(5)  2 2.333(4)  2 
 2.372(6) 2.345(5) 
mean M(2)-S 2.61 2.60 
   
M(1)-M(1) 3.298(1)  2 3.284(1)  2 
M(1)-M(2) 2.902(8)  2 2.906(5)  2 

M(2)-M(2) 3.298(1)  2 3.284(1)  2 
 3.045(10)  2 2.994(7)  2 

 3.664(10)  2 3.704(7)  2 
   

S(1)-M(1)-S(1) 86.05(6)  2 85.62(5)  2 
 93.95(6)  2 94.38(5)  2 

S(1)-M(1)-S(2) 88.52(5)  4 88.15(4)  4 
 91.48(5)  4 91.85(4)  4 

   
S(1)-M(2)-S(1) 82.53(17)  2 81.85(12)  2 
 85.19(23) 84.71(16) 
S(1)-M(2)-S(2) 91.99(4)  2 92.21(5)  2 
 88.12(22)  2 88.25(17)  2 

 89.54(22)  2 89.06(16)  2 
S(2)-M(2)-S(2) 99.43(18)  2 100.42(14)  2 

 89.76(26) 89.47(18) 
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Table 5: Parameters derived from magnetic susceptibility data for VxCr2-xS3 (0.1≤x≤1.8) 

x in VxCr2-xS3 

 0.1 0.2 0.4 0.5 0.6 0.75 1.6 1.7 1.8 

Data Range for fit /K 130-300 160-300 155-300 180-300 160-300 180-300 170-300 170-300 170-300 

C/cm3.Kmol-1 3.52(2) 3.00(4) 2.49(2) 2.35(2) 1.61(1) 0.89(2) 0.96(1) 1.36(3) 1.10(1) 

Θ/K -363(3) -208(6) -131(3) -106(2) -134(1) -195(9) -375(7) -201(9) -303(6) 

TC K 118 112 110 100 102 100 90 108 95 

μexp per M cation 3.75(1) 3.47(2) 3.16(1) 3.06(1) 2.54(1) 1.89(1) 1.96(1) 2.33(1) 2.10(1) 

μso 3.83 3.78 3.69 3.64 3.58 3.52 3.07 3.00 2.95 

Saturation magnetization/B 0.12(1) 0.25(1) 0.23(1) 0.23(1) 0.12(1) 0.052(1) 0.018(1) 0.082(1) 0.034(1) 
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Table 6: Parameters extracted from variable-range-hopping fits with 4
1v   

x in VxCr2-xS3 
Data range 

for fit/K 
ρ0/Ωcm T0/104 K /Å 

0.25 300-80 2.09 79.46 1.24 

0.4 180-80 2.01 54.18 1.41 

0.5 300-80 3.46 8.65 2.60 

0.75 300-80 2.52 2.44 3.97 
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FIGURE CAPTIONS 
 

Figure 1 The defect ordering scheme within the partially-occupied 

layers (ab plane) of Cr2S3 (left) and Cr3S4 (right). Solid circles 

represents cations, open circles represent vacancies. 

Figure 2 The Cr2S3 structure. Grey octahedra represent MS6 units in 

the fully occupied layer and the solid circles represent cations 

in the partially occupied layer. 

Figure 3 The Cr3S4 structure. Cations in the ordered defect layer are 

shown as solid circles and cations in the fully occupied layer 

lie at the centre of shaded MS6 octahedra, which share edges 

to form a layer of stoichiometry MS2.  

Figure 4 Final observed (crosses), calculated (upper full line) and 

difference (lower full line) profiles for (a) V0.2Cr1.8S3 and (b) 

V1.8Cr0.2S3  (X-ray data : upper plot, neutron data : lower 

plot). Reflection positions are marked. 

Figure 5 Compositional variation of the fraction of available vanadium 

that resides in the fully occupied layer, VF, in VxCr2-xS3 

(0<x<2). The sequential nature of the refinement for M2S3-

type phases precludes inclusion of error bars (see text), whilst 

those for M3S4-type phases lie within the points. 

Figure 6 Compositional dependence of (a) the volume, normalised to 

that per M2S3 formula unit in order to facilitate comparison 

between the two structure types and (b) the lattice 
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parameters of the primitive hexagonal sub-cell for the two 

single-phase regions of VxCr2-xS3. In (b) a and b parameters in 

the M2S3-type structure are denoted by solid circles and by 

open and solid circles respectively for the M3S4-type structure; 

solid squares denote, c, for both structure types. Error bars lie 

within the points  

Figure 7 Temperature dependence of the electrical resistivity of 

VxCr2-xS3 phases. 

Figure 8 An Arrhenius plot showing the linear fits to data for VxCr2-xS3 

(x = 0.1 and 0.2). 

Figure 9 Fit to the resistivity data for VxCr2-xS3 (0.25≤x≤0.75) showing 

the T-1/4 dependence of ln(). The straight lines are the fit to 

the variable-range-hopping expression of equation (1) over 

the range of temperatures given in Table 5. 

Figure 10 Seebeck coefficient data for VxCr2-xS3 (0.2≤x≤1.8) collected 

over the temperature range 80T/K350 

Figure 11 Zero-field-cooled (zfc) and field-cooled (fc) molar magnetic 

susceptibilities for VxCr2-xS3 (0.1≤x≤1.8) phases measured in 

a field of 1000G. The insets show the fit to the Curie-Weiss 

expression. 

Figure 12 Magnetization per cation as a function of field  for VxCr2-xS3 

(0.1x1.8) phases at 5K. 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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